
R-EQUIVALENCE ON 3-DIMENSIONAL TORI AND
ZERO-CYCLES

ALEXANDER MERKURJEV

Let T be an algebraic torus over a field F and X a smooth proper geometri-
cally irreducible variety over F containing T as an open subset. Let A0(X) be
the subgroup of the Chow group CH0(X) of classes of zero-dimensional cycles
on X consisting of classes of degree zero. The map T (F ) → A0(X) taking a
rational point t in T (F ) to [t]− [1] factors through the R-equivalence on T (F )
(cf. §2.3):

ϕ : T (F )/R → A0(X).

One can ask the following questions:
1. Is ϕ a homomorphism?
2. Is ϕ an isomorphism?
Note that ϕ is a homomorphism if and only if [ts] − [t] = [s] − [1] for any

two rational points s, t ∈ T (F ). If the translation action of T on itself extends
to an action on X, the latter means that the natural action of T (F ) on A0(X)
is trivial.

In the present paper we prove that ϕ is an isomorphism for all algebraic
tori of dimension at most 3 (Theorem 4.4). All tori of dimension 1 and 2
are rational (cf. [22, §4.9]), therefore, ϕ is an isomorphism of trivial groups.
Birational classification of 3-dimensional tori was given in [14].

I would like to thank J.-L. Colliot-Thélène for useful discussions.

We use the following notation in the paper:
The word “variety” will mean a separated scheme of finite type over a field,
F is a field,
Fsep is a separable closure of F ,
Γ is the Galois group of Fsep/F ,
XL := X ×F Spec L for a scheme X over F and a field extension L/F ,
Xsep is X ×F Spec Fsep,
T ∗ is the character group of an algebraic torus T over Fsep with Γ-action,
T∗ = Hom(T ∗,Z) is the co-character group of a torus T ,
T ◦ is the dual torus, (T ◦)∗ = T∗,
K∗(X) is Quillen’s K-group of a scheme X,
H∗(X, K∗) is the K-cohomology group,
CHi(X) is the Chow groups of cycles of codimension i on X,
CHi(X) is the Chow groups of cycles of dimension i on X,
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Fields/F is the category of field extensions of F ,
Ab is the category of abelian groups,
Sets is the category of sets,
Gm = Gm,F .

1. Preliminaries

1.1. R-equivalence. Let F be a field. For a field extension L/F , we write HL

for the semilocal ring of all rational functions f(t)/g(t) ∈ L(t) such that g(0)
and g(1) are nonzero. Let A be a functor from the category of semi-simple
commutative F -algebras to the category Sets. If i = 0 or 1, we have a map
A(HL) → A(L), a 7→ a(i), induced by the L-algebra homomorphism HL → L
taking a function h to h(i).

Two points a0, a1 ∈ A(L) are called strictly R-equivalent if there is an a ∈
A(HL) with a(0) = a0 and a(1) = a1. The strict R-equivalence generates an
equivalence relation R on A(L), called the R-equivalence relation. The set of
R-equivalence classes is denoted by A(L)/R.

Example 1.1. A scheme X over F defines the functor

X(A) := MorF (Spec A, X).

The notion of R-equivalence in X(L) is classical and was introduced in [16, Ch.
2, §4]. If G is an algebraic group over F , then G(L)/R = G(L)/RG(L), where
RG(L) is the subgroup of G(L) consisting of all elements that are R-equivalent
to the identity.

Example 1.2. Let G be an algebraic group over F . We can define the functor
taking a commutative F -algebra A to the set of isomorphism classes H1

ét(A,G)
of G-torsors over Spec A.

Example 1.3. Let 1 → S → P → T → 1 be an exact sequence of algebraic
tori over F with P a quasi-trivial torus, i.e., P ' RK/F (Gm,K) for an étale
F -algebra K. As H1

ét(A,P ) = H1
ét(A ⊗F K,Gm) = 0 for any semilocal com-

mutative F -algebra A by Shapiro-Faddeev Lemma and Grothendieck’s Hilbert
Theorem 90, the sequence

P (A) → T (A) → H1
ét(A, S) → 0

is exact. Since P is an open subset in the affine space of K, we have P (L)/R =
1 for any field extension L/F . Hence the image of P (L) → T (L) consists of
R-trivial elements in T (L) and therefore,

T (L)/R ' H1(L, S)/R.

If in addition S is a flasque torus (cf. [22, §4.6]) then by [5, Th. 2],

T (L)/R ' H1(L, S).
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1.2. Category of Chow motives. Let CM(F ) be the category of Chow mo-
tives over F (cf. [15]). Recall that CM(F ) is an additive category with ob-
jects formal finite direct sums

∐
k(Xk, ik) (called Chow motives) where Xk are

smooth proper varieties over F and ik ∈ Z. For a smooth proper variety X we
write M(X)(i) for the object (X, i) of CM(F ) and shortly M(X) for M(X)(0).
If M(X) and M(Y ) are objects in CM(F ) and X is irreducible of dimension
d then

MorCM(F )

(
M(X)(i),M(Y )(j)

)
= CHd+i−j(X × Y ).

We have the functor from the category SP(F ) of smooth proper varieties
over F to CM(F ) taking a variety X to M(X) and a morphism f : X → Y to
the cycle of the graph of f .

We write Z(i) for M(Spec F )(i). A motive is called split if it is isomorphic
to a motive of the form

∐r
i=1 Z(di).

