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ALEXANDER MERKURJEV

Abstract. Some degree formulas associated with any morphism of projec-
tive algebraic varieties of the same dimension are proved. As an application
certain conditions of non-compressibility of algebraic varieties are found.
The basic tool is the action of the Steenrod algebra on the Chow groups of
algebraic varieties modulo a prime integer.

1. Introduction

In the present paper we prove certain degree formulas associated with any
morphism of projective algebraic varieties of the same dimension (Theorem 6.4)
and derive some applications. The most general degree formula, which holds
in the algebraic cobordism group of a variety, was proved by M. Levine and
F. Morel in [9, Th. 13.7]. Our approach is elementary: we use Chow groups
instead of cobordism groups and don’t assume resolution of singularities.

In the first part of the paper we recall Steenrod operations on Chow groups
as defined by P. Brosnan in [1]. We introduce certain characteristic classes cR
and prove formulas involving Steenrod operations and values of the cR on the
tangent vector bundle of a variety.

The degree formulas are proved in Section 6 and some applications are con-
sidered in Section 7. In particular, we find conditions of non-compressibility
of algebraic varieties.

By a variety over a field F we mean a quasi-projective integral scheme over
F . For a variety X over F and a field extension L/F we write X(L) for the
set MorF (SpecL,X) of L-valued points of X.

Recall that the degree deg(f) of a rational morphism f : Y → X of varieties
over F of the same dimension is either zero, if f is not dominant, or is equal
to the degree of the field extension F (Y )/F (X) otherwise.

2. Chow groups and correspondences

2.1. Chow groups. Let X be a variety over a field F . We write CHd(X)
for the Chow group of rational equivalence classes of dimension d algebraic
cycles on the variety X [2, Ch. 1]. We let CH(X) be the graded Chow group⨿

d≥0CHd(X).
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For a fixed prime integer p, we write A(X) and Ad(X) for the modulo p
Chow groups CH(X)⊗ Z/pZ and for CHd(X)⊗ Z/pZ respectively. If Z ⊂ X
is a closed subvariety, [Z] denotes the class of Z in either CH(X) or A(X).
A projective morphism of varieties f : X → Y induces a push-forward homo-
morphisms f∗ : CH(X) → CH(Y ) and f∗ : A(X) → A(Y ) of graded groups [2,
1.4]. In particular, if f is a projective morphism and dim(X) = dim(Y ), then
f∗([X]) = deg(f) · [Y ].

2.2. Correspondences. LetX and Y be varieties over a field F , d = dim(X).
A correspondence from X to Y , denoted α : X  Y , is a dimension d algebraic
cycle on X × Y . A correspondence α is called prime if α is given by a prime
(irreducible) cycle. Any correspondence is a linear combination with integer
coefficients of prime correspondences.

Let α : X  Y be a prime correspondence. Suppose that α is given by
a closed subvariety Z ⊂ X × Y . We define multiplicity of α as the degree
of the projection Z → X. We extend the notion of multiplicity to arbitrary
correspondences by linearity.

A rational morphism X → Y defines a multiplicity 1 prime correspondence
X  Y given by the closure of its graph. One can think of a correspondence
of multiplicity m as a “generically m-valued morphism”.

3. The Steenrod algebra

We fix a prime integer p in this section.

3.1. Group scheme G. Consider the polynomial ring

(Z/pZ)[b] = (Z/pZ)[b1, b2, . . . ]

in infinitely many variables b1, b2, . . . as a graded ring with deg bi = pi − 1.
The monomials

bR = br11 br22 . . . ,

where R ranges over all sequences (r1, r2, . . . ) of non-negative integers such
that almost all of the ri’s are zero, form a basis of (Z/pZ)[b] over Z/pZ. We
set

|R| =
∑
i≥1

ri(p
i − 1).

Clearly, deg bR = |R|.
Denote the scheme Spec(Z/pZ)[b] by G. For a commutative Z/pZ-algebra

A the set of A-points G(A) = Homrings

(
(Z/pZ)[b], A

)
can be identified with

the set of sequences (a1, a2, . . . ) of the elements of A and, therefore, with the
set of power series of the form

t+ a1t
p + a2t

p2 + a3t
p3 + · · · ∈ A[[t]].

