UNRAMIFIED ELEMENTS IN CYCLE MODULES

ALEXANDER MERKURJEV

ABSTRACT. Let X be an algebraic variety over a field F. We study the functor taking a cycle module M over F to the group of unramified elements $M(F(X))_{nr}$ of M(F(X)). We prove that this functor is represented by a cycle module. The existence of pull-back maps on $M(F(X))_{nr}$ for rational maps (under a mild condition) is established. An application to the *R*-equivalence on classifying varieties of algebraic groups is given.

The unramified Galois cohomology of the function field of a smooth proper variety X over a field is a birational invariant of X, so it can be used to detect non-rationality of algebraic varieties (cf. [2]). Galois cohomology is a special case of a cycle module that M. Rost developed in [7] more generally. The group of unramified elements can be defined in the context of cycle modules, and it still represents a birational invariant of a smooth proper variety (cf. [7, Cor. 12.10]). We prove that for any smooth proper variety X over a field F, there is a universal cycle module K^X representing the functor that takes a cycle module M over F to the subgroup of unramified elements $M(F(X))_{nr}$ of M(F(X)). The cycle module K^X is defined by means of algebraic cycles of dimension zero on X. As a corollary, we show (cf. Theorem 2.11) that M(F(X)) has only trivial unramified elements for all cycle modules M over F, i.e., the natural homomorphism $M(F) \to M(F(X))_{nr}$ is an isomorphism if and only if the degree map $\operatorname{CH}_0(X_L) \to \mathbb{Z}$ is an isomorphism for every field extension L/F, where $\operatorname{CH}_0(X_L)$ is the Chow group of zero-dimensional cycles on X_L modulo rational equivalence.

For a fixed cycle module M, we study functorial properties of the assignment $X \mapsto M(F(X))_{nr}$ for all varieties X, not necessarily smooth or proper. We show that under mild restrictions on a rational morphism $f: Y \to X$, there exists a pull-back homomorphism $f^*: M(F(X))_{nr} \to M(F(Y))_{nr}$. We use this construction to show that the R-equivalence on the set of isomorphism classes of torsors of an algebraic group G dominates unramified elements of the function field of a classifying variety of G (cf. Proposition 4.1). As an example, we show that the classifying variety of the group \mathbf{SL}_8/μ_2 has only trivial unramified elements in any cycle module.

In this paper the word "scheme" means a localization of a separated scheme of finite type over a field and a "variety" an integral scheme. For a scheme

Date: May, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14F43, 14C25, 14E05.

The work has been supported by the NSF grant DMS #0652316.

X and an integer $i \ge 0$, we let $X^{(i)}$ and $X_{(i)}$ denote the set of points of X of codimension and dimension *i* respectively. An algebraic group over a field F is a smooth group scheme of finite type over F.

1. Models and valuations

Let L/F be a finitely generated field extension. A model of L/F is a proper variety X over F together with an isomorphism $\varphi : F(X) \xrightarrow{\sim} L$ of fields over F. A morphism of models (X, φ) and (X', φ') is a morphism $f : X \to X'$ over F such that the composition

$$F(X') \xrightarrow{f^*} F(X) \xrightarrow{\varphi} L$$

coincides with φ' . There exists at most one morphism between two models of L/F. We write $X \succ X'$ if there is a morphism from (X, φ) to (X', φ') and say that X dominates X'. The relation \succ yields an ordering on the set of isomorphism classes of all models of L/F. This is a directed ordered set. Indeed let X and X' be two models of L/F. Choose a nonempty scheme Y over F isomorphic to open subschemes of X and X' and let X" be the closure of the image of the diagonal embedding of Y into $X \times X'$. The projections of X'' onto X and X' yield $X \prec X'' \succ X'$.

Let v be a valuation on L over F and X a model of L/F. The valuation v dominates a unique point $x \in X$, i.e., $O_{X,x} \subset O_v$ and $\mathfrak{m}_{X,x} = O_{X,x} \cap \mathfrak{m}_v$, where \mathfrak{m}_v is the maximal ideal of the valuation ring O_v of v. In particular, we have an extension of residue fields $F(x) \subset F(v)$. If X' is another model dominating X and $x' \in X'$ is the point dominated by v then x' is above x, i.e., x' maps to x under the morphism $X' \to X$. Moreover, $O_{X,x} \subset O_{X',x'} \subset O_v$ and $F(x) \subset F(x') \subset F(v)$.

Lemma 1.1. Let v be a valuation on L/F, X is a model of L/F and $f \in O_v$. Then there is a model $X' \succ X$ and a point $x' \in X'$ above x satisfying $f \in O_{X',x'}$.

Proof. We can view f as a rational morphism from X to the projective line \mathbb{P}^1 over F. Let X' be closure of the graph of f in $X \times \mathbb{P}^1$. We have projections $X' \to X$ and $X' \to \mathbb{P}^1$, so $X' \succ X$ and we can view f (and also 1/f) as a morphism $X' \to \mathbb{P}^1$. Let v dominate $x' \in X'$. As $f \in O_v$, we have $1/f \notin \mathfrak{m}_v$. Hence $1/f \notin \mathfrak{m}_{X',x'}$, i.e., $(1/f)(x') \neq 0$. Therefore, $f(x') \neq \infty$ and $f \in O_{X',x'}$.

It follows from Lemma 1.1 that O_v is the union of the rings $O_{X,x}$ over all models X of L/F and $x \in X$ dominated by v. As the set of all models of L is directed, we have the following:

Corollary 1.2. Let v be a valuation on L over F with residue field finitely generated over F. Then there is model X of L/F such that F(x) = F(v) for the point $x \in X$ dominated by v.

Corollary 1.3. Let v and v' be distinct valuations of L/F. Then there is a model X of L/F such that v and v' dominate distinct points in X.

