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Equivariant Stable Homotopy Theory

17.1 Introduction

Equivariant stable homotopy theory considers spaces and spectra endowed
with the action of a fixed group G. Classically, this group has been taken to
be finite or compact Lie, but here we will consider only the case of a finite
group acting. Our goal is to produce a broad-strokes overview of the state
of equivariant stable homotopy theory, focusing the intuition behind many of
the objects and constructions, exploring some of the tools in equivariant alge-
bra, and showing how one can compute with these as easily as one computes
classically.

There are many wonderful references for much of the foundational material
in equivariant stable homotopy theory. For example [2], [58], [32], [18], [60],
and [67, 68] are excellent sources for learning about specific models and their
applications. In this, we will focus more on multiplicative and computational
aspects, working through various examples along the way.

In all that follows, we work as model independently as possible. We will
use the phrase “homotopically meaningful” to signify that a particular functor
or construction descends to the underlying ∞-category or lifts to a Quillen
functor on appropriate model categories.

Notation and conventions

In this chapter, G will be a finite group. Letters like H and K will most often
refer to subgroups of G, and N will refer to normal subgroups. Spaces are
always assumed to be compactly generated, weak Hausdorff.
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17.2 G-spaces and functors between them

17.2.1 The categories of G-spaces

Definition 17.2.1. A G-space is a topological space X together with a
continuous map

G×X X

(g, x) g · x

such that

1. if e ∈ G is the identity, then for all x ∈ X, e · x = x, and

2. for all g, h ∈ G and x ∈ X, we have g · (h · x) = (g · h) · x.

As is common in mathematics, although a G-space is two pieces of data,
we will normally denote them only by the name of the underlying space.

Definition 17.2.2. IfX and Y areG-spaces then an equivariant map f : X →
Y is a continuous map f : X → Y such that for all g ∈ G and x ∈ X, we have

f(g · x) = g · f(x).

It is a useful exercise to check that equivariant maps compose and that
the identity is equivariant.

Notation 17.2.3. Let TopG denote the category of G-spaces and equivariant
maps.

We have a forgetful functor from G-spaces to spaces which just forgets the
action of G.

Notation 17.2.4. Let i∗{e} : TopG → Top be the forgetful functor.

This forgetful functor is faithful, since an equivariant map is just a con-
tinuous map with the property that it commutes with the action of G. In
particular, we can use the natural topological enrichment of Top to produce
a topological enrichment on TopG. Here the topology on the Hom sets is just
the subspace topology given by the faithful inclusions from i∗{e}.

Example 17.2.5. If V is a finite dimensional orthogonal representation of
G, then we have several G-spaces attached to V :

1. Let D(V ) =
{
~v ∈ V | ||~v|| ≤ 1

}
be the unit disk in V ,

2. let S(V ) =
{
~v ∈ V | ||~v|| = 1

}
be the unit sphere in V , and
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3. let SV = D(V )/S(V ) be the one point compactification of V , the “V -
sphere”.

Example 17.2.6. If V is a representation of G, then let

aV : S0 → SV

be the inclusion of the origin and point at infinity. We call this the Euler class
of V , since it is the Euler class of the equivariant bundle V → ∗.

Our forgetful functor down to spaces is just one of a host of forgetful
functors wherein we forget the actions of only some of the elements of G.

Definition 17.2.7. Given any subgroup H⊆G, let

i∗H : TopG → TopH

be the forgetful functor which forgets the actions of elements of G not in H.

Example 17.2.8. If V is any representation of G, then

i∗HaV = ai∗HV .

These forgetful functors play an essential role in equivariant unstable and
stable homotopy theory. They are categorically very well behaved, commuting
with all limits and colimits in the category, and they have both adjoints.
The left adjoint is given by a kind of balanced tensor product, while the
right adjoint is given by an equivariant function object, just as in ordinary
representation theory.

Definition 17.2.9. If X is an H-space, then let

G×
H
X = G×X/ ∼,

where ∼ is the equivalence relation given by (gh, x) ∼ (g, hx) for all g ∈ G,
h ∈ H, and x ∈ X. This has a G-action given by

g · [(g′, x)] = [(gg′, x)].

Definition 17.2.10. If Y is an H-space, then let

TopH(G, Y )

be the space of H-equivariant maps from G (viewed as an H-space with the
left action of H on G) to Y . This gets an action of G via the right action of
G on itself:

(g · f)(g′) = f(g′g).
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Proposition 17.2.11. The constructions

X 7→ G×
H
X, Y 7→ TopH(G, Y )

extend to functors

G×
H

-, TopH(G, -) : TopH → TopG,

called induction and cöınduction respectively.
Induction is left adjoint to the forgetful functor i∗H , and cöınduction is right

adjoint to the forgetful functor i∗H .

Just as classically, we can test spaces by mapping in points. Here, however,
we have to remember at which subgroup our point was “born”. Since the point
is the terminal object in the category of spaces, there is a unique H-space
structure on {∗}: the trivial one. This gives us the G-space

G/H ∼= G×
H
∗.

Proposition 17.2.12. If Y is a G-space, then

TopG(G/H, Y ) ∼= {y ∈ Y | h · y = y,∀h ∈ H}.

Definition 17.2.13. If H⊆G and if Y is a G-space, then the H-fixed points
of Y are

Y H := {y ∈ Y | h · y = y,∀h ∈ H}.

The key step for Proposition 17.2.12 is that stabilizers of points only grow
under an equivariant map. We can use this to describe the left adjoint to the
H-fixed points functor.

Notation 17.2.14. Let
i∗ : Top→ TopG

be the functor which endows a space X with a trivial G-action: for all g ∈ G
and x ∈ X, g · x = x.

The same construction works for other quotient groups.

Notation 17.2.15. Let Q = G/N , and let

iN∗ : TopQ → TopG

be the functor which views a Q-space as a G-space via the quotient map
G→ Q.

Underlying this is the observation that every continuous map between
spaces with a trivial G-action is equivariant.
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Proposition 17.2.16. The functor i∗ is left adjoint to the G-fixed points
functor

(-)G : TopG → Top.

More generally, the functor

G×
H
i∗ : Top→ TopG

is left adjoint to the H-fixed points functor.

Under the homeomorphisms given by Proposition 17.2.12, maps of orbits
correspond to various inclusions and maps between the fixed points for various
subgroups of G. This gives us a way to conceptualize a G-space: begin with
the fixed points and then begin adding orbits of the form G/H (in families),
working our way down the subgroup lattice of G. We shall make this concept
increasingly precise.

We also have pointed versions of all of these statements.

Notation 17.2.17. Let TopG∗ be the category of G-spaces equipped with a
G-fixed basepoint.

Notation 17.2.18. Let G+ ∧
H

- and TopH∗ (G+, -) be the (pointed) induction

and cöınduction.

17.2.2 Equivariant homotopies and CW-complexes

We define homotopies and CW-structures largely in parallel with the classical
ones. We first note that the category of G-spaces has a closed symmetric
monoidal structure.

Definition 17.2.19. If X and Y are G-spaces, then let X × Y be endowed
with the action

g · (x, y) = (gx, gy).

Let Top(X,Y ) have the action

(gf)(x) = g
(
f(g−1x)

)
.

Essentially the same definitions can be applied in the pointed cases, giving
the smash product and pointed mapping spaces.

Proposition 17.2.20. The Cartesian product and function spaces with con-
jugation action give a closed symmetric monoidal structure on TopG.

The smash product and pointed function spaces with conjugation action
give a closed symmetric monoidal structure on TopG∗ .
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Remark 17.2.21. We can auto-enrich TopG, forming a category Top. Our
notation is chosen to reflect the fact that the former is the fixed points of the
latter.

Definition 17.2.22. If f0, f1 : X → Y are equivariant maps, then a homotopy
from f0 to f1 is an equivariant map

F : X × I → Y

such that for all x ∈ X and i ∈ {0, 1}, F (x, i) = fi(x). We say that f0 and f1

are homotopic if there is a homotopy from one to the other.
In the pointed case, we require that the homotopy be relative to the base-

point.

Notation 17.2.23. If X and Y are G-spaces, let [X,Y ]G denote equivariant
homotopy classes of maps from X to Y .

If X and Y are pointed G-spaces, let [X,Y ]G∗ denote the equivariant ho-
motopy classes of pointed maps from X to Y .

Example 17.2.24. If V is a representation such that V G = {0}, then the
Euler class aV is not homotopic to a constant map. Any such homotopy would,
applying fixed points, provide a null-homotopy of the identity map on S0.

Conversely, if V G 6= {0}, then the Euler class aV is null-homotopic, with
nullhomotopy given by tracing along a ray in V G.

The classical arguments that “homotopic is an equivalence relation” go
through without change. Here, however, we can already see more rigidity than
in the classical case.

Proposition 17.2.25. If f : X → Y and f ′ : Y → X are homotopy inverses,
then for all H⊆G, f and f ′ induce homotopy equivalences

fH : XH � Y H : f ′
H
.

Our notion of homotopy and homotopy equivalence then gives the weak
one.

Definition 17.2.26. A map f : X → Y is a weak homotopy equivalence if
for all H⊆G,

fH : XH → Y H

is a weak homotopy equivalence.

These are the weak equivalences in a model structure on TopG. The fibra-
tions are also defined relative to the fixed points.
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Theorem 17.2.27. There is a model category structure on TopG in which the
weak equivalences are the weak homotopy equivalences, in which the fibrations
are those maps p : E → B such that for all H⊆G,

pH : EH → BH

is a [Serre] fibration, and where the cofibrations are what they have to be.

Using Proposition 17.2.12, we can turn our notation of a weak equiva-
lence into a diagramatic statement: a map f : X → Y is a weak homotopy
equivalence if for all orbits G/H, the induced map

TopG(G/H, f) : TopG(G/H,X)→ TopG(G/H, Y )

is a weak equivalence of spaces.

Definition 17.2.28. Let OrbG be the full subcategory of TopG generated by
orbits.

Definition 17.2.29. If X is a G-space, then let

X : (OrbG)op → Top

be the restriction of the Yoneda functor given by

X(G/H) = TopG(G/H,X)

to OrbG.

The Yoneda embedding says that the assignment X → X gives a functor

TopG → Fun
(
(OrbG)op, Top

)
.

Since Top is a cofibrantly generated model category, we have an induced model
structure on Fun

(
(OrbG)op, Top

)
in which the weak equivalences and fibra-

tions are determined levelwise.
We also have a functor that turns a diagram of this shape into a G-space.

Notation 17.2.30. Let J : OrbG → TopG be the inclusion of the orbit cate-
gory into the category of G-spaces.

Let
-⊗OrbG J : Fun

(
(OrbG)op, Top

)
→ TopG

by the coend with J .

Elmendorf’s Theorem is that these two functors are inverse Quillen equiv-
alences.

Theorem 17.2.31 ([24]). There is a Quillen equivalence

(-) : TopG � Fun
(
(OrbG)op, Top

)
: -⊗OrbG J.
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Remark 17.2.32. Elmendorf’s Theorem shows that homotopically, there is
a difference between the category of G-spaces and the functor category

Fun(BG, Top),

where BG is the category with one object and morphism set G.
For example, the G-homeomorphism type of X can be read out of X. The

automorphism group of G/{e} as a G-space is Gop, and X ∼= X(G/{e}). This
identification need not be homotopically meaningful, however. For example,
the map EG → ∗ induces an equivalence at level G/{e}, but not of full
diagrams.

17.2.2.1 CW-Structures

Our notion of a G-CW complex: we attach cells with various stabilizers in-
ductively.

Definition 17.2.33. A G-CW structure on a G-space X is a a filtration of
X

∅ = X [−1]⊆X [0]⊆X [1]⊆ . . .⊆
⋃
i

X [i] = X

such that

1. X [0] is a discrete G-set,

2. for each i, there is a discrete G-set Ti and a G-map

θi : Ti × Si−1 → X [i−1]

such that we have a pushout diagram

Ti × Si−1 X [i−1]

Ti ×Di X [i],

θi

3. X has the direct limit topology induced by the filtration.

There is a pointed version of a G-CW complex defined analogously; we
will use both.

Since every G-set decomposes as a disjoint union of orbits, each of our
sets Ti can so be decomposed. This means that attaching data in the second
condition could equivalently have been written

θi :
∐
j∈Ii

G/Hj × Si−1 → X [i−1].

The choices here then hide some of the naturality: we choose a presentation
of Ti as a disjoint union of orbits.
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Example 17.2.34. If X is such that X(G/H) is a CW-complex for all H,
and all of the maps are cellular, then the G-space produced by Elmendorf’s
Theorem is a G-CW complex.

Example 17.2.35. If X• is a simplicial object in G-sets, then the geometric
realization of X• has the natural structure of a G-CW complex.

Theorem 17.2.36 (Equivariant Whitehead Theorem). A weak equivalence
between G-CW complexes is a homotopy equivalence.

Showing this uses an obstruction theory that records the stabilizers of
individual cells as well as a varying target. To get a sense for what happens,
consider attaching a single equivariant cell G+ ∧

H
Di to a G-space X along a

map θ : G+ ∧
H
Si−1 → X. Consider also a map f : X → Y . Then an extension

of f over X ∪ (G+ ∧
H
Di) exists if and only if

f ◦ θ : G+ ∧
H
Si−1 → Y

is null-homotopic. By Proposition 17.2.11, this is null if and only if the adjoint
map

f̃ ◦ θ : Si−1 → i∗HY

is null. Since Si−1 has a trivial H-action, any H-equivariant map Si−1 → Y
or Si−1 × I → Y must land in Y H . Thus the obstruction to extending over a
cell of the form G+ ∧

H
Di is in πi−1(Y H). As H-varies over the cells, so then

does the group in which our extensions live. Coefficient systems and Bredon
cohomology record exactly what we see.

17.2.3 Coefficient systems and cohomology

17.2.3.1 The Category of Coefficient Systems

Notation 17.2.37. Let FinG denote the category of finite G-sets.

Disjoint union gives FinG a co-Cartesian monoidal structure; Cartesian
product gives the Cartesian monoidal structure.

Definition 17.2.38. Let C be a category with finite products. A coefficient
system of objects of C is a product preserving functor

M : (FinG)op → C.