The composition law (f1 ∗ f2)(t) = f2(f1(t)) makes G a group scheme over
Z/pZ and (Z/pZ)[b] a Hopf Z/pZ-algebra.
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We identify the tensor square of the ring (Z/pZ)[b] with the polynomial ring
(Z/pZ)[b′,b′′] where b′ and b′′ are the two copies of the sets of variables b′i
and b′′i respectively. The coproduct ring homomorphism

µ : (Z/pZ)[b] → (Z/pZ)[b′,b′′]

is given by the formula

(1) µ(bk) =
∑
i+j=k

(b′i)
pj · b′′j .

Since µ is a homomorphism of graded rings, it extends to the homomorphism
of power series rings

(Z/pZ)[[b]] → (Z/pZ)[[b′,b′′]],

which will be still denoted by µ.
Let Λ be an Z/pZ-algebra. We will keep the notation µ for the extended

ring homomorphism
Λ[[b]] → Λ[[b′,b′′]].

Thus, µ acts identically on the coefficient ring Λ and acts on the variables bk
by formula (1).

For a power series g ∈ Λ[[b]], we write g′ and g′′ for the corresponding power
series in Λ[[b′]] and Λ[[b′′]] respectively.

Consider the generic power series

f(t) = t+ b1t
p + b2t

p2 + b3t
p3 + · · · ∈ (Z/pZ)[t][[b]].

By definition of the coproduct,

(2) µ
(
f(t)

)
= f ′′(f ′(t)

)
.

3.2. Reduced Steenrod algebra. We write S for the Hopf Z/pZ-algebra
dual to (Z/pZ)[b]. Thus, S is the graded Hopf algebra such that the d-
component of S is the Z/pZ-space dual to the d-component of (Z/pZ)[b].
The algebra S is the reduced Steenrod Z/pZ-algebra, i.e., the Steenrod Z/pZ-
algebra modulo the ideal generated by the Bockstein element [12, Th. 18.23].

Let {SR} be the basis of S dual to the basis {bR} of (Z/pZ)[b]. The power
series

S =
∑
R

SRbR ∈ S[[b]]

is called the total Steenrod operation. The product ◦ in S is dual to the
coproduct in (Z/pZ)[b], therefore
(3) µ(S) = S ′ ◦ S ′′ ∈ S[[b′,b′′]].

We write Si for the basis element SR with R = (i, 0, . . . ). The element S0 is
the identity of S and the algebra S is generated by the Si, i ≥ 1 [12, Ch. 18].

Let M be a Z/pZ-space. Suppose for every sequence R we are given an
endomorphism UR ∈ End(M). Set

(4) U =
∑
R

URbR ∈ End(M)[[b]].
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The following statement readily follows from definitions.

Proposition 3.1. The following two conditions are equivalent:

(1) µ(U) = U ′ ◦ U ′′ in End(M)[[b′,b′′]];
(2) The space M has a structure of a left S-module such that SRm =

UR(m) for every m ∈ M .

Example 3.2. Let f ∈ (Z/pZ)[t][[b]] be the generic power series. For an
Z/pZ-algebra Λ consider the operators UR on the polynomial ring Λ[t] defined
by the rule

U
(
g(t)

)
= g

(
f(t)

)
for g(t) ∈ Λ[t], where U is the total operation as in (4). Since

µ(U)
(
g(t)

)
= g

(
µ(U)(t)

)
= g

(
f ′′(f ′(t))

)
= U ′(g(f ′′(t))

)
= (U ′ ◦ U ′′)

(
g(t)

)
,

by Proposition 3.1, we get an S-module structure on Λ[t] such that S
(
g(t)

)
=

g
(
f(t)

)
for every g(t) ∈ Λ[t]. Since S(t) = f(t), it follows that

SR(t) =

{
tp

n
if R = (0, . . . , 0,

n

1, 0, . . . ),

0 otherwise.

In particular,

Si(t) =


t if i = 0,

tp if i = 1,

0 if i > 1.