Proof. We may assume that $O_v \notin O_{v'}$. Choose $f \in O_v$ such that $f \notin O_{v'}$. By Lemma 1.1, there is a model X of L/F with $f \in O_{X,x}$, where $x \in X$ is dominated by v. If v' dominates $x' \in X$ then $f \notin O_{X,x'}$, therefore, $x \neq x'$. \Box

Let v be a valuation on L over F with residue field E and let u be a valuation on E over F. The pre-image of the valuation ring O_u under the natural homomorphism $O_v \to E$ is a valuation ring of L. We write $u \circ v$ for the corresponding valuation on L over F and call it the *composition of* v and u.

Let v and v' be two valuations on L/F. We say that v divides v' and write v|v' if $O_{v'} \subset O_v$. We have v|v' if and only if $v' = u \circ v$ for a (unique) valuation u on F(v).

Let L/F be a finitely generated field extension and v a valuation on L over F with residue field E. The transcendence degree tr. deg_F(E) is called the dimension dim(v) of v. The rank rank(v) of v is the largest integer r such that there is a sequence of distinct valuations $v_1|v_2|\ldots|v_r = v$ on L over F. By [9, Ch. VI, Th. 3, Cor. 1], we have

$$\operatorname{rank}(v) + \dim(v) \leq \operatorname{tr.deg}_F(L).$$

A valuation v is called *geometric* if $\operatorname{rank}(v) + \dim(v) = \operatorname{tr.deg}_F(L)$.

Proposition 1.4. Let L/F be a finitely generated field extension and E a field with $F \subset E \subset L$. A geometric discrete valuation v on L of rank 1 is either trivial on E or restricts to a geometric discrete valuation on E of rank 1.

Proof. Let w be the restriction of v on E. Clearly, rank $(w) \leq 1$. By [9, Ch. VI, Lemma 2, Cor. 1], we have

 $\dim(v) - \dim(w) \le \operatorname{tr.} \deg_E(L) = \operatorname{tr.} \deg_F(L) - \operatorname{tr.} \deg_F(E).$

It follows that $\dim(w) \geq \operatorname{tr.deg}_F(E) - 1$ and hence w is either trivial or a geometric discrete valuation of rank 1.

Proposition 1.5. [9, Ch. VI, Th. 31, Cor.] The residue field E of a geometric valuation v on L over F is a finitely generated field extension of F with $\operatorname{tr.deg}_F(E) = \operatorname{tr.deg}_F(L) - \operatorname{rank}(v)$. Every geometric valuation of rank r is a unique composition of r geometric discrete valuations of rank 1.

Example 1.6. Let x be a regular point of codimension r of a variety X. Let a_1, a_2, \ldots, a_r be regular parameters of the regular local ring $O_{X,x}$. For every $i = 0, 1, \ldots, r$, let R_i be the factor ring of R by the ideal generated by a_1, \ldots, a_i and let L_i be the quotient field of R_i . We have $L_0 = F(X)$ and $L_r = F(x)$. Denote by v_i the discrete valuation on L_i with residue field L_{i+1} and set $v = v_r \circ \cdots \circ v_2 \circ v_1$. Then v is a geometric valuation of rank r on F(X) with residue field F(x).

Proposition 1.7. Let v be a discrete valuation of rank 1 on a finitely generated field extension L over F. Then the following conditions are equivalent:

- (1) The valuation v is geometric.
- (2) There is a normal model X of L/F such that the point x dominated by v is (regular) of codimension 1 and $O_v = O_{X,x}$.

Proof. (1) \Rightarrow (2): By Proposition 1.5, F(v)/F is a finitely generated field extension. It follows from Corollary 1.2, that there is a model X such that F(v) = F(x) for the point x dominated by v. By assumption, tr. deg_F(F(v)) = tr. deg_F(L) – 1, i.e., x is of codimension 1 in X. Replacing X by its normalization in L, we may assume that X is normal and hence x is regular. Therefore, $O_{X,x}$ is a DVR that is contained in the DVR O_v . Hence $O_v = O_{X,x}$.

(2) \Rightarrow (1): It follows from the equality tr. deg_F(F(v)) = tr. deg_F(F(x)) = dim x = dim X - 1 = tr. deg_F(L) - 1 that v is geometric.

Lemma 1.8. Let v|v' be two geometric valuations on L/F of rank 1 and 2 respectively. Write $v' = u \circ v$ for a geometric discrete valuation u on F(v) of rank 1. Then there is a model X of L/F such that v and v' dominate points x and x' of codimension 1 and 2 respectively with:

- (1) F(x) = F(v) and F(x') = F(v'),
- (2) v is the only valuation on L/F dominating x,
- (3) u is the only valuation on F(v)/F dominating x'.

Proof. By Proposition 1.7 and Corollary 1.2, there is a model X of L/F such that (1) holds with x a regular point of X of codimension 1 and $O_{X,x} = O_v$. Hence (2) also holds. There are finitely many geometric discrete valuations $u = u_1, u_2, \ldots, u_n$ on F(x) over F dominating x' in the closure of $\{x\}$ in X. By Corollary 1.3, there is model $X' \succ X$ such that the valuations $u_1 \circ v, u_2 \circ v, \ldots, u_n \circ v$ dominate distinct points in X'. Clearly, X' satisfies all the conditions.

2. Cycle modules

Cycle modules were introduced by M. Rost in [7]. By definition, a (\mathbb{Z} -graded) cycle module over F is a functor $M = M_*$ from the category of finitely generated field extensions over F to the category of graded abelian groups equipped with the following datum:

- (1) A norm homomorphism $N_{L/E} : M_*(L) \to M_*(E)$ for any finite field extension L/E of finitely generated field extensions of F,
- (2) A structure of a left graded module on $M_*(L)$ over the Milnor ring $K_*(L)$ for any finitely generated field extension L/F,
- (3) A residue homomorphism $\partial_v : M_*(L) \to M_{*-1}(E)$ for any finitely generated field extension L/F and a geometric discrete valuation v on L over F of rank 1 with residue field E.

All the structures should satisfy various compatibility conditions (cf. [7, §2]). We write K_* for the cycle module taking a field L to the Milnor K-group $K_*(L)$.

Let M be a cycle module over F. For an element $\rho \in M(E)$ and a field extension L/E over F we write ρ_L for the image of ρ in M(L).

