UNRAMIFIED ELEMENTS IN CYCLE MODULES
ALEXANDER MERKURJEV

ABSTRACT. Let X be an algebraic variety over a field F'. We study the
functor taking a cycle module M over F' to the group of unramified elements
M(F(X))W of M(F(X)). We prove that this functor is represented by a
cycle module. The existence of pull-back maps on M (F (X ))nr for rational
maps (under a mild condition) is established. An application to the R-
equivalence on classifying varieties of algebraic groups is given.

The unramified Galois cohomology of the function field of a smooth proper
variety X over a field is a birational invariant of X, so it can be used to detect
non-rationality of algebraic varieties (cf. [2]). Galois cohomology is a special
case of a cycle module that M. Rost developed in [7] more generally. The
group of unramified elements can be defined in the context of cycle modules,
and it still represents a birational invariant of a smooth proper variety (cf. [7,
Cor. 12.10]). We prove that for any smooth proper variety X over a field F,
there is a universal cycle module KX representing the functor that takes a
cycle module M over F' to the subgroup of unramified elements M (F (X ))W

of M (F (X )) The cycle module KX is defined by means of algebraic cycles
of dimension zero on X. As a corollary, we show (cf. Theorem 2.11) that
M (F(X )) has only trivial unramified elements for all cycle modules M over
F, ie., the natural homomorphism M (F) — M (F(X)) is an isomorphism
if and only if the degree map CHy(X ) — Z is an isomorphism for every field
extension L/F, where CHy(X[) is the Chow group of zero-dimensional cycles
on X modulo rational equivalence.

For a fixed cycle module M, we study functorial properties of the assignment
X— M (F(X ))M for all varieties X, not necessarily smooth or proper. We
show that under mild restrictions on a rational morphism f : Y --» X there
exists a pull-back homomorphism f* : M (F (X)) — M(F(Y)) . We use
this construction to show that the R-equivalence on the set of isomorphism
classes of torsors of an algebraic group G dominates unramified elements of
the function field of a classifying variety of G (cf. Proposition 4.1). As an
example, we show that the classifying variety of the group SLg /u, has only
trivial unramified elements in any cycle module.

In this paper the word “scheme” means a localization of a separated scheme
of finite type over a field and a “variety” an integral scheme. For a scheme
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2 A. MERKURJEV

X and an integer ¢ > 0, we let X @ and X(;) denote the set of points of X of
codimension and dimension ¢ respectively. An algebraic group over a field F'
is a smooth group scheme of finite type over F.

1. MODELS AND VALUATIONS

Let L/F be a finitely generated field extension. A model of L/F is a proper
variety X over I together with an isomorphism ¢ : F(X) = L of fields over
F. A morphism of models (X, ¢) and (X', ¢') is a morphism f : X — X' over
F such that the composition

FIX)Y 5 Px) S L

coincides with ¢’. There exists at most one morphism between two models
of L/F. We write X > X' if there is a morphism from (X, ¢) to (X', ¢')
and say that X dominates X'. The relation > yields an ordering on the set
of isomorphism classes of all models of L/F. This is a directed ordered set.
Indeed let X and X' be two models of L/F. Choose a nonempty scheme Y
over I isomorphic to open subschemes of X and X’ and let X” be the closure
of the image of the diagonal embedding of Y into X x X’. The projections of
X" onto X and X’ yield X < X" > X'.

Let v be a valuation on L over F' and X a model of L/F. The valuation
v dominates a unique point z € X, i.e., Ox, C O, and mx, = Ox, Nm,,
where m, is the maximal ideal of the valuation ring O, of v. In particular,
we have an extension of residue fields F'(z) C F(v). If X' is another model
dominating X and 2’ € X' is the point dominated by v then 2’ is above x, i.e.,
«’ maps to x under the morphism X’ — X. Moreover, Ox, C Ox/» C O,
and F'(z) C F(z') C F(v).

Lemma 1.1. Let v be a valuation on L/F, X is a model of L/F and f € O,.
Then there is a model X' = X and a point ' € X' above x satisfying [ €
OX/@/.

Proof. We can view f as a rational morphism from X to the projective line P*
over F'. Let X’ be closure of the graph of f in X x P'. We have projections
X' — X and X’ — P! so X’ = X and we can view f (and also 1/f) as a
morphism X’ — P!. Let v dominate 2’ € X'. As f € O,, we have 1/f ¢
m,. Hence 1/f ¢ mx/ s, ie., (1/f)(2") # 0. Therefore, f(2') # oo and
fe OX/J/. ]

It follows from Lemma 1.1 that O, is the union of the rings Ox , over all
models X of L/F and € X dominated by v. As the set of all models of L is
directed, we have the following:

Corollary 1.2. Let v be a valuation on L over F with residue field finitely
generated over F. Then there is model X of L/F such that F(x) = F(v) for
the point x € X dominated by v.