Set

(5) h(t) = f(t)/t = 1 + b1t
p−1 + b2t

p2−1 + b3t
p3−1 + · · · ∈ (Z/pZ)[t][[b]].

It follows from (2) that

(6) µ
(
h(t)

)
= h′(t) · h′′(f ′(t)

)
= h′(t) · S ′(h′′(t)

)
.

4. Chern classes

Consider the polynomial ring

Z[c] = Z[c1, c2, . . . ]
in infinite number of variables c1, c2, . . . called the Chern classes. We call the
elements of this ring the characteristic classes. For every c ∈ Z[c] and a vector
bundle E over a smooth variety X, we have a well defined characteristic class
c(E) ∈ CH(X) of E [3, Appendix A].

Let p be a prime integer. For every sequence R = (r1, r2, . . . ) consider the
“smallest” symmetric polynomial QR in the variables X1, X2, . . . containing
the monomial

(X1 . . . Xr1)
p−1(Xr1+1 . . . Xr1+r2)

p2−1(Xr1+r2+1 . . . Xr1+r2+r3)
p3−1 . . .

and write QR as a polynomial on the standard symmetric functions:

QR = TR(σ1, σ2, . . . ).
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We set

cR = TR(c1, c2, . . . ) ∈ Z[c].

Remark 4.1. Another notation for the characteristic class cR is cα, where α
is the partition

(p− 1, . . . , p− 1, p2 − 1, . . . , p2 − 1, . . . ),

where pi−1 is repeated ri times [11, p. 388]. In particular, for R = (0, . . . , 0,
n

1
, 0, . . . ), the class cR = c(pn−1) is known as the additive Chern class.

Remark 4.2. If p = 2, the class cR for R = (i, 0, 0 . . . ) coincides with the
Chern class ci.

It follows from definition that for a line bundle L,

(7) cR(L) =

{
c1(L)

pn−1 if R = (0, . . . , 0,
n

1, 0, . . . ),

0 otherwise.

Consider the power series (the total class)

C =
∑
R

cRb
R ∈ Z[c][[b]].

The constant term of the power series C is the identity, hence C is invertible.
It follows from (7) that for every line bundle L,

(8) C(L) =
∑
R

cR(L)b
R =

∑
i≥0

c1(L)
pi−1bi.

By definition of the classes cR, for a vector bundle E, having a filtration by
subbundles with line factors L1, L2, . . . , Ln, we have

C(E) = C(L1) · C(L2) · . . . · C(Ln).

It follows from the splitting principle that the class C is multiplicative, that is
for an exact sequence of vector bundles

0 → E ′ → E → E ′′ → 0

we have

C(E) = C(E ′) · C(E ′′).

Therefore, for every smooth variety X, the total class C defines the homomor-
phism

K0(X) → CH(X)[[b]]×, [E] 7→ C(E).

In particular, we have a well defined class cR(a) ∈ CH(X) for every a ∈ K0(X)
and a sequence R.



6 A. MERKURJEV

5. Steenrod operations on Chow groups

We fix a field F and a prime integer p ̸= charF . Let X be a smooth variety
over F . In [1, Def. 7.11], P. Brosnan has defined a structure of an S-module
on the modulo p Chow group A(X). The operation SR lowers the dimension
of a cycle by |R|. The total operation S satisfies the Cartan formula [1, Th.
8.2]

S(α · β) = S(α) · S(β)
for every α, β ∈ A(X) and takes the identity to itself, i.e., S([X]) = [X].

For a characteristic class c ∈ Z[c] we write c̄ for its residue in (Z/pZ)[c].
The class c̄ takes values in A(X).

Let L be a line bundle over X. We have by (8),

(9) C(L) = h
(
c̄1(L)

)
,

where h is defined by equality (5). It was proved in [1, Prop. 8.4] that

(10) Si
(
c̄1(L)

)
=


c̄1(L) if i = 0,

c̄1(L)
p if i = 1,

0 if i > 1.

Recall the action of S on the ring Z/pZ[t] considered in Example 3.2. It
follows from (10) that every Si acts on t the same way as the Si acts on c̄1(L).
Since the Si generate S, we have by (6),

(11) µ
(
h(c̄1(L))

)
= h′(c̄1(L)) · S ′(h′′(c̄1(L))

)
.