For a cycle module M over F and an integer d let M[d] denote the *shifted* cycle module defined by $M[d]_n(L) = M_{n+d}(L)$.

A morphism of cycle modules M and N of degree d is a morphism of functors $M \to N[d]$ commuting with the structures (1), (2) and (3). All cycle modules over F and morphisms of cycle modules of arbitrary degree form the category of cycle modules $\operatorname{CM}(F)$. We write $\operatorname{Hom}^d_{\operatorname{CM}(F)}(M, N)$ for the group of all degree d morphisms of cycle modules M and N.

Let L/F be a finitely generated field extension, v a geometric discrete valuation on L over F of rank 1 with residue field E and $\pi \in L$ a uniformizer, i.e., $v(\pi) = 1$. The map

$$s_v^{\pi}: M_*(L) \to M_*(E), \qquad s_v^{\pi}(\alpha) = \partial_v (\{-\pi\} \cdot \alpha)$$

is called a *specialization homomorphism*.

Let X be a scheme and M a cycle module over F. In [7, §2], using the norm and residue maps, Rost constructed a complex

$$\dots \to \prod_{x \in X_{(i+1)}} M_{d-i+1}(F(x)) \to \prod_{x \in X_{(i)}} M_{d-i}(F(x)) \to \prod_{x \in X_{(i-1)}} M_{d-i-1}(F(x)) \to \dots$$

If $x \in X_{(i)}$, the x-component ∂_x of the differential of the complex is defined as follows. If $x' \in X_{(i-1)}$ the x'-component $\partial_x^{x'}$ of ∂_x is trivial if x' does not belong to the closure of $\{x\}$ and is equal to $\sum N_{F(v)/F(x')} \circ \partial_v$ otherwise, where the sum is taken over all geometric discrete valuations v of F(x) of rank 1 dominating x'.

We shall consider the following homology group of the complex:

$$A_0(X, M_d) := \operatorname{Coker} \Big(\prod_{x \in X_{(1)}} M_{d+1}(F(x)) \to \prod_{x \in X_{(0)}} M_d(F(x)) \Big).$$

In particular, $A_0(X, K_d) = CH_0(X)$.

If X is equidimensional, we set

$$A^{0}(X, M_{d}) := \operatorname{Ker} \Big(\prod_{x \in X^{(0)}} M_{d} \big(F(x) \big) \to \prod_{x \in X^{(1)}} M_{d-1} \big(F(x) \big) \Big).$$

If X is a variety, we have $A^0(X, M_d) \subset M_d(F(X))$.

2.1. Gysin homomorphism. Let M be a cycle module over a field $F, f : Y \to X$ a closed regular embedding of equidimensional schemes and $p : N \to Y$ the normal bundle of f. The Gysin homomorphism f^{\bigstar} is defined as the composition

$$A^0(X, M) \xrightarrow{\sigma} A^0(N, M) \xrightarrow{(p^*)^{-1}} A^0(Y, M),$$

where σ is the deformation homomorphism (denoted by J in [7, §11]) and p^* is the pull-back isomorphism with respect to the flat morphism p (cf. [7, §4]).

Let x be a point of a variety X. We have

$$A^0(X, M) \subset A^0(\operatorname{Spec} O_{X,x}, M) \subset M(F(X)).$$

If x is a regular (non-singular) point of X then the closed embedding f: Spec $F(x) \to$ Spec $O_{X,x}$ is regular. For any $\rho \in A^0(X, M)$, we write $\rho(x)$ for the element $f^{\bigstar}(\rho)$ in $A^0(F(x), M) = M(F(x))$ and call it the value of ρ at x.

Example 2.1. Let x be the generic point of a variety X. As $O_{X,x} = F(x) = F(X)$, we have $\rho(x) = \rho$ for any $\rho \in A^0(X, M)$.

Let $f: Y \to X$ be a morphism of equidimensional schemes over F with X smooth. The morphism f factors into the composition of the regular embedding $g = (\text{id}, f) : Y \to X \times Y$ and the flat projection $h : X \times Y \to X$ of constant relative dimension. The pull-back homomorphism

$$f^*: A^0(X, M) \to A^0(Y, M)$$

is defined as the composition $f^* = g^{\bigstar} \circ h^*$.

Lemma 2.2. Let $i: Y' \to Y$ be a regular closed embedding of equidimensional schemes and $f: Y \to X$ a morphism with X equidimensional and smooth. Then $(f \circ i)^* = i^* \circ f^*$.

Proof. Consider the factorizations $f = h \circ g$ and $f \circ i = h' \circ g'$ as above. In the diagram

the left square is commutative by [7, Lemma 11.4] and the right square is commutative by the functoriality of Gysin homomorphisms (cf. [3, Lemme 3.10]).

2.2. Unramified elements. Let M be a cycle module over F and let L/F be a finitely generated field extension. An element $a \in M(L)$ is called *unramified* if $\partial_v(a) = 0$ for all geometric discrete valuations v on L of rank 1 over F. We write $M(L)_{nr}$ for the subgroup of all unramified elements. For any $b \in M(F)$, the element b_L in M(L) is unramified by [7, R3c], hence we have a canonical homomorphism $M(F) \to M(L)_{nr}$. If this map is as an isomorphism, we simply write $M(L)_{nr} = M(F)$ and say that M(L) has only trivial unramified elements. We also say that L has trivial unramified cohomology if M(L) has only trivial unramified elements for every cycle module M over F.

Example 2.3. A purely transcendental field extension L/F has trivial unramified cohomology. Indeed, $L \simeq F(\mathbb{P}^n)$ for some n and $M(L)_{nr} = A^0(\mathbb{P}^n, M) = M(F)$ by [7, Prop. 8.6] for any cycle module M over F.

Let X be a variety over F. We have

$$M(F(X))_{nr} \subset A^0(X,M)$$

and equality holds if X is smooth and proper (cf. $[7, \S 12]$).

Let L'/L be an extension of finitely generated fields over F. It follows from Proposition 1.4 and [7, R3a, R3c] that the restriction homomorphism $M(L) \to M(L')$ takes $M(L)_{nr}$ to $M(L')_{nr}$.