The functor taking an X to the K-cohomology groups H∗(X, K∗) (cf. [18])
from the category SP(F ) to the category of (bi-graded) abelian groups factors
through the category CM(F ) as follows. Let α ∈ CH(X × Y ) be a morphism
M(X)(i) → M(Y )(j) in CM(F ). Then the functor takes α to the homomor-
phism H∗(X, K∗) → H∗(Y, K∗) defined by β 7→ (p2)∗

(
α · p∗1(β)

)
where p∗1 and

(p2)∗ are the pull-back and the push-forward homomorphisms for the first and
the second projections p1 : X × Y → X and p2 : X × Y → Y respectively.

Recall that Hp(X,Kp) = CHp(X) for a smooth X and every p ≥ 0 by [18,
§7, Prop. 5.14].

Lemma 1.4. Let M be a split motive. Then the product map

CHp(M)⊗Kq(F ) → Hp(M, Kp+q)

is an isomorphism.

Proof. The statement is obviously true for the motive M = Z(i). ¤
Let X be a smooth proper irreducible variety over F . The push-forward

homomorphism

deg : CH0(X) → CH0(Spec F ) = Z
with respect to the the structure morphism X → Spec F is called the degree
homomorphism. For every i ≥ 0, we have the intersection pairing

(1) CHp(X)⊗ CHp(X) → Z, α⊗ β 7→ deg(αβ).

Proposition 1.5. Let X be a smooth proper irreducible variety over F . Then
the Chow motive of X is split if and only if

(1) The Chow group CH(X) is free abelian of finite rank and the map
CH(X) → CH(XL) is an isomorphism for every field extension L/F
and

(2) The pairing (1) is a perfect duality for every p.

Proof. Suppose that the motive of X is split. Mutually inverse isomorphisms
between M(X) and a split motive

∐r
i=1 Z(di) are given by two r-tuples of
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elements ui ∈ CHdi
(X) and vi ∈ CHdi(X) such that the tuple u (and also v)

form a Z-basis of CH(X) and deg(uivj) = δij over any field extension of F .
Conversely, suppose that (1) and (2) hold. Choose dual bases ui and vj of

CH(X). They define morphisms α and β from a split motive N to M(X) and
back respectively so that β ◦ α is the identity of N . By Yoneda Lemma, it
suffices to prove that for every variety Y over F the morphism

u⊗ 1Y : CH
(
N ⊗M(Y )

) → CH(X × Y )

is an isomorphism. The injectivity follows from the fact that β ◦ α = id. The
surjectivity follows by induction on the dimension of Y using the localization
and the fact that the map u⊗ 1Y is an isomorphism if Y is the spectrum of a
field extension of F . ¤

1.3. K-theory, K-cohomology and the Brown-Gersten-Quillen spec-
tral sequence. Let X be a smooth variety over F . Let K∗(X)(i) denote the
i-th term of the topological filtration on K∗(X). Consider the Brown-Gersten-
Quillen (BGQ) spectral sequence (cf. [18, §7, Th. 5.4])

(2) Ep,q
2 = Hp(X,K−q) ⇒ K−p−q(X)

converging to the K-groups of X with the topological filtration. The K-
cohomology groups H∗(X,K∗) can be computed via Gersten complexes (cf.
[18, §7.5]).

We have Ep,q
2 = 0 if p < 0 or p + q > 0, or p > dim X and Ep,−p

2 = CHp(X).
The E2-term is as follows:

CH0(X) 0

H0(X,K1)

++WWWWWWWWWWWWWWWWWWWWWWWW CH1(X) 0

H1(X,K2)

++VVVVVVVVVVVVVVVVVVVVVVV CH2(X) 0

H2(X,K3) CH3(X)

If in addition X is geometrically irreducible proper, we have H0(X,K1) =
F×. The composition of the pull-back homomorphism F× = K1(F ) → K1(X)
for the structure morphism of X with the edge homomorphism K1(X) →
H0(X, K1) is the identity. Hence all the differentials starting at E0,−1

∗ are
trivial. If in addition dim X = 3, the spectral sequence yields an exact sequence

(3) K1(X)(1) → H1(X, K2) → CH3(X)
g−→ K0(X),

where g is the edge homomorphism.
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2. Zero cycles on toric models

2.1. K-theory of toric models. Let T be an algebraic torus over a field F .
Let X be a geometrically irreducible variety containing T as an open subset.
We say that X is a toric model of T if the translation action of T on itself
extends to an action on X. Every torus admits a smooth proper toric model
(cf. [1] and [3]).

Let X be a smooth proper toric model of T . It follows from [13, Prop. 3,
Cor. 2] that Xsep satisfies the conditions (1) and (2) of Proposition 1.5. Thus
by Proposition 1.5, we have:

Proposition 2.1. Let X be a smooth proper toric model of T . Then the Chow
motive of Xsep is split.

The proposition and Lemma 1.4 yield:

Corollary 2.2. Let X be a smooth proper toric model of an algebraic torus
T . Then the product map

CHp(Xsep)⊗Kq(Fsep) → Hp(Xsep, Kp+q)

is an isomorphism.

The absolute Galois group Γ acts naturally on K0(Xsep) leaving each term
K0(Xsep)

(i) invariant.
The following theorem was proven in [17].

