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1. Introduction

Let G be a (linear) algebraic group over a field F . Choose an embedding of
G into GLN as a (closed) subgroup for some N . The factor variety GLN /G
“classifies” principal homogeneous spaces (G-torsors) of G over field extensions
K of F . More precisely, there is a naturally bijection of pointed sets:

The set H1(K,G) of isomorphism
classes of G-torsors over K

≃ The set of GLN(K)-orbits in
the set of K-points of GLN /G

We write BG for GLN /G and call it a classifying space of G. The stable
birational type of BG is independent of the choice of the embedding of G.

The following question is wide open.

Question 1.1. Let G be a connected group over an algebraically closed field.
Is BG stably rational?

In what follows, we assume that F is an algebraically closed field of charac-
teristic zero. For a field extension K/F , write Hd(K) for the Galois cohomol-
ogy group

Hd(K,Q/Z) := Hd(ΓK ,Q/Z(d− 1)),

where ΓK = Gal(Ksep/K) is the absolute Galois group of K. If v is a discrete
valuation on K that is trivial on F , we have the residue homomorphism

∂v : H
d(K) → Hd−1(L),

where L is the residue field of v. The completion K̂ of K with respect to
v is isomorphic to the power series field L((t)). The map ∂v factors as the
composition

Hd(K) → Hd(K̂)
∼−→ Hd(L((t))) → Hd−1(L),

where the last map is the residue homomorphism with respect to the canonical
discrete valuation on L((t)).

The subgroup of unramified elements Hd
nr(K) ⊂ Hd(K) is the intersection

of Ker(∂v) for all discrete valuations v on K/F .
A key observation is that if X is a stably rational integral variety over F ,

then Hd
nr(F (X)) = 0. In particular, to answer Question 1.1 in the negative, it

suffices to prove that Hd
nr(F (BG)) ̸= 0 for some d.
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We will use the language of cohomological invariants. Let

A : FieldsF −→ PSets

be a functor from the category of field extensions of F to the category of
pointed sets. There are two main examples: the functor K 7→ H1(K,G) for
an algebraic group G over F , which we will denote by BG and the functor
K 7→ Hd(K) for every d.

A degree d (normalized cohomological) invariant α of a functor A is a col-
lection of maps of pointed sets

αK : A(K) → Hd(K)

for all field extensions K/F , natural in K. In other words, α is a morphism of
functors A → Hd. All degree d invariants of A form an abelian group Invd(A).

An invariant α ∈ Invd(A) is called unramified if for every field extension
K/F and every element a ∈ A(K), we have α(a) ∈ Hd

nr(K). Write Invdnr(A)
for the subgroup of unramified invariants in Invd(A).

The passage to the completion yields the following observation. An invariant
α ∈ Invd(A) is unramified if and only if for every field extensionK/F and every
a ∈ A(K((t))), we have ∂(α(a)) = 0, where ∂ : Hd(K((t))) → Hd−1(K) is the
residue homomorphism.

The generic fiber of the versal G-torsorGLN → GLN /G = BG is a G-torsor
over SpecF (BG). Evaluating an invariant from Invd(BG) at this generic fiber
yields a homomorphism

Invd(BG) → Hd
(
F (BG)

)
.

By Rost’s theorem, this homomorphism is injective, thus, identifying Invd(BG)
with a subgroup of Hd

(
F (BG)

)
. Under this identification, we have an equality

Invdnr(BG) = Hd
nr

(
F (BG)

)
.

We propose the following steps to compute the group Hd
nr

(
F (BG)

)
. First,

we compute the group of invariants of BG, i.e, we determine the subgroup
Invd(BG) of Hd

(
F (BG)

)
. Next, we determine which invariants are unramified,

i.e, we determine the groups Invdnr(BG) = Hd
nr

(
F (BG)

)
.

Let G be a (connected) reductive group over F . Every degree 1 invariant of
BG is trivial, i.e., Inv1(BG) = 0. The group of degree 2 invariants Inv2(BG) is
canonically isomorphic to Pic(G) by [1, Theorem 2.4], but Inv2nr(BG) = 0 (see
[2, Lemma 5.7]).