Lemma 2.4. Let L/F be a finitely generated field extension, v a geometric discrete valuation on L of rank 1 over F with residue field E. Let M be a cycle module over F. Then the restriction of the specialization homomorphism s_v^{π} on $M(L)_{nr}$ does not depend on the choice of the prime element π .

Proof. Let $\pi' = u\pi$ for some $u \in L^{\times}$ with v(u) = 0. By [7, R3e], we have

$$s_v^{\pi'}(\rho) - s_v^{\pi}(\rho) = \partial_v \big(\{-\pi'\}\rho\big) - \partial_v \big(\{-\pi\}\rho\big) = \partial_v \big(\{u\}\rho\big) = -\{\bar{u}\}\partial_v \big(\rho\big) = 0$$

for any $\rho \in M(L)_{nr}$.

We write s_v for the restriction of the specialization homomorphism s_v^{π} on $M(L)_{nr}$.

2.3. The cycle module M^X . Let M be a cycle module and X a scheme over F. By [7, Th. 7.1], the assignment

$$M^X(L) := A_0(X_L, M)$$

defines the cycle module M^X over F. In particular, $K_0^X(L) = CH_0(X_L)$ and $M^{\operatorname{Spec} F} = M$.

If X is proper, the norm morphisms in Milnor K-theory induce a natural morphism

 $\operatorname{Norm}_X : M^X \to M.$

If a smooth proper X is stably rational then $Norm_X$ is an isomorphism.

We now turn to the case M = K. For every point $x \in X$, the group $K_0^X(F(x))$ has a distinguished element ξ_x – the class of the image of the diagonal embedding Spec $F(x) \to X_{F(x)}$.

Suppose that X is a variety. If x is the generic point, we simply write ξ for $\xi_x \in K_0^X(F(X)) = \operatorname{CH}_0(X_{F(X)})$. Trivially, ξ is an unramified element in $K_0^X(F(X))$.

The next lemma follows from [7, Cor. 12.4].

Lemma 2.5. For any $x \in X$, we have $\xi(x) = \xi_x$.

Lemma 2.6. The group $K^X(F) = A_0(X, K)$ is generated by the elements of the form $N_{F(x)/F}(a \cdot \xi_x)$ over all $x \in X_{(0)}$ and $a \in K(F(x))$.

Proof. This follows from the fact that the norm $N_{F(x)/F}(a \cdot \xi_x)$ in $A_0(X, K)$ is represented by $a \in K(F(x)) \subset \coprod_{x \in X_{(0)}} K(F(x))$.

The following statement shows that a morphism $K^X \to M$ of cycle modules is determined by the value at the generic point of X.

Proposition 2.7. Let $\alpha : K^X \to M$ be a morphism of cycle modules over F (of arbitrary degree). If $\alpha(\xi) = 0$ then $\alpha = 0$.

Proof. By Lemma 2.6, it is sufficient to show that $\alpha(N_{F(x)/F}(a \cdot \xi_x)) = 0$ for all $x \in X_{(0)}$ and $a \in K(F(x))$. As α commutes with products, norms and evaluation homomorphisms, by Lemma 2.5,

$$\alpha \left(N_{F(x)/F}(a \cdot \xi_x) \right) = N_{F(x)/F} \left(a \cdot \alpha(\xi)(x) \right) = 0. \qquad \Box$$

2.4. A pairing. Let X be a smooth proper variety over F, M a cycle module over F and $\rho \in M(F(X))_{nr}$. Let $i: C \to X$ be the closed embedding of an integral curve and $f: C' \to C$ the normalization morphism. Let $\rho' \in A^0(C', M) = M(F(C))_{nr}$ be the pull-back of ρ with respect to the composition $i \circ f$.

Lemma 2.8. Let $\rho \in M(F(X))_{nr}$, $x \in C_{(0)}$ and $a \in K(F(C))$. Then $\partial_x^C(a \cdot \rho') = \partial_x^C(a) \cdot \rho(x)$

in M(F(x)).

Proof. Let $y \in C'$ be a point over x. As $\partial_y^{C'}(\rho') = 0$, the Rule [7, R3f] yields:

(1)
$$\partial_y^{C'}(a \cdot \rho') = \partial_y^{C'}(a) \cdot s_y^{\pi}(\rho'),$$

where s_y^{π} is the specialization homomorphism for an uniformizer π of y on C'.

It follows from [7, Lemma 11.2] that $s_y^{\pi}(\rho') = \rho'(y)$. By Lemma 2.2, $\rho'(y)$ is the pull-back of ρ with respect to the composition Spec $F(y) \to C' \to X$. Since this composition coincides with the composition Spec $F(y) \to \text{Spec } F(x) \to X$, by transitivity of the pull-back homomorphisms and [7, Prop. 12.3], we have $\rho'(y) = \rho(x)_{F(y)}$. Therefore, it follows from (1) that

(2)
$$\partial_y^{C'}(a \cdot \rho') = \partial_y^{C'}(a) \cdot \rho(x)_{F(y)}$$

We have:

$$\partial_x^C(a \cdot \rho') = \sum_{y|x} N_{F(y)/F(x)} \left(\partial_y^{C'}(a \cdot \rho') \right) \qquad \text{(definition of } \partial_x^C)$$
$$= \sum_{y|x} N_{F(y)/F(x)} \left(\partial_y^{C'}(a) \cdot \rho(x)_{F(y)} \right) \qquad \text{(by (2))}$$
$$= \sum_{y|x} N_{F(y)/F(x)} \left(\partial_y^{C'}(a) \right) \cdot \rho(x) \qquad \text{(by [7, R2c])}$$
$$= \partial_x^C(a) \cdot \rho(x). \qquad \text{(definition of } \partial_x^C) \qquad \Box$$

The lemma together with the Reciprocity Law [7, Prop. 2.2] yield:

Corollary 2.9. Let $\rho \in M(F(X))_{nr}$ and $C \subset X$ a closed curve. Then for any $a \in K(F(C))$, we have

$$\sum_{x \in C_{(0)}} N_{F(x)/F} \left(\partial_x^C(a) \cdot \rho(x) \right) = 0.$$