UNRAMIFIED ELEMENTS IN CYCLE MODULES 3

Corollary 1.3. Let v and v' be distinct valuations of L/F. Then there is a
model X of L/F such that v and v' dominate distinct points in X.

Proof. We may assume that O, ¢ O,. Choose f € O, such that f ¢ O,.
By Lemma 1.1, there is a model X of L/F with f € Ox,, where x € X is
dominated by v. If v" dominates 2’ € X then f ¢ Ox ., therefore, z # 2/. 0O

Let v be a valuation on L over F' with residue field £ and let u be a valuation
on E over F. The pre-image of the valuation ring O, under the natural
homomorphism O, — FE is a valuation ring of L. We write u o v for the
corresponding valuation on L over F' and call it the composition of v and wu.

Let v and v’ be two valuations on L/F. We say that v divides v' and write
v[v" if Oy C O,. We have v|v’ if and only if v/ = uow for a (unique) valuation
uon F(v).

Let L/F be a finitely generated field extension and v a valuation on L over
F with residue field E. The transcendence degree tr.degy(F) is called the
dimension dim(v) of v. The rank rank(v) of v is the largest integer r such that
there is a sequence of distinct valuations v;|vs ... |v, = v on L over F. By [9,
Ch. VI, Th. 3, Cor. 1], we have

rank(v) + dim(v) < tr.degg(L).
A valuation v is called geometric if rank(v) + dim(v) = tr. degy(L).

Proposition 1.4. Let L/F be a finitely generated field extension and E a field
with ' C E C L. A geometric discrete valuation v on L of rank 1 is either
trivial on E or restricts to a geometric discrete valuation on E of rank 1.

Proof. Let w be the restriction of v on E. Clearly, rank(w) < 1. By [9, Ch.
VI, Lemma 2, Cor. 1], we have

dim(v) — dim(w) < tr.degg(L) = tr.degp(L) — tr.degp(E).

It follows that dim(w) > tr.degp(E) — 1 and hence w is either trivial or a
geometric discrete valuation of rank 1. U

Proposition 1.5. [9, Ch. VI, Th. 31, Cor.] The residue field E of a geomet-
ric valuation v on L over F is a finitely generated field extension of F with
tr.degp(F) = tr.degp(L) — rank(v). Every geometric valuation of rank r is a
unique composition of r geometric discrete valuations of rank 1.

Example 1.6. Let x be a regular point of codimension r of a variety X.
Let aj,as,...,a, be regular parameters of the regular local ring Ox,. For
every i = 0,1,...,r, let R; be the factor ring of R by the ideal generated by
ai,...,a; and let L; be the quotient field of R;. We have Ly = F(X) and
L, = F(x). Denote by v; the discrete valuation on L; with residue field L;
and set v = v, 0--- 0wy 0wv;. Then v is a geometric valuation of rank r on

F(X) with residue field F(x).

Proposition 1.7. Let v be a discrete valuation of rank 1 on a finitely generated
field extension L over F'. Then the following conditions are equivalent:
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(1) The valuation v is geometric.
(2) There is a normal model X of L/F such that the point x dominated by
v is (regular) of codimension 1 and O, = Ox ;.

Proof. (1) = (2): By Proposition 1.5, F(v)/F is a finitely generated field
extension. It follows from Corollary 1.2, that there is a model X such that
F(v) = F(z) for the point  dominated by v. By assumption, tr. deg, (F(v)) =
tr.degr(L)—1, i.e., x is of codimension 1 in X. Replacing X by its normaliza-

tion in L, we may assume that X is normal and hence z is regular. Therefore,
Ox , is a DVR that is contained in the DVR O,. Hence O, = Ox,.

(2) = (1): It follows from the equality tr.degy(F(v)) = tr.deg,(F(z)) =
dimz = dim X — 1 = tr.degr(L) — 1 that v is geometric. O

Lemma 1.8. Let v|v" be two geometric valuations on L/F of rank 1 and 2
respectively. Write v = wowv for a geometric discrete valuation u on F(v) of
rank 1. Then there is a model X of L/F such that v and v' dominate points x
and x' of codimension 1 and 2 respectively with:

(1) F(z) = F(v) and F(a') = F(v'),

(2) v is the only valuation on L/F dominating x,
(3) u is the only valuation on F(v)/F dominating x’.