Theorem 2.3. Let X be a smooth proper toric model of an algebraic torus of
dimension d over F . Then

(1) K0(Xsep) is a direct summand of a permutation Γ-module.
(2) The subgroup K0(Xsep)

(d) is infinite cyclic generated by the class of a
rational point of X.

(3) The natural map Ki(X) → Ki(Xsep)
Γ is an isomorphism for i ≤ 1.

(4) The product map K0(Xsep)⊗ F×
sep → K1(Xsep) is an isomorphism.

Corollary 2.4. Let X be a smooth proper toric model of a torus of dimension
d over F . We have the following natural isomorphisms:

(1) Ki(X)(1) ∼→ (
Ki(Xsep)

(1)
)Γ

for i ≤ 1.

(2) K0(Xsep)
(1) ⊗ F×

sep
∼→ K1(Xsep)

(1).

Proof. (1): The group Ki(X)(1) is the kernel of the restriction to the generic
point Ki(X) → KiF (X). The image of this map is equal to H0(X, Ki) =
Ki(F ) for i = 0, 1. Statement (1) follows from Theorem 2.3(3) applied to the
exact sequence

0 → (
Ki(Xsep)

(1)
)Γ → Ki(Xsep)

Γ → Ki(Fsep)
Γ

for i = 0, 1.

(2): Tensoring with F×
sep the split exact sequence

0 → K0(Xsep)
(1) → K0(Xsep) → Z→ 0
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we get (2) by Theorem 2.3(4). ¤
Corollary 2.5. Let X be a smooth proper toric model of a torus of dimension
d over F . Then

(1) K0(Xsep)
(1) is a direct summand of a permutation Γ-module.

(2) K0(Xsep)
(d) is a direct summand of the Γ-module K0(Xsep).

Proof. (1): We have the canonical decomposition of Γ-modules via the struc-
ture sheaf OX :

K0(Xsep) = K0(Xsep)
(1) ⊕ Z · 1,

hence K0(Xsep)
(1) is a direct summand of a permutation Γ-module by Theorem

2.3(1).

(2): For a rational point x ∈ X(F ), the composition of the push-forward
homomorphism K0(Fsep) = K0

(
Fsep(x)

) → K0(Xsep) with the push-forward
map p∗ : K0(Xsep) → K0(Fsep) induced by the structure morphism p of Xsep is
the identity. It follows from Theorem 2.3(2) that the inclusion

K0(Xsep)
(d) → K0(Xsep)

is split by p∗ as a homomorphism of Γ-modules. ¤
We shall need the following property of K-cohomology groups of smooth

proper toric models.

Proposition 2.6. Let X be a smooth proper toric model of a torus of dimen-
sion d over F . Then the natural morphism H1(X, K2) → H1(Xsep, K2)

Γ is an
isomorphism.

Proof. As X is geometrically rational and has a rational point, the statement
follows from [4, Prop. 4.3] (if char(F ) = 0) and [12, Th. 1(a)] or [8, Th. 8.9]
(in general). ¤
2.2. The group A0(X) of 3-dimensional toric models. Let T be an al-
gebraic torus and X a smooth proper geometrically irreducible variety over F
containing T as an open subset. Let P and S be algebraic tori over F such
that P ∗ is the permutation Γ-module with Z-basis the set of irreducible com-
ponents of (X\T )sep and S∗ = CH1(Xsep). We have natural Γ-homomorphisms
T ∗ → P ∗ taking a character χ to div(χ) (we consider χ as a rational function
on Xsep) and P ∗ → S∗ taking a component of (X \ T )sep to its class in the
Chow group. The sequence

(4) 0 → T ∗ → P ∗ → S∗ → 0

is a flasque resolution of T ∗ (cf. [5, Prop. 6], [22, §4.6]). Thus we have an
exact sequence of algebraic tori

(5) 1 → S → P → T → 1,

a flasque resolution of T .
By [5, Th. 2] (cf. Example 1.3),

(6) T (L)/R ' H1(L, S)
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for any field extension L/F .
The spectral sequence (2) for Xsep yields isomorphisms of Γ-modules

K0(Xsep)
(1/2) ' CH1(Xsep) = S∗

and
K0(Xsep)

(2/3) ' CH2(Xsep).

Let T be a 3-dimensional torus and X a smooth proper toric model of T .
By [13, Prop. 3, Cor. 2], the pairing

CH1(Xsep)⊗ CH2(Xsep) → Z, α⊗ β 7→ deg(αβ)

is a perfect duality of Γ-lattices. It follows that CH2(Xsep) ' S∗. Thus, the
exact sequence

0 → K0(Xsep)
(2) → K0(Xsep)

(1) → K0(Xsep)
(1/2) → 0

yields an exact sequence of algebraic tori

(7) 1 → S ′
τ−→ Q → S◦ → 1

with S ′∗ = K0(Xsep)
(2) and Q∗ = K0(Xsep)

(1) a direct summand of a permuta-
tion Γ-module by Corollary 2.5(1). By Theorem 2.3(2) and Corollary 2.5(2),
we have isomorphisms of Γ-modules

S ′∗ = K0(Xsep)
(2) ' K0(Xsep)

(2/3) ⊕ Z ' CH2(Xsep)⊕ Z ' S∗ ⊕ Z.