Lemma 5.1. For every a ∈ K0(X), we have µ
(
C(a)

)
= C

′
(a) · S ′(C ′′

(a)
)
.

Proof. By the splitting principle, we may assume that a is the class of a line
bundle L over X. In this case the statement follows from (11) and (9). �

Fix an element a ∈ K0(X) and consider the new operations UR on A(X)
defined by the rule U = C(a) ·S, where U is the total operation. In particular,
U([X]) = C(a), i.e., UR([X]) = c̄R(a) for every sequence R.

Lemma 5.2. The operation U satisfies µ(U) = U ′ ◦ U ′′.

Proof.

U ′ ◦ U ′′ = C
′
(a) · S ′(C ′′

(a) · S ′′) (Cartan formula)

= C
′
(a) · S ′(C

′′
(a)) · (S ′ ◦ S ′′) (equality (3))

= C
′
(a) · S ′(C

′′
(a)) · µ(S) (multiplicativity of µ)

= C
′
(a) · S ′(C

′′
(a)) · µ

(
C(a)

)−1 · µ(U) (Lemma 5.1)

= µ(U).

�



STEENROD OPERATIONS AND DEGREE FORMULAS 7

It follows from Proposition 3.1 that the operation U gives rise to a structure
of a left S-module on A(X).

Take a = −[TX ] ∈ K0(X), where TX is the tangent vector bundle of X and
define the operation U as above. P. Brosnan denoted the operations U i by
Si in [1, Def. 7.13]. We set SR = UR for every R. The operations Si, and
therefore, SR extend to A(X) for every (non necessarily smooth) variety X [1,
§7]. These operations commute with projective push-forward homomorphisms
[1, Prop. 8.11]. The operation SR lowers the dimension of a cycle by |R|.

We summarize some properties of the operations SR in the following

Proposition 5.3. (1) For a projective morphism f : X → Y of varieties
the diagram

A(X)
SR−−−→ A(X)

f∗

y yf∗

A(Y )
SR−−−→ A(Y )

is commutative for every sequence R.
(2) Let X be a smooth variety. Then SR([X]) = c̄R(−TX) for every se-

quence R.

6. Degree formulas

Let X be a variety over F . For a closed point x ∈ X we define its degree as
the integer deg(x) = [F (x) : F ] and set

nX = gcd deg(x),

where the gcd is taken over all closed points of X. Clearly,

nX = gcd[L : F ]

over all finite field extensions L/F such that X(L) ̸= ∅.

Example 6.1. Let A be central simple algebra over F and let X = SB(A) be
the associated Severi-Brauer variety [8, 1.16]. We have X(L) ̸= ∅ for a field
extension L/F if and only if L splits A [8, Prop. 1.17]. The degree of every
finite splitting field extension is divisible by the index ind(A) of the algebra
A and there are splitting field extensions of degree exactly ind(A) [4, Ch. 4].
Therefore, nX = ind(A).

Example 6.2. Let (V, q) be a nondegenerate quadratic form over F . Let X
be the projective quadric hypersurface in the projective space P(V ) given by
the equation q(v) = 0. We have X(L) ̸= ∅ for a field extension L/F if and
only if the form qL = q⊗F L is isotropic. If q is an anisotropic form, then it is
isotropic over a quadratic extension of F and for every odd degree extension
L/F , the form qL is anisotropic by Springer’s theorem, therefore, nX = 2.

Fix a prime integer p ̸= charF . Let X be a projective variety of dimension
d > 0 and let q : X → SpecF be the structure morphism. For every sequenceR
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with |R| = d, the group Ad(SpecF ) in the commutative diagram (Proposition
5.3)

Ad(X)
SR−−−→ A0(X)

q∗

y yq∗=deg

Ad(SpecF )
SR−−−→ A0(SpecF ) Z/p

is trivial. Hence the degree of a cycle uX
R ∈ CH0(X) representing the element

SR([X]) ∈ A0(X) is divisible by p. The class of the integer deg(uX
R )/p modulo

nX is independent on the choice of uX
R ; we denote it by

Rp(X) ∈ Z/nXZ.