The group Inv3(BG) was determined in [4]. It is known that the group
Inv3nr(BG) is 2-torsion and it is trivial if the semisimple part of G is either
(almost) simple or simply connected, or adjoint (see [5]). It is not yet clear
whether Inv3nr(BG) is trivial for all reductive G.

In the present paper, we prove the following theorem.
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Theorem 1.2. Let G be a reductive group over an algebraically closed field
F of characteristic zero. Suppose that the Dynkin diagram of G is the sum of
diagrams of type A. Then every unramified degree 3 cohomological invariant
of G is trivial, i.e., Inv3nr(BG) = 0. Equivalently, H3

nr

(
F (BG)

)
= 0.

2. Preliminaries

2.1. Cohomology. Let K be a field extension of an algebraically closed field
F of characteristic zero. Write Hd(K) for Hd(K,Q/Z(d− 1)). If d = 1,

Ch(K) := H1(K) = H1(K,Q/Z) = Hom(ΓK ,Q/Z)

is the character group of ΓK . The kernel of an element x ∈ Ch(K) is an open
subgroup Γx ⊂ ΓK . The field of Γx-invariants K(x) := (Ksep)

Γx is a cyclic
extension of K of order ord(x), the order of x in Ch(K).

If d = 2, the group H2(K) = H2(K,K×
sep) is naturally isomorphic to the

Brauer group Br(K) of K.
There is a cup-product pairing

Hd(K)⊗K× → Hd+1(K), x⊗ a 7→ x ∪ a.

In particular, we have a pairing

Ch(K)⊗K× → Br(K).

For every a ∈ K×, write (a) for the image of a under the composition

K× → H1(K,Z/2Z) → H1(K).

In other words, (a) is the character of ΓK giver by the quadratic extension
K(

√
a)/K.

If a1, a2, . . . , ad ∈ K×, we write (a1, a2, . . . , ad) for the image in Hd(K) of
the product of the classes of the ai’s in the ring H∗(K,Z/2Z).

The cohomological class ed(φ) of a d-fold quadratic Pfister form

φ = ⟨⟨a1, a2, . . . , ad⟩⟩

is the class (a1, a2, . . . , ad) in Hd(K).

2.2. Central simple algebras. Let A be a central simple algebra over a field
K. Then dimK(A) is the square of a positive integer deg(A) that is called the
degree of A. By Wedderburn’s theorem, A ≃ Mk(D) for a division algebra D
over K and some k > 0. The index of A is the integer ind(A) := deg(D). The
index ind(A) divides deg(A).

Example 2.1. Let a, b ∈ K×. We write Q = (a, b) for the (generalized)
quaternion central simple algebra of degree 2 overK generated by two elements
u and v subject to the relations u2 = a, v2 = b and uv = −vu. The reduced
norm quadratic form of Q is the 2-fold Pfister form ⟨⟨a, b⟩⟩ = ⟨1, a⟩ ⊗ ⟨1, b⟩.
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Write Br(K) for the Brauer group of Brauer equivalence classes of central
simple algebras over K. If A is a central simple algebra over K, we write [A]
for its class in Br(K). There are canonical isomorphisms

Br(K) ≃ H2(K) ≃ H2(K,K×
sep).

If a ∈ Br(K), then the index of a is the integer ind(a) := ind(A), where A is
such that [A] = a. The exponent exp(a) of a is the order of a in Br(K). The
integer exp(a) always divides ind(a).

For every integer n > 0, the map A 7→ [A] yields a bijection

Isomorphism classes of central
simple K-algebras of degree n

≃ Elements a ∈ Br(K)
such that ind(a) divides n

Let K((t)) be the power series field over K. The homomorphism

Br(K)⊕ Ch(K) → BrK((t))

taking (b, x) to bK((t)) + (xK((t)) ∪ t) is an isomorphism (see [3, Prop. 7.11]).
By [8, Prop. 2.4],

(1) ind
(
bK((t)) + (xK((t)) ∪ t)

)
= ind(bK(x)) · ord(x).

2.3. Severi-Brauer varieties. Let A be a central simple algebra of degree n
over K. For an integer k dividing n, write SB(k,A) for the generalized Severi-
Brauer variety of left ideals in A of reduced dimension k. Then SB(k,A) has
a point over a field extension L/K if and only if ind(AL) divides k.

The Severi-Brauer variety SB(A) := SB(1, A) satisfies

Ker
(
Br(K) → BrK(SB(A)

)
= span([A])

by a theorem of Amitsur. An immediate corollary in the following lemma.

Lemma 2.2. Let B ⊂ Br(F ) be a subgroup generated by the classes [A1],
[A2],. . . , [An] of central simple algebras. Let X be the product of Severi-Brauer
varieties SB(Ai) for all i. Then

B = Ker
(
Br(F ) → BrF (X)

)
.

Lemma 2.3. Let n1, n2, . . . , nr be positive integers and b1, b2, . . . , br ∈ Br(K)
such that exp(bi) divides ni for all i. Let L1, L2, . . . , Lr be finite field extensions
of K of degrees s1, s2, . . . , sr, respectively. Suppose that si divides ni for all i.
Then there is a field extension K ′/K such that

(1) The map Br(K) → Br(K ′) is injective.
(2) ind(bi)K′Li

divides ni

si
for all i.

Proof. Let Bi be a central simple K-algebra of degree mi representing the
Brauer class bi. Let Xi be the corestriction

RLi/K

(
SB

(
ni/si, (Bi)Li

))
of the generalized Severi-Brauer variety and let K ′ be the function field K(X)
of the productX of allXi. Every varietyXi has anK ′-point, hence ind(Bi)K′Li

divides ni

si
for all i.



UNRAMIFIED DEGREE THREE INVARIANTS 5

It suffices to show that the map Br(K) → Br(K ′) is injective. The vari-
ety X is a projective homogeneous variety of the product G of the groups
RLi/K(SL1(Bi)). The Dynkin diagram D of G is the disjoint sum of Di’s over
all i, where Di is the sum of si copies of Ami−1. Let Π be the set of vertices
of D. For every i, choose the ni

si
th vertex on every component of Di. Write

Π′ for the set of all chosen vertices over all i. Then the type of the parabolic
subgroup of G corresponding to X is the set Π \ Π′. Note that the absolute
Galois group of K acts transitively on the set of irreducible components of Di

for all i.
The Tits class of a chosen vertex in Di is equal to

ni

si
bi. By [6], the kernel of

Br(K) → BrK(X) is generated by si(
ni

si
)bi = nibi. But nibi = 0 since exp(bi)

divides ni for all i. �

3. Invariants of functors given by central simple algebras

Let I be a finite set and let nI = (ni)i∈I be a family of positive integers. For
every i ∈ I, write Ci for a cyclic group of order ni with a generator ei and set
C(nI) :=

⨿
i∈I Ci. Let D be a subgroup of C(nI).

Consider a functor

A(nI , D) : FieldsF −→ PSets

taking a field extension K/F to the set{
φ ∈ Hom

(
C(nI)/D,Br(K)

)
such that indφ(ei) | ni for all i ∈ I

}
.

There are other equivalent description of the functor A(nI , D):

• A(nI , D)(K) is the set of families aI := (ai)i∈I of elements of Br(K)
such that ind ai divides ni for all i ∈ I and satisfying

∑
i∈I diai = 0 in

Br(K) for all d = (di)i∈I in D.
• A(nI , D)(K) is the set of isomorphism classes of families AI := (Ai)i∈I
of central simple algebras over K such that degAi = ni for all i ∈ I
and satisfying

∑
i∈I di[Ai] = 0 in Br(K) for all d = (di)i∈I in D.

We call elements d ∈ D the relations.

Example 3.1. The group C(nI) is the character group µ∗ of µ :=
∏

i∈I µni
.

Let Z ⊂ µ be a subgroup such that Z∗ = µ∗/D. Let

G :=
(∏
i∈I

GLni

)
/Z.

Thus, G is a reductive group with Dynkin diagram
⨿

i∈I Ani−1.
For a field extension K/F , there is a natural bijection (see [7])

H1(K,G) ≃ A(nI , D)(K).

In particular,

Invd(BG) ≃ Invd(A(nI , D))

for every d.
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3.1. Arason invariant of a tuple of quaternion algebras. Let QI =
(Qi)i∈I be a finite family of quaternion K-algebras such that

∑
i∈I [Qi] = 0 in

Br(K). Let φj be the reduced norm quadratic form of Qj. The form φ =i∈I φi

in the Witt group W (K) of K belongs to the cube of the fundamental ideal
of W (K), i.e., φ is the sum of general 3-fold Prister forms ρ1, ρ2, . . . , ρs. Write
Ar(QI) for the Arason invariant

∑s
j=1 e3(ρj) of φ in H3(K), where e3(ρj) is

the class of ρj in H3(K).

Example 3.2. Let Qi = (ai, bi), Q
′
i = (ai, b

′
i) and Q′′

i = (ai, bib
′
i) for some

ai, bi, b
′
i ∈ K× such that

∑
i∈I [Qi] = 0 and

∑
i∈I [Q

′
i] = 0. Then

∑
i∈I [Q

′′
i ] = 0.

Since

⟨⟨ai, bi⟩⟩+ ⟨⟨ai, b′i⟩⟩ = ⟨⟨ai, bib′i⟩⟩+ ⟨⟨ai, bi, b′i⟩⟩
in W (K), we have

Ar(QI) + Ar(Q′
I) = Ar(Q′′

I ) +
∑
i∈I

(ai, bi, b
′
i)

in H3(K).

3.2. The invariants Ar(nI , D, d). Let d ∈ D be an element of exponent 2.
Then 2di is divisible by ni for every i ∈ I. Let aI = (ai)i∈I be a family of
elements of Br(K) in A(nI , D)(K). In particular, ind ai divides ni for all i ∈ I
and

∑
i∈I diai = 0. Then for every i, the class diai in Br(K) is represented

by a quaternion algebra Qi and
∑

i∈I [Qi] = 0. Thus, the relation d yields a
degree 3 invariant Ar(nI , D, d) of the functor A(nI , D):

Ar(nI , D, d)(aI) := Ar(QI).

4. A key proposition

In this section we prove the following key proposition.

Proposition 4.1. The group of unramified invariants Inv3nr
(
A(nI , D)

)
is triv-

ial.

By [7], every invariant in Inv3
(
A(nI , D)

)
is of the form Ar(nI , D, d) for

some d ∈ D of exponent 2. Therefore, it suffices to show that if the invariant
Ar(nI , D, d) is nontrivial, it is ramified. In this section we reduce to the case
when all ni = 2.

Let I ′ = I ′(d) ⊂ I be the subset of all i ∈ I such that di ̸= 0. If i ∈ I ′, the
integer ni is even. Let mi be the constant family mi = 2 for all i ∈ I ′ and let
C(mI′) be the direct sum over all i ∈ I ′ of cyclic groups of order 2. We have a
unique natural embedding C(mI′) ↪→ C(nI). Write D′ for the intersection of
D with C(mI′). We have then a natural morphism of functors

A(nI , D) → A(mI′ , D
′)

and therefore, a homomorphism

Inv3
(
A(mI′ , D

′)
)
→ Inv3

(
A(nI , D)

)
.
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Note that d ∈ D′ and the latter homomorphism takes the invariant Ar(mI′ , D
′, d)

to the invariant Ar(nI , D, d).

Lemma 4.2. If the invariant Ar(mI′ , D
′, d) is ramified, then so is Ar(nI , D, d).

Proof. By assumption, there is a family qI = (qi)i∈I′ of classes of quaternion
algebras over K((t)), where K is a field extension of F , such that the value of
Ar(mI′ , D

′, d) at qI is ramified. This value is a homomorphism

C(mI′)/D
′ → BrK((t)) ≃ Br(K)⊕ Ch(K).

Since K contains all roots of unity, the group Ch(K) is divisible. Every ele-
ment in Br(K) is the sum of classes of cyclic algebras. Therefore, the group
Br(K) is also divisible. It follows that the homomorphism is extended to a
homomorphism

C(nI)/D → BrK((t)) ≃ Br(K)⊕ Ch(K).

Let (bi, xi) ∈ Br(K) ⊕ Ch(K) be the image of ei under the latter homomor-
phism. Then exp(bi) divides ni. Denote Li := K(xi). Note that si := [Li :
K] = ord(xi) divides ni.