Hence S ′ ' S ×Gm is a flasque torus. Let Q̃ be a torus such that Q× Q̃ is a
quasisplit torus. Then the exact sequence

1 → S ′ × Q̃
τ×1

Q̃−−−→ Q× Q̃ → S◦ → 1

is a flasque resolution of S◦. By [5, Th. 2] (cf. Example 1.3) and (6), we have

(8) S◦(L)/R ' H1(L, S ′ × Q̃) ' H1(L, S ′) ' H1(L, S) ' T (L)/R

for any field extension L/F , and hence it follows from (7) that

(9) Coker
(
Q(F ) → S◦(F )

)
= S◦(F )/R.

As K0(X) injects into K0(Xsep) and K0(Xsep)
(3) is infinite cyclic group gen-

erated by the class of a rational point by Theorem 2.3, the kernel of the ho-
momorphism g in (3) coincides with the kernel of the composition

CH3(X) → CH3(Xsep) → K0(Xsep)
(3) ' Z,

which is the degree map. Recall that we write A0(X) for the kernel of deg :
CH0(X) → Z. We then have

(10) Ker(g) = A0(X).

Note that the group A0(X) is 2-torsion by [17, Cor. 5.11(4)].
By Corollary 2.4, we have isomorphisms

(11) K1(X)(1) ' (
K1(Xsep)

(1)
)Γ

' (
K0(Xsep)

(1) ⊗ F×
sep

)Γ
=

(
Q∗ ⊗ F×

sep

)Γ
= Q(F ).
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It follows from Corollary 2.2 and Proposition 2.6 that

(12) H1(X,K2) ' H1(Xsep, K2)
Γ

' (
CH1(Xsep)⊗ F×

sep

)Γ
=

(
S∗ ⊗ F×

sep

)Γ
= S◦(F ).

Remark 2.7. The referee has pointed out that using results of [4] one can
deduce that CH1(X) ⊗ F× ' H1(X, K2) for a smooth projective rational
variety X over an algebraically closed field F of characteristic zero.

Under the identifications (11) and (12), and the fact that the BGQ spectral
sequence is compatible with products (cf. [11, §7]), the map K1(X)(1) →
H1(X, K2) in (3) coincides with the homomorphism Q(F ) → S◦(F ) given by
(7). It follows from (3), (9) and (10) that

(13) S◦(F )/R = Coker
(
Q(F ) → S◦(F )

)

' Coker
(
K1(X)(1) → H1(X, K2)

) ' Ker(g) = A0(F ).

By (8), there are natural isomorphisms

(14) T (F )/R ' S◦(F )/R ' A0(X).

Similarly, over any field extension L/F we have an isomorphism

(15) ρL : T (L)/R ' A0(XL).

We shall view ρ as an isomorphism of functors L 7→ T (L)/R and L 7→
A0(XL) from Fields/F to Ab.

The following remark was suggested by J.-L. Colliot-Thélène.

Remark 2.8. The isomorphism (14) yields finiteness of A0(X) in all cases
when T (F )/R is known to be finite, e.g. F a finitely generated over the prime
subfield, over the complex field, over a p-adic field (cf. [5, Th. 1 and Prop. 14]
and [2, Th. 3.4]).

2.3. The map ϕL : T (L)/R → A0(XL). Let T be an algebraic torus over F ,
X a smooth proper geometrically irreducible variety over F containing T as
an open subset, and L/F a field extension. By [5, Prop. 12, Cor.], the map

(16) ϕL : T (L)/R → A0(XL)

taking the R-equivalence class of an L-point t ∈ T (L) to the class of the zero
cycle [t] − [1], is well defined. We view ϕ as a morphism of functors from
Fields/F to Sets.

Proposition 2.9. The map ϕL does not depend (up to canonical isomorphism)
of the choice of X.

Proof. We may assume that L = F . Let X and X ′ be two smooth proper
geometrically irreducible varieties containing T as an open subset. The closure
of the graph of a birational isomorphism between X and X ′ that is identical on
T yields morphisms between the motives M(X) and M(X ′) in CM(F ). These
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morphisms induce mutually inverse isomorphisms between A0(X) and A0(X
′)

(cf. [7, 16.1.11]). ¤

Let X be a smooth proper toric model of T . Consider the flasque resolution
(5). The S-torsor PL over TL can be extended to an S-torsor q : U → XL (cf.
[5, Prop. 9] or [17, Prop. 5.4]). For any point x ∈ XL, the fiber Ux of q over x
is an S-torsor over Spec L(x). Denote by [Ux] its class in H1

(
L(x), S

)
. By [5,

Prop. 12], the map

(17) ψL : CH0(XL) → H1(L, S) = T (L)/R,

taking the class [x] of a closed point x ∈ XL to NL(x)/L([Ux]) extends to a well
defined group homomorphism. The composition ψ|A0(XL) ◦ϕ is the identity. It
follows that the map ϕL is injective.

3. Functors from Fields/F to Sets

We consider functors from the category Fields/F to the category Sets.
All functors we are considering take values in Ab, but some of the morphisms

between such functors (namely, ϕ) may not be given by group homomorphisms.
In this section, we study compatibility properties for morphisms between

functors with respect to norm and specialization maps.

3.1. Functors with norm maps. Let A : Fields/F → Sets be a functor. We
say that A is a functor with norms if for any finite field extension E/F , there
is given a norm map NE/F : A(E) → A(F ).