We have a pairing

$$\left(\prod_{x\in X_{(0)}} K_*F(x)\right) \otimes M_d(F(X))_{nr} \to M_{*+d}(F)$$

defined by $\sum a_x \otimes \rho_x \mapsto \sum N_{F(x)/F}(a_x \cdot \rho_x(x))$. By Corollary 2.9, this pairing factors through a pairing

(3)
$$A_0(X, K_*) \otimes M_d(F(X))_{nr} \to M_{*+d}(F).$$

The pairing (3) over field extensions of F yield a homomorphism

$$\varphi_{X,M}: M_d(F(X))_{nr} \to \operatorname{Hom}^d_{\operatorname{CM}(F)}(K^X, M).$$

A morphism $\alpha: K^X \to M$ of cycle modules of degree d induces a homomorphism

$$A^0(X, K_0^X) \to A^0(X, M_d) = M_d \big(F(X) \big)_{nr}$$

We denote the image of ξ in $M_d(F(X))_{nr}$ by $\psi(\alpha)$. Thus we get a homomorphism

$$\psi_{X,M} : \operatorname{Hom}^d_{\operatorname{CM}(F)}(K^X, M) \to M_d(F(X))_{nr}$$

Theorem 2.10. For every smooth proper variety X and cycle module M over F, the maps $\varphi_{X,M}$ and $\psi_{X,M}$ are isomorphisms inverse to each other. In other words, for a fixed X, the functor $M \mapsto M(F(X))_{nr}$ from the category CM(F) of cycle modules to the category of abelian groups is represented by the cycle module K^X .

Proof. The statement is obvious in the case X = Spec F, i.e., the top map in the commutative diagram

(4)
$$\begin{array}{ccc} M_d(F) & \xrightarrow{\varphi_{SpecF,M}} & \operatorname{Hom}^d_{\operatorname{CM}(F)}(K,M) \\ \downarrow & & \downarrow \\ M_d(F(X))_{nr} & \xrightarrow{\varphi_{X,M}} & \operatorname{Hom}^d_{\operatorname{CM}(F)}(K^X,M) \end{array}$$

is an isomorphism. The composition $\psi_{X,M} \circ \varphi_{X,M}$ takes a $\rho \in M_d(F(X))_{nr}$ to $\rho(x)$, where x is the generic point of X. By Example 2.1, the latter element is equal to ρ , hence the composition $\psi_{X,M} \circ \varphi_{X,M}$ is the identity. By Proposition 2.7, $\psi_{X,M}$ is injective. Hence $\varphi_{X,M}$ and $\psi_{X,M}$ are isomorphisms inverse to each other.

Theorem 2.11. Let X be a smooth proper variety over a field F. Then the following conditions are equivalent:

- (1) For every cycle module M over F, we have $M(F(X))_{nr} = M(F)$, i.e., M(F(X)) has only trivial unramified elements.
- (2) The map $\operatorname{Norm}_X : K^X \to K$ is an isomorphism of cycle modules.
- (3) The degree map $\operatorname{CH}_0(X_L) \to \mathbb{Z}$ is an isomorphism for every field extension L/F.

(4) The class ξ in $\operatorname{CH}_0(X_{F(X)})$ is defined over F, i.e., ξ belongs to the image of the natural map $\operatorname{CH}_0(X) \to \operatorname{CH}_0(X_{F(X)})$.

Proof. (1) \Rightarrow (4): Apply (1) to $M = K^X$.

(4) \Rightarrow (3): We may assume that L = F. In the case $M = K^X$ and d = 0in diagram (4), we have $\varphi_{X,M}(\xi) = \operatorname{id}_M$. By assumption and Theorem 2.10, there is a morphism $\alpha : K \to K^X$ such that $\alpha \circ \operatorname{Norm}_X$ is the identity of K^X . Let $a \in \operatorname{CH}_0(X)$ be the image of 1 under α . For every $b \in \operatorname{CH}_0(X)$, we then have

$$b = \alpha (\operatorname{Norm}_X(b)) = \deg(b) \cdot \alpha(1) = \deg(b) \cdot a,$$

hence $\operatorname{CH}_0(X)$ is generated by a. Taking the degree, we have $\operatorname{deg}(a) = 1$. Therefore, the degree map $\operatorname{CH}_0(X) \to \mathbb{Z}$ is an isomorphism.

 $(3) \Rightarrow (2)$: Let $a \in \operatorname{CH}_0(X)$ be a cycle of degree 1. Then for every $u \in K(F)$, we have $\operatorname{Norm}_X(u \cdot a) = u$, i.e., the norm map $K^X \to K$ is surjective. To prove injectivity, it is sufficient to show that for every $x \in X_{(0)}$ and $u \in K(F(x))$, we have $u \cdot [x] = N_{F(x)/F}(u) \cdot a$ in $A_0(X, K)$. As the degree of the cycle $\xi_x \in \operatorname{CH}_0(X_{F(x)})$ is 1 and the degree map $\operatorname{CH}_0(X_{F(x)}) \to \mathbb{Z}$ is injective, we have $\xi_x = a_{F(x)}$, hence $u \cdot \xi_x = u \cdot a_{F(x)}$. Therefore,

$$u \cdot [x] = N_{F(x)/F}(u \cdot \xi_x) = N_{F(x)/F}(u \cdot a_{F(x)}) = N_{F(x)/F}(u) \cdot a.$$

(2) \Rightarrow (1): In the commutative diagram (4), the vertical maps are isomorphisms.

2.5. Specialization of unramified elements. Let L/F be a finitely generated field extension with tr. deg_F(L) = d. Let M be a cycle module over F and v a geometric discrete valuation of L over F of rank 1 with residue field E.

Proposition 2.12. For every $\alpha \in M(L)_{nr}$, we have $s_v(\alpha) \in M(E)_{nr}$.