Clearly, p ·Rp(X) = 0.
If X is smooth, by Proposition 5.3(2), SR([X]) = c̄R(−TX), hence we can

take uX
R = cR(−TX). Thus, deg cR(−TX) is divisible by p and

Rp(X) =
deg cR(−TX)

p
+ nXZ.

Remark 6.3. The degree of the 0-cycle cR(−TX) does not change under field
extensions. In particular, it can be computed over an algebraic closure of F .

Theorem 6.4. (Degree formula) Let f : X → Y be a morphism of projective
varieties over F of dimension d > 0. Then nY divides nX and for every
sequence R with |R| = d, and for any prime integer p ̸= charF , we have

Rp(X) = deg(f) ·Rp(Y ) ∈ Z/nYZ.

In particular, if X and Y are smooth, then

deg cR(−TX)

p
≡ deg(f) · deg cR(−TY )

p

(
mod nY

)
.

Proof. It follows from the commutativity of the diagram in Proposition 5.3(1)
and the equality f∗([X]) = deg(f) · [Y ] that

f∗sR([X]) = deg(f) · sR([Y ]) ∈ A0(Y )

and therefore,

f∗u
X
R ≡ deg(f) · uY

R

(
mod pCH0(Y )

)
.

Applying the degree homomorphism, we get

deg(uX
R ) = deg(f∗u

X
R ) ≡ deg(f) · deg(uY

R) (mod pnY ),

whence the result. �

Remark 6.5. Using a different approach in [10], M. Rost defined the classes Rp

and proved the degree formula for the sequences of the form R = (i, 0, 0, . . . ).
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Remark 6.6. For a field extension L/F one can define an integer nL as the
gcd[F (v) : F ] over all valuations v on L over F with residue field F (v) finite
over F . Let X be a variety over F , let L = F (X) be the function field and let
v be a valuation on L over F . If X is projective, the generic point SpecL → X
factors through a morphism f : SpecO → X, where O is the valuation ring
of v. Let m be the maximal ideal of O and let x = f(m). Then the residue
field F (x) is isomorphic to a subfield of O/m = F (v), hence, deg(x) divides
[F (v) : F ] and therefore, nX divides nL. If X is smooth, for every closed
point x ∈ X there is a valuation v on L with residue field F (x), so that
[F (v) : F ] = deg(x) and therefore, nL divides nX . Thus, if X is smooth and
projective, then nX = nL, i.e., the number nX is a birational invariant of a
smooth projective variety over F .

7. Applications

We fix a prime integer p and a field F such that charF ̸= p. Let R be a
nonzero sequence and let X be a projective variety over F of dimension |R|.
The variety X is called Rp-rigid if Rp(X) ̸= 0 ∈ Z/nXZ.

We write vp for the p-adic valuation. For a cycle uX
R ∈ CH0(X) representing

SR([X]) we obviously have vp(nX) ≤ vp(deg u
X
R ) since nX divides degree of any

0-cycle.
The following statement follows readily from the definition.

Proposition 7.1. A projective variety X of dimension |R| is Rp-rigid if and
only if vp(nX) = vp(deg u

X
R ). If X is smooth, it is Rp-rigid if and only if

vp(nX) = vp
(
deg cR(−TX)

)
.

The following theorem is the main result of the section.

Theorem 7.2. Let X and Y be projective varieties over F and let R be a
sequence such that dim(X) = |R| > 0. Suppose that

(1) There is a correspondence α : X  Y of multiplicity not divisible by p;
(2) X is Rp-rigid;
(3) vp(nX) ≤ vp(nY ).

Then

(1) dim(X) ≤ dim(Y );
(2) If dim(X) = dim(Y ),

(2a) There is a correspondence β : Y  X of multiplicity not divisible
by p;
(2b) Y is Rp-rigid;
(2c) vp(nX) = vp(nY ).

Proof. Suppose that m = dim(X)−dim(Y ) ≥ 0 and set Y ′ = Y ×Pm
F . Clearly,

nY ′ = nY . We embed Y into Y ′ as Y × z where z is a rational point of Pm
F .