Proof. By Proposition [1.7 and Corollary [1.2], there is a model X of L/F such
that (1) holds with = a regular point of X of codimension 1 and Ox, = O,.
Hence (2) also holds. There are finitely many geometric discrete valuations
U = Up,Us,..., U, on F(x) over F' dominating 2’ in the closure of {z} in
X. By Corollary 1.3, there is model X’ > X such that the valuations u; o
vV, U3 0V,..., U, ov dominate distinct points in X’. Clearly, X’ satisfies all the
conditions. 0

2. CYCLE MODULES

Cycle modules were introduced by M. Rost in [7]. By definition, a (Z-
graded) cycle module over F is a functor M = M, from the category of finitely
generated field extensions over F' to the category of graded abelian groups
equipped with the following datum:

(1) A norm homomorphism Npjg : M.(L) — M,(E) for any finite field
extension L/F of finitely generated field extensions of F,

(2) A structure of a left graded module on M, (L) over the Milnor ring
K.(L) for any finitely generated field extension L/F,

(3) A residue homomorphism 0, : M.(L) — M,_,(FE) for any finitely gen-
erated field extension L/F and a geometric discrete valuation v on L
over F' of rank 1 with residue field E.

All the structures should satisfy various compatibility conditions (cf. 7, §2]).
We write K, for the cycle module taking a field L to the Milnor K-group
K.(L).
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Let M be a cycle module over F. For an element p € M(FE) and a field
extension L/F over F we write p;, for the image of p in M(L).

For a cycle module M over F' and an integer d let M|[d] denote the shifted
cycle module defined by M|d],,(L) = My +a(L).

A morphism of cycle modules M and N of degree d is a morphism of functors
M — N[d] commuting with the structures (1), (2) and (3). All cycle modules
over F' and morphisms of cycle modules of arbitrary degree form the category of
cycle modules CM(F'). We write HomcéM( 7 (M, N) for the group of all degree
d morphisms of cycle modules M and N.

Let L/F be a finitely generated field extension, v a geometric discrete valu-
ation on L over F' of rank 1 with residue field £ and 7w € L a uniformizer, i.e.,
v(m) = 1. The map

syt M.(L) — M.(E), sp(a) =0,({-7}- )

v
is called a specialization homomorphism.

Let X be a scheme and M a cycle module over F. In [7, §2], using the norm
and residue maps, Rost constructed a complex

L. H Md Z+1 HMdz H Mdzl ))—>

J;GX(H»I) J’EX(l) Z‘EX(l 1)

If x € X3, the z-component J, of the differential of the complex is defined

as follows. If 2/ € X(;_1) the 2’-component 9% of 0, is trivial if ' does not
belong to the closure of {z} and is equal to ) Np()/p@) © 0, otherwise, where
the sum is taken over all geometric discrete Valuatlons v of F(x) of rank 1
dominating .

We shall consider the following homology group of the complex:

Ao(X, My) —Coker< [T Mo (F(2)) — [ Ma(F )

LL’EX(U ZEX(O)

In particular, Ag(X, K;) = CHp(X).
If X is equidimensional, we set
AX, My) = Ker( H Md H Md_l(F(aj))>.
reX () zeXx®
If X is a variety, we have A°(X, My) C My(F(X)).
2.1. Gysin homomorphism. Let M be a cycle module over a field F, f :
Y — X a closed regular embedding of equidimensional schemes and p: N —
Y the normal bundle of f. The Gysin homomorphism f* is defined as the
composition
A%X, M) S A°(N, M) AO(Y M),

where o is the deformation homomorphism (denoted by J in [7, §11]) and p*
is the pull-back isomorphism with respect to the flat morphism p (cf. [7, §4]).
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Let = be a point of a variety X. We have
A%(X, M) c A%(SpecOx,, M) C M(F(X)).

If = is a regular (non-singular) point of X then the closed embedding f :
Spec F'(z) — Spec Ox . is regular. For any p € A°(X, M), we write p(z) for
the element f*(p) in A°(F(z), M) = M (F(z)) and call it the value of p at .

Example 2.1. Let x be the generic point of a variety X. As Ox, = F(x) =
F(X), we have p(x) = p for any p € A°(X, M).

Let f:Y — X be a morphism of equidimensional schemes over F' with X
smooth. The morphism f factors into the composition of the regular embed-
ding g = (id, f) : ¥ — X x Y and the flat projection h : X x Y — X of
constant relative dimension. The pull-back homomorphism

o AYNX, M) — A°(Y, M)
is defined as the composition f* = ¢g* o h*.

Lemma 2.2. Leti:Y' — Y be a reqular closed embedding of equidimensional
schemes and f :' Y — X a morphism with X equidimensional and smooth.

Then (f oi)* =i* o f*.

