
UNRAMIFIED ELEMENTS IN CYCLE MODULES

ALEXANDER MERKURJEV

Abstract. Let X be an algebraic variety over a field F . We study the
functor taking a cycle module M over F to the group of unramified elements
M

(
F (X)

)
nr

of M
(
F (X)

)
. We prove that this functor is represented by a

cycle module. The existence of pull-back maps on M
(
F (X)

)
nr

for rational
maps (under a mild condition) is established. An application to the R-
equivalence on classifying varieties of algebraic groups is given.

The unramified Galois cohomology of the function field of a smooth proper
variety X over a field is a birational invariant of X, so it can be used to detect
non-rationality of algebraic varieties (cf. [2]). Galois cohomology is a special
case of a cycle module that M. Rost developed in [7] more generally. The
group of unramified elements can be defined in the context of cycle modules,
and it still represents a birational invariant of a smooth proper variety (cf. [7,
Cor. 12.10]). We prove that for any smooth proper variety X over a field F ,
there is a universal cycle module KX representing the functor that takes a
cycle module M over F to the subgroup of unramified elements M

(
F (X)

)
nr

of M
(
F (X)

)
. The cycle module KX is defined by means of algebraic cycles

of dimension zero on X. As a corollary, we show (cf. Theorem 2.11) that
M

(
F (X)

)
has only trivial unramified elements for all cycle modules M over

F , i.e., the natural homomorphism M(F ) → M
(
F (X)

)
nr

is an isomorphism
if and only if the degree map CH0(XL) → Z is an isomorphism for every field
extension L/F , where CH0(XL) is the Chow group of zero-dimensional cycles
on XL modulo rational equivalence.

For a fixed cycle module M , we study functorial properties of the assignment
X 7→ M

(
F (X)

)
nr

for all varieties X, not necessarily smooth or proper. We
show that under mild restrictions on a rational morphism f : Y 99K X, there
exists a pull-back homomorphism f ∗ : M

(
F (X)

)
nr
→ M

(
F (Y )

)
nr

. We use
this construction to show that the R-equivalence on the set of isomorphism
classes of torsors of an algebraic group G dominates unramified elements of
the function field of a classifying variety of G (cf. Proposition 4.1). As an
example, we show that the classifying variety of the group SL8 /µ2 has only
trivial unramified elements in any cycle module.

In this paper the word “scheme” means a localization of a separated scheme
of finite type over a field and a “variety” an integral scheme. For a scheme
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2 A. MERKURJEV

X and an integer i ≥ 0, we let X(i) and X(i) denote the set of points of X of
codimension and dimension i respectively. An algebraic group over a field F
is a smooth group scheme of finite type over F .

1. Models and valuations

Let L/F be a finitely generated field extension. A model of L/F is a proper

variety X over F together with an isomorphism ϕ : F (X)
∼→ L of fields over

F . A morphism of models (X, ϕ) and (X ′, ϕ′) is a morphism f : X → X ′ over
F such that the composition

F (X ′)
f∗−→ F (X)

ϕ−→ L

coincides with ϕ′. There exists at most one morphism between two models
of L/F . We write X Â X ′ if there is a morphism from (X, ϕ) to (X ′, ϕ′)
and say that X dominates X ′. The relation Â yields an ordering on the set
of isomorphism classes of all models of L/F . This is a directed ordered set.
Indeed let X and X ′ be two models of L/F . Choose a nonempty scheme Y
over F isomorphic to open subschemes of X and X ′ and let X ′′ be the closure
of the image of the diagonal embedding of Y into X ×X ′. The projections of
X ′′ onto X and X ′ yield X ≺ X ′′ Â X ′.

Let v be a valuation on L over F and X a model of L/F . The valuation
v dominates a unique point x ∈ X, i.e., OX,x ⊂ Ov and mX,x = OX,x ∩ mv,
where mv is the maximal ideal of the valuation ring Ov of v. In particular,
we have an extension of residue fields F (x) ⊂ F (v). If X ′ is another model
dominating X and x′ ∈ X ′ is the point dominated by v then x′ is above x, i.e.,
x′ maps to x under the morphism X ′ → X. Moreover, OX,x ⊂ OX′,x′ ⊂ Ov

and F (x) ⊂ F (x′) ⊂ F (v).

Lemma 1.1. Let v be a valuation on L/F , X is a model of L/F and f ∈ Ov.
Then there is a model X ′ Â X and a point x′ ∈ X ′ above x satisfying f ∈
OX′,x′.

Proof. We can view f as a rational morphism from X to the projective line P1

over F . Let X ′ be closure of the graph of f in X × P1. We have projections
X ′ → X and X ′ → P1, so X ′ Â X and we can view f (and also 1/f) as a
morphism X ′ → P1. Let v dominate x′ ∈ X ′. As f ∈ Ov, we have 1/f /∈
mv. Hence 1/f /∈ mX′,x′ , i.e., (1/f)(x′) 6= 0. Therefore, f(x′) 6= ∞ and
f ∈ OX′,x′ . ¤

It follows from Lemma 1.1 that Ov is the union of the rings OX,x over all
models X of L/F and x ∈ X dominated by v. As the set of all models of L is
directed, we have the following:

Corollary 1.2. Let v be a valuation on L over F with residue field finitely
generated over F . Then there is model X of L/F such that F (x) = F (v) for
the point x ∈ X dominated by v.
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Corollary 1.3. Let v and v′ be distinct valuations of L/F . Then there is a
model X of L/F such that v and v′ dominate distinct points in X.