We may assume that α is a prime correspondence, replacing if necessary,
α by one of its prime components. Let Z ⊂ X × Y be the closed subvariety
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representing α. We have two natural morphisms f : Z → X and g : Z →
Y ↪→ Y ′. By assumption, deg(f) is not divisible by p.

We write the degree formulas of Theorem 6.4 for the morphisms f and g:

(12) Rp(Z) = deg(f) ·Rp(X) ∈ Z/nXZ,

(13) Rp(Z) = deg(g) ·Rp(Y ′) ∈ Z/nYZ.

The variety X is Rp-rigid and the degree deg(f) is not divisible by p, hence
it follows from (12) that Rp(Z) ̸= 0 in Z/nXZ. Since vp(nX) ≤ vp(nY ) and
p · Rp(Z) = 0, we have Rp(Z) ̸= 0 in Z/nYZ and it follows from the degree
formula (13) that deg(g) is not divisible by p, so that g is surjective, and
Rp(Y ′) ̸= 0 in Z/nYZ. The image of g is contained in Y , therefore Y = Y ′,
i.e., m = 0 and dim(X) = dim(Y ).

The variety Z defines a correspondence β : Y  X of multiplicity deg(g)
not divisible by p. Since Rp(Y ) = Rp(Y ′) ̸= 0 in Z/nYZ, it follows that Y
is Rp-rigid. Finally, p · Rp(Z) = 0 and Rp(Z) is nonzero in both Z/nXZ and
Z/nYZ, therefore, we must have vp(nX) = vp(nY ). �

We say that a variety X over F is p-compressible if there is a rational
morphism X → Y to a variety Y over F such that vp(nY ) ≥ vp(nX) and
dim(Y ) < dim(X). Since a rational morphism X → Y gives rise to a corre-
spondence X  Y of multiplicity 1, Theorem 7.2 yields:

Corollary 7.3. An Rp-rigid variety is not p-compressible.

Remark 7.4. The proof of Theorem 7.2 gives a slightly stronger statement
than Corollary 7.3. Namely, let f : X → Y be a surjective morphism of
varieties such that X is Rp-rigid and vp(nY ) ≥ vp(nX). Then dimX = dimY
and deg(f) is not divisible by p.

Remark 7.5. Let X be a smooth variety with the function field L = F (X).
By Remark 6.6, nX = nL. If Y is another smooth variety with F (Y ) ≃ L, the
the proof of Theorem 7.2 shows that Rp(X) = Rp(Y ) in Z/nLZ, i.e., Rp(X) is
a birational invariant of a smooth projective variety X.

Remark 7.6. The number vp(nX) is a birational invariant of an Rp-rigid
projective variety X (not necessarily smooth).

7.1. Curves. Let X be a smooth curve over F of characteristic not 2, let
p = 2 and R = (1, 0, 0. . . . ). We have

Rp(X) =
deg c1(−TX)

2
+ nXZ = (g − 1) + nXZ ∈ Z/nXZ

where g is the genus of X [3, Ch. 4, Ex. 1.3.3]. The curve X is R2-rigid if and
only if nX and g are even. For example, a conic curve without rational points
is R2-rigid.
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7.2. Severi-Brauer varieties. The class in K0(P) of the tangent bundle of
the projective space P = Pd over F is equal to (d + 1)[L] − 1, where L is the
canonical line bundle over P (with the sheaf of sections O(1)) [3, Ch. 2, Ex.
8.20.1]. Hence, by additivity of the class c(d), we have

c(d)(−T) = −(d+ 1)c(d)(L) = −(d+ 1)c1(L)
d = −(d+ 1)hd,

where h = c1(L) is the class of a hyperplane in P.
Assume that d = pn − 1, where p is prime such that p ̸= charF . Let

X = SB(A) be the Severi-Brauer variety of a central division algebra A of
index pn. Then nX = ind(A) = pn by Example 6.1. Over an algebraic closure
of F , the variety X is isomorphic to P [8, Th. 1.18]. Hence for the sequence

R = (0, . . . , 0,
n

1, 0, . . . ) we have (see Remark 6.3)

Rp(X) =
deg c(d)(−T)

p
+ nXZ = −pn−1 + nXZ ̸= 0 ∈ Z/nXZ,

Therefore, SB(A) is Rp-rigid. In particular, SB(A) is not p-compressible.