Example 3.1. Let T be an algebraic torus over F and E/F a finite field
extension. There is an obvious norm map

NE/F : T (E) = H0(E, T∗ ⊗ E×
sep) → H0(F, T∗ ⊗ F×

sep) = T (F ).

Thus the functor L 7→ T (L) is equipped with norms. Similarly, the functors
L 7→ T (L)/R, L 7→ H1(L, T ), and L 7→ A0(XL) also have norms.

A morphism α : A → B of functors with norms from Fields/F to Sets
commutes with norms if for any field extension E/F , the diagram

A(E)
αE−−−→ B(E)

NE/F

y
yNE/F

A(F )
αF−−−→ B(F )

is commutative.

Example 3.2. Let T be a torus of dimension 3. The sequence (5) yields an

isomorphism of functors T (L)/R
∼→ H1(L, S) that commutes with norms. It

follows that the isomorphism T (L)/R ' S◦(L)/R in (8) commutes with norms.
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Example 3.3. Let T be an arbitrary torus and 1 → S → P → T → 1 a
flasque resolution. Let EndF (S) = HomΓ(S∗, S∗) be the endomorphism ring
of S. For a field extension L/F , the group T (L)/R = H1(L, S) has a natural
structure of an EndF (S)-module. For any α ∈ EndF (S), the endomorphism of
the functor L 7→ T (L)/R taking a t to α(t) commutes with norms.

Proposition 3.4. Let T be an algebraic torus over F and X a smooth proper
geometrically irreducible variety over F containing T as an open subset. Then
the morphism ψ in (17) commutes with norms.

Proof. Let E/F be a finite field extension, x ∈ XE a closed point and x′ the
image of x under the natural morphism XE → X. We have NE/F ([x]) = m[x′]
in CH0(X), where m = [E(x) : F (x′)]. The torsor Ux in the definition of ψ is
the restriction of Ux′ to E(x). By [7, Example 1.7.4], we have

NE(x)/F (x′)
(
[Ux′ ]E(x)

)
= m[Ux′ ],

hence

NE/F

(
ψE([x])

)
= NE(x)/F

(
[Ux]

)
= NF (x′)/F NE(x)/F (x′)

(
[Ux′ ]E(x)

)

= mNF (x′)/F

(
[Ux′ ]

)
= ψF

(
NE/F ([x])

)
. ¤

Proposition 3.5. Let T be an algebraic torus over F and X a smooth proper
geometrically irreducible variety over F containing T as an open subset. Then
the map ϕF : T (F )/R → A0(X) in (16) is an isomorphism of groups if and
only if the morphism ϕ commutes with norms.

Proof. Suppose that ϕ commutes with norms. We show that ϕ is surjective.
Every closed point in X is rationally equivalent to a zero-divisor with support
in T . Let x ∈ T be a closed point of degree n. It is sufficient to prove that
[x]−n[1] belongs to the image of ϕF . Let E = F (x) and x′ ∈ TE the canonical
rational point over x. We have ϕE(x′) = [x′] − [1] and as ϕ commutes with
norms,

[x]− n[1] = NE/F ([x′]− [1]) = NE/F ◦ ϕE(x′) = ϕF

(
NE/F (x′)

)
.

Thus, ϕ is a bijection. The inverse map given by (17) is a group homomor-
phism, hence ϕ is a group isomorphism.

Conversely, if ϕ is an isomorphism, then ϕ commutes with norms as ψ does
by Proposition 3.4. ¤

Proposition 3.6. Let T be an algebraic torus of dimension 3 over F and X
a smooth proper toric model of T . Then the morphism of functors ρ in (15)
commutes with norms.
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Proof. By Example 3.2, it suffices to prove that the morphism S◦(L)/R →
A0(XL) given by (13) commutes with norms. Let E/F be a finite field exten-
sion. The statement follows from the commutativity of the diagram

S◦(E)/R −−−→ H1(XE, K2) −−−→ CH3(XE)yNE/F

yNE/F

yNE/F

S◦(F )/R −−−→ H1(X, K2) −−−→ CH3(X).

The exact direct image functor f∗ takes the category Mp(XE) of coherent
sheaves on XE supported in codimension at least p to Mp(X). Therefore, f∗
yields a map of the BGQ spectral sequences for XE and X. Hence the right
square of the diagram is commutative.

As the map H1(X,K2) → H1(Xsep, K2) is injective by Proposition 2.6, it
suffices to prove commutativity of the left square in the split case. The left
square coincides with

S∗ ⊗ E× −−−→ H1(XE, K2)y1⊗NE/F

yNE/F

S∗ ⊗ F× −−−→ H1(X,K2),

where the horizontal maps are product maps after the identification of S∗

with CH1(X). The commutativity follows from the projection formula in K-
cohomology (cf. [19, §14.5]). ¤

3.2. Functors with specializations. Let A : Fields/F → Sets be a functor.
We say that A is a functor with specializations if for any DVR over F of
geometric type (a localization of an F -algebra of finite type) with quotient
field L and residue field K there is given a map sA : A(L) → A(F ) called a
specialization map.