By Lemma 2.3, there is a field extension K ′/K such that the map Br(K) →
Br(K ′) is injective and ind(bi)K′Li

divides ni

si
for all i. Write

ai := (bi)K((t)) + ((xi)K((t)) ∪ t) ∈ BrK((t)).

It follows from (1) that

ind(ai)K′((t)) = ind(bi)K′Li
· exp(xi)Li

divides
ni

si
· si = ni.

It follows that the family aI = (ai)K′((t)) represents an element ofA(nI , D)(K ′((t))).
The residue r ∈ Br(K ′) of the value of the invariant Ar(nI , D, d) at (aI)K′((t))

is the image of the nonzero residue in Br(K) of Ar(mI′ , D
′, d) at (qI′). As

the map Br(K) → Br(K ′) is injective, we have rK′ ̸= 0, i.e., the invariant
Ar(nI , D, d) is ramified. �

By Lemma 4.2, we may assume that ni = 2 for all i ∈ I. For every element
d ∈ C(nI) write supp(d) for the set of all i ∈ I such that di ̸= 0. Equivalently,
d =

∑
ei, where i runs over supp(d). We have aI ∈ A(nI , D) if and only if∑

i∈supp(d) ai = 0 for all d ∈ D.

Lemma 4.3. Suppose that ni = 2 for all i and for every nonzero d ∈ D,
the set supp(d) has at least 3 elements. Then for every nonzero d ∈ D, the
invariant Ar(nI , D, d) is ramified.

Proof. Let d′ ∈ D be a nonzero element. Set S := supp(d′). Choose an element
s ∈ S and consider the set J := I \{s}. We claim that there is a field extension
K/F and elements ai, bi ∈ K× for i ∈ I such that

•
∑

i∈supp(d)\{s}(ai) = 0 in H1(K) for all d ∈ D,

•
∑

i∈supp(d)(ai, bi) = 0 in H2(K) for all d ∈ D,

• (ai, bi) ̸= 0 in H2(K) for all i ∈ I.
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To prove the claim, let F1 be a field extension of F such that there are ele-
ments ai ∈ F×

1 for i ∈ I such that the elements (ai) in H1(F1) are linearly
independent. The classes

∑
i∈supp(d)\{s}(ai) in H1(F1) for all d ∈ D form a

subgroup H ⊂ H1(F1) = F×
1 /F×2

1 . Since by assumption, for every nonzero
d ∈ D, the set supp(d) has at least 3 elements, then card

(
supp(d) \ {s}

)
≥ 2.

Hence (ai) /∈ H for all i ∈ I.
By Kummer theory, there is a finite field extension F2/F1 such that

H = Ker
(
H1(F1) → H1(F2)

)
.

It follows that (ai) ̸= 0 in H1(F2), i.e., ai /∈ (F2)
×2, for all i ∈ I.

Let F3 be the rational function field over F2 with variables bi for i ∈ I. As
every ai is not a square in F2, the quaternion algebras Qi := (ai, bi) are linearly
independent in 2Br(F3). For every d ∈ D, consider the tensor product Ad of
all Qi such that i ∈ supp(d). The classes of Ad in 2 Br(F3) for all d ∈ D form
a subgroup B.

Let X be the product of Severi-Brauer varieties of the algebras Ad over F3

for all d ∈ D. By Lemma 2.2, the subgroup B coincides with the kernel of the
natural homomorphism Br(F3) → Br(K), where K is the function field of X
over F3. Since the classes of Qi are not in B and F3 is algebraically closed in
K, the field K satisfies the conclusion of the claim. The claim is proved.

Consider the following families of elements in BrK((t)), where K is the field
in the claim:

qi =

{
(ai, bi), if i = s;
(ai, bit), if i ̸= s,

q′i =

{
0, if i = s;
(ai, t), if i ̸= s.

By the claim,∑
i∈supp(d)

qi =
∑

i∈supp(d)

(ai, bi) +
∑

i∈supp(d)\{s}

(ai, t) = 0 in BrK((t)),

i.e., the family qI := (qi) represent an element of A(nI , D)(K((t))). Similarly,
q′I := (q′i) and q′′I := (qi + q′i) belong to A(nI , D)(K((t))).

Consider the family Q̃I of quaternion algebras overK((t)) such that [Q̃i] = qi
if i ∈ S and [Q̃i] = 0 otherwise. We define the families Q̃′

I and Q̃′′
I similarly.