Proof. Consider the factorizations f = hog and foi = h' o g as above. In
the diagram

AX, M)~ A0y x X, M) —L A0y, M)

o g
*
AVX, M) s ANY x X, M) —L— A(Y', M)

the left square is commutative by [7, Lemma 11.4] and the right square is
commutative by the functoriality of Gysin homomorphisms (cf. [3, Lemme
3.10]). O

2.2. Unramified elements. Let M be a cycle module over F' and let L/F be
a finitely generated field extension. An element a € M (L) is called unramified
if 0,(a) = 0 for all geometric discrete valuations v on L of rank 1 over F. We
write M (L), for the subgroup of all unramified elements. For any b € M (F),
the element by, in M (L) is unramified by [7, R3c|, hence we have a canonical
homomorphism M (F) — M(L),,. If this map is as an isomorphism, we simply
write M (L), = M(F) and say that M (L) has only trivial unramified elements.
We also say that L has trivial unramified cohomology if M (L) has only trivial
unramified elements for every cycle module M over F.

Example 2.3. A purely transcendental field extension L/F has trivial unram-
ified cohomology. Indeed, L ~ F(P") for some n and M (L), = A°(P", M) =
M(F) by [7, Prop. 8.6] for any cycle module M over F.
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Let X be a variety over F'. We have
M(F(X)),, C A%X, M),

and equality holds if X is smooth and proper (cf. [7, §12]).

Let L'/L be an extension of finitely generated fields over F. It follows
from Proposition 1.4/ and [7, R3a, R3c] that the restriction homomorphism
M(L) — M(L') takes M (L), to M (L),

Lemma 2.4. Let L/F be a finitely generated field extension, v a geometric
discrete valuation on L of rank 1 over F with residue field E. Let M be a
cycle module over F'. Then the restriction of the specialization homomorphism
sT on M(L),, does not depend on the choice of the prime element .

Proof. Let m’" = ur for some u € L* with v(u) = 0. By [7, R3e], we have

57(0) = 52(0) = D, ({=n'}p) — Au({=}p) = Au({u}p) = ~{a}du(p) = 0
for any p € M (L), O

We write s, for the restriction of the specialization homomorphism s} on
M(L) -

2.3. The cycle module M*. Let M be a cycle module and X a scheme over
F. By [7, Th. 7.1], the assignment

MX(L) == Ay(X1, M)
defines the cycle module M* over F. In particular, K(L) = CHy(X;) and
MSpecF - M.

If X is proper, the norm morphisms in Milnor K-theory induce a natural
morphism

Normy : MX — M.
If a smooth proper X is stably rational then Normy is an isomorphism.

We now turn to the case M = K. For every point x € X, the group
Ki(F(z)) has a distinguished element &, — the class of the image of the
diagonal embedding Spec F(x) — Xp(a).

Suppose that X is a variety. If z is the generic point, we simply write &
for & € K§(F(X)) = CHo(Xp(x)). Trivially, £ is an unramified element in
K§ (F(X)).

The next lemma follows from [7, Cor. 12.4].

Lemma 2.5. For any © € X, we have {(z) = &,.

Lemma 2.6. The group K*(F) = Ao(X, K) is generated by the elements of
the form Npgy/r(a- &) over all x € Xy and a € K(F(x))

Proof. This follows from the fact that the norm Npey/p(a-§&;) in Ag(X, K) is
represented by a € K (F(z)) C erx(o) K(F(z)). O

The following statement shows that a morphism KX — M of cycle modules
is determined by the value at the generic point of X.
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Proposition 2.7. Let o : KX — M be a morphism of cycle modules over F
(of arbitrary degree). If a(&) =0 then a = 0.

Proof. By Lemma 2.6, it is sufficient to show that oz(NF(x /r(a fw)) = 0 for
all z € Xy and a € K(F( )) As a commutes with products, norms and
evaluatlon homomorphlsms by Lemma 2.5

(NF(w/F( §$)) NFx)/F(a @(f)(l’))ZO. O

2.4. A pairing. Let X be a smooth proper variety over ', M a cycle module
over F'and p € M(F(X)) . Leti: C — X be the closed embedding of
an integral curve and f : C' — C the normalization morphism. Let p' €
AYC' M) = M(F(C’))W be the pull-back of p with respect to the composition

10 f.
Lemma 2.8. Let p € M(F(X)) ., x € Cy) anda € K(F(C)). Then
9; (a-p) = 0; (a) - p(x)

Proof. Let y € C' be a point over . As 85' (p') = 0, the Rule [7, R3f] yields:
(1) 0y (a-p') =05 (a) - s5(p),

where s7 is the specialization homomorphism for an uniformizer 7 of y on C'.