Example 3.7. Let O be a DVR over F with quotient field L and residue field
K and X a variety over F . The specialization homomorphism

s : CH0(XL) → CH0(XK)

is defined as follows. Let α ∈ CH0(XL). As the restriction map CH1(XO) →
CH0(XL) is surjective, we can choose α′ ∈ CH1(XO) such that α′L = α.
Then set s(α) = i∗(α′), the image of α′ under the Gysin homomorphism
i∗ : CH1(XO) → CH0(XK), where i : XK → XO is the regular closed em-
bedding of codimension one (cf. [7, §2.6]). The map s is well defined as
i∗ ◦ i∗ = 0 for the principal divisor XK in XO by [7, Prop. 2.6(c)].

Example 3.8. (cf. [10, Prop. 2.2]) Let T be a torus over F and O a DVR
over F with quotient field L and residue field K. Let 1 → S → P → T → 1
be a flasque resolution of T . The homomorphism

H1
ét(O, S) → H1(L, S)



12 A. MERKURJEV

is an isomorphism by [6, Cor. 4.2]. The composition

s : T (L)/R ' H1(L, S) ' H1
ét(O, S) → H1(K, S) ' T (K)/R

is called the specialization homomorphism with respect to O. One can easily
see that the specialization homomorphism does not depend on the choice of
a flasque resolution of T . It follows from the triviality of H1

ét(O,P ) that the
composition T (O) → T (L) → T (L)/R is surjective.

T (L)/R ¾¾ T (L) ¾ T (O) - T (K) -- T (K)/R

H1(L, S)

o
?

¾ ∼
H1

ét(O,S)

??
- H1(K, S)

o
?

Let p ∈ T (L)/R and q ∈ T (O) be a lift of p. Then it readily follows from the
definition that s(p) is the image of q under the composition T (O) → T (K) →
T (K)/R.

Lemma 3.9. Let T be an algebraic torus over F . Let t, t′ ∈ T be two points
such that t belongs to the closure of t′ and the local ring Ot′,t is a DVR. Let
s : T

(
F (t′)

)
/R → T

(
F (t)

)
/R be the specialization homomorphism with respect

to Ot′,t. Then s(t′) = t.

Proof. In the ring A := F [T ] let P and P ′ be the prime ideals of y and y′

respectively. Then O is the ring AP /P ′AP . Let t̃ ∈ T (O) = Mor(Spec O, T )
be the point given by the natural homomorphism of A → O. Then the images
of t̃ under the maps T (O) → T

(
F (t)

)
and T (O) → T

(
F (t′)

)
coincide with y

and y′ respectively. The statement follows now from Example 3.8. ¤

Let θ : A → B be a morphism of functors from Fields/F to Sets with
specializations (for example, the functors L 7→ T (L)/R or L 7→ CH0(XL)).
We say that θ commutes with specializations if for every DVR as above, the
diagram

A(L)
θL−−−→ B(L)

sA

y
ysB

A(K)
θK−−−→ B(K)

is commutative.

Proposition 3.10. Let T be an algebraic torus over F and X a smooth proper
geometrically irreducible variety over F containing T as an open subset. Then
the morphism ϕ in (16) commutes with specializations.

Proof. Let O be a DVR over F with quotient field L and residue field K. For
an O-point p of T let [p] denote the class of its graph in CH1(XO). Consider
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the diagram

T (K) ←−−− T (O) −−−→ T (L)

ϕK

y ϕO

y ϕL

y
CH0(XK) ←−−− CH1(XO) −−−→ CH0(XL)

where ϕO(p) = [p] − [1] and the bottom maps are the pull-back homomor-
phisms. The statement follows from the commutativity property of the di-
agram. To prove commutativity let E be either K or L and f : Spec E →
Spec O, g : XE → XO the natural morphisms. Let p ∈ T (O) be a point and
q ∈ T (E) its image. We view p and q as morphisms p : Spec O → XO and
q : Spec E → XE. By [7, Th. 6.2(a)], the diagram

CH1(Spec O)
f∗−−−→ CH0(Spec E)

p∗
y

yq∗

CH1(XO)
g∗−−−→ CH0(XE)

is commutative. It follows that [q] = q∗(1E) = q∗f ∗(1O) = g∗p∗(1O) = g∗([p])
and the result follows. ¤

Proposition 3.11. Let T be an algebraic torus over F and θ, θ′ : T (?)/R → B
two morphisms of functors commuting with specializations. Suppose that θF (T )

and θ′F (T ) coincide at the generic point of T . Then θ = θ′.

Proof. Let p : Spec L → T be a point of T over a field extension L over F .
We need to prove that θL(p) = θ′L(p). Let t ∈ T be the point in the image of
p. We view t as a point of T over the residue field F (t). As F (t) ⊂ L and
p is the image of t under the map T

(
F (t)

) → T (L), it suffices to show that
θF (t)(t) = θ′F (t)(t).

We prove this by induction on codim(t). By assumption, the statement
holds if t is the generic point. Otherwise let t′ ∈ T be a point such that t is
a direct specialization of t′. Then the local ring Ot′,t is a DVR with quotient
field F (t′) and residue field F (t). As θ and θ′ commute with specializations, it
follows from Lemma 3.9 that

θF (t)(t) = θF (t)

(
s(t′)

)
= sB

(
θF (t′)(t

′)
)

= sB

(
θ′F (t′)(t

′)
)

= θ′F (t)

(
s(t′)

)
= θ′F (t)(t).