Remark 7.7. If A is not a division algebra or if indA is not power of p, then
one can show that SB(A) is p-compressible and hence is not Rp-rigid for every
R.

Example 7.8. Let R = (r1, r2, . . . ) be a sequence and let p be a prime integer
different from charF . For every i = 1, 2, . . . and j = 1, 2, . . . , ri choose a
central division F -algebra Aij of index pi. Denote by X the product of (finitely
many) Severi-Brauer varieties SB(Aij). Over an algebraic closure of F the
variety X is isomorphic to the product of projective spaces

(Pp−1)r1 × (Pp2−1)r2 × (Pp3−1)r3 × · · · .

A straightforward computation (similar to one in 7.2) shows that

vp
(
deg cR(−TX)

)
= r1 + 2r2 + 3r3 + · · · .

Write A for the tensor product of all the algebras Aij and set Y = SB(A).
Suppose A is a division algebra. By example 6.1,

vp(nY ) = vp
(
ind(A)

)
= r1 + 2r2 + 3r3 + · · · .

The variety X is identified canonically with a closed subvariety of Y , therefore,
nY divides nX . It follows from Proposition 7.1 that X is Rp-rigid. Thus, for
every R and p there are examples of Rp-rigid varieties.

7.3. Hypersurfaces. Let X be a smooth hypersurface of prime degree p ̸=
charF in the projective space P = Pd+1 over a field F . Let i : X ↪→ P be
the closed embedding. The normal bundle of X in P is isomorphic to i∗L⊗p,
where L is the canonical line bundle over P. Hence, there is an exact sequence
of vector bundles over X:

0 → TX → i∗T → i∗L⊗p → 0.
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By additivity of the class c(d), we have

c(d)(−TX) = i∗
(
c(d)(−TP ) + c(d)(L

⊗p)
)
= −(d+ 2)hd + pdhd = (pd − d− 2)hd,

where h is the class of a hyperplane section of X.
Assume that d = pn − 1 for some n ≥ 1. Since deg(hd) = p, we have

Rp(X) =
deg c(d)(−TX)

p
+ nXZ = (pd − d− 2) + nXZ ∈ Z/nXZ

for R = (0, . . . , 0,
n

1, 0, . . . ). If in addition, nX is divisible by p, we have
Rp(X) ̸= 0 and therefore, the hypersurfaceX isRp-rigid and not p-compressible.

In the case p = 2, X is a smooth quadric. If X is anisotropic, then nX = 2
by Example 6.2. Therefore, X is R2-rigid and not 2-compressible.

Remark 7.9. Let X be an anisotropic quadric of dimension d corresponding
to a Pfister neighbor. Choose an integer n such that 2n−1 ≤ d < 2n+1−1. Let
Y be a subquadric in X of dimension 2n − 1. It is known that Y is isotropic
over the function field F (X). If d ̸= 2n − 1, the quadric X can be compressed
into Y and therefore, X is not R2-rigid for every R.

7.4. Algebras with involutions. Let A be a central simple algebra over
F and let σ be an orthogonal involution on A [8, §2]. We say that σ is
anisotropic if σ(a)a ̸= 0 for every nonzero a ∈ A. It is conjectured that an
anisotropic involution stays anisotropic over the function field of the Severi-
Brauer variety SB(A). We give another proof of the following partial result
due to N. Karpenko [7, Th. 5.3].

Proposition 7.10. Let A be a division algebra with an orthogonal involution σ
and let X the Severi-Brauer variety of A. Then the involution σ is anisotropic
over F (X).

Proof. The index of A is a 2-power, hence by 7.2, X is a R2-rigid variety for
a certain R. Let Y = I(A, σ) ⊂ X be the involution variety (see [13]). The
variety Y has an L-valued point over a field extension L/F is and only if A is
split over L and σ is isotropic over L.