It follows from [7, Lemma 11.2] that s7(p') = p'(y). By Lemma 2.2, p'(y) is
the pull-back of p with respect to the composition Spec F'(y) — C" — X. Since
this composition coincides with the composition Spec F'(y) — Spec F(x) — X,
by transitivity of the pull-back homomorphisms and [7, Prop. 12.3], we have
0’ (y) = p(x)pq). Therefore, it follows from (1)) that

(2) 0y (a-p') =8 (a) - pl(x) (-
We have:
% (a - p) ZNF )/ F(z 8cl(a ) (definition of 99)

ylz
=Y Neyrw (05 (@) pa)py)  (by (2))
ylz

= ZNF )/ F(x 60/( )) p(z) (by [7, R2c])
ylz

= 9%a) - p(). (definition of 99) O

The lemma together with the Reciprocity Law [7, Prop. 2.2] yield:
Corollary 2.9. Let p € M(F(X))n and C C X a closed curve. Then for any
a € K(F(C)), we have

> Nowyr(95(a) - plx)) =0.

:EGC(O)



UNRAMIFIED ELEMENTS IN CYCLE MODULES 9

We have a pairing

( I K*F($)>®Md(F(X))m—> wra(F)

$€X(0)

defined by > a; ® py — > Np@y/r (am . px(x)) By Corollary 2.9, this pairing
factors through a pairing

(3) Ao(X, K.) © Ma(F(X))nr — Miya(F).
The pairing (3) over field extensions of F' yield a homomorphism
pxr: Ma(F (X)) — Homgy ) (K, M).

A morphism a : KX — M of cycle modules of degree d induces a homomor-
phism
AU X, K ) — AYX, My) = My(F(X)), .

We denote the image of & in My(F(X)) by (). Thus we get a homomor-
phism
U - HomEyy o (K%, M) — My(F(X)),

Theorem 2.10. For every smooth proper variety X and cycle module M over
F, the maps ox v and x ar are isomorphisms inverse to each other. In other
words, for a fized X, the functor M +— M(F(X))W from the category CM(F)
of cycle modules to the category of abelian groups is represented by the cycle
module K.

Proof. The statement is obvious in the case X = Spec F, i.e., the top map in
the commutative diagram

My(F) — el Homyy ) (K, M)

2 l l

My(F(X))nr = Homyp) (KX, M)

is an isomorphism. The composition 1 x s © x ar takes a p € My (F(X))m to
p(x), where z is the generic point of X. By Example 2.1, the latter element is
equal to p, hence the composition 1 x s 0 ¢ x a is the identity. By Proposition
2.7, ¢¥x ar is injective. Hence px as and ¥x a are isomorphisms inverse to each
other. 0

Theorem 2.11. Let X be a smooth proper variety over a field F'. Then the
following conditions are equivalent:
(1) For every cycle module M over F, we have M(F(X))W = M(F), i.e.,
M (F(X)) has only trivial unramified elements.
(2) The map Normy : KX — K is an isomorphism of cycle modules.

(3) The degree map CHo(Xy) — Z is an isomorphism for every field ex-
tension L/F.
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(4) The class & in CHo(Xp(x)) is defined over F, i.e., £ belongs to the
image of the natural map CHy(X) — CHo(Xp(x)).

Proof. (1) = (4): Apply (1) to M = K*X.

(4) = (3): We may assume that L = F. In the case M = KX and d = 0
in diagram (4), we have px (§) = idy. By assumption and Theorem 2.10),
there is a morphism « : K — K* such that o o Normy is the identity of K.
Let a € CHy(X) be the image of 1 under a.. For every b € CHy(X), we then
have

b= a(Normy (b)) = deg(b) - a(1) = deg(b) - a

hence CHy(X) is generated by a. Taking the degree, we have deg(a) = 1.
Therefore, the degree map CHy(X) — Z is an isomorphism.

(3) = (2): Let a € CHy(X) be a cycle of degree 1. Then for every u € K(F),
we have Normy (u-a) = u, i.e., the norm map K* — K is surjective. To prove
injectivity, it is sufficient to show that for every x € X() and v € K (F( )),
we have u - [z] = Npgyr(u) - a in Ag(X, K). As the degree of the cycle
§& € CHo(Xp(y)) is 1 and the degree map CHo(Xp)) — Z is injective, we
have £, = ap(), hence u - §, = u - ap(,). Therefore,

u - [z] = Np@y/r(u- &) = Np@)r(u - ape)) = Np@)r(u) - a

(2) = (1): In the commutative diagram (4), the vertical maps are isomor-
phisms. U