Proof. Let u be a geometric discrete valuation of E/F of rank 1. Set $v' = u \circ v$. Choose a model X and two points x and x' of L/F satisfying the conditions of Lemma 1.8. The local 2-dimensional ring $O_{X,x'}$ may not be regular. By Lipman's resolution of singularities in dimension 2 (cf. [1]), there is a regular connected 2-dimensional scheme Y together with a birational isomorphism $f: Y \to \operatorname{Spec} O_{X,x'}$. The valuations v and v' dominate points y and y' of Yover x and x' respectively with $\kappa(y) = \kappa(x) = E$ and $\kappa(y') = \kappa(x') = F(v')$ (we write κ to denote the residue field).

Let Z be the closure of y in Y. As the local ring $O_{Y,y'}$ is regular, it is a UFD. Therefore, the closed embedding $f : \operatorname{Spec} O_{Z,y'} \to \operatorname{Spec} O_{Y,y'}$ is regular. Consider the Gysin homomorphism

$$f^{\bigstar} : A^0(\operatorname{Spec} O_{Y,y'}, M) \to A^0(\operatorname{Spec} O_{Z,y'}, M).$$

By [7, Cor. 12.4], $f^{\bigstar} = s_v$ since $O_{Y,y} = O_v$. On the other hand, u is the only valuation on $\kappa(y) = F(v)$ dominating y'. Hence the y'-component $\partial_y^{y'}$ of the

differential ∂_y coincides with ∂_u . Finally,

$$\partial_u (s_v(\alpha)) = \partial_y^{y'} (f^{\bigstar}(\alpha)) = 0.$$

Let v be a rank r geometric valuation on a field L over F. Write $v = v_1 \circ v_2 \circ \cdots \circ v_r$ where v_i are (unique) geometric discrete valuations of rank 1. We define the *specialization homomorphism*

$$s_v := s_{v_1} \circ \cdots \circ s_{v_r} : M_*(L)_{nr} \to M_*(F(v))_{nr}$$

Let $Z \subset X$ be a closed subvariety of a variety X over F such that the generic point of Z is regular in X. Then the closed embedding $f : \operatorname{Spec} F(Z) \to$ $\operatorname{Spec} O_{X,Z}$ is regular, so we have the Gysin homomorphism

$$f^{\bigstar} : A^0(\operatorname{Spec} O_{X,Z}, M) \to A^0(\operatorname{Spec} F(Z), M).$$

Let v be the geometric valuation on F(X) with residue field F(Z) given by a regular sequence of the regular local ring Spec $O_{X,Z}$ (cf. Example 1.6). It follows from [7, Cor. 12.4] that $f^{\bigstar} = s_v$. Hence

$$f^{\bigstar}(M(F(X)))_{nr} \subset M(F(Z))_{nr}.$$

Let $g: Y \dashrightarrow Z$ be a dominant rational morphism of varieties over F. The induced embedding of fields $F(Z) \hookrightarrow F(Y)$ induces a homomorphism

$$g^*: M(F(Z))_{nr} \to M(F(Y))_{nr}.$$

By [7, R1a], the operation $g \mapsto g^*$ is compatible with compositions.

We now consider a more general situation. Let $f : Y \dashrightarrow X$ be a rational morphism of varieties over F satisfying the following condition:

 (\diamond) The image of the generic point of Y is a regular point of X.

For example, a dominant morphism satisfies (\diamond). The morphism f factors into the composition of the rational dominant morphism $g: Y \dashrightarrow Z$, where Z is the closure of the image of f, and the closed embedding $h: Z \to X$. We define the *pull-back homomorphism* as the composition

$$f^*: M(F(X))_{nr} \xrightarrow{h^*} M(F(Z))_{nr} \xrightarrow{g^*} M(F(Y))_{nr}.$$

The pull-back homomorphisms satisfy the following functorial properties.

Proposition 2.13. Let $f : Y \dashrightarrow X$ be a rational morphism of varieties over F satisfying the condition (\diamond). Let $d : Y' \dashrightarrow Y$ be a dominant rational morphism of varieties over F. Then $f \circ d$ satisfies (\diamond) and $(f \circ d)^* = d^* \circ f^*$.

Proof. Let $f = h \circ g$ be the factorization as above. Then $f \circ d = h \circ (g \circ d)$ and

$$(f \circ d)^* = (g \circ d)^* \circ h^\bigstar = d^* \circ (g^* \circ h^\bigstar) = d^* \circ f^*.$$

Proposition 2.14. Let $f : Y \dashrightarrow X$ be a rational morphism of varieties over F satisfying the condition (\diamond). Let $e : X \dashrightarrow X'$ be a dominant rational morphism of varieties over F such that the composition $e \circ f$ is well defined and dominant. Then $(e \circ f)^* = f^* \circ e^*$. Proof. Let $f = h \circ g$ be the factorization as above. By assumption, e yields an embedding of F(X') into the local ring $O_{X,Z}$. The surjection $O_{X,Z} \to F(Z)$ makes F(Z) a field extension of F(X'). We have $h^{\bigstar} = s_v$ for some geometric valuation v on F(X) dominating Z. The restriction of v on F(X')is trivial. It follows from [7, R3d] that $h^{\bigstar}(e^*(\rho)) = s_v(\rho_{F(X)}) = \rho_{F(Z)}$ for any $\rho \in M(F(X'))_{vr}$. Hence

$$(e \circ f)^*(\rho) = \rho_{F(Y)} = g^*(\rho_{F(Z)}) = g^*(h^{\bigstar}(e^*(\rho))) = (f^* \circ e^*)(\rho). \qquad \Box$$

2.6. **Retract rational.** A variety X over F is called *retract rational* if there are rational morphisms $f: X \dashrightarrow \mathbb{P}^n$ and $g: \mathbb{P}^n \dashrightarrow X$ for some n such that the composition $g \circ f$ is defined and is equal to the identity of X.

The following proposition generalizes Example 2.3.

Proposition 2.15. Let X be a retract rational over F. Then F(X) has trivial unramified cohomology.

Proof. Let M be a cycle module over F and f and g the morphisms in the definition of the retract rational X. As $g \circ f$ is the identity, g is a dominant morphism. By Proposition 2.14, $f^* \circ g^*$ is the identity on $M(F(X))_{nr}$. Let $p: X \to \text{Spec } F$ be the structure morphism. By Example 2.3, the composition $g^* \circ p^*$ is an isomorphism. Hence g^* , and therefore, p^* are isomorphisms, i.e., $M(F(X))_{nr} = M(F)$.