In this definition, we use the fact that since FinG has coproducts given by
disjoint union, (FinG)op has products given by disjoint union. The condition
is then that

1. for all T1 and T2, the inclusions T1 ↪→ T1qT2 ←↩ T2 induce an isomorphism

M(T1 q T2) ∼= M(T1)×M(T2),
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2. and M(∅) = ∗, the terminal object.

Example 17.2.39. Since the wedge product is the coproduct in pointed
spaces, Definition 17.2.29 extends to give a coefficient system X of spaces
for any G-space X:

X(T ) := TopG∗ (T+, X).

Remark 17.2.40. We can restate Elmendorf’s Theorem as being a Quillen
equivalence between G-spaces and coefficient systems of spaces. This is a pow-
erful reinterpretation that is essential in the recent ∞-categorical treatments
of equivariant homotopy theory.

Proposition 17.2.41. Let X be a pointed G-space. Then the assignment

T 7→ πk
(
TopG∗ (T+, X)

)
=: πk(X)(T )

gives a coefficient system of pointed sets if k = 0, of groups if k = 1, or of
abelian groups if k ≥ 2.

Definition 17.2.42. Let Coeff be the category whose objects are coefficient
systems of abelian groups and whose morphisms are natural transformations.

Coefficient systems are so-named because they are the natural coefficients
for equivariant cohomology.

Example 17.2.43. A Cp-coefficient system M is the following data:

1. An abelian group M(∗),

2. a Cp-module M(Cp), and

3. a “restriction map”
resCp

e : M(∗)→M(Cp)

which factors through the inclusion of the fixed points

M(Cp)
Cp⊆M(Cp).

Proposition 17.2.44. The category Coeff is an abelian category with a finite
set of projective generators.

The projective generators can all be chosen to represent the various eval-
uation functors

M 7→M(T ),

or even simply to represent evaluation at the orbits G/H, by the product
preserving property.
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Theorem 17.2.45 ([15]). For any coefficient system M , there is a unique
cohomology theory on G-CW pairs for which

H∗(G/H;M) ∼=
{
M(G/H) ∗ = 0
0 otherwise.

We build this out of the natural coefficient system of chain complexes we
get by composing with Elmemdorf coefficient system with the singular chains
functor. Rather than spell this out, we describe one of the main ways we can
compute with this: cellular cohomology.

17.2.3.2 Cellular Bredon Homology

The usual suspension axiom shows that the induced spheres G+ ∧
H
Sn play the

role for Bredon cohomology that ordinary spheres play for classical cohomol-
ogy: they are “Moore spaces” in the sense that the have a single non-vanishing
cohomology group. We can now prove the usual results about the cellular co-
homology and the corresponding relationship to Bredon cohomology, copying
the usual definitions.

Definition 17.2.46. If X is aG-CW complex of finite type, then let

Ckcell(X;M) = Hk(X [k], X [k−1];M).

Define a boundary map

δ : Ckcell(X;M)→ Ck+1
cell (X;M)

via the long exact sequence for the triple (X [k+1], X [k], X [k−1]).

The standard argument then applies here to show that this complex gives
Bredon cohomology.

Proposition 17.2.47. The cohomology of the cellular cochain complex is the
Bredon cohomology of X.

We further unpack this in the case that X is finite type. In this case, for
each k

X [k]/X [k−1] ∼= Tk+ ∧ Sk,
for some finite G-set Tk. Moreover, the boundary map is the map induced by

∂k : Tk+ ∧ Sk ∼= X [k]/X [k−1] → ΣX [k−1] → ΣX [k−1]/X [k−2] ∼= Tk−1+ ∧ Sk.

By definition, this map is an element of

πk
(
Tk−1+ ∧ Sk

)
(Tk).

When k ≥ 2. we can easily describe the bottom homotopy coefficient system
of an induced sphere like this.
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Definition 17.2.48. For each finite G-set T , let Z[T ] be the coefficient system
defined by

Z[T ](T ′) := Z
{
TopG(T ′, T )

}
,

the free abelian group on the set TopG(T ′, T ).

Theorem 17.2.49. If T is a finite G-set, then for all n ≥ 2, we have a
natural (in T ) isomorphism

πn(T+ ∧ Sn) ∼= Z[T ].

Proof. Using the closed monoidal structure on G-spaces, we have a natural
isomorphism

[T ′+ ∧ Sn, T+ ∧ Sn]G ∼= [Sn, TopG(T ′, T )+ ∧ Sn].

The right-hand side is non-equivariant homotopy classes of maps, and by the
Hurewicz theorem, we have

[Sn, TopG(T ′, T )+ ∧ Sn] ∼= Hn

(
TopG(T ′, T )+ ∧ Sn;Z

) ∼= ⊕
TopG(T ′,T )

Z.

Remark 17.2.50. Since we only test against a finite G-set (and hence com-
pact), Theorem 17.2.49 remains true if T is infinite.

It is helpful to additively enlarge the category Coeff.

Notation 17.2.51. Let FinGZ be the category with objects finite G-sets and
with morphisms the free abelian group on the morphisms in FinG:

FinGZ (S, T ) := Z
{
TopG(S, T )

}
.

Proposition 17.2.52. The natural faithful inclusion FinG ↪→ FinGZ induces
an equivalence of categories between coefficient systems of abelian groups and
functors

(
FinGZ

)op → Ab that take disjoint unions to products and which are
linear on Hom objects.

Remark 17.2.53. The coefficient systems Z[T ] are the representable functors
in this enlarged diagram category, representing the evaluation at T functor.
These are projective generators.

This then allows us to determine the effect of the attaching maps on Bredon
cohomology (and hence makes computing equivariant cohomology groups as
easy as computing the non-equivariant ones). Any map

f : T ′+ ∧ Sn → T+ ∧ Sn,
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induces a corresponding map of coefficients systems on πn:

Z[T ′]→ Z[T ].

Thus for any coefficient system M , by the Yoneda Lemma, we have a “restric-
tion along f” map

f∗ : M(T )→M(T ′)

given by mapping out of f . This is exactly the Bredon differential induced by
the relative attaching map.

Theorem 17.2.54. The Bredon cellular cochain complex is the complex
C∗cell(X;M) with

Ckcell(X;M) := M(Tk),

and where the coboundary map is

Ck−1
cell (X;M) = M(Tk−1)

M(∂k)−−−−→M(Tk) = Ckcell(X;M).

Remark 17.2.55. If we work instead with a covariant functor FinG → Ab
which takes disjoint union to direct sum, then we can mirror the entire argu-
ment to build the Bredon homology and Bredon cellular homology.

Example 17.2.56. We close this section with an example of how to compute
Bredon homology. Let G = C2, with generator γ, and let M be a coeffi-
cient system. Let σ be the 1-dimensional sign representation. We compute
H∗(Skσ;M) for any k as a functor of M .

A cell structure for Skσ is given by

S0 ∪ (C2+ ∧ e1) ∪1−γ (C2+ ∧ e2) ∪ · · · ∪ (C2+ ∧ ek),

where the bottom attaching map is the action map

C2+ ∧ S0 → S0,

which induces the restriction map

M(∗)→M(C2)

on Bredon cellular cochains. The attaching map for the `-cell modulo the
(`− 2)-skeleton is the map

(1 + (−1)`γ),

and this induces multiplication by this element in M(C2). Our chain complex
is therefore

M(∗) resC2
e−−−−→M(C2)

1−γ−−−→M(C2)→ · · · →M(C2),

and the Bredon cohomology is the cohomology of this cochain complex.
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17.2.4 Families and isotropy separation

One of the most useful consequences of Elmendorf’s theorem is a way to isolate
the contribution of cells with a particular stabilizer. This is called “isotropy
separation”, and stably, it will provide an explanation for several confusing
features.

Definition 17.2.57. A family of subgroups is a set F of subgroups of G such
that

1. if H ∈ F and if K⊆G, then K ∈ F , and

2. if H ∈ F , then for all g ∈ G, gHg−1 ∈ F .

Remark 17.2.58. We can repackage the two conditions via the orbit cate-
gory, as together they say that if H ∈ F , and if we have a map G/K → G/H
in the orbit category, then K ∈ F . This shows that a family of subgroups is
the same data as a sieve on the orbit category.

Definition 17.2.59. If X is a space, then let

ΦX =
{
H | XH 6= ∅

}
.

Then ΦX is a family, the “geometric isotropy of X”. It records which stabi-
lizers can show up in a G-CW decomposition of X.

Associated to a family, there is a universal homotopy type given by El-
mendorf’s Theorem.

Definition 17.2.60. If F is a family, then let EF be the coefficient system
given by

EF(G/H) =

{
∅ H 6∈ F
∗ H ∈ F .

Let EF be the G-space produced by Elmendorf’s Theorem from
underlineEF .

The following proposition is immediate from the coefficient system formu-
lation of the universal space and gives some explanation of the nomenclature.

Proposition 17.2.61. If X is a G-CW complex, then

[X,EF ]G =

{
∗ ΦX⊆F
∅ ΦX 6⊆ F .

Corollary 17.2.62. The space EF is determined by the condition that

(EF)H '

{
∅ H 6∈ F
∗ H ∈ F .
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Example 17.2.63. Let Fe =
{
{e}
}

. The associated space EFe is a G-CW
complex such that the fixed points for any non-trivial subgroup are empty and
such that the underlying space is contractible. This is exactly the homotopical
description of EG.

Example 17.2.64. Let All = {H | H⊆G}. Then a model for EAll is a point.

Example 17.2.65. Let N be a normal subgroup. The collection of subgroups
which intersect N trivially forms a family FN with associated universal space
EFN .

Example 17.2.66. Let P = {H | H ( G} be the family of proper subgroups.
Then a model for the homotopy type of EP is

colimn S(nρ̄G),

where ρ̄G is the quotient of the regular representation ρG by the trivial sum-
mand.

Since fixed points commute with products (both being limits), given any
family F , we can functorially restrict the isotropies to only be elements of F
by simply crossing with EF .

Proposition 17.2.67. If X is a G-CW complex, then the geometric isotropy
of X × EF is given by

F ∩ ΦX .

Corollary 17.2.68. If F1 and F2 are two families, then

EF1 × EF2

is the universal space associated to the family F1 ∩ F2.

Example 17.2.69. For any G-CW complex X,

EFe ×X = EG×X

is the Borel space which frees up the action of G.

Definition 17.2.70. If F is a family, then let

EF+ → S0

be the pointed map which sends EF to the non-basepoint. Let ẼF denote
the cofiber.

Example 17.2.71. If F = All, then ẼF ' ∗.

Example 17.2.72. If F = P is the family of proper subgroups, then a model
for ẼP is

ẼP = S∞ρ̄G = colimn S
nρ̄G = S0[a−1

ρ̄G ],

the infinite ρ̄G-sphere.
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Definition 17.2.73. For a pointed G-space X, let

EF+ ∧X → X → ẼF ∧X

be the isotropy separation sequence , the result of smashing the defining cofiber
sequence for ẼF with X.

Considering the fixed points of EF , the following is an immediate, impor-
tant application of the definitions.

Proposition 17.2.74. Let X be a pointed G-CW complex and let F be a
family.

1. For any H ∈ F , the map

i∗H(EF+ ∧X)→ i∗HX

is an H-equivalence and i∗H(ẼF ∧X) is contractible.

2. For any K 6∈ F , the map

XK → (ẼF ∧X)K

is an equivalence an (EF+ ∧X)K is contractible.

Putting this all together, the isotropy separation sequence expresses X as
an “extension” of two conceptually simpler spaces:

1. A space EF+ ∧X whose geometric isotropy is contained in F and

2. a space ẼF ∧X which is contractible when restricted to any of the sub-
groups in F .

17.3 Stabilization and G-spectra

17.3.1 Conceptual goals for stabilization

There are several different conceptual approaches to stabilization in G-spectra,
and somewhat surprisingly, these lead to the same results. There are two
dominant themes: one geometric and one algebraic.

Goal (Geometric Stabilization). Have a good theory of Milnor–Spanier–
Atiyah duality for G-manifolds.

If we have a manifold on which G acts smoothly, then we can attempt
to mirror the Milnor–Spanier–Atiyah explanation of Poincaré duality via an
identification of the dual of our manifold with the Thom spectrum of the



Equivariant Stable Homotopy Theory 17

virtual normal bundle. Almost immediately we run into trouble: if the group
action is non-trivial, then we have no equivariant embeddings of our manifold
into a Euclidean space with a trivial action. We must instead consider an
embedding of our manifold into some representation of G. This gives a kind
of S-duality for our manifold, but it requires that we consider suspensions by
possibly non-trivial representations.

Goal (Algebraic Stabilization). Universally make pushout diagrams and pull-
back diagrams agree (and hence finite coproducts should be finite products).

This is one of the usual ∞-categorical formulations of stabilization: we
take spaces and universally build a category out of it in which pushout and
pullback diagrams agree. In particular, we see that finite coproducts and finite
products then necessarily agree. In the equivariant context, we have an added
subtlety which is fundamental to the more modern approach to understanding
equivariant stable homotopy theory: the group should be allowed to act on all
indexing objects. For pushouts and pullbacks, this means that the group can
act on the indexing diagram, while for finite coproducts being finite products,
this includes an identification of induction (the coproduct over G/H) with
cöınduction (the product over G/H).

17.3.1.1 The Spanier–Whitehead category

Boardman’s stable homotopy category was defined as an extension of the or-
dinary Spanier–Whitehead category under colimits. The same kind of analysis
work equivariantly. We loosely sketch Adams’ original treatment of the equiv-
ariant Spanier–Whitehead category [2] [62].

Definition 17.3.1. A universe for G is a countably infinite dimensional or-
thogonal representation U such that

1. the trivial representation R⊆U and

2. if V⊆U is a finite dimensional representation, then the infinite orthogonal
sum of V with itself also embeds into U .

A complete universe is one which contains all irreducible representations of
G.

Equivalently, a complete universe is isomorphic to the countably infinite
orthogonal direct sum of copies of the regular representation ρG.