¤

Proposition 3.12. Let T be an algebraic torus of dimension 3 over F and X
a smooth proper toric model of T . Then the morphism of functors ρ in (15)
commutes with specializations.
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Proof. Let O be a DVR over F of geometric type with quotient field L and
residue field K. The diagram

H1(XK , K2) ←−−− H1(XO, K2) −−−→ H1(XL, K2)y
y

y
CH3(XK) ←−−− CH3(XO) −−−→ CH3(XL)

where the middle vertical map is the differential in the E2-term of the BGQ
spectral sequence (2) for XO. The right square is commutative since the mor-
phism XL → XO is flat (cf. [18, §7, Th. 5.4]).

The pull-back homomorphism f ∗ for the morphism f : XK → XO in K-
theory is defined as follows (cf. [18, §7.2.5]). Let π ∈ O be a prime element
and M(XO, f) the full subcategory of the category M(XO) of coherent sheaves
on XO consisting of sheaves G with π a non-zero-divisor in G. Then f ∗ is the
composition of the inverse of the isomorphism induced by the inclusion functor
α : M(XO, f) → M(XO) on K-groups and the map induced by the restriction
β : M(XO, f) → M(XK) of the unverse image functor M(XO) → M(XK).
Note that functors α and β take sheaves supported in codimension p into
Mp(XO) and Mp(XK) respectively. Hence f induces a pull-back map of the
BGQ spectral sequences for XO and XK . It follows that the left square of the
diagram is commutative too.

As the map H1(X,K2) → H1(Xsep, K2) is injective by Proposition 2.6, we
may consider the split situation. In the diagram

S◦(K) ←−−− S◦(O) −−−→ S◦(L)y
y

y
H1(XK , K2) ←−−− H1(XO, K2) −−−→ H1(XL, K2)

the vertical maps are the product maps. The commutativity follows from the
projection formula in K-cohomology (cf. [19, §14.5]).

Finally, it follows from the definition that the isomorphism T (L)/R
∼→

S◦(L)/R of functors in (15) commutes with specializations. ¤

4. Main theorem

Let T be a torus over F and 1 → S → P → T → 1 a flasque resolution.

4.1. The group T
(
F (T )

)
/R. Tensoring the exact sequence

0 → F×
sep ⊕ T ∗ → Fsep(T )× → Div(Tsep) → 0

with S∗ and applying Galois cohomology yields a surjective homomorphism

H1(F, S)⊕H1(F, S∗ ⊗ T ∗) → H1
(
F (T ), S

)

since H1
(
F, S∗ ⊗Div(Tsep)

)
= 0 as S is flasque.

Tensoring (4) with S∗ yields a surjective homomorphism

EndF (S) = H0(F, S∗ ⊗ S∗) → H1(F, S∗ ⊗ T ∗)
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as H1(F, S∗ ⊗ P ∗) = 0. Combining these two surjections we get another
surjective homomorphism

(
T (F )/R

)⊕ EndF (S) → T
(
F (T )

)
/R.

Note that the group T (L)/R = H1(L, S) is a left module over the ring EndF (S)
for any field extension L/F . The image of an element α ∈ EndF (S) in
T

(
F (T )

)
/R is equal to α(ξ) (up to sign), where ξ is the generic point of

T .
We have proven

Proposition 4.1. Every element of the group T
(
F (T )

)
/R is of the form t·α(ξ)

where t ∈ T (F )/R and α ∈ EndF (S).

Now assume that dim T = 3 and X is a smooth proper toric model of T .

Corollary 4.2. There is an α ∈ EndF (S) such that the composition ρ−1 ◦ ϕ
takes every t ∈ T (L)/R over a field extension L/F to α(t).

Proof. By Propositions 3.10, 3.11 and 3.12, it is sufficient to prove the state-
ment in the case when t is the generic point ξ of T . By Proposition 4.1,
(ρ−1◦ϕ)(ξ) = t·α(ξ) for some α ∈ EndF (S) and t ∈ T (F )/R. As (ρ−1◦ϕ)(1) =
1, specializing at 1, we get t = 1. ¤

Example 3.3 then yields:

Corollary 4.3. The composition ρ−1 ◦ ϕ commutes with norms.

4.2. Main theorem.

Theorem 4.4. Let T be an algebraic torus of dimension 3 and X a smooth
proper geometrically irreducible variety over F containing T as an open subset.
Then the map ϕ : T (F )/R → A0(X) is an isomorphism.

Proof. In view of Proposition 2.9, we may assume that X is a smooth proper
toric model of T . By Proposition 3.6 and Corollary 4.3, ϕ commutes with
norms. It follows from Proposition 3.5 that ϕ is an isomorphism. ¤
Remark 4.5. The following is an alternative proof of Theorem 4.4. This
proof avoids the machinery of Section 3, but it is based on deep, albeit clas-
sical, arithmetic-geometric result. We may assume that the field F is finitely
generated over the prime subfield. By [5, Th.1], the group T (F )/R is finite.
It follows from (15) that A0(X) is also finite of the same order. As ϕ is injec-
tive, it is a bijection. Therefore, ϕ is an isomorphism of groups as we have a
homomorphism of groups ψ with ψ ◦ ϕ = id.

The statement of the following theorem (but not the proof) does not involve
a toric model.