By definition,

Ar(nI , D, d′)(qI) = Ar(Q̃I), Ar(nI , D, d′)(q′I) = Ar(Q̃′
I) and

Ar(nI , D, d′)(q′′I ) = Ar(Q̃′′
I ).

By example 3.2,

Ar(Q̃I) + Ar(Q̃′
I) = Ar(Q̃′′

I ) +
∑

i∈S\{s}

(ai, bi, t) = Ar(Q̃′′
I ) + (as, bs, t)

since ∑
i∈S

(ai, bi) =
∑

i∈supp(d′)

(ai, bi) = 0.
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As the residue (as, bs) of (as, bs, t) is nontrivial, the invariant Ar(nI , D, d′) is
ramified. �

Suppose now that ni = 2 for all i and D ⊂ C(nI) an arbitrary subgroup.
If ei ∈ D for some i, then ai = 0 for every aI ∈ A(nI , D)(K). If I ′ is the
subset of all i with ei /∈ D and D′ := D ∩C(nI′), then A(nI , D) = A(nI′ , D

′).
Replacing I by I ′ and D by D′, we may assume that ei /∈ D for all i ∈ I.

Consider the following equivalence relation on I: we write i ∼ i′ if ei + ei′ ∈
D. Write I for the set of equivalence classes in I and ī for the equivalence class
of i. The (only) isomorphism Ci

∼−→ Cī for every i ∈ I yields a homomorphism
CI → CI . Let D ⊂ CI be the image of D.

Lemma 4.4. The homomorphism CI/D → CI/D is an isomorphism. In
particular, the induced morphism A(nI , D) → A(nI , D) is an isomorphism.

Proof. The kernel of CI → CI is generated by elements of the form c = ei+ei′ ,
where i ∼ i′ in I. Since c ∈ D, the pre-image of D coincides with D. �
Lemma 4.5. The support of every nonzero element in D has at least 3 ele-
ments.

Proof. Consider a nonzero element ū =
∑

ī∈J̄ eī in D, where J = supp(ū) is a

nonempty subset of I. Let J ⊂ I be a subset that is bijective to J under the
map I → I and let u =

∑
i∈J ei ∈ CI . By Lemma 4.4, u ∈ D. As we assumed

that ei ̸= D for every i, the set J has at least two element. If card(J) = 2, we
have u = ei + ei′ . But then i ∼ i′, a contradiction since ī ̸= ī′. It follows that
card(J) = card(J) ≥ 3. �

Now we finish the proof of Proposition 4.1. We prove that the invariant
Ar(nI , D, d) is ramified if nontrivial. By Lemma 4.2, we may assume that
ni = 2 for all i. By Lemmas 4.4 and 4.5, we may assume that the support
of every nonzero element in D has at least 3 elements. Finally, the statement
follows from Lemma 4.3.

5. Proof of the main theorem

We prove Theorem 1.2. Let G be a reductive group over an algebraically
closed field F of characteristic zero with the Dynkin diagram the sum of dia-
grams of type A. Then the semisimple part H of G is isomorphic to(∏

i∈I

SLni

)
/Z

for some family of integers (ni)i∈I and a subgroup

Z ⊂ µ :=
∏
i∈I

µni
.

Let D be the kernel of the restriction homomorphism

C(nI) :=
⨿
i∈I

Z/niZ = µ∗ → Z∗.



10 A. MERKURJEV

By Example 3.1,
Inv3(BG′) ≃ Inv3(A(nI , D)),

where
G′ =

(∏
i∈I

GLni

)
/Z.

Therefore, by Proposition 4.1,

H3
nr

(
F (BG′)

)
= Inv3nr(BG

′) = Inv3(A(nI , D)) = 0.

Note that the natural morphism f : BH → BG is a T -torsor, where T is the
(split) torus G/H. Hence f is split generically and BH is stably birationally
isomorphic to BG. As H is the semisimple part of both reductive groups G and
G′, the spaces BH, BG and BG′ are stably birationally isomorphic. Therefore,

Inv3nr(BG) = H3
nr

(
F (BG)

)
= Inv3nr(BH) = Inv3nr(BG

′) = 0.
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