Notation 17.3.2. If V is a finite dimensional representation of G, then let

ΣV : TopG → TopG

be the functor
X 7→ SV ∧X.
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Definition 17.3.3. If X and Y are finite, pointed G-CW complexes, then let

{X,Y }G = lim
−→
V

[ΣVX,ΣV Y ]G∗

be the “stable homotopy classes of maps from X to Y ”, where the direct
limit is taken over the poset of finite dimensional representations in a chosen
complete G-universe.

Let SWG denote the category whose objects are finite, pointed G-CW
complexes and whose morphisms are these stable homotopy classes of maps.

Proposition 17.3.4. The smash product of finite, pointed G-CW complexes
extends to a symmetric monoidal product on the Spanier–Whitehead category.

There is a clear extension of Spanier’s original notion of “S-duality” to this
equivariant Spanier–Whitehead category as described by Spanier–Whitehead
[63]. Here, if X is a G-CW complex embedded in the V -sphere, then X is
V -dual to the unreduced suspension of its complement. This gives us, for
example, that if T is a finite G-set that embeds into V , then T+ and SV ∧T+

are V -dual.
Many of the standard arguments apply without change here.

Proposition 17.3.5. The equivariant Spanier–Whitehead category is addi-
tive: finite wedges and products exist and agree and the morphism sets are nat-
urally abelian group valued. The composition and symmetric monoidal prod-
ucts induce bilinear maps on morphism sets.

The fact that our universe contains all trivial suspensions also ensures that
in the Spanier–Whitehead category, cofiber sequences are also fiber sequences.

Corollary 17.3.6. For any finite, pointed G-CW complex Y , the functors

X 7→

{
{X,ΣnY }G n ≥ 0

{Σ−nX,Y }G n ≤ 0.

give a cohomology theory on finite, G-CW complexes.

The inclusion of G-spaces with a trivial action into G-spaces preserves
cofiber sequences and hence by restriction, we have a cohomology theory on
CW complexes (viewed as G-CW complexes with a trivial action). We can
work a little more generally.

Proposition 17.3.7. If Q = G/N is a quotient of G, then the pushforward
iN∗ : TopQ → TopG extends to an embedding

iN∗ : SWQ → SWG

which takes a G/N -CW complex X to itself, viewed as a G-CW complex, and
which on morphisms, is the map induced on colimits by the inclusion of the
subsystem of G/N -representations in all G-representations.
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When N = G, we have just the ordinary Spanier–Whitehead category, and
we can then restate our result about cohomology theories.

Corollary 17.3.8. For any finite, pointed G-CW complex Y , the functors

X 7→

{
{X,ΣnY }G n ≥ 0

{Σ−nX,Y }G n ≤ 0.

give a cohomology theory on finite CW complexes.

Remark 17.3.9. These cohomology theories on ordinary CW -pairs are
not simply represented by maps in the ordinary, non-equivariant Spanier–
Whitehead category from X to Y G. We will see an explicit example of this in
Example 17.3.21 below.

The non-trivial representations in the universe play a different role than
the trivial ones: they provide a good theory of duality for manifolds with
non-trivial action, as described above, and they produce transfer maps. We
first build a slight extension of the Spanier–Whitehead category. The standard
cofinality argument gives the following.

Proposition 17.3.10. For any finite dimensional representation V , the V -
fold suspension gives a fully-faithful embedding of the equivariant Spanier–
Whitehead category into itself.

Definition 17.3.11. Let the extended Spanier–Whitehead category be the
category obtained from the equivariant Spanier–Whitehead category by for-
mally adjoining representing objects Σ−V Y for the functors

X 7→ {ΣVX,Y }G.

Let SW
G

denote the extended Spanier–Whitehead category.

This turns the suspension functors into autoequivalences of the Spanier–
Whitehead category, and we can replace V -duality with ordinary, categorical
duality.

Corollary 17.3.12. In the extended Spanier–Whitehead category, all objects
are dualizable.

There is a natural map

Y → Σ−V (ΣV Y ) (17.13)

adjoint to the identity map on ΣV Y . This map is an equivalence in the ex-
tended Spanier–Whitehead category: it represents the suspension map

{X,Y }G → {ΣVX,ΣV Y }G.

In particular, we can think of the objects Σ−V Y as being the formal desus-
pension of Y by V . Using these maps, we can extended Z-graded theories.
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Definition 17.3.14. Let Y is a pointed G-CW complex and let V and W
be representations of G, then we define a functor of finite, pointed G-CW
complexes by

X 7→ {ΣWX,ΣV Y }G =: YW−V (X).

The notation hides some of the naturality. We mean here actual pairs of
representations, not isomorphism classes. There is also significant naturality
in the vector spaces. We first rephrase the full-faithfulness of suspension here.

Proposition 17.3.15. If V , W , and U are finite dimensional representations,
then suspension gives a natural isomorphism

YW−V (X)
∼=−→ Y (U⊕W )−(U⊕V )(X).

These isomorphisms are compatible in the sense that if U ′ is another finite
dimensional representation, then the map

YW−V (X)
∼=−→ Y ((U ′⊕U)⊕W )−((U ′⊕U)⊕V )(X)

is the same as the composite

YW−V (X)
∼=−→ Y (U⊕W )−(U⊕V )(X)

∼=−→ Y ((U ′⊕U)⊕W )−((U ′⊕U)⊕V )(X).

Additionally, given any isomorphism of representations V → V ′, we have
an associated isomorphism of representation spheres SV → SV

′
. Smashing

with either X or Y will then give us a natural isomorphisms. These new maps
clearly depend only on the stable homotopy type of the map SV → SV

′
,

however.

Definition 17.3.16. Let JOs be the maximal subgroupoid of the full subcat-
egory of SWG spanned by the representation spheres SV .

Proposition 17.3.17. Given a pointed G-space Y , the assignment(
V,W,X

)
7→ YW−V (X)

extends to a functor

JOs,op × JOs × SWG,op → Ab.

This is the prototype of an “RO(G)-graded cohomology theory”. The
naming is quite misleading, however, since we are indexing here by pairs of
representations (See Adams’ extended discussion of this point for a stronger
warning [2]). The isomorphism type of the abelian group

YW−V (X,A)

naturally depends only on the associated virtual representation W − V ∈
RO(G). The problem is that the representation spheres can have non-trivial
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automorphisms. Put another way, in the extended Spanier–Whitehead cate-
gory, representation spheres are all invertible under the smash product, since
this is just a restatement of the map in Equation 17.13 applied to Y = S0

being an isomorphism. The description above is a concrete way to describe
the grading by the Picard groupoid of this symmetric monoidal category, as
in [27]. There is a natural map RO(G) to the Picard group of the symmetric
monoidal category, but in forming this, we have thrown away the information
given by the isomorphisms.

17.3.1.2 Change of Groups

To compare the Spanier–Whitehead categories for G and its subgroups, we
simply note that the set of representations of a subgroup H which are the
restriction of a representation of G are cofinal in all representations of H.
This gives the following.

Proposition 17.3.18. If H is a subgroup of G, then the restriction functor
i∗H in pointed spaces extends to a restriction functor

i∗H : SWG → SWH .

The induction functor G+ ∧
H

(-) in pointed spaces extends to an induction

functor
G+ ∧

H
(-) : SWH → SWG

which is left-adjoint to the restriction.

Our second goal is realized in the Spanier–Whitehead category via the
additional representations: these give us stable maps in the wrong direction
to the ordinary action maps G/H → ∗. A choice of embedding

e : G/H ↪→ V

of G/H into a representation V gives us a Thom collapse map

SV → G/H+ ∧ SV ,

and hence a stable homotopy class

tGH ∈ {S0, G/H+}G.

Definition 17.3.19. Let tGH be the transfer, the stable homotopy class
{S0, G/H+}G given by the Thom collapse of any choice of embedding G/H ↪→
V .

This definition seems to depend on the choices of embeddings, but by
consider larger and larger representations (i.e. looking farther down the colimit
defining the stable homotopy classes of maps), we see that the connectivity of
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the space of such embeddings goes to infinity and hence any choices are stably
homotopic.

The “wrong-way” transfer map on orbits provides powerful new tools. In
particular, it realizes the algebraic goal and makes the Spanier–Whitehead
category behave even more like an equivariant algebraic category like the
chain complexes of representations.

Theorem 17.3.20 (Wirthmüller isomorphism [71]). The induction functor
G+ ∧

H
(-) is also right-adjoint to the restriction i∗H .

Induction being also the right adjoint to the forgetful functor means that
we lose a lot of intuition for maps between G-CW complexes. This is what
has traditionally made computations in equivariant stable homotopy theory
more daunting than their classical counterparts.

Example 17.3.21. For any finite group G, we have an isomorphism

{S0, G+}G ∼= {S0, S0}{e} ∼= Z.

In particular, the free G-set G has non-trivial maps from the fixed G-set ∗!

It is possible, however, to give some algebraic information about at least
stable maps out of the zero sphere. For this, we exploit some of the additional
extra structure.

17.3.2 Mackey functors and Segal–tom Dieck

Combining our adjunctions with ordinary finite sums being finite products
also gives us the duality results that we want.

Corollary 17.3.22. If T is a finite G-set, then T+ is self-dual in the extended
equivariant Spanier–Whitehead category.

Corollary 17.3.23. For any finite G-set T , the functors

{T+ ∧ (-), (-)}G : SWGop × SWG → Ab and

{(-), T+ ∧ (-)}G : SWGop × SWG → Ab

are naturally isomorphic.

This algebraic structure is encoded in a Mackey functor.

Definition 17.3.24 ([21]). A Mackey functor is a pair of functors: one co-
variant, M∗, and one contravariant, M∗, from the category of finite G-sets to
abelian groups such that

1. The functors agree on objects:

M∗(T ) = M∗(T ) =: M(T ).
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2. The functor M∗ is product preserving.

3. We have a Beck–Chevalley condition: if we have a pullback diagram of
finite G-sets

T ′ T

S′ S,

f ′

h′ h

f

then we have a commutative diagram

M(T ′) M(T )

M(S′) M(S).

M∗(f
′)

M∗(h′)

M∗(f)

M∗(h)

The contravariant map M∗(f) is called the “restriction” along f , while the
covariant map M∗(f) is called the “transfer” along f .

Morphisms of Mackey functors are simply collections of homomorphisms
of abelian groups that commute with all of the additional structure maps.

Notation 17.3.25. Let MackeyG denote the category of G-Mackey functors.

Example 17.3.26. A Cp-Mackey functor is a Cp-coefficient system M to-
gether with a transfer map

trCp
e : M(Cp/e)→M(Cp/Cp)

that factors through the Cp coinvariants of M(Cp/e) and such that

resCp
e ◦ trCp

e (a) =
∑
g∈Cp

g · a.

The push-pull formula, when applied to the case where all of T , S, and
S′ are orbits, is sometimes called the “double-coset formula”. It expresses the
various ways we could rewrite

{G/H+ ∧X,G/K+ ∧ Y }G

as either the set of H-equivariant maps or of K-equivariant maps.

Corollary 17.3.27. For any finite, pointed G-CW complexes X and Y , the
coefficient system

T 7→ {T+ ∧X,Y }G

extends to a Mackey functor.
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In general, the Beck–Chevalley condition that shows up in the definition
of a Mackey functor suggest a reformulation in terms of functors from a corre-
spondence category. This works for Mackey functors too, as shown by Lindner.

Definition 17.3.28. Let AN denote the category whose objects are finite
G-sets and for which the morphisms from S to T are isomorphisms classes of
finite G-sets over S × T :

AN(S, T ) = {[S ← U → T ]}.

Composition is given by pullback.

The identity functor gives an isomorphism AN ∼= AopN , and the disjoint
union of finite G-sets is both the product and the coproduct in this category.
This means that the Hom sets are naturally commutative monoid valued.

Proposition 17.3.29 ([52]). A Mackey functor is equivalently described as a
product preserving functor AN → Ab.

This makes Mackey functors into a kind of diagram category, and mor-
phisms of Mackey functors are just natural transformations.

Proposition 17.3.30. The category MackeyG of G-Mackey functors is an
abelian category with enough projectives.

In fact, the projective generators are easy to describe.

Definition 17.3.31. Let AT be the functor

S 7→ K
(
AN(T, S)

)
,

where K(-) denotes group completion.
When T = ∗, we call A = A∗ the Burnside Mackey functor.

Remark 17.3.32. The abelian group A(∗) is the Grothendieck group of the
category FinG. In particular, objects are finite virtual G-sets. This has a ring
structure under Cartesian product, and we call it the Burnside ring.

Proposition 17.3.33. The Mackey functor AT represents the functor

M 7→M(T ),

and hence is projective.

There is a non-full, product preserving embedding

(FinG)op ↪→ AN

which is also the identity on objects and which sends a map f : S → T to the
correspondence

T
f←− S =−→ S.
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Precomposing with this inclusion gives a forgetful functor

U : MackeyG → CoeffG.

This forgetful functor just forgets the transfer maps, recording only the re-
striction maps. The algebra underlying both Mackey functors and a lot of
the equivariant intuition is that this is part of a monadic (and comonadic)
adjunction.

Proposition 17.3.34. The forgetful functor U : MackeyG → CoeffG has
a left adjoint L : CoeffG → MackeyG, the “Mackeyfication” of a coefficient
system. The category of Mackey functors is the category of algebras over the
associated monad.

The left adjoint L free adjoins missing transfers, placing only those con-
traints required by the Mackey functor structure.

Example 17.3.35. Consider a Cp-coefficient system M . Then L(M)(Cp/e) =
M(Cp/e), while

L(M)(Cp/Cp) = M(Cp/Cp)⊕
(
M(Cp/e)

)
/Cp,

where M(Cp/e)/Cp is the coinvariants. The transfer map here is composite of
the inclusion with the canonical quotient:

M(Cp/e)→
(
M(Cp/e)

)
/Cp ↪→ L(M)(Cp/Cp),

while the restriction is given by the restriction in M on the summand
M(Cp/Cp) and the trace(

M(Cp/e)
)
/Cp

a7→
∑
ga−−−−−→
(
M(Cp/e)

)Cp⊆M(Cp/e).

This connects back to equivariant stable homotopy theory in a very trans-
parent way.

Theorem 17.3.36. If X is a finite, pointed G-CW complex, then we have a
natural isomorphism

{S0, X} ∼= L
(
πs0(X)

)
,

where πs0 is the coefficient system

T 7→ πs0
(
TopG∗ (T+, X)

)
= {S0, TopG∗ (T+, X)}e

of non-equivariant stable maps to the fixed points of X.

Since left adjoints are easy to compute on representable functors, we de-
duce the stable homotopy groups of the zero sphere.

Corollary 17.3.37. For any finite G, we have

{S0, S0} ∼= A.
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Putting this again into words, equivariant stabilization takes our expected
value and freely puts in the transfers. These transfer terms arise as summands,
isomorphic to Weyl coinvariants of the value of the coefficient system at other
orbits.

An incredible theorem of Segal and tom Dieck vastly generalizes this, al-
lowing us to understand what happens more arbitrarily. In particular, they
determined the representing object for the cohomology theory given by Corol-
lary 17.3.8.

Theorem 17.3.38 (Segal–tom Dieck splitting). Let Y be a fixed finite,
pointed G-CW complex. If X is a finite, pointed G-CW complex on which
G acts trivially, then the functor

X 7→ {X,ΣnY }G

is represented by the non-equivariant infinite loop space∏
(H)

Ω∞Σn
(
EWG(H)+ ∧

WG(H)
Σ∞Y H

)
,

where the product ranges over all conjugacy classes of subgroups of G and
where WG(H) is the Weyl group of H in G.

17.3.3 Fixed points as a Mackey functor

Even though we have not produced any particular models of G-spectra, the
Spanier–Whitehead category provides a litany of desiderata. In particular, the
abelian group valued cohomology theory given by

Y ∗(X,A) = {X/A,ΣnY }G

is really just a piece of a Mackey functor valued cohomology theory:

Y ∗(X,A)(T ) = {X/A,ΣnT+ ∧ Y }G.

The Segal–tom Dieck splitting describes the representing object for each of
these (as T varies): ∨

(H)

Σ∞EWG(H)+ ∧
WG(H)

(T+ ∧ Y )H ,

and the Yoneda Lemma then gives more structure reflecting the Mackey func-
tor structure on the cohomology groups:

Proposition 17.3.39. The assignment

T 7→
∨
(H)

Σ∞EWG(H)+ ∧
WG(H)

(T+ ∧ Y )H

extends to a Mackey functor object in the homotopy category of spectra.
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The summand corresponding to G is simply

Σ∞+ Y
G.

This is the one we would expect to have! The others are somewhat more
surprising. The Mackey structure gives us a way to interpret these, however:
they are the images of the transfers from various subgroups. To see this, note
that the assignment

Y 7→
∨
(H)

Σ∞EWG(H)+ ∧
WG(H)

Y H

is also functorial in the G-CW complex Y . Moreover, map induced by a map
f : Y → Z is the expected one: wedge together the various maps

EWG(H)+ ∧
WG(H)

Y H
EWG(H)+ ∧

WG(H)
fH

−−−−−−−−−−−−−→ EWG(H)+ ∧
WG(H)

ZH .

Applying this to the maps G/H+ ∧ Y → Y gives us an identification of the
various other summands. We spell this out for H = {e}.

Example 17.3.40. Now let T = G as above and consider the unique map
G → ∗. This gives us the transfer from {e} to G in the Mackey functor
structure, and in the homotopy category, this is witnessed as the map∨

(H)

Σ∞EWG(H)+ ∧
WG(H)

(G+ ∧ Y )H →
∨
(H)

Σ∞EWG(H)+ ∧
WG(H)

Y H .

Since G+∧Y has a free G-action, the only nontrivial summand is the one cor-
responding to {e}. Thus the transfer is represented in the homotopy category
by

Y ' EWG({e})+ ∧
WG({e})

(G+ ∧ Y )→
∨
(H)

Σ∞EWG(H)+ ∧
WG(H)

Y H .

The appearance of the homotopy orbits, rather than just the underlying
space, are also explained by the Mackey functor structure. The transfer map
factors through the Weyl cöınvariants, since there is a unique map G → ∗.
The representing object then factors through the homotopy cöınvariants.

Remark 17.3.41. The restriction maps in the Mackey functor structure can
also be described, but they are a little less intuitive. When restricting all the
way to H = {e}, the map is just the wedge of the ordinary Becker–Gottleib
transfer maps

Σ∞EWG(H)+ ∧
WG(H)

Y H → Σ∞Y H → Σ∞Y
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Remark 17.3.42. The construction

Y 7→
∨
(H)

EWG(H)+ ∧
WG(H)

Σ∞Y H

commutes with filtered colimits, and we can therefore use this to extend to
infinite complexes in the usual way.

17.3.4 Categories of G-spectra

There are two main approaches to lifting the homotopical discussions above to
a model or ∞-category: extending the geometric, representation theory based
spectra or extending the algebra, Mackey functor approach. These all have the
same underlying homotopy theory, which is generated by the extended equiv-
ariant Spanier–Whitehead category under colimits, just as with the ordinary
stable homotopy category.

Continuing our model-independent approach, we list a collection of desired
features, which are in some sense defining properties. Any category SpG of G-
spectra will have these properties.

1. They are closed symmetric monoidal, pointed model / ∞-categories.

2. For every H⊆G, there is a strong symmetric monoidal restriction functor

i∗H : SpG → SpH

which has both adjoints

G+ ∧
H

(-) a i∗H(-) a FH(G+, -).

3. The natural map
G+ ∧

H
(-)→ FH(G+, -)

descends to an equivalence (the Wirthmüller isomorphism) in the homo-
topy category.

4. There are functors Σ∞+ : TopG → SpG which commute with the restriction
functors.

5. The homotopy functor Σ∞+ : hoTopG → hoSpG factors through the ex-
tended Spanier–Whitehead category and induces an equivalence between
the extended Spanier–Whitead category and the compact objects in
hoSpG.

6. The homotopy category is a Brown category [44].

Following the historical designation, we call such a category of G-spectra
“genuine”. There are many models for a category of genuine G-spectra:
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1. Lewis–May–Steinberger consider the clear extension of Adams’ original
treatment of spectra, viewing G-spectra as sequences of G-spaces, indexed
by finite dimensional representations of some fixed G-universe [48].

2. Shimakawa built an equivariant version of Segal’s Γ spaces, showing that
Γ-G-spaces model connective G-spectra [61]

3. Mandell–May generalized orthogonal spectra to equivariant orthogonal
spectra [54, 39].

4. Mandell extended work of Hovey–Shipley–Smith on symmetric spectra to
produce equivariant symmetric spectra [56].

5. Blumberg considered continuous functors on G-CW complexes and a ver-
sion of excision here [10] (See also [20]).

6. Guillou–May took a more algebraic approach, building equivariant spectra
as spectral Mackey funtors [35].

7. Barwick produced a genuine ∞-category of spectral Mackey functors in a
very general context [8].

Any of these categories will work for our discussion in this section. When
discussing multiplicative concerns, there are several subtleties which arise, and
only some of the models are known to work well there: equivariant orthog-
onal spectra [39], equivariant symmetric spectra [38], and the ∞-categorical
enrichment for spectral Mackey functors.

17.3.4.1 Equivariant cohomology and Brown representability

Since our category of G-spectra contains full-faithfully the extended Spanier–
Whitehead category as a symmetric monoidal subcategory, the Picard
groupoid of the extended Spanier–Whitehead category is a sub-groupoid of
the Picard groupoid of G-spectra. This gives a natural grading for maps in
the category and for homology or cohomology theories. Just as classically,
G-spectra represent cohomology theories.

Definition 17.3.43 (See [58, XIII]). An RO(G)-graded cohomology theory
is a functor

E(-)(-) : JOs × hoTopG,op∗ → Ab

together with natural suspension isomorphisms

ΣW : EV (X)→ EW⊕V (ΣWX),

for each representation W such that

1. for each fixed V , EV takes wedges to products and is exact in the middle
for cofiber sequences,
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2. the suspension isomorphisms are natural in W for maps in JOs, and

3. for all representations W and U , we have

ΣW⊕U = ΣW ◦ ΣU .

Naturality of the suspension isomorphisms gives us a commutative square
for any V and W and any map f : X → Y

EV (Y ) EV (X)

EW⊕V (ΣWY ) EW⊕V (ΣWX).

ΣW

EV (f)

ΣW

EW⊕V (ΣW f)

In particular, the map EV (f) is completely determined by EW⊕V (ΣW f).

Proposition 17.3.44. If E is an RO(G)-graded cohomology theory, then E
descends to a functor

E(-)(-) : JOs × SWG,op → Ab

Although we call these RO(G)-graded, as written, these are graded by the
actual representations. The suspension isomorphisms allow us to extend to
pairs of representations, just as with the Spanier–Whitehead category. Again,
the correct approach is to grade on the Picard groupoid. In this more gen-
eral setting, the RO(G)-graded cohomology theories actually descend to the
extended Spanier–Whitehead categories, where we set

EV (Σ−WX) := EW⊕V (X),

and the map induced by the map X → Σ−WΣWX of Equation 17.13 is taken
to (ΣW )−1.

Notation 17.3.45. Following Hu–Kriz [45], we will use ∗ as a wildcard for
grading by Z and ? for RO(G).

Proposition 17.3.46. For any G-spectrum E, the assignment

(V,X) 7→ [Σ∞X,SV ∧ E]G

together with the natural suspension isomorphisms

[Σ∞X,SV ∧ E]G
∼=−→ [Σ∞ΣWX,SW⊕V ∧ E]G

give an RO(G)-graded cohomology theory.
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The Brown representability theorem allows us to invert this procedure, at
least in the homotopy category of spectra. The best reference for this is the
treatment in the Alaska notes [58], which uses Lewis–May–Steinberger spectra
[48]. However, since the representability takes place in the homotopy category,
the result is again model agnostic.

Theorem 17.3.47 ([58, XIII.3]). If E?(-) is an RO(G)-graded cohomology
theory, then there is a G-spectrum E which represents it in the homotopy
category.

Example 17.3.48. In general, Bredon cohomology for a coefficient system
M only gives a Z-graded cohomology theory. However, if M is the underlying
coefficient system for a Mackey functor, then Lewis–May–McClure show that
Bredon cohomology with coefficients in M has a natural extension [47]. The
resulting G-spectrum is the Eilenberg–Mac Lane spectrum HM and it has
the defining property that the homotopy Mackey functors are given by

πkHM =

{
M k = 0

0 otherwise.

To get a sense of why the transfers are needed here, consider the group G =
C2. If Bredon cohomology with coefficients in M extends to an RO(C2)-graded
theory, then we can take the Bredon cohomology of any virtual representation
sphere. Recall that the sign sphere Sσ has a cell structure

S0 ∪ C2+ ∧ e1,

where the attaching map is the action map

C2+ ∧ S0 → S0.

The dual of the fold map is the transfer map S0 → C2+, giving a fiber sequence

S−σ → S0 → C2+.

Mapping out of this gives a formula for the −σth cohomology of a point with
coefficients in M , and we see that we must have a map

M(C2)→M(∗)

which restricts to the ordinary fold map non-equivariantly. This is equivalent
to the data of a C2-Mackey functor.

As Lewis observed, working with this larger grading allows us to see more
structure than we might have just using integral gradings [49].

Example 17.3.49. Let G = C2, and let Z be the constant Mackey functor
Z. Then

H∗(CP 1;Z) =

 Z ∗ = 0
Z/2 ∗ = 1
0 otherwise,
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while
H?(CP 1;Z) = H?(pt;Z)⊕H?−ρ(pt;Z).

Here CP 1 is a C2-space via complex conjugation, and ρ is the regular repre-
sentation of C2.

Example 17.3.50. Consider the equivariant K-theory functor which assigns
to a G-space the Grothendieck group of complex, equivariant vector bundles
over X. Equivariant Bott periodicity says that for every complex representa-
tion V , we have a natural isomorphism

K̃0
G(X) ∼= K̃0

G(ΣVX).

These isomorphisms allow us to extend to an RO(G)-graded theory. There is
an analogous story for real K-theory KOG or Atiyah’s Real K-theory KR.

Building on this example, we can construct homotopical versions of bor-
dism theories via Thom spectra.

Example 17.3.51. Consider the space BOG(n) which classifies n-
dimensional equivariant bundles. There is a universal n-plane bundle over
this, and associated Thom space. These assemble to give the Thom spectrum
MOG of homotopy equivariant unoriented bordism.

There is a simply story for equivariant complex bordism; here we use
the spaces BUG(n) which classify n-dimensional complex equivariant bundles.
This gives a spectrum MUG.

There is also a Real version of bordism, where we take the spaces BU(n)
as C2 spaces with the C2-action by complex conjugation. Here, the associated
Thom spectrum is MUR, the Real bordism spectrum of Fujii–Landweber [26,
46].

These theories are not the geometrically defined bordism theories one
would expect from the non-equivariant case. The geometrically defined theo-
ries are only Z-graded theories.

17.3.5 Fixed, homotopy fixed, and geometric fixed points

We turn now some of the basic properties and constructions.

17.3.5.1 Fixed points

Proposition 17.3.52. For any normal subgroup N , there is a strong sym-
metric monoidal, faithful functor

iN∗ : SpG/N → SpG

lifting and extending the functor on the extended Spanier–Whitehead categories
of Proposition 17.3.7.

When N = G, we will also write this just as i∗.
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Remark 17.3.53. The point-set models for the pushforward are all strong
symmetric monoidal functors. However, we have no effective control over the
homotopical behavior of commutative monoids under it. In Example 17.4.48
below, we show how badly this can go.

Proposition 17.3.54. The functor iN∗ has a right adjoint

(-)N : SpG → SpG/N ,

the N -fixed point functor.

In general, this fixed point functor is difficult to understand. Our conditions
on the relationship with the Spanier–Whitehead category then describes this
on finite G-CW complexes.

Theorem 17.3.55 (Segal–tom Dieck Splitting). If X is a finite G-CW com-
plex, then (

Σ∞+ X
)G ' ∨

(H)

EWG(H)+ ∧
WG(H)

Σ∞+ X
H .

The zero sphere S0 is in the image of the pushforward, so combining the
pushforward with induction, we see that the spectrum of maps out of

G/H+
∼= G+ ∧

H
S0

is the H-fixed points. Mapping out of the maps G/H+ → G/K+ for various
subgroups H and K then give us restriction and conjugation maps

EK → EH .

The Wirthmüller isomorphism says that induction is also the right adjoint to
the restriction, homotopically, and this gives us transfer maps the other way

EH → EK .

Proposition 17.3.56. For any G-spectrum E, the fixed points EH as H
ranges over the subgroups of G assemble into a Mackey functor object in the
homotopy category of spectra.

This proposition can be viewed as a more general one, building on the
closed symmetric monoidal structure.

Proposition 17.3.57. For any G-spectra E and E′, the homotopy classes of
maps E → E′ assemble into a Mackey functor

T 7→ [T+ ∧ E,E′]G

which when evaluated at G/H, records the homotopy classes of H-equivariant
maps.
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This is the key idea in G-spectra: stabilization made our category equivari-
antly additive. We can not only add maps as usual in a stable setting but also
form “twisted” sums, where the group acts on the source. These are the trans-
fer maps. All of the algebraic invariants which we are used to are naturally
Mackey functor valued in equivariant stable homotopy.

In particular, our homotopy groups naturally assemble into homotopy
Mackey functors. The fully-faithful inclusion of the extended Spanier–
Whitehead category into the homotopy category allows us to compute this
for the sphere spectrum.

Corollary 17.3.58. There are natural Mackey enrichments of Bredon coho-
mology with coefficients in M and of the equivariant K-theories.

Just as classically, spheres are appropriately connected.

Proposition 17.3.59. For all n < 0, we have

πn(T+ ∧ Σ∞S0) = 0,

while
π0(T+ ∧ Σ∞S0) = AT .

The connectivity of the sphere spectrum then allows us to mirror the clas-
sical formation of the Postnikov tower: the long exact sequence in stable ho-
motopy shows that we can kill homotopy groups above some fixed dimension k
for a G-spectrum by transfinitely coning off all maps from equivariant spectra
of the form T+ ∧ S` with ` ≥ k.

Proposition 17.3.60. There is a t-structure on G-spectra, where τPost≥0 con-

sists of all spectra E with πk(E) = 0 for k < 0 and similarly for τPost≤−1 . The
heart of this t-structure is the category of Mackey functors.

Corollary 17.3.61. Every G-spectrum E has a Postnikov tower: there is a
functorial tower under E

· · · → PnPost(E)→ Pn−1
Post(E)→ . . .

in which the homotopy Mackey functors of PnPost(E) vanish for k > n and
agree with those of E for k ≤ n. The fibers are Eilenberg–Mac Lane spectra
for the homotopy Mackey functors of E.

Remark 17.3.62. The tower under E dual to the Postnikov tower is the
Whitehead tower, where here we approximate E by appropriately connective
objects.

Proposition 17.3.63. The t structure is compatible with the symmetric
monoidal structure in the sense that if E ∈ τPost≥n and and E′ ∈ τPost≥m , then

E ∧ E′ ∈ τPost≥(n+m).
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This is important for knowing the multiplicativity of the Atiyah–Hirzebruch
spectral sequence below.

We close this subsection with a comment about describing fixed points for
more general spectra. For trivial desuspensions of finite G-CW complexes, we
can still understand the fixed points. For more general desuspensions, we have
little understanding.

Example 17.3.64. Let G = C2 and let σ denote the sign representation of
C2. The fixed points of Σ−σΣ∞X sit in a fiber sequence(

Σ−σΣ∞X
)C2 → Σ∞XC2 ∨ (Σ∞EC2+ ∧

C2

X)→ Σ∞X,

where the rightmost map is the restriction in the homotopy Mackey functor
for X.

17.3.5.2 Borel and coBorel, free and cofree

The space EG is a universal space on which G acts freely. Using this, we can
free up or co-free up the action on any G-space or spectrum. This has the
effect of weakening the amount of information we need to remember.

Definition 17.3.65. If E is a G-spectrum, then let

Eh := EG+ ∧ E

be the Borel construction on E.

Even though the action on EG is free, we have non-trivial fixed points
stably. This is another consequence of the transfer, generalizing what we saw
in Example 17.3.21.

Theorem 17.3.66 (Adams’ Isomorphism [2]). For any G-spectrum E, the
transfer induces an equivalence

EG+ ∧
G
E →

(
EG+ ∧ E

)G
.

More generally, if E is a spectrum on which a normal subgroup N acts
freely, then the transfer induces an equivalence of G/N -spectra

EN → EN ,

and the fixed points also become the left adjoint to the pushforward.

Remark 17.3.67. Smashing with the universal space EFN+ of Exam-
ples 17.2.65 always frees up the N -action.

Definition 17.3.68. If E is a G-spectrum, then let

Eh := F (EG+, E)

be the cofree G-spectrum of pointed maps from EG+ to E.
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Lemma 17.3.69. The map EG+ → S0 gives us canonical maps

Eh → E and E → Eh,

and the map
Eh → E

is the left-most map from the isotropy separation sequence smashed with E.

By construction, both the Borel construction and the cofree spectrum care
only about underlying equivalences.

Proposition 17.3.70. If f : E → E′ is an equivariant map such that i∗ef is
an equivalence, then

fh : Eh → E′
h

and fh : Eh → E′h

are equivariant equivalences.

Definition 17.3.71. The homotopy fixed points of E are the G-fixed points
of Eh:

EhG :=
(
F (EG+, E)

)G
.

Since i∗HEG = EH for any subgroup H,

EhH '
(
F (EG+, E)

)H
,

and the notation is unambiguous.

Example 17.3.72. Let M be a Mackey functor. By construction, the homo-
topy Mackey functors of the spectrum

HMh = F (EG+, HM)

are the Bredon cohomology Mackey functors of EG with coefficients in M .
The standard cellular complex for EG+ then allows us to determine these via
cellular Bredon cohomology. In particular, we see that the homotopy Mackey
functors are the ordinary Mackey functors associated to group cohomology, in
this case, with coefficients in the G-module M(G):

π−k(HMh)(G/K) ∼= Hk(K;M(G)).

The cofree construction can be viewed in another way, connecting G-
spectra to the perhaps more expected “G-objects in spectra”. Remark 17.2.32
points out that in spaces, the corresponding categories of spaces are homo-
topically distinct, and here we see something similiar. The cofree construction
gives us a way to compare them.
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Definition 17.3.73. A G-object in spectra is a functor BG → Sp. The
category of G-objects in spectra is the functor category Fun(BG,Sp).

Just as with spaces, a G-object in spectra is an ordinary spectrum E
together with an action map of spectra G+ ∧ E → E that satisfies the usual
axioms for an action. There is an evident forgetful functor which forgets the
additional structure.

Proposition 17.3.74. The restriction map

SpG → Sp

lifts along the forgetful functor Fun(BG,Sp)→ Sp to give a functor

SpG → Fun(BG,Sp).

The easiest way to see this is actually via the Wirthmüller isomorphisms.
The restriction of E can be identified with the fixed points of G+ ∧ E, via
induction’s equivalence with coinduction. As we have used before, Gop ∼= G is
the automorphism group of G as a G-set, and by naturality of the tensoring
operation of G-spaces on G-spectra, this gives an action.

Proposition 17.3.75. The cofree G-spectrum gives a homotopical functor

F (EG+, -) : Fun(BG,Sp)→ SpG

from G-objects in spectra to G-spectra.

This allows us to view any G-object in spectra as an actual G-spectrum
in a homotopically meaningful way.

Example 17.3.76. The Goerss–Hopkins–Miller theorem says that for any
perfect field k and formal group law Γ over k, the Lubin–Tate spectrum E(k,Γ)
admits the structure of an E∞ ring spectrum and that the Morava stabilizer
group Aut(Γ) acts on this via E∞ ring maps. Thus for any finite subgroup G
of Aut(Γ), E(k,Γ) can be viewed as a G-spectrum.

Example 17.3.77. If M is an abelian group, then the cofree spectrum

HMh = F (EG+, i
G
∗ HM)

represents Borel cohomology:

X 7→ H∗(EG+ ∧
G
X;M).

Remark 17.3.78. The cofree construction is also lax monoidal, so it pre-
serves various kinds of structured products. More surprisingly, it takes E∞
ring spectra to G-E∞-ring spectra (See Proposition 17.3.97 below).
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Since the map
E → Eh

is an underlying equivalence, the map

Eh → (Eh)h

is always an equivalence. If we smash the isotropy separation sequence for the
family Fe with Eh and take fixed points, then we get a cofiber sequence of
spectra. The cofiber was described by Greenlees–May.

Definition 17.3.79 ([33]). If E is a spectrum with G-action, then let

EtG =
(
ẼG ∧ F (EG+, E)

)G
be the Tate spectrum of E.

Again, since cofree spectra care only about the underlying spectrum with
a G-action, it makes no difference if we consider genuine G or these less strict
ones.

Corollary 17.3.80 (Tate sequence). For any G-spectrum E, we have a cofiber
sequence

EhG → EhG → EtG,

where the first map is a lift to spectra of the trace map from group homology
to group cohomology.

Remark 17.3.81. The trace map

EhG → EhG

is often called the “norm map”, especially in trace methods literature. We call
it the trace to avoid confusion with the multiplicative norm functors described
below.

We can interpret the homotopy fixed points as providing a way to isolate
the contribution of the underlying homotopy. This is the key feature of the
Segal conjecture, proved by Carlsson: maps out of EG+ can be viewed as a
completion at the ideal given by the restriction to the trivial subgroup [17].

Theorem 17.3.82 (Segal Conjecture [17]). If X is a finite, pointed G-CW
spectrum, then the projection map Xh → X induces a natural isomorphism

π∗(X)∧I → π∗(EG+ ∧X),

where I⊆A(∗) is the ideal of the Burnside ring consisting of all elements which
restrict to 0 in A(G).

It can be helpful here to work more generally.
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Proposition 17.3.83. If F is a family, then the homotopy type of F (EF+, E)
depends only on the H-equivariant homotopy type of E for all H⊆G. More-
over, if we have an inclusion F1⊆F2, then we have a canonical map

F (EF2+, E)→ F (EF1+, E).

This map is an equivalence when restricted to any H ∈ F1.

Applying this to F2 = All gives immediately a special case.

Corollary 17.3.84. For any family F , we have a natural map

E → F (EF+, E).

When E is a (commutative, associative, etc) ring spectrum, this is a map of
(commutative, associative, etc) ring spectra.

Theorem 17.3.85 ([3]). If F is a family of subgroups, and if I(F)⊆A(∗) is
the ideal of all elements of the Burnside ring which restrict to zero in A(G/H)
for all H ∈ F , then the projection EF+ ∧X → X induces an isomorphism

π∗(X)∧I(F) → π∗(EF+ ∧X).

17.3.5.3 Geometric fixed points

The categorical fixed points are in many ways poorly behaved: they are not
strong symmetric monoidal and they do not do what we expect on suspension
spectra. In both cases, the underlying problem is that the fixed points for
proper subgroups contribute to the fixed points for all of G via the transfer
maps. The geometric fixed points fix both of these problems.

Definition 17.3.86. Let

ΦG(E) =
(
ẼP ∧ E

)G
be the geometric fixed points of E, where again P is the family of proper
subgroups.

Definition 17.3.87. For a G-spectrum E, the isotropy separation sequence
for E is the cofiber sequence

EP+ ∧ E → E → ẼP ∧ E

we get by smashing E with the defining cofiber sequence for ẼP.

By functoriality of the fixed points functor, the following is immediate.

Proposition 17.3.88. We have a natural map

EG → ΦG(E).
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By definition of ẼP, if H is a proper subgroup, then

ΦG(G/H+) =
(
ẼP ∧G/H+

)G ' ∗,
since i∗HẼP is equivariantly contractible. Now if X is a G-CW complex, then
the inclusion of the fixed points XG ↪→ X is the inclusion of a subcomplex
with the property that the quotient X/XG is built entirely out of cells with a
proper stabilizer. This gives use the first desired property.

Proposition 17.3.89. The geometric fixed points of a suspension spectrum
is the suspension spectrum of the fixed points:

Σ∞+ (XG)
'−→ ΦGΣ∞+ (X),

where the map is induced by the inclusion of the fixed points of X.

Remark 17.3.90. We can take the observation about the contractbility of
the geometric fixed points for proper subgroups as the defining feature of the
geometric fixed points. There is a smashing localization which nullifies any
G-CW complex built out of cells with proper stabilizers, and the result of
applying this to S0 is just ẼP. The fixed points on the category of local
objects in then an equivalence.

The geometric fixed points is also strong symmetric monoidal.

Proposition 17.3.91. For G-spectra E and E′, there is a natural equivalence

ΦG(E ∧ E′) ' ΦG(E) ∧ ΦG(E′).

The intuition behind property is most easily seen via the model of ẼP as
the infinite reduced regular representation sphere. In this case, we see that we
have an equivalence

ẼP ' S0[a−1
ρ̄G ],

where the class
aρ̄G : S0 → Sρ̄G

is the Euler class of the representation ρ̄G. The right-hand side of this equiva-
lence has the structure of an E∞ ring spectrum that is solid in the sense that
the multiplication map

S0[aρ̄−1
G

] ∧ S0[aρ̄−1
G

]→ S0[aρ̄−1
G

]

is an equivalence.
These two properties also describe the geometric fixed points for virtual

representation spheres.

Example 17.3.92. If V is a virtual representation of G, then

ΦGSV ' SV
G

.
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Since the geometric fixed points is a strong symmetric monoidal functor,
for each conjugacy class of subgroup H, we have a ring map

[S0, S0]G
ΦH

−−→ [ΦHS0,ΦHS0] ∼= [S0, S0] ∼= Z.

Definition 17.3.93. The mark homomorphism (also called the ghost coor-
dinates) is the map

A(∗)→
∏
(H)

Z

given by the product of the various geometric fixed points maps.

This homomorphism also has a purely algebraic description: it assigns to
a virtual G-set T the virtual cardinality of TH .