Theorem 4.6. Let T be an algebraic torus of dimension 3. Then there is a
natural isomorphism T (F )/R ' H1(F, T ◦)/R.
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Proof. The sequence dual to (5)

1 → T ◦ → P ◦ → S◦ → 1

and [5, Th. 2] (cf. Example 1.3) yield an isomorphism

S◦(F )/R ' H1(F, T ◦)/R.

On the other hand, by (8), S◦(F )/R ' H1(F, S) ' T (F )/R. ¤
In the following examples we give two applications of Theorem 4.6.

Example 4.7. Let L/F be a degree 4 separable field extension and T the
norm 1 torus for L/F , i.e.,

T = Ker
(
RL/F (Gm,L)

NL/F−−−→ Gm

)
.

Then T ◦ = RL/F (Gm,L)/Gm and

H1(F, T ◦) = Br(L/F ),

the relative Brauer group of the extension L/F . Thus by Theorem 4.6, we
have a canonical isomorphism

Br(L/F )/R ' T (F )/R.

The case of a biquadratic extension L/F was considered in [21, p. 427].

Example 4.8. Let L and K be finite separable field extensions of a field F
and set M := K ⊗F L. Let T be the kernel of the norm homomorphism

NM/L : RM/F (Gm,M)/RK/F (Gm,K) → RL/F (Gm,L)/Gm.

We have

T (F ) = {x ∈ M× such that NM/L(x) ∈ F×}/K×.

The dual torus T ◦ is the kernel of the norm homomorphism

NM/K : RM/F (Gm,M)/RL/F (Gm,L) → RK/F (Gm,K)/Gm.

We have an exact sequence

K× → H1(F, T ◦) → Br(M/L) → Br(K/F ).

Now suppose that [K : F ] = 2 and [L : F ] = 4. Then T is a 3-dimensional
torus and the last homomorphism in the exact sequence is isomorphic to the
norm map

NL/F : L×/NM/L(M×) → F×/NK/F (K×).

Let U be the subtorus of RL/F (Gm,L) × RK/F (Gm,K) consisting of all pairs
(l, k) with NL/F (l) = NK/F (k). It follows that

T (F )/R ' H1(F, T ◦)/R ' U(F )/R.

This isomorphism was known when L/F is a biquadratic extension (cf. [20,
Cor. 1.13] and [9, Prop. 3]).
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5. Chow group of a 3-dimensional torus

Let T be an algebraic torus over a field F and X a smooth proper geomet-
rically irreducible variety containing T as an open subset. Set Z = X \ T .

Lemma 5.1. (cf. [5, Lemme 12], [22, Prop. 17.3] and [10, Prop. 1.1]) The
torus T is isotropic if and only if Z(F ) 6= ∅.
Proof. Suppose T is isotropic. Then T contains a subgroup isomorphic to Gm.
The embedding of Gm into T extends to a regular morphism f : P1 → X.
Then f(0) or f(∞) is a rational point of Z.

Conversely, suppose Z has a rational point z. Since z is regular on X, there
is a geometric valuation v of F (X) dominating z with residue field F = F (z).
Suppose that T is anisotropic. Then there is a proper geometrically irreducible
variety X ′ containing T as an open subset such that X ′ \ T has no rational
points (cf. [5, Lemme 12], [22, Prop. 17.3]). But v dominates a rational point
on X ′ \ T , a contradiction. ¤

Write iT (respectively nZ) for the greatest common divisor of the integers
[L : F ] for all finite field extensions L/F such that T is isotropic over L
(respectively Z(L) 6= ∅).
Corollary 5.2. The number iT coincides with nZ. In particular, the integer
nZ does not depend on the smooth proper geometrically irreducible variety X
containing T as an open subset.

Proposition 5.3. The order of the class [1] in CH0(T ) is equal to iT .

Proof. If T is isotropic, there is a subgroup H of T isomorphic to Gm. As
CH0(Gm) = 0, we have [1] = 0 in CH0(H) and therefore in CH0(T ). In the
general case, let L be a finite field extension such that TL is isotropic. By the
first part of the proof, [1] is trivial in CH0(TL), hence applying the norm map
for the extension L/F yields [L : F ] · [1] = 0 in CH0(T ). Therefore, iT · [1] = 0.

Now let m · [1] = 0 in CH0(T ) for some integer m. Hence the cycle m · [1]
in CH0(X) belongs to the image of the push-forward map CH0(Z) → CH0(X)
(cf. [7, Prop. 1.8]). In particular, there is a zero-cycle on Z of degree m, hence
iF = nZ divides m. ¤

Consider the map

αT : T (F )/R⊕ Z/iTZ→ CH0(T )

taking a pair (t, k) to the cycle [t] + (k − 1) · [1].

Theorem 5.4. Let T be a torus of dimension at most 3. Then the map
αT : T (F )/R⊕ Z/iTZ→ CH0(T ) is an isomorphism.

Proof. The Chow group CH0(T ) is the factor group of CH0(X) = A0(X)⊕Z·[1]
by the image of CH0(Z). Let z ∈ Z be a closed point. By Lemma 5.1, the
torus TF (z) is isotropic and hence is stably birational to a 2-dimensional torus.
Therefore, TF (z) is rational, A0(XF (z)) = 0 and the image of the class of z in
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A0(X) ⊕ Z · [1] is equal to 0 ⊕ deg(z) · [1]. Hence CH0(T ) is isomorphic to
A0(X)⊕ Z/iTZ. The result follows from Theorem 4.4. ¤
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