2.5. Specialization of unramified elements. Let L/F be a finitely gener-
ated field extension with tr.degr(L) = d. Let M be a cycle module over F
and v a geometric discrete valuation of L over F' of rank 1 with residue field

FE.
Proposition 2.12. For every o« € M(L),,, we have s,(a) € M(E)p,

Proof. Let u be a geometric discrete valuation of £/ F of rank 1. Set v/ = uow.
Choose a model X and two points x and 2’ of L/F satisfying the conditions
of Lemma [1.8. The local 2-dimensional ring Ox,» may not be regular. By
Lipman’s resolution of singularities in dimension 2 (cf. [1]), there is a regular
connected 2-dimensional scheme Y together with a birational isomorphism
f:Y — SpecOx, . The valuations v and v" dominate points y and ' of Y
over z and z’ respectively with k(y) = k(z) = E and k(y') = k(2') = F(V)
(we write x to denote the residue field).

Let Z be the closure of y in Y. As the local ring Oy, is regular, it is a
UFD. Therefore, the closed embedding f : Spec Oz, — Spec Oy, is regular.
Consider the Gysin homomorphism

f* : A%(Spec Oy, M) — A°(Spec Oz, M).

y [7, Cor. 12.4], f* = s, since Oy, = O,. On the other hand, u is the only
valuation on k(y) = F'(v) dominating y’. Hence the y’-component 65' of the
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differential 0, coincides with d,. Finally,
Ou(sv(@)) = 8;/ (f*(a)) =0. O

Let v be a rank r geometric valuation on a field L over F. Write v =
v1 0 Vg 0 - -+ 0 v, where v; are (unique) geometric discrete valuations of rank 1.
We define the specialization homomorphism

Sy =8y, O+ 08, ! M*(L)nr — M*(F(U)>nr

Let Z C X be a closed subvariety of a variety X over F' such that the generic
point of Z is regular in X. Then the closed embedding f : Spec F(Z) —
Spec Oy, z is regular, so we have the Gysin homomorphism

f*: A%SpecOx z, M) — A°(Spec F(Z), M).

Let v be the geometric valuation on F(X) with residue field F(Z) given by
a regular sequence of the regular local ring Spec Ox 7 (cf. Example 1.6). It
follows from [7, Cor. 12.4] that f* = s, . Hence

FH(M(F(X)),, € M(F(2))

Let g : Y --+ Z be a dominant rational morphism of varieties over F. The
induced embedding of fields F'(Z) — F(Y') induces a homomorphism

g M(F(2)), — M(F(Y))

nr nr’

By [7, Rla], the operation g — ¢* is compatible with compositions.

We now consider a more general situation. Let f : Y --» X be a rational
morphism of varieties over F' satisfying the following condition:
(o) The image of the generic point of Y is a reqular point of X.

For example, a dominant morphism satisfies (¢). The morphism f factors into
the composition of the rational dominant morphism g : Y --+ Z, where 7 is
the closure of the image of f, and the closed embedding h : Z — X. We define
the pull-back homomorphism as the composition

fM(P(X) P M(P(z) S M(F(Y)),
The pull-back homomorphisms satisfy the following functorial properties.

Proposition 2.13. Let f : Y --» X be a rational morphism of varieties
over F' satisfying the condition (¢). Let d : Y' --»'Y be a dominant rational
morphism of varieties over F'. Then f o d satisfies (¢) and (f od)* = d* o f*.

Proof. Let f = hog be the factorization as above. Then fod = ho(god) and

(fody =(gody oh* =d o(g o h*) =d o f°. O
Proposition 2.14. Let f : Y --+ X be a rational morphism of varieties
over I satisfying the condition (¢). Let e : X --+» X' be a dominant rational

morphism of varieties over F such that the composition e o f is well defined
and dominant. Then (eo f)* = f* oe*.
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Proof. Let f = h o g be the factorization as above. By assumption, e yields
an embedding of F(X') into the local ring Ox 7. The surjection Ox ; —
F(Z) makes F(Z) a field extension of F(X’). We have h* = s, for some
geometric valuation v on F'(X) dominating Z. The restriction of v on F(X)
is trivial. It follows from [7, R3d] that h*(e*(p)) = su(pr(x)) = prz) for any
peM(F(X') . Hence

(€0 f)(p) = prev) = 9" (pr(z)) = 9" (W*(e"(p))) = (f* 0 €")(p). O

2.6. Retract rational. A variety X over F' is called retract rational if there
are rational morphisms f : X --» P" and ¢ : P" --+ X for some n such that
the composition g o f is defined and is equal to the identity of X.

The following proposition generalizes Example 2.3.

Proposition 2.15. Let X be a retract rational over F'. Then F(X) has trivial
unramified cohomology.

Proof. Let M be a cycle module over F' and f and g the morphisms in the
definition of the retract rational X. As g o f is the identity, g is a dominant
morphism. By Proposition 2.14, f* o g* is the identity on M(F(X))m. Let
p: X — Spec F be the structure morphism. By Example 2.3, the composition
g* o p* is an isomorphism. Hence ¢g*, and therefore, p* are isomorphisms, i.e.,
M(F(X))HT:M(F) O

3. R-EQUIVALENCE

Let C(F') be the category of semilocal commutative F-algebras. We consider
functors

P:C(F)— Sets.

Example 3.1. Let X be a scheme over F.. We view X as a functor via
X (A) = Morg(Spec A, X).

Example 3.2. Let G be an algebraic group over F. We write G -Torsors
for the functor taking a commutative F-algebra A to the set of isomorphism
classes H} (A, G) of G-torsors over Spec A.

We write Hp for the semilocal ring of all rational functions f(t)/g(t) € F(t)
such that g(0) and g(1) are nonzero. In other words, Hp is the localization of
Flt] at 0 and 1. Let x € P(Hp) and i = 0 or 1. We write x(i) for the image of
x under the map P(Hr) — P(F) induced by the ring homomorphism Hr — F
taking a function h to h(i).

Two elements zy and x; in P(F) are strictly R-equivalent if there is an
x € P(Hp) such that z(0) = ¢ and z(1) = x;. The equivalence relation ~ on
P(F) generated by the relation of strict R-equivalence is called R-equivalence.
We write P(F')/R for the set of equivalence classes. If L/F is a field extension,
let P(L)/R denote the set of equivalence classes of the restriction of the functor
P on C(L).
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Example 3.3. Let X be a scheme over F. We can view X as the functor in
Example 3.1, Then the notion of R-equivalence in X (F') coincides with the
classical one defined in [5].

We say that a functor P : C(F') — Sets is R-trivial if for any field extension
L/F, the set P(L)/R has only one element. In particular note that P(L) is
not empty.

A morphism of functors P — @ induces a morphism of sets P(L)/R —
Q(L)/R for any L. Call a morphism of functors P — @ surjective if the map
P(A) — Q(A) is surjective for all Ain C(F). If f: P — @ is a surjective
morphism and P is R-trivial then so is Q.

For an element g € Q(F'), we write P, for the subfunctor of P defined by

P,(A) :={pe P(A) suchthat f(p)=qa}.
We call P, the fiber of f over q.

Proposition 3.4. Let f : P — Q be a surjective morphism of functors from
C(F) to Sets and L/F a field extension. If the fibers P, are R-trivial for all
q € Q(L) then the canonical map P(L)/R — Q(L)/R is a bijection.

Proof. Since f is surjective, the map P(L)/R — Q(L)/R is also surjective.
Let po, p1 € P(L) and set ¢; = f(p;). Suppose that gy and ¢; are R-equivalent.
We may assume that they are simply R-equivalent. There exists ¢ € Q(H)
such that ¢(0) = go and ¢(1) = ¢1. As f is surjective, there is p € P(Hp) with
f(p) = q. Set pj = p(0) and pj = p(1). We have pf, ~ p}. The elements py and
p, belong to the same fiber. Since the fibers are R-trivial, we have py ~ p;
and similarly, p; ~ p}. Finally, py ~ pj ~ p| ~ p1. O

Let G be an algebraic group over F';, C' C G a central subgroup and G' =
G/C. For every A € C(F'), we have an exact sequence

G -Torsors(A) — G- Torsors(A) & H2(A, C)

with @ : HL(A,G') — HZ2(A,C) the connecting map. Let P be the sub-
functor of G’-Torsors consisting of all elements p such that d(p) = 0. The
group C'-Torsors(A) acts transitively on the fibers of the natural surjection
G -Torsors(A) — P(A) (cf. [4, Cor. 28.6]). Therefore, Proposition 3.4 yields:

Corollary 3.5. Suppose that the functors C'-Torsors and P are R-trivial. Then
G -Torsors is also R-trivial.

4. CLASSIFYING VARIETY

Let G be an algebraic group over F'. We view GG as a closed subgroup of
a group S = GL,, x GL,, x --- x GL,, over F. The factor variety S/G is
denoted by BG and called a classifying variety for G. The variety BG has the
distinguished rational point G/G. The stable birational equivalence class of
BG is independent of the choice of S and the embedding of G into S (cf. [6)
2.1)).
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Let L be a field extension of F'. By Hilbert Theorem 90, the map
fr : BG(L) — G-Torsors(L),

taking a point Spec L — BG in BG(L) to the class of the G-torsor S X ggSpec L
over L, is surjective. The group S(L) acts on BG(L), and this action is
transitive on the fibers of f, by [4, Cor. 28.2]. As the variety of the group S
is R-trivial, the fibers of f are also R-trivial. Hence by Proposition 3.4, the
map f induces a bijection

BG(L)/R ~ G-Torsors(L)/R.

Proposition 4.1. Consider the following properties:

(1) The classifying variety BG is stably rational.
(2) The functor G -Torsors is R-trivial.
(3) For any cycle module M over F, we have M (F(BG)) = M(F), i.e.,

nr

the function field F(BG) has trivial unramified cohomology.
Then (1) = (2) = (3).

Proof. (1) = (2): Replacing S by S x GL, for sufficiently large n we may
assume that BG is rational. Let U C BG be a non-empty open subvariety
isomorphic to an open subvariety of an affine space. Since every two points in
U(F) are R-equivalent, it is sufficient to prove that every point z in BG(F) is
R-equivalent to a point in U(F). Consider the surjective morphism S — BG,
g — gz. As rational points are dense in S, the set S(F')z is dense in BG and
hence intersects U, i.e., there is a ¢ € S(F') such that gr € U(F). As the
points 1 and g are R-equivalent in S(F'), the points x and gx are R-equivalent
in BG(F).

(2) = (3): The homomorphism M (F) — M (F(BG)) is injective as it is split
by the evaluation at any rational point. Let L/F be a field extension and
p € M(L(BG)) . We claim that for every two points xo, z; € BG(L), we
have p(zg) = p(x1). We may assume that xy and x; are strictly R-equivalent,
i.e., there is a morphism f : W — BG for an open nonempty subscheme
W C P! containing points 0 and 1 and satisfying f(0) = zo and f(1) = ;.
Let u = f*(p). It follows from Example 2.3 that pu € M(F(W))m = M(F).
Hence

p(xo) = p(0) = p(1) = p(z1).
We apply the claim to the distinguished point xy € BG(L) and the generic

point z; of BG over the function field L = F(BG). We have p(xg) €
Im(M(F) — M(L)) and p(z;) = p. It follows from the claim that p €

Im(M(F) — M(L)). O

5. AN EXAMPLE

Let F be a field of characteristic not two, G = SLg /p,, C' = pg/ s >~ p, the
center of G and A a semilocal commutative F-algebra. We have G/C ~ PGLg
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and PGLg - Torsors(A) is the set of isomorphism classes of Azumaya A-algebras
of rank 8. The connecting map

0:G/C-Torsors(A) — HZ(A,C) = Bry(A)

takes the class [A] of an Azumaya A-algebra A to 2[A] in the Brauer group of
A. Let P be the functor in Corollary 3.5, i.e., P(A) is the set of isomorphism
classes of Azumaya A-algebras of rank 8 and exponent 2.

The functor C -Torsors(A) = A*/A** is R-trivial. We shall show that P is
also R-trivial.

Let P’ be the subfunctor of P comprised of algebras that can be factored into
a tensor product of three quaternion algebras. We show that P’ is R-trivial.
Write (a,b), where a,b € F*, for the quaternlon algebra over F' generated by
elements ¢ and j subJect to the relations i? = a, j2 = b and ij = —ji.

Let @ and @' be two algebras in P'(F), i.e., Q (a1,b1) ® (ag, by) @ (asz, bs)
and Q' = (a},b}) ® (ah, by) @ (af, by) for some a;, al, b;, b, € F*. Consider the
Azumaya algebra

B =®]_(ta; + (1 — t)a, tb; + (1 — t)b})

over the ring Hp. We have B(0) ~ @’ and B(1) ~ @, so Q ~ Q.
In general, by [8], every algebra @’ in P(F’) is similar to an algebra

Q = (al, bl) X (&2, bg) (%9 (ag, bg) (059 (C, d),

where (¢, d) (and hence Q) is split over L = F'(\/ a1,/ a2,/ a3). Consider the
Azumaya algebra

B = (al,tbl + (1 — t)) & (az,bQ) ® (a?n b3) ® (Ca d)

over Hp. Since (¢, d) is split over L, the algebra B is split over RQ L. Hence B
is equivalent to an algebra B’ in P(Hp). We have B(1) = @, hence B'(1) = Q'
and

B'(0) = (az, bs) ® (as, b3) @ (¢, d) € P'(F).

Thus every point of P(F') is R-equivalent to a point in P'(F'). Hence P is R-
trivial. It follows from Corollary 3.5 that the functor G - Torsors is R-trivial and
therefore, by Proposition 4.1 the function field F(BG) has trivial unramified
cohomology.
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