Theorem 17.3.94 ([21]). The mark homomorphism is an injective ring map
which is a rational isomorphism.

Example 17.3.95. For G = C2 and the spectrum MUR, we have

ΦC2MUR 'MO.

17.3.5.4 Tate squares

We can combine the isotropy separation sequence with the maps on generalized
cofree spectra to inductively build G-spectra out of pieces with prescribed
isotropy. If F1⊆F2 are families, then we have a natural map of G-spectra

F (EF2+, E)→ F (EF1+, E).

If F0 is a third family, then we can smash this map with the isotropy separation
sequence for F0, getting a diagram

EF0+ ∧ F (EF2+, E) F (EF2+, E) ẼF0 ∧ F (EF2+, E)

EF0+ ∧ F (EF1+, E) F (EF1+, E) ẼF0 ∧ F (EF1+, E)

(17.96)
The map

F (EF2+, E)→ F (EF1+, E).

is an H-equivalence for any H ∈ F1, so in particular, if F0⊆F1, then the
left-most map is an equivalence. This is the generalized Tate diagram.
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Proposition 17.3.97. If F0⊆F1⊆F2 are families, then we have a natural
pullback diagram

F (EF2+, E) ẼF0 ∧ F (EF2+, E)

F (EF1+, E) ẼF0 ∧ F (EF1+, E).

If E is a ring spectrum, then all maps in the diagram are maps of ring spectra.

Definition 17.3.98. The fixed points of ẼF0 ∧ F (EF1+, E) are generalized
Tate spectra.

Example 17.3.99. Let G = Cp. The only interesting case for families is
F0 = F1 = Fe, and F2 = All. Our diagram becomes

E ẼCp ∧ E

F (ECp+, E) ẼCp ∧ F (ECp+, E).

The family Fe is also the family of proper subgroups, so ẼCp ∧E is the data
of an ordinary spectrum: the geometric fixed points. The bottom row depends
only on the data of E as a functor BG→ Sp, not as a genuine G-spectrum. So
we have reduced the problem of describing a G-spectrum to that of a G-object
in spectra, and ordinary spectrum (the geometric fixed points), and a map.
This has been generalized to larger finite groups by Abram–Kriz, Glasman,
and Ayala–Mazel-Gee–Rozenblyum [1], [28], [7].

17.4 Equivariant commutative ring spectra and norms

The category of spectra has a symmetric monoidal product, the smash prod-
uct. It makes sense then to ask about monoids and commutative monoids in
the category of spectra and to ask about these in a homotopy coherent way.
In particular, we can ask for G-spectra R together with maps

R∧n → R

that satisfy the usual associativity or commutativity diagrams, either strictly
or up to coherent homotopy. However, just as additively, we should follow the
mandate that in equivariant homotopy, the group should be allowed to act on
all indices in a diagram. In particular, we should be able to have the group
action on R∧n intertwine the action on R and a permutation action.
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If R has a strictly commutative multiplication, then the multiplication
will extend naturally to any of these twisted products. Homotopically, the
question becomes more subtle. This introduces a different flavors of commu-
tative ring spectra, the N∞-ring spectra, where we always have a (coherently
commutative) multiplication and some collections of these twisted products.

17.4.1 Norms

We start by discussing the general construction for the smash products in
which the group acts also on the smash factors. Since the group G is finite, any
subgroup is of finite index. We can then form the analogue of “tensor induc-
tion” in spectra with the smash product. Heuristically, given an H-spectrum
E, we smash together G/H-copies of E and have the group act as in induction,
permuting the factors and acting.

Theorem 17.4.1 ([39, Appendix B]). If H⊆G, then there are strong sym-
metric monoidal, homotopically meaningful “norm” functors

NG
H : SpH → SpG

such that

1. the norm commutes with sifted colimits,

2. if X is an H-space, then

NG
H

(
Σ∞+ X

)
' Σ∞+

(
TopH(G,X)

)
,

3. if V is a virtual representation of H, then

NG
HS

V ' SInd
G
HV .

The properties listed for the norm allow us to compute it for any H-
spectrum. Since suspensions of finite G-CW complexes generate the category
under colimits, we can resolve any H-spectrum as a colimit (in fact, directed)
of shifts of suspension spectra. The norm then commutes with the colimit and
has the listed formulae for the other pieces.

Remark 17.4.2. The norm is not an additive functor. However, considering
the case of X is a discrete H-space above, we can easily describe a formula
for the norm of wedges as wedges of norms.

Example 17.4.3. Let G = C2. Then we have

NC2
e (S0 ∨ S0) ' NC2

e

(
Σ∞+ {a, b}

)
' Σ∞+

(
Top(C2, {a, b})

)
' S0 ∨ S0 ∨ C2+.

The two copies of S0 correspond to the norms of the two summands. The C2+

here is collectively the first sphere smashed with the second and the second
sphere smashed with the first (i.e. the two different orders in which to do this).
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There is an internal version of the twisted smash powers which can be
defined identically. Here we

Definition 17.4.4. If H is a subgroup of G, then let

NG/H(E) = NG
H i
∗
HE.

If T is a finite G-set, then let

NT (E) =
∧
T

E =
∧

G/H⊆T

NG/H(E)

be the smash product over the orbits in T of the norm for that orbit.

Proposition 17.4.5. The functors NT : SpG → SpG are strong symmetric
monoidal, homotopical functors.

The geometric fixed points of norms are surprisingly easy to describe. This
is essentially the “Tate diagonal” used in trace methods. For G = Cp, this is
a key part of the Segal conjecture and of the topological Singer construction
[53].

Proposition 17.4.6. The diagonal map induces an equivalence

ΦHE → ΦGNG
H (E).

In general, fixed and homotopy fixed points of norms are very difficult to
understand. We have some connectivity estimates, however.

Proposition 17.4.7. If E is in τPost≥k , then NG
HE is in τPost≥k as well.

In general, this is the best we can do for a connectivity estimate. Since we
are smashing together several (k − 1)-connected things, one might expect to
see the connectivity scale, just as with the smash product. This need not be
the case.

Example 17.4.8. Consider the sphere Sk, which is in τPost≥k for H = {e}.
The norm to G is the regular representation sphere SkρG , where ρG = R[G]
is the regular representation. The map

aρ̄G : Sk → SkρG

is essential, since it induces an isomorphism on geometric fixed points. This
shows that πk(SkρG) 6= 0.

17.4.2 N∞-ring spectra

17.4.2.1 N∞ operads

One of the key benefits for the point-set models of spectra is having good, ho-
motopically meaningful categories commutative ring spectra and their mod-
ules. In EKMM style S-modules, a commutative ring spectrum is the same
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data as an E∞ ring spectrum, and the same is true for symmetric or orthog-
onal spectra [25, 55].

In all cases, a key computation is that for a nice spectrum E, the action
of Σn on the nth smash powers of E is actually free, and hence the natural
map

EΣn+ ∧
Σn

E∧n → E∧n/Σn

is a weak equivalence. The homotopy symmetric powers assemble to give the
free E∞ algebra on E, while the actual ones give the free commutative algebra,
and this provides a comparison between the two concepts.

Equivariantly, we have choices for exactly what the homotopy symmetric
powers mean, since we can also include an action of G on the Σn-free spaces.
We begin with two important examples.

Definition 17.4.9. Let EΣn be iG∗ EΣn. This is EΣn with a G × Σn-action
via the projection G× Σn → Σn. This is the universal space for the family

F trΣn
= {H × {e} | H⊆G}

of subgroups of G.

Definition 17.4.10. Let EGΣn = EFΣn
be the universal space the family of

subgroups Γ such that

Γ ∩ ({e} × Σn) = {(e, e)}.

Example 17.4.11. If G = C2, then the space EGΣ2 can be modeled as an
infinite sphere:

EGΣ2 ' S(∞ρ⊗ τ),

where τ is the sign representation of Σ2 and ρ is the regular representation of
C2.

The space EΣ2 can be modeled as a different infinite sphere:

EΣ2 ' S(∞τ).

The C2-fixed points of EGΣ2/Σ2 are RP∞qRP∞, while those of BΣ2 are
just RP∞.

We generalize the classical notion of an E∞ operad by allowing any such
space, building a general class of N∞ operads [11].

Definition 17.4.12. An N∞ operad is a symmetric operad O in G-spaces
such that for each n, the G×Σn-space On is equivalent to EFn(O) for some
family Fn(O) with

F trΣn
⊆Fn(O)⊆FΣn

.

An N∞ operad O is a G-E∞ operad if for each n, On ' EFΣn
.
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The family FΣn
is the largest family such that Σn acts freely on the uni-

versal space. The conditions Fn(O)⊆FΣn
then means Σn acts freely. The

conditions that F trΣn
⊆Fn(O) will guarantee enough G-fixed points (which will

be necessary for us to have a coherent product in the operadic algebras).
Many of the classical constructions of operads immediately give N∞ oper-

ads.

Example 17.4.13. If U is a universe, then the linear isometries operad de-
fined by

Ln = Isom(U⊕n, U)

is an N∞ operad.

Example 17.4.14. If U is a universe, then the little disks operad for U is an
N∞ operad.

Example 17.4.15. If O is an ordinary E∞ operad, then endowing it with
the trivial action, we get an N∞-operad we can Otr. This corresponds to the
family F trΣn

.

Just as non-equivariantly, there are model categories of N∞-ring spectra
and of commutative ring spectra.

Definition 17.4.16. Let CommG be the category of commutative ring spec-
tra in SpG.

If O is an N∞-operad, let O-Alg be the category of O-algebras in SpG.

Proposition 17.4.17. The categories CommG and O-Alg are enriched in
spaces, are complete and co-complete, and are tensored and cotensored over
TopG. They can also be enriched in TopG.

Theorem 17.4.18. The categories CommG and O-Alg admit model struc-
tures such that the forgetful functor

CommG → SpG and O-Alg→ SpG

are homotopical right adjoint and compatible with the enrichments.

Definition 17.4.19. If O is an N∞ operad, then let

PO : SpG → O-Alg

be the free O-algebra functor.

Moreover, the categories of commutative ring spectra and G-E∞ ring spec-
tra are closely connected. For any G-E∞ operad O, there is a canonical map
of operads O → Comm. The operadic base-change gives a Quillen equivalence
in nice cases.

Theorem 17.4.20. The categories CommG and of G-E∞ ring spectra in
SpG are Quillen equivalent.
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Finally, we have a somewhat surprising additional feature of the cofree
construction.

Proposition 17.4.21. If R is an E∞ ring spectrum on which G acts by
E∞ ring maps, then F (EG+, R) naturally has the structure of a G-E∞-ring
spectrum.

17.4.3 Multiplicative norms

17.4.3.1 Norms in operadic algebras

The subgroups which arise in an N∞ operad parameterize various kinds of
twisted products. To see this, we unpack the conditions a little.

Let Γ⊆G × Σn be in Fn. Since the intersection with Σn is trivial, the
projection onto G, when restricted to Γ is an injection. The image is some
subgroup H, and we observe that Γ is then the graph of a homomorphism
f : H → Σn. Any homomorphism H → Σn defines an H-set structure on the
set {1, . . . , n}, and we see that the subgroups correspond to presentations of
H-set structures of cardinality n. This gives a name to these subgroups: graph
subgroups.

Definition 17.4.22. Let O be an N∞ operad. A finite H-set T of cardinality
n is admissible if the graph of a homomorphism H → Σn defining it is in
Fn(O).

Example 17.4.23. For any N∞-operad O and for any cardinality n, the set
{1, . . . , n} with a trivial G action is admissible. This is the G-set corresponding
to the subgroup G× {e}.

Since for all n, Fn(O) is a universal space, we have an equivalent formu-
lation.

Proposition 17.4.24. Let T be a finite H set of cardinality n and let Γ be
the corresponding graph subgroup. Then T is admissible if and only if

TopG×Σn
(
G× Σn/Γ,On

)
6= ∅.

Now let R be an O-algebra. We can then consider the effect of composing
any such map with the operadic structure map, getting a contractible space
of maps (

G× Σn/Γ
)

+
∧
Σn

R∧n → On+ ∧
Σn

R∧n → R.

In the source, the presence of Γ intertwines the Σn action on the indexing set
for the smash powers with the H action in G: every h ∈ H acts both on the
individual factors of R and on the indexing set via H → Σn. This is therefore
an example of the norm.
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Proposition 17.4.25. Let T be a finite H-set of cardinality n, and let Γ⊆G×
Σn be the graph of a homomorphism H → Σn presenting T . Then for any G-
spectrum E, we have a G-equivariant equivalence(

G× Σn/Γ
)

+
∧
Σn

E∧n ' G+ ∧
H
NTE.

Putting this all together, we see exactly what kinds of structure we see.

Theorem 17.4.26. Let O be an N∞ operad and let R be an O-algebra. For
each admissible H-set T , the operad gives a contractible space of maps

NT i∗HR→ i∗HR.

When T = ∗ q ∗, this is the contractible space of multiplications, describing
an underlying E∞ ring structure.

Since they come from the operadic structure, these are natural for maps
of operadic algebras.

Theorem 17.4.26 used only the operadic action on R and said nothing
about the compatibility or constraints imposed by the operadic composition.
In fact, this puts huge constraints on the collection of admissible sets, allowing
for a complete classification of the homotopy category of N∞ operads.

Since for each n, Fn(O) is a family, we deduce several consequences.

Proposition 17.4.27. Let O be an N∞ operad.

1. If T is an admissible H-set and if q : G/K → G/H is a map of G-sets,
then q∗T is an admissible K-set.

2. If T is an admissible H-set and T ′ is isomorphic to T , then T ′ is an
admissible H-set.

3. The trivial H-set of cardinality n is admissible for all n.

The operadic composition connects the admissible sets for various cardi-
nalities.

Proposition 17.4.28. Let O be an N∞ operad.

1. If T = T1 q T2, then T1, T2 are admissible H-sets if and only if T is.

2. If K/H is an admissible K-set and T is an admissible H-set, then K ×
H
T

is an admissible K-set.

Definition 17.4.29. An indexing system is a collection of full subcategories
O(H)⊆FinH for each H⊆G, such that for each H, the objects of O(H) satisfy
the conditions of Propositions 17.4.27 and 17.4.28.