3. R-Equivalence

Let $\mathcal{C}(F)$ be the category of semilocal commutative *F*-algebras. We consider functors

$$P: \mathcal{C}(F) \to Sets.$$

Example 3.1. Let X be a scheme over F. We view X as a functor via $X(A) = \operatorname{Mor}_F(\operatorname{Spec} A, X).$

Example 3.2. Let G be an algebraic group over F. We write G-Torsors for the functor taking a commutative F-algebra A to the set of isomorphism classes $H^1_{et}(A, G)$ of G-torsors over Spec A.

We write H_F for the semilocal ring of all rational functions $f(t)/g(t) \in F(t)$ such that g(0) and g(1) are nonzero. In other words, H_F is the localization of F[t] at 0 and 1. Let $x \in P(H_F)$ and i = 0 or 1. We write x(i) for the image of x under the map $P(H_F) \to P(F)$ induced by the ring homomorphism $H_F \to F$ taking a function h to h(i).

Two elements x_0 and x_1 in P(F) are strictly *R*-equivalent if there is an $x \in P(H_F)$ such that $x(0) = x_0$ and $x(1) = x_1$. The equivalence relation \sim on P(F) generated by the relation of strict *R*-equivalence is called *R*-equivalence. We write P(F)/R for the set of equivalence classes. If L/F is a field extension, let P(L)/R denote the set of equivalence classes of the restriction of the functor P on C(L).

Example 3.3. Let X be a scheme over F. We can view X as the functor in Example 3.1. Then the notion of R-equivalence in X(F) coincides with the classical one defined in [5].

We say that a functor $P : \mathcal{C}(F) \to Sets$ is *R*-trivial if for any field extension L/F, the set P(L)/R has only one element. In particular note that P(L) is not empty.

A morphism of functors $P \to Q$ induces a morphism of sets $P(L)/R \to Q(L)/R$ for any L. Call a morphism of functors $P \to Q$ surjective if the map $P(A) \to Q(A)$ is surjective for all A in $\mathcal{C}(F)$. If $f : P \to Q$ is a surjective morphism and P is R-trivial then so is Q.

For an element $q \in Q(F)$, we write P_q for the subfunctor of P defined by

 $P_q(A) := \{ p \in P(A) \text{ such that } f(p) = q_A \}.$

We call P_q the fiber of f over q.

Proposition 3.4. Let $f : P \to Q$ be a surjective morphism of functors from $\mathcal{C}(F)$ to Sets and L/F a field extension. If the fibers P_q are R-trivial for all $q \in Q(L)$ then the canonical map $P(L)/R \to Q(L)/R$ is a bijection.

Proof. Since f is surjective, the map $P(L)/R \to Q(L)/R$ is also surjective. Let $p_0, p_1 \in P(L)$ and set $q_i = f(p_i)$. Suppose that q_0 and q_1 are R-equivalent. We may assume that they are simply R-equivalent. There exists $q \in Q(H_L)$ such that $q(0) = q_0$ and $q(1) = q_1$. As f is surjective, there is $p \in P(H_L)$ with f(p) = q. Set $p'_0 = p(0)$ and $p'_1 = p(1)$. We have $p'_0 \sim p'_1$. The elements p_0 and p'_0 belong to the same fiber. Since the fibers are R-trivial, we have $p_0 \sim p'_0$ and similarly, $p_1 \sim p'_1$. Finally, $p_0 \sim p'_0 \sim p'_1 \sim p_1$.

Let G be an algebraic group over F, $C \subset G$ a central subgroup and G' = G/C. For every $A \in \mathcal{C}(F)$, we have an exact sequence

$$G$$
 - Torsors $(A) \to G'$ - Torsors $(A) \xrightarrow{o} H^2_{et}(A, C)$

with $\partial : H^1_{et}(A, G') \to H^2_{et}(A, C)$ the connecting map. Let P be the subfunctor of G'-Torsors consisting of all elements p such that $\partial(p) = 0$. The group C-Torsors(A) acts transitively on the fibers of the natural surjection G-Torsors $(A) \to P(A)$ (cf. [4, Cor. 28.6]). Therefore, Proposition 3.4 yields:

Corollary 3.5. Suppose that the functors C - Torsors and P are R-trivial. Then G - Torsors is also R-trivial.

4. Classifying variety

Let G be an algebraic group over F. We view G as a closed subgroup of a group $S = \mathbf{GL}_{n_1} \times \mathbf{GL}_{n_2} \times \cdots \times \mathbf{GL}_{n_k}$ over F. The factor variety S/G is denoted by BG and called a *classifying variety for* G. The variety BG has the distinguished rational point G/G. The stable birational equivalence class of BG is independent of the choice of S and the embedding of G into S (cf. [6, 2.1]).

Let L be a field extension of F. By Hilbert Theorem 90, the map

 $f_L: BG(L) \to G$ -Torsors(L),

taking a point Spec $L \to BG$ in BG(L) to the class of the *G*-torsor $S \times_{BG}$ Spec *L* over *L*, is surjective. The group S(L) acts on BG(L), and this action is transitive on the fibers of f_L by [4, Cor. 28.2]. As the variety of the group *S* is *R*-trivial, the fibers of *f* are also *R*-trivial. Hence by Proposition 3.4, the map *f* induces a bijection

$$BG(L)/R \simeq G$$
 - Torsors $(L)/R$.

Proposition 4.1. Consider the following properties:

- (1) The classifying variety BG is stably rational.
- (2) The functor G-Torsors is R-trivial.
- (3) For any cycle module M over F, we have $M(F(BG))_{nr} = M(F)$, i.e., the function field F(BG) has trivial unramified cohomology.

Then $(1) \Rightarrow (2) \Rightarrow (3)$.

Proof. (1) \Rightarrow (2): Replacing S by $S \times \mathbf{GL}_n$ for sufficiently large n we may assume that BG is rational. Let $U \subset BG$ be a non-empty open subvariety isomorphic to an open subvariety of an affine space. Since every two points in U(F) are R-equivalent, it is sufficient to prove that every point x in BG(F) is R-equivalent to a point in U(F). Consider the surjective morphism $S \to BG$, $g \mapsto gx$. As rational points are dense in S, the set S(F)x is dense in BG and hence intersects U, i.e., there is a $g \in S(F)$ such that $gx \in U(F)$. As the points 1 and g are R-equivalent in S(F), the points x and gx are R-equivalent in BG(F).

(2) \Rightarrow (3): The homomorphism $M(F) \to M(F(BG))$ is injective as it is split by the evaluation at any rational point. Let L/F be a field extension and $\rho \in M(L(BG))_{nr}$. We claim that for every two points $x_0, x_1 \in BG(L)$, we have $\rho(x_0) = \rho(x_1)$. We may assume that x_0 and x_1 are strictly *R*-equivalent, i.e., there is a morphism $f : W \to BG$ for an open nonempty subscheme $W \subset \mathbb{P}^1$ containing points 0 and 1 and satisfying $f(0) = x_0$ and $f(1) = x_1$. Let $\mu = f^*(\rho)$. It follows from Example 2.3 that $\mu \in M(F(W))_{nr} = M(F)$. Hence

$$\rho(x_0) = \mu(0) = \mu(1) = \rho(x_1).$$

We apply the claim to the distinguished point $x_0 \in BG(L)$ and the generic point x_1 of BG over the function field L = F(BG). We have $\rho(x_0) \in$ $\operatorname{Im}(M(F) \to M(L))$ and $\rho(x_1) = \rho$. It follows from the claim that $\rho \in$ $\operatorname{Im}(M(F) \to M(L))$.

5. An example

Let F be a field of characteristic not two, $G = \mathbf{SL}_8 / \boldsymbol{\mu}_2$, $C = \boldsymbol{\mu}_8 / \boldsymbol{\mu}_2 \simeq \boldsymbol{\mu}_4$ the center of G and A a semilocal commutative F-algebra. We have $G/C \simeq \mathbf{PGL}_8$

and \mathbf{PGL}_8 - *Torsors*(A) is the set of isomorphism classes of Azumaya A-algebras of rank 8. The connecting map

$$\partial: G/C$$
 - Torsors $(A) \to H^2_{et}(A, C) = \operatorname{Br}_4(A)$

takes the class $[\Lambda]$ of an Azumaya A-algebra Λ to $2[\Lambda]$ in the Brauer group of A. Let P be the functor in Corollary 3.5, i.e., P(A) is the set of isomorphism classes of Azumaya A-algebras of rank 8 and exponent 2.

The functor C-Torsors $(A) = A^{\times}/A^{\times 4}$ is *R*-trivial. We shall show that *P* is also *R*-trivial.

Let P' be the subfunctor of P comprised of algebras that can be factored into a tensor product of three quaternion algebras. We show that P' is R-trivial. Write (a, b), where $a, b \in F^{\times}$, for the quaternion algebra over F generated by elements i and j subject to the relations $i^2 = a$, $j^2 = b$ and ij = -ji.

Let Q and Q' be two algebras in P'(F), i.e., $Q = (a_1, b_1) \otimes (a_2, b_2) \otimes (a_3, b_3)$ and $Q' = (a'_1, b'_1) \otimes (a'_2, b'_2) \otimes (a'_3, b'_3)$ for some $a_i, a'_i, b_i, b'_i \in F^{\times}$. Consider the Azumaya algebra

$$B = \bigotimes_{i=1}^{3} \left(ta_i + (1-t)a'_i, tb_i + (1-t)b'_i \right)$$

over the ring H_F . We have $B(0) \simeq Q'$ and $B(1) \simeq Q$, so $Q \sim Q'$.

In general, by [8], every algebra Q' in P(F) is similar to an algebra

 $Q = (a_1, b_1) \otimes (a_2, b_2) \otimes (a_3, b_3) \otimes (c, d),$

where (c, d) (and hence Q) is split over $L = F(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_3})$. Consider the Azumaya algebra

$$B = (a_1, tb_1 + (1 - t)) \otimes (a_2, b_2) \otimes (a_3, b_3) \otimes (c, d)$$

over H_F . Since (c, d) is split over L, the algebra B is split over $R \otimes_F L$. Hence B is equivalent to an algebra B' in $P(H_F)$. We have B(1) = Q, hence B'(1) = Q' and

$$B'(0) = (a_2, b_2) \otimes (a_3, b_3) \otimes (c, d) \in P'(F).$$

Thus every point of P(F) is *R*-equivalent to a point in P'(F). Hence *P* is *R*-trivial. It follows from Corollary 3.5 that the functor *G*-*Torsors* is *R*-trivial and therefore, by Proposition 4.1, the function field F(BG) has trivial unramified cohomology.

References

- M. Artin, Lipman's proof of resolution of singularities for surfaces, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 267–287.
- [2] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Amer. Math. Soc., Providence, RI, 1995, pp. 1–64.
- [3] F. Déglise, Transferts sur les groupes de Chow à coefficients, Math. Z. 252 (2006), no. 2, 315–343.
- [4] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, *The book of involutions*, American Mathematical Society, Providence, RI, 1998, With a preface in French by J. Tits.

- [5] Yu. I. Manin, *Cubic forms*, second ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986, Algebra, geometry, arithmetic, Translated from the Russian by M. Hazewinkel.
- [6] A. Merkurjev, Unramified cohomology of classifying varieties for classical simply connected groups, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 3, 445–476.
- [7] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319–393 (electronic).
- [8] J.-P. Tignol, Sur les classes de similitude de corps à involution de degré 8, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 20, A875–A876.
- [9] O. Zariski and P. Samuel, *Commutative algebra. Vol. II*, Springer-Verlag, New York, 1975, Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29.

Alexander Merkurjev, Department of Mathematics, University of Califor-Nia, Los Angeles, CA 90095-1555, USA

 $E\text{-}mail\ address: \texttt{merkurev@math.ucla.edu}$