Proof. We may assume that Ov * Ov′ . Choose f ∈ Ov such that f /∈ Ov′ .
By Lemma 1.1, there is a model X of L/F with f ∈ OX,x, where x ∈ X is
dominated by v. If v′ dominates x′ ∈ X then f /∈ OX,x′ , therefore, x 6= x′. ¤

Let v be a valuation on L over F with residue field E and let u be a valuation
on E over F . The pre-image of the valuation ring Ou under the natural
homomorphism Ov → E is a valuation ring of L. We write u ◦ v for the
corresponding valuation on L over F and call it the composition of v and u.

Let v and v′ be two valuations on L/F . We say that v divides v′ and write
v|v′ if Ov′ ⊂ Ov. We have v|v′ if and only if v′ = u ◦ v for a (unique) valuation
u on F (v).

Let L/F be a finitely generated field extension and v a valuation on L over
F with residue field E. The transcendence degree tr. degF (E) is called the
dimension dim(v) of v. The rank rank(v) of v is the largest integer r such that
there is a sequence of distinct valuations v1|v2| . . . |vr = v on L over F . By [9,
Ch. VI, Th. 3, Cor. 1], we have

rank(v) + dim(v) ≤ tr. degF (L).

A valuation v is called geometric if rank(v) + dim(v) = tr. degF (L).

Proposition 1.4. Let L/F be a finitely generated field extension and E a field
with F ⊂ E ⊂ L. A geometric discrete valuation v on L of rank 1 is either
trivial on E or restricts to a geometric discrete valuation on E of rank 1.

Proof. Let w be the restriction of v on E. Clearly, rank(w) ≤ 1. By [9, Ch.
VI, Lemma 2, Cor. 1], we have

dim(v)− dim(w) ≤ tr. degE(L) = tr. degF (L)− tr. degF (E).

It follows that dim(w) ≥ tr. degF (E) − 1 and hence w is either trivial or a
geometric discrete valuation of rank 1. ¤
Proposition 1.5. [9, Ch. VI, Th. 31, Cor.] The residue field E of a geomet-
ric valuation v on L over F is a finitely generated field extension of F with
tr. degF (E) = tr. degF (L)− rank(v). Every geometric valuation of rank r is a
unique composition of r geometric discrete valuations of rank 1.

Example 1.6. Let x be a regular point of codimension r of a variety X.
Let a1, a2, . . . , ar be regular parameters of the regular local ring OX,x. For
every i = 0, 1, . . . , r, let Ri be the factor ring of R by the ideal generated by
a1, . . . , ai and let Li be the quotient field of Ri. We have L0 = F (X) and
Lr = F (x). Denote by vi the discrete valuation on Li with residue field Li+1

and set v = vr ◦ · · · ◦ v2 ◦ v1. Then v is a geometric valuation of rank r on
F (X) with residue field F (x).

Proposition 1.7. Let v be a discrete valuation of rank 1 on a finitely generated
field extension L over F . Then the following conditions are equivalent:
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(1) The valuation v is geometric.
(2) There is a normal model X of L/F such that the point x dominated by

v is (regular) of codimension 1 and Ov = OX,x.

Proof. (1) ⇒ (2): By Proposition 1.5, F (v)/F is a finitely generated field
extension. It follows from Corollary 1.2, that there is a model X such that
F (v) = F (x) for the point x dominated by v. By assumption, tr. degF

(
F (v)

)
=

tr. degF (L)−1, i.e., x is of codimension 1 in X. Replacing X by its normaliza-
tion in L, we may assume that X is normal and hence x is regular. Therefore,
OX,x is a DVR that is contained in the DVR Ov. Hence Ov = OX,x.

(2) ⇒ (1): It follows from the equality tr. degF

(
F (v)

)
= tr. degF

(
F (x)

)
=

dim x = dim X − 1 = tr. degF (L)− 1 that v is geometric. ¤

Lemma 1.8. Let v|v′ be two geometric valuations on L/F of rank 1 and 2
respectively. Write v′ = u ◦ v for a geometric discrete valuation u on F (v) of
rank 1. Then there is a model X of L/F such that v and v′ dominate points x
and x′ of codimension 1 and 2 respectively with:

(1) F (x) = F (v) and F (x′) = F (v′),
(2) v is the only valuation on L/F dominating x,
(3) u is the only valuation on F (v)/F dominating x′.

Proof. By Proposition 1.7 and Corollary 1.2, there is a model X of L/F such
that (1) holds with x a regular point of X of codimension 1 and OX,x = Ov.
Hence (2) also holds. There are finitely many geometric discrete valuations
u = u1, u2, . . . , un on F (x) over F dominating x′ in the closure of {x} in
X. By Corollary 1.3, there is model X ′ Â X such that the valuations u1 ◦
v, u2 ◦ v, . . . , un ◦ v dominate distinct points in X ′. Clearly, X ′ satisfies all the
conditions. ¤

2. Cycle modules

Cycle modules were introduced by M. Rost in [7]. By definition, a (Z-
graded) cycle module over F is a functor M = M∗ from the category of finitely
generated field extensions over F to the category of graded abelian groups
equipped with the following datum:

(1) A norm homomorphism NL/E : M∗(L) → M∗(E) for any finite field
extension L/E of finitely generated field extensions of F ,

(2) A structure of a left graded module on M∗(L) over the Milnor ring
K∗(L) for any finitely generated field extension L/F ,

(3) A residue homomorphism ∂v : M∗(L) → M∗−1(E) for any finitely gen-
erated field extension L/F and a geometric discrete valuation v on L
over F of rank 1 with residue field E.

All the structures should satisfy various compatibility conditions (cf. [7, §2]).
We write K∗ for the cycle module taking a field L to the Milnor K-group
K∗(L).



UNRAMIFIED ELEMENTS IN CYCLE MODULES 5

Let M be a cycle module over F . For an element ρ ∈ M(E) and a field
extension L/E over F we write ρL for the image of ρ in M(L).

For a cycle module M over F and an integer d let M [d] denote the shifted
cycle module defined by M [d]n(L) = Mn+d(L).

A morphism of cycle modules M and N of degree d is a morphism of functors
M → N [d] commuting with the structures (1), (2) and (3). All cycle modules
over F and morphisms of cycle modules of arbitrary degree form the category of
cycle modules CM(F ). We write Homd

CM(F )(M,N) for the group of all degree
d morphisms of cycle modules M and N .

Let L/F be a finitely generated field extension, v a geometric discrete valu-
ation on L over F of rank 1 with residue field E and π ∈ L a uniformizer, i.e.,
v(π) = 1. The map

sπ
v : M∗(L) → M∗(E), sπ

v (α) = ∂v

({−π} · α)

is called a specialization homomorphism.

Let X be a scheme and M a cycle module over F . In [7, §2], using the norm
and residue maps, Rost constructed a complex

. . . →
∐

x∈X(i+1)

Md−i+1

(
F (x)

) →
∐

x∈X(i)

Md−i

(
F (x)

) →
∐

x∈X(i−1)

Md−i−1

(
F (x)

) → . . . .

If x ∈ X(i), the x-component ∂x of the differential of the complex is defined

as follows. If x′ ∈ X(i−1) the x′-component ∂x′
x of ∂x is trivial if x′ does not

belong to the closure of {x} and is equal to
∑

NF (v)/F (x′) ◦∂v otherwise, where
the sum is taken over all geometric discrete valuations v of F (x) of rank 1
dominating x′.

We shall consider the following homology group of the complex:

A0(X,Md) := Coker
( ∐

x∈X(1)

Md+1

(
F (x)

) →
∐

x∈X(0)

Md

(
F (x)

))
.

In particular, A0(X, Kd) = CH0(X).

If X is equidimensional, we set

A0(X,Md) := Ker
( ∐

x∈X(0)

Md

(
F (x)

) →
∐

x∈X(1)

Md−1

(
F (x)

))
.

If X is a variety, we have A0(X,Md) ⊂ Md

(
F (X)

)
.

2.1. Gysin homomorphism. Let M be a cycle module over a field F , f :
Y → X a closed regular embedding of equidimensional schemes and p : N →
Y the normal bundle of f . The Gysin homomorphism fF is defined as the
composition

A0(X,M)
σ−→ A0(N,M)

(p∗)−1

−−−→ A0(Y, M),

where σ is the deformation homomorphism (denoted by J in [7, §11]) and p∗

is the pull-back isomorphism with respect to the flat morphism p (cf. [7, §4]).
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Let x be a point of a variety X. We have

A0(X,M) ⊂ A0(Spec OX,x,M) ⊂ M
(
F (X)

)
.

If x is a regular (non-singular) point of X then the closed embedding f :
Spec F (x) → Spec OX,x is regular. For any ρ ∈ A0(X, M), we write ρ(x) for
the element fF(ρ) in A0(F (x),M) = M

(
F (x)

)
and call it the value of ρ at x.

Example 2.1. Let x be the generic point of a variety X. As OX,x = F (x) =
F (X), we have ρ(x) = ρ for any ρ ∈ A0(X,M).

Let f : Y → X be a morphism of equidimensional schemes over F with X
smooth. The morphism f factors into the composition of the regular embed-
ding g = (id, f) : Y → X × Y and the flat projection h : X × Y → X of
constant relative dimension. The pull-back homomorphism

f ∗ : A0(X, M) → A0(Y,M)

is defined as the composition f ∗ = gF ◦ h∗.

Lemma 2.2. Let i : Y ′ → Y be a regular closed embedding of equidimensional
schemes and f : Y → X a morphism with X equidimensional and smooth.
Then (f ◦ i)∗ = iF ◦ f ∗.

Proof. Consider the factorizations f = h ◦ g and f ◦ i = h′ ◦ g′ as above. In
the diagram

A0(X, M)
h∗−−−→ A0(Y ×X, M)

gF−−−→ A0(Y,M)∥∥∥ (i×1X)F
y iF

y

A0(X, M)
h′∗−−−→ A0(Y ′ ×X, M)

g′F−−−→ A0(Y ′,M)

the left square is commutative by [7, Lemma 11.4] and the right square is
commutative by the functoriality of Gysin homomorphisms (cf. [3, Lemme
3.10]). ¤

2.2. Unramified elements. Let M be a cycle module over F and let L/F be
a finitely generated field extension. An element a ∈ M(L) is called unramified
if ∂v(a) = 0 for all geometric discrete valuations v on L of rank 1 over F . We
write M(L)nr for the subgroup of all unramified elements. For any b ∈ M(F ),
the element bL in M(L) is unramified by [7, R3c], hence we have a canonical
homomorphism M(F ) → M(L)nr. If this map is as an isomorphism, we simply
write M(L)nr = M(F ) and say that M(L) has only trivial unramified elements.
We also say that L has trivial unramified cohomology if M(L) has only trivial
unramified elements for every cycle module M over F .

Example 2.3. A purely transcendental field extension L/F has trivial unram-
ified cohomology. Indeed, L ' F (Pn) for some n and M(L)nr = A0(Pn,M) =
M(F ) by [7, Prop. 8.6] for any cycle module M over F .
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Let X be a variety over F . We have

M
(
F (X)

)
nr
⊂ A0(X, M),

and equality holds if X is smooth and proper (cf. [7, §12]).
Let L′/L be an extension of finitely generated fields over F . It follows

from Proposition 1.4 and [7, R3a, R3c] that the restriction homomorphism
M(L) → M(L′) takes M(L)nr to M(L′)nr.

Lemma 2.4. Let L/F be a finitely generated field extension, v a geometric
discrete valuation on L of rank 1 over F with residue field E. Let M be a
cycle module over F . Then the restriction of the specialization homomorphism
sπ

v on M(L)nr does not depend on the choice of the prime element π.

Proof. Let π′ = uπ for some u ∈ L× with v(u) = 0. By [7, R3e], we have

sπ′
v (ρ)− sπ

v (ρ) = ∂v

({−π′}ρ)− ∂v

({−π}ρ)
= ∂v

({u}ρ)
= −{ū}∂v

(
ρ
)

= 0

for any ρ ∈ M(L)nr. ¤
We write sv for the restriction of the specialization homomorphism sπ

v on
M(L)nr.

2.3. The cycle module MX . Let M be a cycle module and X a scheme over
F . By [7, Th. 7.1], the assignment

MX(L) := A0(XL,M)

defines the cycle module MX over F . In particular, KX
0 (L) = CH0(XL) and

MSpec F = M .
If X is proper, the norm morphisms in Milnor K-theory induce a natural

morphism
NormX : MX → M.

If a smooth proper X is stably rational then NormX is an isomorphism.

We now turn to the case M = K. For every point x ∈ X, the group
KX

0

(
F (x)

)
has a distinguished element ξx – the class of the image of the

diagonal embedding Spec F (x) → XF (x).
Suppose that X is a variety. If x is the generic point, we simply write ξ

for ξx ∈ KX
0

(
F (X)

)
= CH0(XF (X)). Trivially, ξ is an unramified element in

KX
0

(
F (X)

)
.

The next lemma follows from [7, Cor. 12.4].

Lemma 2.5. For any x ∈ X, we have ξ(x) = ξx.

Lemma 2.6. The group KX(F ) = A0(X, K) is generated by the elements of
the form NF (x)/F (a · ξx) over all x ∈ X(0) and a ∈ K

(
F (x)

)
.

Proof. This follows from the fact that the norm NF (x)/F (a · ξx) in A0(X,K) is

represented by a ∈ K
(
F (x)

) ⊂ ∐
x∈X(0)

K
(
F (x)

)
. ¤

The following statement shows that a morphism KX → M of cycle modules
is determined by the value at the generic point of X.
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Proposition 2.7. Let α : KX → M be a morphism of cycle modules over F
(of arbitrary degree). If α(ξ) = 0 then α = 0.

Proof. By Lemma 2.6, it is sufficient to show that α
(
NF (x)/F (a · ξx)

)
= 0 for

all x ∈ X(0) and a ∈ K
(
F (x)

)
. As α commutes with products, norms and

evaluation homomorphisms, by Lemma 2.5,

α
(
NF (x)/F (a · ξx)

)
= NF (x)/F

(
a · α(ξ)(x)

)
= 0. ¤

2.4. A pairing. Let X be a smooth proper variety over F , M a cycle module
over F and ρ ∈ M

(
F (X)

)
nr

. Let i : C → X be the closed embedding of
an integral curve and f : C ′ → C the normalization morphism. Let ρ′ ∈
A0(C ′,M) = M

(
F (C)

)
nr

be the pull-back of ρ with respect to the composition
i ◦ f .

Lemma 2.8. Let ρ ∈ M
(
F (X)

)
nr

, x ∈ C(0) and a ∈ K
(
F (C)

)
. Then

∂C
x (a · ρ′) = ∂C

x (a) · ρ(x)

in M
(
F (x)

)
.

Proof. Let y ∈ C ′ be a point over x. As ∂C′
y (ρ′) = 0, the Rule [7, R3f] yields:

(1) ∂C′
y (a · ρ′) = ∂C′

y (a) · sπ
y (ρ′),

where sπ
y is the specialization homomorphism for an uniformizer π of y on C ′.

It follows from [7, Lemma 11.2] that sπ
y (ρ′) = ρ′(y). By Lemma 2.2, ρ′(y) is

the pull-back of ρ with respect to the composition Spec F (y) → C ′ → X. Since
this composition coincides with the composition Spec F (y) → Spec F (x) → X,
by transitivity of the pull-back homomorphisms and [7, Prop. 12.3], we have
ρ′(y) = ρ(x)F (y). Therefore, it follows from (1) that

(2) ∂C′
y (a · ρ′) = ∂C′

y (a) · ρ(x)F (y).

We have:

∂C
x (a · ρ′) =

∑

y|x
NF (y)/F (x)

(
∂C′

y (a · ρ′)) (definition of ∂C
x )

=
∑

y|x
NF (y)/F (x)

(
∂C′

y (a) · ρ(x)F (y)

)
(by (2))

=
∑

y|x
NF (y)/F (x)

(
∂C′

y (a)
) · ρ(x) (by [7, R2c])

= ∂C
x (a) · ρ(x). (definition of ∂C

x ) ¤
The lemma together with the Reciprocity Law [7, Prop. 2.2] yield:

Corollary 2.9. Let ρ ∈ M(F (X))nr and C ⊂ X a closed curve. Then for any
a ∈ K

(
F (C)

)
, we have

∑
x∈C(0)

NF (x)/F

(
∂C

x (a) · ρ(x)
)

= 0.
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We have a pairing
( ∐

x∈X(0)

K∗F (x)
)
⊗Md(F (X))nr → M∗+d(F )

defined by
∑

ax ⊗ ρx 7→
∑

NF (x)/F

(
ax · ρx(x)

)
. By Corollary 2.9, this pairing

factors through a pairing

(3) A0(X, K∗)⊗Md(F (X))nr → M∗+d(F ).

The pairing (3) over field extensions of F yield a homomorphism

ϕX,M : Md(F (X))nr → Homd
CM(F )(K

X ,M).

A morphism α : KX → M of cycle modules of degree d induces a homomor-
phism

A0(X,KX
0 ) → A0(X,Md) = Md

(
F (X)

)
nr

.

We denote the image of ξ in Md

(
F (X)

)
nr

by ψ(α). Thus we get a homomor-
phism

ψX,M : Homd
CM(F )(K

X ,M) → Md

(
F (X)

)
nr

.

Theorem 2.10. For every smooth proper variety X and cycle module M over
F , the maps ϕX,M and ψX,M are isomorphisms inverse to each other. In other
words, for a fixed X, the functor M 7→ M

(
F (X)

)
nr

from the category CM(F )
of cycle modules to the category of abelian groups is represented by the cycle
module KX .

Proof. The statement is obvious in the case X = Spec F , i.e., the top map in
the commutative diagram

(4)

Md(F )
ϕSpecF,M−−−−−→ Homd

CM(F )(K, M)y
y

Md(F (X))nr

ϕX,M−−−→ Homd
CM(F )(K

X ,M)

is an isomorphism. The composition ψX,M ◦ϕX,M takes a ρ ∈ Md

(
F (X)

)
nr

to
ρ(x), where x is the generic point of X. By Example 2.1, the latter element is
equal to ρ, hence the composition ψX,M ◦ϕX,M is the identity. By Proposition
2.7, ψX,M is injective. Hence ϕX,M and ψX,M are isomorphisms inverse to each
other. ¤

Theorem 2.11. Let X be a smooth proper variety over a field F . Then the
following conditions are equivalent:

(1) For every cycle module M over F , we have M
(
F (X)

)
nr

= M(F ), i.e.,

M
(
F (X)

)
has only trivial unramified elements.

(2) The map NormX : KX → K is an isomorphism of cycle modules.
(3) The degree map CH0(XL) → Z is an isomorphism for every field ex-

tension L/F .
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(4) The class ξ in CH0(XF (X)) is defined over F , i.e., ξ belongs to the
image of the natural map CH0(X) → CH0(XF (X)).

Proof. (1) ⇒ (4): Apply (1) to M = KX .

(4) ⇒ (3): We may assume that L = F . In the case M = KX and d = 0
in diagram (4), we have ϕX,M(ξ) = idM . By assumption and Theorem 2.10,
there is a morphism α : K → KX such that α ◦NormX is the identity of KX .
Let a ∈ CH0(X) be the image of 1 under α. For every b ∈ CH0(X), we then
have

b = α
(
NormX(b)

)
= deg(b) · α(1) = deg(b) · a,

hence CH0(X) is generated by a. Taking the degree, we have deg(a) = 1.
Therefore, the degree map CH0(X) → Z is an isomorphism.

(3) ⇒ (2): Let a ∈ CH0(X) be a cycle of degree 1. Then for every u ∈ K(F ),
we have NormX(u ·a) = u, i.e., the norm map KX → K is surjective. To prove
injectivity, it is sufficient to show that for every x ∈ X(0) and u ∈ K

(
F (x)

)
,

we have u · [x] = NF (x)/F (u) · a in A0(X, K). As the degree of the cycle
ξx ∈ CH0(XF (x)) is 1 and the degree map CH0(XF (x)) → Z is injective, we
have ξx = aF (x), hence u · ξx = u · aF (x). Therefore,

u · [x] = NF (x)/F (u · ξx) = NF (x)/F (u · aF (x)) = NF (x)/F (u) · a.

(2) ⇒ (1): In the commutative diagram (4), the vertical maps are isomor-
phisms. ¤

2.5. Specialization of unramified elements. Let L/F be a finitely gener-
ated field extension with tr. degF (L) = d. Let M be a cycle module over F
and v a geometric discrete valuation of L over F of rank 1 with residue field
E.

Proposition 2.12. For every α ∈ M(L)nr, we have sv(α) ∈ M(E)nr.

Proof. Let u be a geometric discrete valuation of E/F of rank 1. Set v′ = u◦v.
Choose a model X and two points x and x′ of L/F satisfying the conditions
of Lemma 1.8. The local 2-dimensional ring OX,x′ may not be regular. By
Lipman’s resolution of singularities in dimension 2 (cf. [1]), there is a regular
connected 2-dimensional scheme Y together with a birational isomorphism
f : Y → Spec OX,x′ . The valuations v and v′ dominate points y and y′ of Y
over x and x′ respectively with κ(y) = κ(x) = E and κ(y′) = κ(x′) = F (v′)
(we write κ to denote the residue field).

Let Z be the closure of y in Y . As the local ring OY,y′ is regular, it is a
UFD. Therefore, the closed embedding f : Spec OZ,y′ → Spec OY,y′ is regular.
Consider the Gysin homomorphism

fF : A0(Spec OY,y′ ,M) → A0(Spec OZ,y′ , M).

By [7, Cor. 12.4], fF = sv since OY,y = Ov. On the other hand, u is the only
valuation on κ(y) = F (v) dominating y′. Hence the y′-component ∂y′

y of the
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differential ∂y coincides with ∂u. Finally,

∂u

(
sv(α)

)
= ∂y′

y

(
fF(α)

)
= 0. ¤

Let v be a rank r geometric valuation on a field L over F . Write v =
v1 ◦ v2 ◦ · · · ◦ vr where vi are (unique) geometric discrete valuations of rank 1.
We define the specialization homomorphism

sv := sv1 ◦ · · · ◦ svr : M∗(L)nr → M∗
(
F (v)

)
nr

.

Let Z ⊂ X be a closed subvariety of a variety X over F such that the generic
point of Z is regular in X. Then the closed embedding f : Spec F (Z) →
Spec OX,Z is regular, so we have the Gysin homomorphism

fF : A0(Spec OX,Z ,M) → A0(Spec F (Z),M).

Let v be the geometric valuation on F (X) with residue field F (Z) given by
a regular sequence of the regular local ring Spec OX,Z (cf. Example 1.6). It
follows from [7, Cor. 12.4] that fF = sv . Hence

fF(
M(F (X))

)
nr
⊂ M

(
F (Z)

)
nr

.

Let g : Y 99K Z be a dominant rational morphism of varieties over F . The
induced embedding of fields F (Z) ↪→ F (Y ) induces a homomorphism

g∗ : M
(
F (Z)

)
nr
→ M

(
F (Y )

)
nr

.

By [7, R1a], the operation g 7→ g∗ is compatible with compositions.

We now consider a more general situation. Let f : Y 99K X be a rational
morphism of varieties over F satisfying the following condition:

(¦) The image of the generic point of Y is a regular point of X.

For example, a dominant morphism satisfies (¦). The morphism f factors into
the composition of the rational dominant morphism g : Y 99K Z, where Z is
the closure of the image of f , and the closed embedding h : Z → X. We define
the pull-back homomorphism as the composition

f ∗ : M
(
F (X)

)
nr

hF−→ M
(
F (Z)

)
nr

g∗−→ M
(
F (Y )

)
nr

.

The pull-back homomorphisms satisfy the following functorial properties.

Proposition 2.13. Let f : Y 99K X be a rational morphism of varieties
over F satisfying the condition (¦). Let d : Y ′ 99K Y be a dominant rational
morphism of varieties over F . Then f ◦ d satisfies (¦) and (f ◦ d)∗ = d∗ ◦ f ∗.

Proof. Let f = h◦ g be the factorization as above. Then f ◦d = h◦ (g ◦d) and

(f ◦ d)∗ = (g ◦ d)∗ ◦ hF = d∗ ◦ (g∗ ◦ hF) = d∗ ◦ f ∗. ¤
Proposition 2.14. Let f : Y 99K X be a rational morphism of varieties
over F satisfying the condition (¦). Let e : X 99K X ′ be a dominant rational
morphism of varieties over F such that the composition e ◦ f is well defined
and dominant. Then (e ◦ f)∗ = f ∗ ◦ e∗.
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Proof. Let f = h ◦ g be the factorization as above. By assumption, e yields
an embedding of F (X ′) into the local ring OX,Z . The surjection OX,Z →
F (Z) makes F (Z) a field extension of F (X ′). We have hF = sv for some
geometric valuation v on F (X) dominating Z. The restriction of v on F (X ′)
is trivial. It follows from [7, R3d] that hF(e∗(ρ)) = sv(ρF (X)) = ρF (Z) for any

ρ ∈ M
(
F (X ′)

)
nr

. Hence

(e ◦ f)∗(ρ) = ρF (Y ) = g∗(ρF (Z)) = g∗
(
hF(e∗(ρ))

)
= (f ∗ ◦ e∗)(ρ). ¤

2.6. Retract rational. A variety X over F is called retract rational if there
are rational morphisms f : X 99K Pn and g : Pn 99K X for some n such that
the composition g ◦ f is defined and is equal to the identity of X.

The following proposition generalizes Example 2.3.

Proposition 2.15. Let X be a retract rational over F . Then F (X) has trivial
unramified cohomology.

Proof. Let M be a cycle module over F and f and g the morphisms in the
definition of the retract rational X. As g ◦ f is the identity, g is a dominant
morphism. By Proposition 2.14, f ∗ ◦ g∗ is the identity on M

(
F (X)

)
nr

. Let
p : X → Spec F be the structure morphism. By Example 2.3, the composition
g∗ ◦ p∗ is an isomorphism. Hence g∗, and therefore, p∗ are isomorphisms, i.e.,
M

(
F (X)

)
nr

= M(F ). ¤

3. R-equivalence

Let C(F ) be the category of semilocal commutative F -algebras. We consider
functors

P : C(F ) → Sets.

Example 3.1. Let X be a scheme over F . We view X as a functor via
X(A) = MorF (Spec A,X).

Example 3.2. Let G be an algebraic group over F . We write G -Torsors
for the functor taking a commutative F -algebra A to the set of isomorphism
classes H1

et(A,G) of G-torsors over Spec A.

We write HF for the semilocal ring of all rational functions f(t)/g(t) ∈ F (t)
such that g(0) and g(1) are nonzero. In other words, HF is the localization of
F [t] at 0 and 1. Let x ∈ P (HF ) and i = 0 or 1. We write x(i) for the image of
x under the map P (HF ) → P (F ) induced by the ring homomorphism HF → F
taking a function h to h(i).

Two elements x0 and x1 in P (F ) are strictly R-equivalent if there is an
x ∈ P (HF ) such that x(0) = x0 and x(1) = x1. The equivalence relation ∼ on
P (F ) generated by the relation of strict R-equivalence is called R-equivalence.
We write P (F )/R for the set of equivalence classes. If L/F is a field extension,
let P (L)/R denote the set of equivalence classes of the restriction of the functor
P on C(L).
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Example 3.3. Let X be a scheme over F . We can view X as the functor in
Example 3.1. Then the notion of R-equivalence in X(F ) coincides with the
classical one defined in [5].

We say that a functor P : C(F ) → Sets is R-trivial if for any field extension
L/F , the set P (L)/R has only one element. In particular note that P (L) is
not empty.

A morphism of functors P → Q induces a morphism of sets P (L)/R →
Q(L)/R for any L. Call a morphism of functors P → Q surjective if the map
P (A) → Q(A) is surjective for all A in C(F ). If f : P → Q is a surjective
morphism and P is R-trivial then so is Q.

For an element q ∈ Q(F ), we write Pq for the subfunctor of P defined by

Pq(A) := {p ∈ P (A) such that f(p) = qA}.
We call Pq the fiber of f over q.

Proposition 3.4. Let f : P → Q be a surjective morphism of functors from
C(F ) to Sets and L/F a field extension. If the fibers Pq are R-trivial for all
q ∈ Q(L) then the canonical map P (L)/R → Q(L)/R is a bijection.

Proof. Since f is surjective, the map P (L)/R → Q(L)/R is also surjective.
Let p0, p1 ∈ P (L) and set qi = f(pi). Suppose that q0 and q1 are R-equivalent.
We may assume that they are simply R-equivalent. There exists q ∈ Q(HL)
such that q(0) = q0 and q(1) = q1. As f is surjective, there is p ∈ P (HL) with
f(p) = q. Set p′0 = p(0) and p′1 = p(1). We have p′0 ∼ p′1. The elements p0 and
p′0 belong to the same fiber. Since the fibers are R-trivial, we have p0 ∼ p′0
and similarly, p1 ∼ p′1. Finally, p0 ∼ p′0 ∼ p′1 ∼ p1. ¤

Let G be an algebraic group over F , C ⊂ G a central subgroup and G′ =
G/C. For every A ∈ C(F ), we have an exact sequence

G -Torsors(A) → G′ -Torsors(A)
∂−→ H2

et(A,C)

with ∂ : H1
et(A,G′) → H2

et(A,C) the connecting map. Let P be the sub-
functor of G′ -Torsors consisting of all elements p such that ∂(p) = 0. The
group C -Torsors(A) acts transitively on the fibers of the natural surjection
G -Torsors(A) → P (A) (cf. [4, Cor. 28.6]). Therefore, Proposition 3.4 yields:

Corollary 3.5. Suppose that the functors C -Torsors and P are R-trivial. Then
G -Torsors is also R-trivial.

4. Classifying variety

Let G be an algebraic group over F . We view G as a closed subgroup of
a group S = GLn1 ×GLn2 × · · · × GLnk

over F . The factor variety S/G is
denoted by BG and called a classifying variety for G. The variety BG has the
distinguished rational point G/G. The stable birational equivalence class of
BG is independent of the choice of S and the embedding of G into S (cf. [6,
2.1]).
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Let L be a field extension of F . By Hilbert Theorem 90, the map

fL : BG(L) → G -Torsors(L),

taking a point Spec L → BG in BG(L) to the class of the G-torsor S×BGSpec L
over L, is surjective. The group S(L) acts on BG(L), and this action is
transitive on the fibers of fL by [4, Cor. 28.2]. As the variety of the group S
is R-trivial, the fibers of f are also R-trivial. Hence by Proposition 3.4, the
map f induces a bijection

BG(L)/R ' G -Torsors(L)/R.

Proposition 4.1. Consider the following properties:

(1) The classifying variety BG is stably rational.
(2) The functor G -Torsors is R-trivial.
(3) For any cycle module M over F , we have M

(
F (BG)

)
nr

= M(F ), i.e.,
the function field F (BG) has trivial unramified cohomology.

Then (1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2): Replacing S by S × GLn for sufficiently large n we may
assume that BG is rational. Let U ⊂ BG be a non-empty open subvariety
isomorphic to an open subvariety of an affine space. Since every two points in
U(F ) are R-equivalent, it is sufficient to prove that every point x in BG(F ) is
R-equivalent to a point in U(F ). Consider the surjective morphism S → BG,
g 7→ gx. As rational points are dense in S, the set S(F )x is dense in BG and
hence intersects U , i.e., there is a g ∈ S(F ) such that gx ∈ U(F ). As the
points 1 and g are R-equivalent in S(F ), the points x and gx are R-equivalent
in BG(F ).

(2) ⇒ (3): The homomorphism M(F ) → M
(
F (BG)

)
is injective as it is split

by the evaluation at any rational point. Let L/F be a field extension and
ρ ∈ M

(
L(BG)

)
nr

. We claim that for every two points x0, x1 ∈ BG(L), we
have ρ(x0) = ρ(x1). We may assume that x0 and x1 are strictly R-equivalent,
i.e., there is a morphism f : W → BG for an open nonempty subscheme
W ⊂ P1 containing points 0 and 1 and satisfying f(0) = x0 and f(1) = x1.
Let µ = f ∗(ρ). It follows from Example 2.3 that µ ∈ M

(
F (W )

)
nr

= M(F ).
Hence

ρ(x0) = µ(0) = µ(1) = ρ(x1).

We apply the claim to the distinguished point x0 ∈ BG(L) and the generic
point x1 of BG over the function field L = F (BG). We have ρ(x0) ∈
Im

(
M(F ) → M(L)

)
and ρ(x1) = ρ. It follows from the claim that ρ ∈

Im
(
M(F ) → M(L)

)
. ¤

5. An example

Let F be a field of characteristic not two, G = SL8 /µ2, C = µ8/µ2 ' µ4 the
center of G and A a semilocal commutative F -algebra. We have G/C ' PGL8
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and PGL8 -Torsors(A) is the set of isomorphism classes of Azumaya A-algebras
of rank 8. The connecting map

∂ : G/C -Torsors(A) → H2
et(A,C) = Br4(A)

takes the class [Λ] of an Azumaya A-algebra Λ to 2[Λ] in the Brauer group of
A. Let P be the functor in Corollary 3.5, i.e., P (A) is the set of isomorphism
classes of Azumaya A-algebras of rank 8 and exponent 2.

The functor C -Torsors(A) = A×/A×4 is R-trivial. We shall show that P is
also R-trivial.

Let P ′ be the subfunctor of P comprised of algebras that can be factored into
a tensor product of three quaternion algebras. We show that P ′ is R-trivial.
Write (a, b), where a, b ∈ F×, for the quaternion algebra over F generated by
elements i and j subject to the relations i2 = a, j2 = b and ij = −ji.

Let Q and Q′ be two algebras in P ′(F ), i.e., Q = (a1, b1)⊗ (a2, b2)⊗ (a3, b3)
and Q′ = (a′1, b

′
1) ⊗ (a′2, b

′
2) ⊗ (a′3, b

′
3) for some ai, a

′
i, bi, b

′
i ∈ F×. Consider the

Azumaya algebra

B = ⊗3
i=1

(
tai + (1− t)a′i, tbi + (1− t)b′i

)

over the ring HF . We have B(0) ' Q′ and B(1) ' Q, so Q ∼ Q′.
In general, by [8], every algebra Q′ in P (F ) is similar to an algebra

Q = (a1, b1)⊗ (a2, b2)⊗ (a3, b3)⊗ (c, d),

where (c, d) (and hence Q) is split over L = F (
√

a1,
√

a2,
√

a3). Consider the
Azumaya algebra

B =
(
a1, tb1 + (1− t)

)⊗ (a2, b2)⊗ (a3, b3)⊗ (c, d)

over HF . Since (c, d) is split over L, the algebra B is split over R⊗F L. Hence B
is equivalent to an algebra B′ in P (HF ). We have B(1) = Q, hence B′(1) = Q′

and

B′(0) = (a2, b2)⊗ (a3, b3)⊗ (c, d) ∈ P ′(F ).

Thus every point of P (F ) is R-equivalent to a point in P ′(F ). Hence P is R-
trivial. It follows from Corollary 3.5 that the functor G -Torsors is R-trivial and
therefore, by Proposition 4.1, the function field F (BG) has trivial unramified
cohomology.
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