There is a poset of indexing systems, ordered by inclusion for all H, and
the map which sends an N∞ operad to its admissibles gives a functor to this
poset. Blumberg–Hill showed this is a fully-faithful inclusion on the homotopy
category, and Gutiérrez–White showed it is essentially surjective.
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Theorem 17.4.30 ([11, 36]). There is an equivalence of categories between
the homotopy category of N∞-operads and the poset of indexing systems.

There are several additional approaches to building N∞ operads out of
the combinatorial data. Rubin considers explicit categorical models [59], while
Bonventre–Pereira describe a genuine equivariant extension of operads [13].

Remark 17.4.31. Instead of working multiplicatively, we could have asked
for a classification of the possible extension of coefficient systems that include
only some transfers. These are again parameterized by indexing systems [12].
This us ways to talk about variants of G-spectra interpolating between the Z-
graded theory built out of coefficient systems and the genuine one considered
so far here.

17.4.3.2 Norms in commutative rings

For commutative ring spectra, we can make even more intuitive statements.
The smash product is the coproduct in CommG, and the norm NG

H is induc-
tion built out of the smash product. In particular, it is a strong symmetric
monoidal functor, and hence lifts to a functor on CommH .

Theorem 17.4.32. The norm

NG
H : CommH → CommG

is left adjoint to the forgetful functor i∗H : CommG → CommH .

Corollary 17.4.33. If R is a commutative ring spectrum, then for each H,
we have a natural map of equivariant commutative ring spectra

NG
H i
∗
HR→ R.

The identification of the adjunction also demonstrates some unexpected
behavior for commutative ring spectra, showing that these are more than just
naive E∞ ring spectra. As a consequence of the corollary, we have two features:

1. For each H⊆G, the G-geometric fixed points of the left-adjoint to the
forgetful functor are

ΦGNG
H i
∗
HR ' ΦH(R),

via the diagonal, and

2. we have a map of (ordinary) E∞-rings

ΦH(R)→ ΦG(R).

The first of these can fail quite spectacularly for naive E∞-rings.
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Example 17.4.34. The left-adjoint LGH to the forgetful functor i∗H : O-AlgG →
O-AlgH can be computed easily on frees by the universal property:

LGHPOtr (E) ' POtr

(
G+ ∧

H
E
)
.

Since G acts trivially on Otrn for all n, we have that the unit map gives an
equivalence

S0 → ΦGPOtr

(
G+ ∧

H
E
)
.

This in turn shows that the geometric fixed points of the left adjoint is just
the constant functor S0.

Using the fact that the smash product is the coproduct in CommG, we
have

Corollary 17.4.35. If R is an equivariant commutative ring spectrum, then
the assignment

T 7→ NTR

extends to a functor from FinG to CommG.

17.4.4 Tambara functors

17.4.4.1 Norms in equivariant algebra

These norm maps endow the homotopy Mackey functors of an O-algebra with
extra structure. Since these are also the groups associated to a homology
theory, stable homotopy, and since equivariant homology theories are RO(G)-
graded, we have an RO(G)-graded extension.

Notation 17.4.36. If V and W are representations, let

πV−W (E) = πGV−W (E) = [SV ,ΣWE]G.

Let
πV−W (E) =

(
T 7→ [T+ ∧ SV ,ΣWE]G

)
be the obvious Mackey enrichment.

Smashing together representative maps gives the following.

Proposition 17.4.37. If R is an equivariant commutative ring spectrum,
then π?(R) is an equivariant graded commutative ring.

Here the adjective “equivariant” for the graded commutativity refers to the
fact that π0S

0 = A(G) can have more units than just ±1, and these units can
show up in the formulae for moving representation spheres past each other.
In general, the swap map

SV ∧ SW → SW ∧ SV

is a unit in π0S
0; this is the element which controls commutativity.
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Example 17.4.38. For G = C2, the sign sphere Sσ swaps with itself by the
element 1 − [C2] ∈ A(C2). We can see this by checking against all geometric
fixed points: the underlying map is the interchange of the 1-sphere with itself
(so −1) while the C2-geometric fixed points is the interchange of the 0-sphere
with itself (so 1).

Remark 17.4.39. This technique works quite generally: the ghost coordi-
nates of Definition 17.3.93 give us an injective map

[SV⊕W , SW⊕V ]→
∏
H

[
SV

H⊕WH

, SW
H⊕V H ] ∼= ∏

H

Z.

For each coordinate, we have a non-equivariant computation of the degree of
moving the WH -sphere past the V H -sphere, and this is either ±1. The corre-
sponding unit in the Burnside ring is the one corresponding to this sequence
of units in Z.

Here, we have only used the multiplication in the homotopy category. If R
is an O-algebra, then we have more structure.

Proposition 17.4.40. Let O be an N∞ operad. If R is an equivariant com-
mutative ring spectrum, and if G/H is an admissible G-set for O, then we
have norm maps

NG
H : πHV (R)→ πGIndGHV

(R)

defined by composing the norm functor with the norm in R as an O-algebra:

(
f : SV → i∗HR

)
7→
(
SInd

G
HV

NG
Hf−−−→ NG

H i
∗
HR→ R

)
.

Remark 17.4.41. Note that in the formation of the norms, we did not need
V to be a representation of G: the norm fixed this, producing a representation
of G for its index. This suggests an even further extension of the RO(G)-
grading: indexing on pairs consisting of subgroups together with a virtual
representation for that subgroup. This was used in [39] and was developed
more fully in [4].

17.4.4.2 Green and Tambara functors

When V = {0}, then the grading issues become much simpler: inducing the
zero representation gives the zero representation and adding the zero repre-
sentation to itself gives the zero representation. In particular, our homotopy
Mackey functors will have extra structure.

Proposition 17.4.42. The category of Mackey functors is admits a closed
symmetric monoidal structure with the symmetric monoidal product the box
product -�-, and internal Hom Hom. The symmetric monoidal unit is the
Burnside Mackey functor A.
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The description of Mackey functors as a diagram category on the Burnside
category shows how to build the box product: we form the Day convolution
product of the tensor product on abelian groups with the Cartesian product
in the Burnside category.

Definition 17.4.43. A [commutative] Green functor is a commutative
monoid for the box product.

Since the zero sphere commutes with itself on-the-nose, we have a ordinary
commutativity for the multiplication on π0.

Proposition 17.4.44. If R in an equivariant spectrum with a homotopy com-
mutative and associative multiplication, then π0(R) is a commutative Green
functor.

The norm maps on an O-algebra given multiplicative maps on π0.

Proposition 17.4.45. If R is an O algebra and if H/K is an admissible
H-set, then we have a multiplicative norm map

π0(R)(G/K)→ π0(R)(G/H).

When H = G, these are the expected maps

π0(R)(G/H)→ π0(R)(∗).

More generally, for admissible H-sets, we identified the corresponding groups
in the G-Mackey functor π0(R) with the corresponding groups in the H-
Mackey functors associated to the restriction i∗HR.

These norm maps are not linear, but satisfy instead a kind of twisted dis-
tributive law, identical to that studied by Tambara in his original formulation
of TNR functors [66] (See also [64]). These formulae for the norms of sums or
of transfers are built out of decomposing a coinduced G-set into constituent
pieces, and this gives an externalized version of the axioms Tambara consid-
ered [40].

Example 17.4.46. For G = C2, we have

NC2
e (a+ b) = NC2

e (a) +NC2
e (b) + trC2

e (a · γ(b)),

where γ is the non-trivial element of C2 acting on R(C2).

We can generalize Tambara’s construction, considering only certain norms,
namely those arising from an indexing system. This gives a category of incom-
plete Tambara functors.

Theorem 17.4.47 ([16, 11]). If R is an O-algebra, then Mackey functor
π0(R) naturally has the structure of an incomplete Tambara functor with
norms for the indexing system of admissibles for O.
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Because of this, Angeltveit–Bohmann call the resulting structure an RO-
graded Tambara functor.

Example 17.4.48. With the Tambara structure, we can show that the push-
forward from trivial spectra to C2-spectra cannot be homotopically compat-
ible with the commutative ring structure. Consider the Eilenberg–Mac Lane
spectrum HF2. Then the pushforward has

π0(i∗HF2) ∼= A/2

is the reduction of the Burnside ring modulo 2. There is no way to put a norm
map on this making it into a Tambara functor.

17.5 Computational techniques

We close with several methods for computing in equivariant stable homotopy
theory.

17.5.1 Classical spectral sequences

17.5.1.1 Atiyah–Hirezebruch

Just as classically, there is an Atiyah–Hirzebruch spectral sequences comput-
ing the homotopy classes of maps between two G-spectra.

Theorem 17.5.1. There is a multiplicative spectral sequence with E2 term

Ep,q2 = Hp
(
X;πq(E)

)
and converging to [Σq−pX,E]G. The dr differential changes degree by (r, 1−r).

We get this filtration by either filtering the source by the skeletal filtration
or the target by the Postnikov filtration. The latter also shows that all of the
differentials are secondary cohomology operations, just as classically.

More generally, since all of our algebra invariants are naturally Mackey
functors, we have a natural Mackey enrichment.

Theorem 17.5.2. There is a spectral sequence of Green functors with E2-
term

Ep,q2 = Hp
(
X;πq(E)

)
and converging to the homotopy Mackey functors Ep−q(X).

Remark 17.5.3. In general, even if E is a commutative ring spectrum, this
will only be a spectral sequence of graded Green functors. This means that the
differentials satisfy the usual Leibnitz rule for products, but we have no control
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over the norms of classes. The multiplicativity of the spectral sequence is the
essential heart of Proposition 17.3.63, while the failure of this to be compatible
with norms is Proposition 17.4.7.

As a particular example, we have the homotopy fixed points spectral se-
quence computing the homotopy groups of the homotopy fixed points EhG.
We classically describe this via the skeletal filtration of the source EG+, but
we can equivalently filter the spectrum E by its Postnikov tower.

Theorem 17.5.4. There is a multiplicative spectral sequence

Es,t2
∼= Hs

(
G;πt(i

∗
eE)

)
⇒ πt−sE

hG.

These homotopy fixed points spectral sequences are one of the primary
tools used in the trace methods approach to algebra K-theory, together with
the generalized Tate diagrams of Proposition 17.3.97. Here the right-hand side
will be known by induction (using the cyclotomic structure) while the bottom
row will be built out of this homotopy fixed points spectral sequence.

More generally, this can also be done in Mackey functors.

Theorem 17.5.5. There is a multiplicative spectral sequence of Mackey func-
tors

Es,t2 (G/K) ∼= Hs
(
K;πt(i

∗
eE)

)
⇒ πt−sE

h.

17.5.1.2 Künneth and Universal Coefficients

Lewis and Mandell proved several versions of a Künneth and universal coef-
ficients spectral sequence [50]. To describe the spectral sequences, we have to
do more homological algebra in Mackey functors.

Definition 17.5.6. If R is a commutative Green functor, then an R-module
is a Mackey functor M together with an action map

R�M →M

making the usual module associativity and unitality diagrams commute. Let
R-Mod be the category of R-modules. .

The standard arguments about commutative monoids in a symmetric
monoidal category show the following.

Proposition 17.5.7. If R is a commutative Green functor, then the closed
symmetric monoidal structure on Mackey functors induces a closed symmetric
monoidal structure on R-modules.

Since the category of Mackey functors has enough projectives (Proposi-
tion 17.3.30), the category of R-modules has enough projectives for any R.
We can therefore consider derived functors.
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Definition 17.5.8. Let Tor
R
−s(M,N) be the −sth derived functor of M�RN ,

and let ExtsR(M,N) be the sth derived functor of HomR(M,N).

Theorem 17.5.9 ([50]). Let R be an E∞ ring spectrum and let M and N be
R-modules.

There is a spectral sequence

Es,t2 = Tor−s,tπ∗R
(π∗M,π∗N)⇒ πt−s

(
M ∧

R
N
)
.

There is a spectral sequence

Es,t2 = Exts,tπ∗R
(π∗M,π∗N)⇒ πt−s

(
HomR(M,N)

)
.

These are both Adams graded.

Lewis–Mandell also work with RO(G)-graded versions.

Theorem 17.5.10 ([50]). Let R be an E∞ ring spectrum and let M and N
be R-modules.

There is a spectral sequence

Es,V2 = Tor−s,Vπ?R
(π?M,π?N)⇒ πV−s

(
M ∧

R
N
)
.

There is a spectral sequence

Es,V2 = Exts,Vπ?R
(π?M,π?N)⇒ πV−s

(
HomR(M,N)

)
.

These are both Adams graded.

Even for ordinary Bredon homology or cohomology, so R = HA, this
is much trickier than the classical, non-equivariant cases of homology over a
PID. Greenlees has shown that the category of Mackey functors has projective
dimension 0, 1, or ∞ [30], so the E2-terms for the ordinary Künneth and
universal coefficients spectral sequence in general have infinitely many lines.

Example 17.5.11. Let G = Cp, and consider the constant Mackey functor
Z. Then we have an exact sequence

0→ Z→ ACp

1−γ−−−→ ACp

1−→ A
p−[Cp]−−−−→ A→ Z→ 0.

In particular, we have a periodic resolution of Z with period 4, and we see
that having infinitely many Tor or Ext groups will be generic here.

Many of the recent computations in algebraic topology have focused on
computations with the constant Mackey functor Z for cyclic groups. Here,
the category of modules has projective dimension 3 [6] (See also [14]), and
computations are simpler. Zeng has used this to determine the RO(G)-graded
homology of a point for cyclic 2-groups [72].
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17.5.2 Adams and Adams–Novikov spectral sequences

When we study free G-spectra, then we can equivalently consider Borel theo-
ries.

Definition 17.5.12. Let

HMc = EG+ ∧HMh

be the freed up Borel cohomology spectrum. This represents “co-Borel coho-
mology”.

Proposition 17.3.70 shows that Borel and co-Borel cohomologies agree on
free G-spectra. Greenlees has used these theories to build an Adams spectral
sequence which is computable out of essentially non-equivariant information.

Theorem 17.5.13 ([29]). If G is a finite p-group and Y is a free G-spectrum
with which p-complete, bounded below, and locally finite, then there is a con-
vergent Adams spectral sequence for any X:

Es,t2 = Exts,t
(HFh

p )∗(HFh
p )

(
(HFhp)∗(Y ), (HFpc)

∗(X)
)
⇒ [X,Y ]Gt−s.

Moreover, we have an isomorphism

(HFhp)∗(HFhp) ∼= H∗(BG;Fp)⊗̃Ap,

where Ap is the mod-p Steenrod algebra, and where ⊗̃ refers to the fact that
we twist the multiplication in the tensor product by the natural action of Ap
on H∗(BG;Fp).

Even though this looks like it gives us information only for free spectra,
this actually gives much more control over even non-free spectra. The Segal
conjecture links these. Moreover, for G a finite p-group, the natural map

π∗(X)∧p →
(
π∗(X)∧I

)∧
p

is an isomorphism. So Greenlees’ spectral sequence can be used also to just
compute stable cohomotopy, and more generally, to compute maps into any
finite, p-complete G-spectrum Y (free or not). This was used by Szymik to
compute equivariant stable stems in low degrees [65].

17.5.2.1 Real versions

For G = C2, there is another form of the Adams spectral sequence due to
Hu–Kriz [45].

Definition 17.5.14. Let F2 be the constant Mackey functor with value F2.
Let M2 be π?H(F2).
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The ring M2 was originally computed by Stong (unpublished), and a com-
plete description can be found in [19]. A very nice way to determine this ring
is given by Greenlees [31]. This is a non-Noetherian ring, but can be easily
described. C. May has recently shown that this ring is injective as a module
over itself, simplifying many structural questions [57].

Proposition 17.5.15. We have

H1(Sσ;F2) ∼= F2,

generated by a class uσ.
As a module over F2[aσ, uσ], we have

M2
∼= F2[aσ, uσ]⊕ θ · F2[a±1

σ , u±1
σ ]/F2[aσ, uσ].

The class θ is in degree 2σ − 2 and squares to zero.

Remark 17.5.16. The ring M2 is isomorphic to the cohomology ring of an
RO(G)-weighted P1 with coefficients in the powers of the canonical bundle.
The generators are aσ and uσ, and the class θ is the Serre dual class. Work of
Greenlees–Meier generalizes this [34].

Hu–Kriz computed the RO(C2)-graded Hopf algebroid of stable co-
operations for Bredon homology with coefficients in F2, showing that in fact,
this algebra is a free module over the RO(C2)-graded homology of a point.
This is a striking example of the power of the RO(C2)-grading, since the
structure of the algebra with just Z-grading is overly complicated.

Theorem 17.5.17 ([45]). We have an isomorphism

A? := H(F2)?H(F2) ∼= M2[ξ̄1, . . . ][τ̄0, . . . ]/
(
τ̄2
i = aσ τ̄i+1 + (uσ + aσ τ̄0)ξ̄i+1

)
.

The degrees of the elements are

|ξ̄i| = (2i − 1)ρ2 |τ̄i| = (2i − 1)ρ2 + 1,

and the coproducts of the generators are the classical coproducts. The left and
right units on aσ are the obvious inclusions. The right unit on uσ is uσ+aσ τ̄0.

Theorem 17.5.18 ([45]). There is an Adams spectral sequence

Es,V2 = Exts,VA?

(
H?(X), H?(Y )

)
⇒ [X,Y ∧I ],

where I is the augmentation ideal of the Burnside ring.

Moreover, Araki showed that the Fujii–Landweber spectrum of Real bor-
dism MUR is flat in the sense that

MUR?MUR = π?MUR[b̄1, . . . ],

where |b̄i| = iρ2 [5]. Hu–Kriz analyzed this as a Hopf algebroid, producing
their Real Adams–Novikov spectral sequence.
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Theorem 17.5.19 ([45]). There is a spectral sequence

Es,V2 = Exts,V(MUR?,MUR?MUR)

(
MUR?(X),MUR?(Y )

)
⇒ [X,Y ∧I ].

For other cyclic p-groups, determining the structure of the dual Steenrod
algebra and even of the algebraic category in which we should work is ongoing
work.

17.5.3 Slice spectral sequence

Building on motivic intuition and on work of Dugger, Hill–Hopkins–Ravenel
produced an equivariant refinement of the Postnikov tower that uses vari-
ous induced representation spheres in place of ordinary trivial ones [23], [39].
We describe here the version using regular representations first described by
Ullman [69].

Definition 17.5.20 ([22]). A localizing subcategory is a full subcategory
closed under homotopy colimits and such that for any cofiber sequence

X → Y → Z,

if X and either Y or Z is in the subcategory, then the third is.

Definition 17.5.21. Let τ≥n be the smallest localizing subcategory contain-
ing all

G+ ∧
H
SkρH ,

where ρH is the regular representation of H and where k · |H| ≥ n.

By construction, these are nested: if m ≥ n, then

τ≥m⊆τ≥n.

Definition 17.5.22. Let Pn : SpG → SpG be the endofunctor of SpG which
nullifies the localizing category τ≥n. The slice tower for E is the tower of
spectra under E:

. . . Pn+1(E)→ Pn(E)→ . . . .

The fiber Pnn (E) of Pn(E)→ Pn−1(E) is the n-slice of E.

Recent work of Hill–Yarnall and of Wilson has given an equivalent de-
scription of the filtration in terms of the geometric fixed points for various
subgroups [43] [70]. This gives an interpretation of this tower as running the
Postnikov towers for the geometric fixed points of various subgroups at speeds
proportionate to the index of the subgroup.

The slice tower of E gives a spectral sequence computing the homotopy
Mackey functors of E, or more generally the Mackey functor of maps from
any spectrum X into E.
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Proposition 17.5.23. If E is a G-spectrum and X is a finite G-CW complex,
then there is a strongly convergent, Adams graded spectral sequence

Es,V2 = πV−sF (X,P dimV
dimV (E))⇒ πV−sF

(
X,E

)
= Es−V (X).

Restricted to (−1)-connected G-spectra, the slice tower has another, es-
sentially defining feature. The sequence of categories of slice ≥ n spectra is
the smallest sequence of localizing subcategories Cn such that

1. All finite G-sets are in the zeroth category,

2. S1 is in the first category,

3. if X ∈ Cn and Y ∈ Cm, then X ∧ Y ∈ Cn+m, and

4. if X ∈ Cn, then for all finite H-sets T

(G+ ∧
H
NT i∗HX) ∧ Y ∈ C|T |n+m.

The first three properties are shared by the Whitehead filtration for the
Postnikov tower, which can be reinterpreted as the smallest sequence of local-
izing subcategories satisfying just these. These conditions plus the last guar-
antee that the slice spectral sequence has unexpectedly strong multiplicative
properties.

Proposition 17.5.24. If R is a commutative ring spectrum, then the slice
tower computing the RO(G)-graded homotopy of R is a spectral sequence of
graded Tambara functors.

In general, it can be difficult to describe the slice associated graded for
a spectrum. For the group C2 (or more generally, for Cp), we have complete
control of the slices, and they depend only on the homotopy Mackey functors
in the dimensions of regular representation spheres or regular representations
spheres plus 1.

Theorem 17.5.25 ([39, 41]). If E is a C2-spectrum, then the slices are given
by

P 2k
2k (E) = ΣkρHπkρ(E) and P 2k+1

2k+1 (E) = Σkρ+1HP0πkρ+1(E),

where P0 is the endofunctor on C2 Mackey functors that kills the kernel of
the restriction.

More generally, for cyclic 2-groups we understand the slices for the norms
of MUR. This was the key computational step in the solution to the Kervaire
invariant one problem [39].

Theorem 17.5.26 ([39]). If E = NC2n

C2
MUR, then the odd slices of E are

contractible, while the even slices are wedges of RO(C2n)-graded suspensions
of HZ, where Z is the constant Mackey functor with value Z.
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More recently, the slice spectral sequence has been applied to questions
about the Hopkins–Miller higher real K-theory spectra EOn(G) for G a cyclic
2-group. Recall from Example 17.3.76 that if G is a finite subgroup of Aut(Γ)
for some formal group Γ of height n over a perfect field, then we can view En
as a G-spectrum by the Hopkins–Miller theorem. Restricting attention to the
prime 2, there is a canonical order 2 automorphism of any formal group (in
fact over any ring): inversion. Thus every Lubin–Tate spectrum is canonically
a C2-spectrum.

Theorem 17.5.27 ([37]). Let En be the Lubin–Tate spectrum for a height
n formal group over a perfect field of characteristic 2. Then there is a Real
orientation

MUR → En

lifting an underlying orientation.

Now if G is a finite subgroup of Aut(Γ) that contains C2, then En is also
a G-spectrum. Since it is the cofreed up spectrum for an E∞-ring spectrum,
it is canonically a G-E∞-ring spectrum, and hence has norms.

Corollary 17.5.28. If G is a finite subgroup of Aut(Γ) that contains C2,
then any Real orientation of En gives a G-equivariant map

NG
C2

MUR → En.

The slice machinery can then be used to understand the Lubin–Tate spec-
tra computationally as G-spectra, showing how to unpack the Hurewicz image
[51], how to compute the homotopy groups [42], and how to describe the Pi-
card group [9].
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MA, 1993), volume 181 of Contemp. Math., pages 159–181. Amer. Math.
Soc., Providence, RI, 1995.

[23] Daniel Dugger. An Atiyah-Hirzebruch spectral sequence for KR-theory.
K-Theory, 35(3-4):213–256 (2006), 2005.

[24] A. D. Elmendorf. Systems of fixed point sets. Trans. Amer. Math. Soc.,
277(1):275–284, 1983.

[25] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules,
and algebras in stable homotopy theory, volume 47 of Mathematical Sur-
veys and Monographs. American Mathematical Society, Providence, RI,
1997. With an appendix by M. Cole.

[26] Michikazu Fujii. Cobordism theory with reality. Math. J. Okayama Univ.,
18(2):171–188, 1975/76.

[27] David Gepner and Tyler Lawson. Brauer groups and Galois cohomology
of commutative ring spectra. arxiv.org: 1607.01118, 2016.

[28] Saul Glasman. Stratified categories, geometric fixed points and a gener-
alized Arone–Ching theorem. arxiv.org:1507.01976, 2017.

[29] J. P. C. Greenlees. Stable maps into free G-spaces. Trans. Amer. Math.
Soc., 310(1):199–215, 1988.



Bibliography 63

[30] J. P. C. Greenlees. Some remarks on projective Mackey functors. J. Pure
Appl. Algebra, 81(1):17–38, 1992.

[31] J. P. C. Greenlees. Four approaches to cohomology theories with reality.
In An alpine bouquet of algebraic topology, volume 708 of Contemp. Math.,
pages 139–156. Amer. Math. Soc., Providence, RI, 2018.

[32] J. P. C. Greenlees and J. P. May. Equivariant stable homotopy theory.
In Handbook of algebraic topology, pages 277–323. North-Holland, Ams-
terdam, 1995.

[33] J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Mem.
Amer. Math. Soc., 113(543):viii+178, 1995.

[34] J. P. C. Greenlees and Lennart Meier. Gorenstein duality for real spectra.
Algebr. Geom. Topol., 17(6):3547–3619, 2017.

[35] Bertrand J. Guillou and J. Peter May. Equivariant iterated loop space
theory and permutative G-categories. Algebr. Geom. Topol., 17(6):3259–
3339, 2017.

[36] Javier J. Gutiérrez and David White. Encoding equivariant commutativ-
ity via operads. Algebr. Geom. Topol., 18(5):2919–2962, 2018.

[37] Jeremy Hahn and XiaoLin Danny Shi. Real orientation of Lubin–Tate
spectra. 1707.03413, 2017.

[38] Markus Hausmann. G-symmetric spectra, semistability and the multi-
plicative norm. J. Pure Appl. Algebra, 221(10):2582–2632, 2017.

[39] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence
of elements of Kervaire invariant one. Ann. of Math. (2), 184(1):1–262,
2016.

[40] Michael A. Hill and Kristen Mazur. An equivariant tensor product on
Mackey functors. Journal of Pure and Applied Algebra, 2019.

[41] Michael A. Hill and Lennart Meier. The C2-spectrum Tmf1(3) and its
invertible modules. Algebr. Geom. Topol., 17(4):1953–2011, 2017.

[42] Michael A. Hill, XiaoLin Danny Shi, Guozhen Wang, and Zhouli Xu. The
slice spectral sequence of a c4-equivariant height-4 Lubin–Tate theory.
arxiv.org: 1811.07960, 2018.

[43] Michael A. Hill and Carolyn Yarnall. A new formulation of the equiv-
ariant slice filtration with applications to Cp-slices. Proc. Amer. Math.
Soc., 146(8):3605–3614, 2018.

[44] Mark Hovey, John H. Palmieri, and Neil P. Strickland. Axiomatic stable
homotopy theory. Mem. Amer. Math. Soc., 128(610):x+114, 1997.



64 Michael Hill

[45] Po Hu and Igor Kriz. Real-oriented homotopy theory and an analogue of
the Adams-Novikov spectral sequence. Topology, 40(2):317–399, 2001.

[46] Peter S. Landweber. Conjugations on complex manifolds and equivariant
homotopy of MU . Bull. Amer. Math. Soc., 74:271–274, 1968.

[47] G. Lewis, J. P. May, and J. McClure. Ordinary RO(G)-graded cohomol-
ogy. Bull. Amer. Math. Soc. (N.S.), 4(2):208–212, 1981.

[48] L. G. Lewis, Jr., J. P. May, M. Steinberger, and J. E. McClure. Equivari-
ant stable homotopy theory, volume 1213 of Lecture Notes in Mathemat-
ics. Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure.

[49] L. Gaunce Lewis, Jr. The RO(G)-graded equivariant ordinary cohomol-
ogy of complex projective spaces with linear Z/p actions. In Algebraic
topology and transformation groups (Göttingen, 1987), volume 1361 of
Lecture Notes in Math., pages 53–122. Springer, Berlin, 1988.

[50] L. Gaunce Lewis, Jr. and Michael A. Mandell. Equivariant universal
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