Since Y is a closed subvariety in X, the number nY is divisible by nX =
ind(A). If σ is isotropic over the field F (X), the variety Y has an F (X)-valued
point and therefore, there is a rational morphism X → Y . By Theorem 7.2,
dim(X) ≤ dim(Y ), a contradiction. �
7.5. Quadrics. We give alternative proves of the following two propositions
in algebraic theory of quadratic forms. The number 2n−1 in these statements
appears in connection with the Pfister forms (of dimension 2n) used in the
original proofs. In our approach this number is the degree of a certain Steenrod
operation.

Proposition 7.11. (Hoffmann [5, Th. 1]) Let X1 and X2 be anisotropic
quadrics. If dim(X1) ≥ 2n−1 and X2 is isotropic over F (X1), then dim(X2) ≥
2n − 1.
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Proof. Let X ′
1 be a smooth subquadric of X1 of dimension 2n− 1. By assump-

tion, X2 is isotropic over F (X1) and therefore over F (X1 ×X ′
1). The quadric

X1 is isotropic over F (X ′
1), hence the field extension F (X1 × X ′

1)/F (X ′
1) is

purely transcendental. It follows that X2 is isotropic over F (X ′
1), i.e., there

is a rational morphism X ′
1 → X2. The variety X ′

1 is R2-rigid for a certain
R by 7.3 and nX′

1
= nX2 = 2 (Example 6.2). Therefore, by Theorem 7.2,

dim(X2) ≥ dim(X ′
1) = 2n − 1. �

Proposition 7.12. (Izhboldin [6, Th. 0.2]) Let X1 and X2 be anisotropic
quadrics. If dim(X1) ≥ 2n − 1 = dim(X2) and X2 is isotropic over F (X1),
then X1 is isotropic over F (X2).

Proof. As in the proof of Proposition 7.11, by Theorem 7.2 applied to the
varieties X ′

1 and X2, there is a correspondence X2  X ′
1 of odd multiplicity.

In other words, X ′
1 has a closed point of odd degree over F (X2). By Springer’s

theorem, X ′
1, and therefore, X1 is isotropic over F (X2). �

References

[1] P. Brosnan, Steenrod operations in chow theory, http://www.math.uiuc.edu/K-
theory/0370/ (1999).

[2] W. Fulton, Intersection theory, Springer-Verlag, Berlin, 1984.
[3] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate

Texts in Mathematics, No. 52. MR 57 #3116
[4] I. N. Herstein, Noncommutative rings, Mathematical Association of America, Wash-

ington, DC, 1994, Reprint of the 1968 original, With an afterword by Lance W. Small.
MR 97m:16001

[5] D. W. Hoffmann, Isotropy of quadratic forms over the function field of a quadric,
Math. Z. 220 (1995), no. 3, 461–476. MR 96k:11041

[6] O. Izhboldin, Motivic equivalence of quadratic forms. II, Manuscripta Mathematica
42 (2000), 41–52.

[7] N. A. Karpenko, On anisotropy of orthogonal involutions, J. Ramanujan Math. Soc.
15 (2000), no. 1, 1–22. MR 1 751 923

[8] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, Amer-
ican Mathematical Society, Providence, RI, 1998, With a preface in French by J. Tits.

[9] M. Levine and F. Morel, Algebraic cobordism I, http://www.math.uiuc.edu/K-
theory/0547/ (2002).

[10] M. Rost, Degree formula, http://www.math.ohio-state.edu/ rost/chain-lemma.html
#degree-formula (2000).

[11] Yuli B. Rudyak, On Thom spectra, orientability, and cobordism, Springer-Verlag,
Berlin, 1998, With a foreword by Haynes Miller. MR 99f:55001

[12] R. M. Switzer, Algebraic topology—homotopy and homology, Springer-Verlag, New
York, 1975, Die Grundlehren der mathematischen Wissenschaften, Band 212.

[13] David Tao, A variety associated to an algebra with involution, J. Algebra 168 (1994),
no. 2, 479–520.

Alexander Merkurjev, Department of Mathematics, University of Califor-
nia, Los Angeles, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu


