DEGREE THREE COHOMOLOGICAL INVARIANTS OF
SEMISIMPLE GROUPS

A. MERKURJEV

ABSTRACT. We study the degree 3 cohomological invariants with coeffi-
cients in Q/Z(2) of a semisimple group over an arbitrary field. A list of all
invariants of adjoint groups of inner type is given.

1. INTRODUCTION

la. Cohomological invariants. Let G be a linear algebraic group over a
field F' (of arbitrary characteristic). The notion of an invariant of G was
defined in [B] as follows. Consider functor

H'(—,G) : Fieldsy — Sets,

where Fieldsy is the category of field extensions of F', taking a field K to the
set H'(K, Q) of isomorphism classes of G-torsors over Spec K. Let

H : Fieldsp — Abelian Groups

be another functor. An H-invariant of GG is then a morphism of functors
I:H(-,G) — H.

We denote the group of H-invariants of G by Inv(G, H).

An invariant I € Inv(G, H) is called normalized if I(X) = 0 for the trivial
G-torsor X. The normalized invariants form a subgroup Inv(G, H)uorm of
Inv(G, H) and there is a natural isomorphism

Inv(G, H) ~ H(F) & Inv(G, H ) norm.

Of particular interest to us is the functor H which takes a field K/F to
the Galois cohomology group H™ (K, Q/Z(j)), where the coefficients Q/Z(j),
7 >0, are defined as the direct sum of the colimit over n of the Galois modules

©J where pi,, is the Galois module of m'™ roots of unity, and a p-component
in the case p = char(F') > 0 defined via logarithmic de Rham-Witt differentials
(see [[3, 1.5.7], [I@]).

We write Inv" (G, Q/Z(j)) for the group of cohomological invariants of G of

degree n with coefficients in Q/Z(j).
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2 A. MERKURJEV

If G is connected, then Inv' (G,@/Z(j))norm = 0 (see [[@, Proposition
31.15]). The degree 2 cohomological invariants with coefficients in Q/Z(1)
(equivalently, the invariants with values in the Brauer group Br) of a smooth

connected group were determined in [I]:
Inv*(G, Br)yorm = Inv? (G, Q/Z(1))
In particular, for a semisimple group G we have
mv?(G,Q/Z(1)), =~ C(F),

where C (F) is the group of characters defined over F' of the kernel C' of the
universal cover G — G by [E, Prop. 6.10].

The group of degree 3 invariants Inv® (G,Q/Z(2))_ ... was determined by
Rost in the case when G is simply connected quasi-simple. This group is finite
cyclic with a canonical generator called the Rost invariant (see [B, Part II]).

In the present paper, based on the results in [I¥], we extend Rost’s result to
all semisimple groups.

~ Pic(G).

norm

Theorem. Let GG be a semisimple group over a field F'. Then there is an exact
sequence

0 — CHY(BG)1ore — HY(F,C(1)) -2
v’ (G,Q/Z(2)), . — Q(G)/Dec(G) — H*(F,C(1)).

Here BG is the classifying space of G and Q(G)/ Dec(G) is the group defined
in Section Bd in terms of the combinatorial data associated with G (the root
system, weight and root lattices).

If G is simply connected, the character group C is trivial and we obtain
Rost’s theorem mentioned above.

The main result has clearer form for adjoint groups g of inner type. In
this case every character of C' is defined over F, ie., C = C(F) We show
that the group Inv®(G, Q/Z(2)) dee := Im(c) of decomposable invariants (given
by a cup-product with the degree 2 invariants), is canonically isomorphic to
C' ® F*. The factor group Inv*(G, Q/Z(2)), , of Inv*(G,Q/Z(2)) by the
decomposable invariants is nontrivial if and only if G’ has a simple component
of type C,, or D,, (when n is divisible by 4), Es or E7. If G is simple, the group
of indecomposable invariants is cyclic with a canonical generator restricting to
a multiple of the Rost invariant.

We will use the following notation in the paper.

F is the base field,

Fyp a separable closure of F,

I'pr = Gal(Fyp/F).

For a complex A of étale sheaves on a variety X, we write H*(X, A) for the
étale (hyper-)cohomology group of X with values in A.

Acknowledgements: The authors would like to thank Vladimir Chernousov,
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2. PRELIMINARIES

2a. Cohomology of BG. Let G be a connected algebraic group over a field
F and let V be a generically free representation of G such that there is an open
G-invariant subscheme U C V and a G-torsor U — U/G such that U(F) # 0
(see [E8, Remark 1.4]).

Let H be a (contravariant) functor from the category of smooth varieties
over F' to the category of abelian groups. Very often the value H(U/G) is
independent (up to canonical isomorphism) of the choice of the representation
V' provided the codimension of V' '\ U in V is sufficiently large. This is the
case, for example, if H = CH’, the Chow group functor of cycles of codimen-
sion ¢ (see [E@] or [H]). We write H(BG) for H(U/G) and view U/G as an
“approximation” for the “classifying space” BG of G.

We have the two maps p; : H{U/G) — H((U x U)/G), i = 1,2, induced
by the projections p; : (U x U)/G — U/G. An element h € H(U/G) is called
balanced if pi(h) = p3(h). We write H(U/G)pa for the subgroup of all balanced
elements in H(U/G).

Write ‘H" (Q/ Z(j)) for the Zariski sheaf on a smooth scheme X associated
to the presheaf S — H" (S, Q/Z(j)).

Let u € HY,.(U/G, H"(Q/Z(j))),,,- Define an invariant I, € Inv"(G, Q/Z(j))
as follows (see [M]). Let X be a G-torsor over a field extension K/F. Choose
a point z € (U/G)(K) such that X is isomorphic to the pull-back via z of the
versal G-torsor U — U/G and set [,(X) = x*(u), where

Hz,, (U/G, H"(Q/Z(5))) — Hzq(Spec K, H™(Q/Z(3))) = H" (K, Q/Z(j))
is the pull-back homomorphism given by x : Spec(K) — U/G. The fact that

the element w is balanced ensures that z*(u) does not depend on the choice of
the point z (see [0, Lemma 3.2]).

Write ﬁ(z)ar(U/G, H"(Q/Z(34))) for the factor group of HY, (U/G, H"(Q/Z(j)))
by the natural image of H" (F,Q/Z(j)).

Proposition 2.1. ([, Corollary 3.4]) The assignment u — I, yields an iso-
morphism

Hy,, (U/GHNQ/Z()))),,, — Tnv™ (G, Q/Z()))

2b. The map ag. Let GG be a semisimple group over | F and let C be the kernel
of the universal cover G — G. For a character X € C (F) over F' consider the
push-out diagram

norm’

| — GG ——1
|
1~ Gp—— G — G ——1

We define a map
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by ag(é)(x) = 6(€), where § : HY(F,G) — H*(F,G,,) = Br(F) is the con-
necting map for the bottom row of the diagram.

Example 2.2. Let G = PGL,,. Then C = Z/nZ and the map «¢ takes the
class [A] € H'(F,PGL,) of a central simple algebra A of degree n to the
homomorphism i + nZ +— i[A] € Br(F).

Let C" be the center of G. Recall that there is the Tits homomorphism (see
[[3, Theorem 27.7])

Bg : C'(F) — Br(F).

A central simple algebra over F' representing the class Bg for some y € C" (F)
is called a Tits algebra of G over F.
In the following proposition we relate the maps ag and 5.

Prop/psition 2.3. Let G be a semisimple group, X a G-torsor over F' and
x € C'(F), where C" is the center of the universal cover G of G. Let *G =
Autg(X) be the twist of G by X and *G the universal cover of XG. Then

ag(X)(xle) = Bxa(x) — Ba(x),
where C C C" is the kernel ofé —G.

Proof. By [[3, §31], there exist a unique (up to isomorphism) G-torsor Y
such that the twist G = Aut(Y) is quasi-split and ac(Y)(x|c) = —Bz(x)
If XY is the twist of Y by X, then Autxg(*Y) ~ Autg(Y) is quasi-split.
Hence axg(*Y)(x|c) = —Bxg(x). It follows from [, Proposition 28.12] that
axg(YY) + ag(X) = ag(Y). O

2c. Admissible maps. Let G be a split simply connected group over F' and
IT a set of simple roots of G.

Proposition 2.4. (cf. [A, Proposition 5.5]) Let G be a split simply connected
group over F', C the center of G. Let II' be a subset of II and let G’ be the
subgroup of G generated by the root subgroups of all roots in II". Then G’ is
a simply connected group and C' C G’ if and only if every fundamental weight
w, for av € I1'\ I’ is contained in the root lattice A, of G.

Proof. The group G’ is simply connected by [22, 5.4b]. The images of the
co-roots a* : G,, — T for a € II' generate the maximal torus 7" = G' N T of
G'. Therefore, the character group €2 of the torus T'/T" coincides with

{AeT suchthat (\a*)=0 forall acll'}

and hence € is generated by the fundamental weights ws for all 5 € II\ II'.

We have T/ = A,,/Q and C = A, /A,. Therefore, C C G'NT =T’ if and only
if Q C A, 0

A homomorphism a : C(F) — Br(F) is called admissible if ind a(y) divides
ord(y) for every x € C(F).
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Example 2.5. Suppose G is the product of split adjoint groups of type A. By
Example B2, every admissible map belongs to the image of ag.

Proposition 2.6. Let G be a split adjoint group over F'. Then every admissible
map in Hom (C(F),Br(F)) belongs to the image of og.

Proof. Let Il be the subset of IT of all roots a such that w, € A, and let G’ be
the subgroup of G generated by the root subgroups for all roots in IT". Then
by Proposition 24, G’ is a simply connected group such that C' € G’. Let C’
be the center of G" and set C” := C’"/C. By Lemma P70 below, the top row in
the commutative diagram

HY(F,G'/C) HYF,G'/C") Hom (C"(F), Br(F))

aG//C l aG’/C’ l

Hom (C(F), Br(F)) = Hom (C'(F), Br(F)) —= Hom (C"(F), Br(F))

Is exact.
Let a € Hom(C(F), Br(F)) be an admissible map. Then the image a’ of a in

Hom(a’ (F),Br(F)) is also admissible. Inspection shows that every component
of the Dynkin diagram of G’ is of type A. (A root a belongs to IT" if and only if
the i row of the inverse C~1 of the Cartan matrix is integer, see Section E.)
By Example 3, a’ belongs to the image of ag//cr. A diagram chase shows
that a belongs to the image of agr/c. The map ag/c is the composition of
HYF,G'/C) — HY(F,G) and ag, hence a belongs to the image of ag. O

Lemma 2.7. Let Gy — G5 be a central isogeny of split semisimple groups with
the kernel Cy. Then the sequence

HY(F,G,) — H'(F,Gs) — Hom(C\(F), Br(F))

with the second map the composition of o, and the restriction map on Cy, s
exact.

Proof. The group C is diagonalizable as Gy is split. Let T" be a split torus
containing C as a subgroup. The push-out diagram

1 01 Gl GQ 1

4

1 T Gs Go 1

yields a commutative diagram

HY(F,G)) — HY(F,G,) HHom(Cl( ), Br(F))

| |

HY(F,G5) — H'(F,G5) — Hom(T'(F), Br(F)).
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The bottom row is exact as Hom (f(F), Br(F)) = H*(F,T). The left vertical
arrow is surjective since H*(F, Coker()) = 1 by Hilbert’s Theorem 90. The
result follows by diagram chase. U

2d. The morphism ;. Let G be a semisimple group, C' the kernel of the

universal cover G — G and f : X — Spec F a G-torsor. Write Zys(1) for
the cone of the natural morphism Zp(1) — Rf.Zx(1) of complexes of étale
sheaves over Spec F', where Z(1) = G,,,[—1]. The composition (see [[J, §4])

By : C = reap (N[ — Zy(1)[2] — Zp(1)[3]
yields a homomorphism
B C(F) — H*(F,Zg(1)) = Br(F).
In the following proposition we relate the maps 8} and ag.
Proposition 2.8. For a G-torsor f: X — Spec I, we have B} = ag(X).

Proof. By [[¥, Example 6.12], the map B} coincides with the connecting ho-
momorphism for the exact sequence

(2.1) 1 — FX — Fip(X)* — Div(Xyep) — Coep — 0,

sep

where Div is the divisor group (recall that @ep = Pic(Xsep))-

Consider first the case G = PGL,, and X = Isom(B, M,,) is the variety of
isomorphisms between a central simple algebra B of degree n and the matrix
algebra M,, over F. We have C' = u,, and C = Z/nZ. The exact sequence
(20) for the Severi-Brauer variety S of B in place of X gives the connecting
homomorphism Z — Br(F') that takes 1 to the class [B] by [[@, Theorem
5.4.10]. A natural map between the two exact sequences induced by the natural
morphism X — S and Example B2 yield

(2.2) B7(1) = [B] = apaL, (X)(1).

Suppose now that G = PGL;(A) for a central simple algebra A of degree n.
Consider the PGL,-torsor Y = Isom(A, M,,). Then G is the twist of PGL,
by Y. The G-torsor Z = Isom(B, A) is the twist of X by Y. It follows from
[[3, Proposition 28.12] that

(2.3) ac(Z2)(1) = apar,(X)(1) — apaw, (Y)(1) = [B] - [4].

The group homomorphism PGL;(B) x PGL;(A%?) — PGL; (B ® A%) takes
the torsor Z x Isom(A%, AP) to V := Isom(B ® A, A® A%). Let g and h
be the structure morphisms for Z and V', respectively. It follows from (22)
applied to ; and (233) that

(2.4) By(1) = Bi(1) = [B] = [A] = ac(2)(1).

Now consider the general case. By [E3, Théoreme 3.3], for every x € C (F),
there is a central simple algebra A (of degree n) over F' and a commutative
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diagram

1 C G G 1
| |

A G-torsor f : X — Spec F' yields a PGL;(A)-torsor, say k : W — Spec F.
We have by (E3),

Bi(x) = Bi(1) = apar, 4 (W)(1) = aa(X)(x). U

3. THE GROUP Inv* (G, Q/Z(2))

In this section we determine the group Inv®(G, Q/Z(2)) of degree 3 coho-
mological invariants of a semisimple group G.

Recall first a construction of degree two cohomological invariants of G with
coefficients in Q/Z(1), or, equivalently, the invariants with values in the Brauer

group. Every character xy € C'(F) yields an invariant I, of G of degree 2 with
coefficients in Q/Z(1) defined by

1,(X) = a(X)(xk) € Br(K).
By [0, Theorem 2.4}, the assignment x +— I, yields an isomorphism

C(F) = nv?(G,Q/Z(1)), .
3a. Representation ring. (See [Z3].) Write R(G) for the representation ring
of G, i.e., R(G) is the Grothendieck group of the category of finite dimensional
representations of G. As an abelian group R(G) is free with basis the isomor-
phism classes of irreducible representations.

Consider the weight lattice A of G (the character group of a maximal split
torus over Fy,) as a I'p-lattice with respect to the s-action (see [E]). Let
[ be the (finite) factor group of I'r acting faithfully on A. Write A for the
semidirect product of the Weyl group W of G and I with respect to the
natural action of IV on W. The group A acts naturally on A.

Assigning to a representation of GG the formal sum of its weights, we get an
injective homomorphism

ch : R(G) — Z[A]>.

For any A € A write A, for the corresponding Tits algebra (over the field of
definition of \) and A()) for the sum > e* in Z[A]*, where \ runs over the
A-orbit of A (we employ the exponential notation for Z[A]). By [B, Part II,
Theorem 10.11], the image of R(G) in Z[A]? is generated by ind(A,) - A(N)
over all A € A.

In particular, if G is quasi-split, all Tits algebras are trivial and hence ch is
an isomorphism.
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Example 3.1. Consider the variety A of maximal tori in G and the closed
subscheme 7 C G x X of all pairs (g,T) with g € T. The generic fiber of the
projection 7 — & is a maximal torus in G p(x), it is called the generic mazimal
torus Tyen of G. By [E4, Theorem 1], if G is split, the decomposition group of
Tyen coincides with the Weyl group W. It follows that if G is quasi-split, then
A is the decomposition group of Tye,. Moreover, ch is an isomorphism, hence
the restriction homomorphism R(G) — R(Tyen) = Z[A]? is an isomorphism
for a quasi-split G.

3b. Root systems and invariant quadratic forms. Let {aj,as...a,}
be a set of simple roots of an irreducible root system in a vector space V,

{wq,ws, ..., w,} the corresponding fundamental weights generating the weight
lattice A, and W the Weyl group.
Consider the n-columns « := (ay, @9, ..., a,)" and w = (wy, wy, ..., w,)".

Then a = Cw, where C' = (¢;;) is the Cartan matrix (see [B, Chapitre VIJ).
There is a (unique) W-invariant bilinear form on the dual space V* such that
the length of a short co-root is equal to 1. Let D := diag(dy, ds, ..., d,) be the

diagonal matrix with d; the length of the i*" co-root. Then DC is a symmetric
even integer matrix (i.e., the diagonal terms are even).

Note that if A is a symmetric n x n matrix over Q, then %thw is contained
in Sym*(A,,) if and only if the matrix A is even integer.

Consider the integer quadratic form
1
q:= §thCw € Sym*(A,)

on A7, where A, is the root lattice. Recall that the Weyl group W acts naturally
on A,.

Lemma 3.2. The quadratic form q is W -invariant.

Proof. Let s; be the reflection with respect to «;. It suffices to prove that
si(q) = q. We have s;(w) = w — a;e;. Hence
1
si(q) = é(w — ;€)' DC(w — ae;)

1
= q— ae! D(Cw — iai(;’ei)

1
= q — oyd;(ela — 50@'65062')
1

=4q— aidi(ai - 5041%) =4q

as ¢;; = 2. O
If o is a short co-root, then ¢(a)) = d; = 1 since (w;, ;) = §;;. It follows
that ¢ is a (canonical) generator of the cyclic group Sym?*(A,)".

Example 3.3. For the root system of type A,,_1, n > 2, we have A, = Z"/Ze,
where e = €1 + €3 + - - - + e,,. The root lattice A, is generated by the simple
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roots €; — €, €3 — €3, ..., 6,1 —€,. The Weyl group W is the symmetric group
S,, acting naturally on A,. The generator of Sym*(A,)" is the form
g=—Y I;7; = 1 i 72
LT L
1<J =1

The group Sym*(A,)" = Sym*(A,) N Sym*(A,)" is also cyclic with the
canonical generator a positive multiple of ¢.

Proposition 3.4. Let m be the smallest positive integer such that the matriz
mDC™! is even integer. Then mq is a generator of Sym*(A,)"W.

Proof. Rewrite ¢ in the form ¢ = 3(C~'a)'DC(C'a) = 3a'DC~'a. The
multiple mg is contained in Sym*(A,) if and only if the matrix mDC~! is even
integer. U]

3c. The groups Dec(G) C Q(G). Let A be a lattice. Consider the abstract
total Chern class homomorphism

Co + ZIA] — Sym" (A)[[t]]"
defined by co(€*) = 1 + at. We define the abstract Chern class maps
ci : Z[A] — Sym'(A), i >0,
by co(®) = D5 ci()t’. Clearly, co(r) = 1,

cl(Ze“") = Zai, CQ(ZG‘“) = Zaiaj,

i i i i<j
¢ is a homomorphism and
ez +y) = ca(x) + a(@)a(y) + ca(y)

for all z,y € Z[A].

If a group W acts on A, then all the ¢; are W-equivariant.

Suppose that A" = 0. Then ¢, is zero on Z[A]" and ¢, yields a group
homomorphism

(3.1) ¢y« Z[AY — Sym*(A)W.

We write Dec(A) for the image of this homomorphism. The group Dec(A) is
generated by the decomposable elements ) ._.a;a;, where {ai,as,....a,} is a
W-invariant subset of A. We also have

(3.2) co(xy) = rank(z)ea(y) + rank(y)ea(x)

for all z,y € Z[A]", where rank : Z[A] — Z is the map e +— 1. If S C Ais a
finite W-invariant subset, then since Y, o2 € A" =0, we have

(3.3) 02(26“) = —%Za?

1<J
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Let G be a semisimple group over F. Recall that the weight lattice A is a A-
module (see Section (Bd)). Note that A" = 0, so we have the homomorphism
of I'p-modules (BI) with A = A.

Set

Q(G) := Sym*(A)* = (Sym*(\)")'* .

and write Dec(G) for the image of the composition

(3.4) 7 R(G) - ZIA® =2 SymP (M)A = Q(G).

Example 3.5. The map 7 : R(SL,,) — Q(SL,,) takes the class of the tauto-
logical representation to the quadratic form }, ; ;T; which is the negative of
the canonical generator of Q(SL,) (see Example B33).

It follows from Example B3 that if G is a quasi-simple group, then for a
representation p of G, we have 7(p) = —N(p)q, where N(p) is the Dynkin
index of p (see [@]). Hence the image of Dec(G) under 7 is equal to ngZg,
where ng is the ged of the Dynkin indexes of all the representations of G. The
numbers ng for split adjoint groups G of types B,,, C,, and F; were computed
in [@] (see also Section HH).

A loop in G is a group homomorphism G,, — Gep Over Fy, (see [I3, §31]).
By [B, Part II, §7]), the group Q(G) has an intrinsic description as the group
of all I'p-invariant quadratic integral-valued functions on the set of all loops
in G. It follows that a homomorphism G — G’ of semisimple groups yields
a group homomorphism Q(G’) — Q(G). The functoriality of the Chern class
shows that this homomorphism takes Dec(G’) into Dec(G).

3d. The key diagram. Let V' be a generically free representation of GG such
that there is an open G-invariant subscheme U C V and a G-torsor U — U/G
such that U(F) # () (see Section E&). We assume in addition that V' \ U is of
codimension at least 3.

By [, Th. 1.1], there is an exact sequence

0 — CHX(U"/G) — H (U"/G,Z(2)) — Hy (U"/G, H}Q/Z(2))) — 0

for every n. We can view this as an exact sequence of cosimplicial groups. The
group CH*(U" /@) is independent of n, so it represents a constant cosimplicial
groups CH?(BG). Therefore, we have an exact sequence

0— CHQ(BG) — H4(U/G7 Z(2))bal — H%ar (U/Ga H3(Q/Z(2)))bal — 0.

The right group in the sequence is canonically isomorphic to Inv® (G, Q/Z(2)) orm
by Proposition P71, and hence is independent of V. Therefore, the middle term
is also independent of V' and we write il (BG,Z(2)) for ﬁ4(U/G,Z(2))bal.
Therefore, we have the exact row in the following diagram with the exact
column given by [[8, Theorem 5.3]:
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Q(G)

0

H2(F,C(1)),

. ~ L
where C'(1) is the derived tensor product C' ® Zy (1) in the derived category
of efale sheaves on F. Explicitly (see [I¥, Section 4c]),

-~ ~

C(1) = Tor?(Csep, F5) ® (Cuep @ F25)[1].

sep sep

Example 3.6. The group SL,, is special simply connected, hence C =0 and
Inv?(SL,, Q/ Z(Q))norm = 0. It follows that we have isomorphisms of infinite
cyclic groups

~v:CH2(BSL,) = H (BSL,,Z(2)) > Q(SL,).

The group CH?*(B SL,,) is generated by ¢, of the tautological representation
by (21, §2].

3e. The map o. The map o is defined as follows (see [[J, §5]). Let f: X —
Spec K be a G-torsor over a field extension K/F, so we have a morphism

By C — Zx(1)[3] as in Section B4, and therefore, the composition

B1) = & & zp(1) 2, (Zx(1) & Zr(1)) 3] — Z(2)3],

which induces a homomorphism H* (F, 5(1)) — HY(K,Z(2)) = H*(K,Q/Z(2)).
Then the value of the invariant o(«) for an element o € H'(F, C (1)) is equal
to the image of a under this homomorphism.

Let y € C(F) and a € F*. By [I8, Remark 5.2], we have y U (a) €
H'(F,C(1)) and therefore, o(yU(a)) is the invariant taking a G-torsor X over
K to ag(X)(xx)U(a) € H*(K,Q/Z(2)). Here the cup-product is taken with
respect to the pairing

Br(K) @ K* = H*(K,Q/Z(1)) ® H' (K, Z(1)) — H*(K,Q/Z(2)).
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3f. The map . We will determine the map v in the key diagram.

Lemma 3.7. The maps v and il (BG,Z(2)) — Q(G) are functorial in G.
Proof. In [[8] the map + is given by the composition
CH?*(BG) — H*(BG,Z(2)) = H*(BG,Z;(2)) =
H*(BG,1<3Z(2)) — Hy,.(BG, K>)'" — D(G),
where Z¢(2) is the cone of Zpi(2) — Rf.Zpc(2) for the versal G-torsor f :
EG — BG and the group D(G) containing Q(G) is defined in [I8]. The first
four homomorphisms are functorial in GG, and the last one is functorial as was

shown in [B, Page 116] in the case G is simply connected. The proof also goes
through for an arbitrary semisimple G. U

Lemma 3.8. The composition of the second Chern class map

R(G) — Ko(BG) 2+ CH*(BG)
with the diagonal morphism ~y in the diagram coincides with the map T in (54)
up to sign. The image of v coincides with Dec(G).

Proof. As Q(G) injects when the base field gets extended, for the proof of the
first statement we may assume that F' is separably closed. Let p : G — SL,
be a representation. Write x1, xs, ..., z, for the characters of p in the weight
lattice A. Consider the diagram

R(SL L,)

\/

CH?*(BSL,)

R(G) s Q(G)

CH*(BG)

with the vertical homomorphisms induced by p. The vertical faces of the di-
agram are commutative by Lemma B and the functoriality of ¢, and the
character map ch. By Example B3, the top map 7 takes the class of the tauto-
logical representation ¢ of SL,, to the a generator of Q(SL,). By Example B8,
v in the top of the diagram is an isomorphism taking the canonical generator
of CH*(BSL,) to a generator of Q(SL,,). It follows that 7(¢) and y(cy(¢)) in
the top face of the diagram are equal up to sign. The class of p in R(G) is
the image of 7 under the left vertical homomorphism. It follows that 7(p) and
v(c2(p)) in the bottom face of the diagram are also equal to sign.

The second statement follows from the first and the surjectivity of the second
Chern class map R(G) — CH?(BG) (see [B, Appendix C] and [28, Corollary
3.2)). O
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3g. Main theorem. The following theorem describes the group of degree 3
cohomological invariants with coefficients in Q/Z(2) of an arbitrary semisimple

group.

Theorem 3.9. Let G be a semisimple group over a field F'. Then there is an
exact sequence

0 — CHY(BG)ione — H'(F.C(1)) -2
Inv? (G, @/Z(Q))

Proof. Follows from the key diagram above and Lemma B as Q(G) is torsion
free and H'(F,C(1)) is torsion. O

— Q(G)/ Dec(G) 25 H2(F,C(1)).

norm

Remark 3.10. The map 6}, is trivial if G is split or adjoint of inner type (see
[¥, Proposition 4.1 and Remark 5.5]).

The exact sequence in Theorem B is functorial in G. More precisely, let
G — G’ be a homomorphism of semisimple groups extending to a homomor-
phism C' — C” of the kernels of the universal covers. By Lemma B, the
diagram

HY(F,C'(1)) 7> Inv* (@, Q/Z(2)) . —— Q(G")/ Dec(G)

| | |

HY(F,C(1)) —2>Inv*(G,Q/Z(2))  —— Q(G)/ Dec(G)

norm

is commutative.
Write Inv® (G, Q/Z(2)) dee for the image of 0. We call these invariants de-
composable. Thus, we have an exact sequence

0 — CHY(BG)1ore — HY(F,C(1)) - Inv* (G, Q/Z(2)),  — 0.

dec

We don’t know if the group CH?*(BGQ)os is trivial, but it is always finite.

Proposition 3.11. The group CH*(BG) is finitely generated. In particular,
CH?(BG)ors 15 finite.

Proof. By [E3, Théoreme 3.3] and Section Bd, we have
Z[A,)® € R(G) C Z[Ay).

The Noetherian ring Z[A,] is finite over Z[A,]?, hence Z[A,]* is Noetherian.
The Z[A,]?-algebra Z[A,] is finite, hence so is R(G). It follows that the
ring R(G) is Noetherian. Let I be the kernel of the rank map R(G) — Z.
Since [ is finitely generated, the factor group R(G)/I? is finitely generated.
By (B3), the second Chern class factors through a surjective homomorphism
R(G)/I* — CH*(BG), whence the result. O

We will show in Section Ea that the group CHz(BG)mS is trivial if G is
adjoint of inner type.
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The factor group
Inv’(G,Q/Z(2)), , == Inv*(G,Q/Z(2))/ Inv* (G, Q/Z(2)) ..

is called the group of indecomposable invariants. Thus, we have an exact
sequence

0 — v (G, Q/Z(2)). , — Q(G)/ Dec(G) ~& H*(F,0(1)).

If G is simply connected quasi-simple, all decomposable invariants are triv-
ial, and the group Inv*(G,Q/Z(2)) = Inv® (G,Q/2(2)),, ~ Q(G)/ Dec(G) is
cyclic generated by the Rost invariant Rg. The order of the Rost number ng
of Rg is determined in [B, Part II].

4. GROUPS OF INNER TYPE

Let G be a semisimple group over F. Let X be a G-torsor over F' and let
G’ be the twist of G by X, or equivalently, G’ ~ Autg(X). The choice of
the torsor X yields a canonical bijection ¢ : H'(K,G') = H'(K,G) for every
field extension K/F (see [, Proposition 8.8]). Therefore, we have an iso-
morphism Inv" (G, Q/Z(j)) = Inv"(G’,Q/Z(j)). Note that this isomorphism
does not preserve normalized invariants as ¢ does not preserve trivial torsors.
Precisely, ¢ takes the class of a trivial torsor to the class of X. We modify the
isomorphism to get an isomorphism

(4.1) Inv"(G,Q/Z(5)), = Inv" (G, Q/Z(j))
taking an invariant I of G to an invariant I’ of G’ satisfying
I'(X') = 1(p(X")) — I(X).

norm norm’

4a. Decomposable invariants. Let G be a semisimple group of inner type.
Then C'is a diagonalizable finite group.

Lemma 4.1. There is a natural isomorphism H'! (F, 6(1)) ~C®F*,

Proof. Write O~ R/S, where R and S are lattices. In the exact sequence
H'(F,S(1)) — H'(F,R(1)) — H'(F,C(1)) — H(F,S(1))

the first two terms are S ® F* and R ® F'*, respectively, and the last term is
equal to S® H?(F,Z(1)) = 0 by Hilbert’s Theorem 90. The result follows. [

Recall that under the isomorphism in Lemma BT, the map o in Theorem B9
is defined as follows. For every x € C and a € F*, the invariant o(xU(a)) takes
a G-torsor X over a field extension K/F to ag(X)(xx)U(a) € H3(K,Q/Z(2))
(see Section Bd).

Theorem 4.2. Let G be a semisimple adjoint group of inner type over a field
F'. Then the homomorphism

o:C®F* — Inv?(G, Q/Z(2))

dec

is an isomorphism. Equivalently, the group CH?*(BG) is torsion-free.
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Proof. As GG is an inner form of a split group, by (E), we may assume that

G is split. The group C is a direct sum of cyclic subgroups generated by
X1s-- -, Xm, respectively. Let aq,...,a,, € F* be such that the element u :=
> xi®a; belongs to the kernel of o. It suffices to show that a; € (F*)%, where
s; := ord(y;) for all .

Fix an integer i. For a field extension K/F and any p € HY(K,Q/Z) of
order s;, consider the admissible map f : C — Br(K(t)) for the field K (t) of
rational functions over K, defined by

[ U, i Br(K(W)if =i
Fhu) = { 0, otherwise.

By Proposition 23, there is a G-torsor X over K (t) satisfying aq(X)(x;) =
f(x;) forall j. Asu € Ker( ), we have

0=0((X) = L aclX)(x)U (1) = U ) U e

in H3(K(t),Q/Z(2)). Taking resuiue at t (see [B, Part II, Appendix A]),
H,, (K (1), Q/Z(2)) — H*(K,Q/Z(1)) = Br(K),

we get pU (a;) = 0 in Br(K). By Lemma B3 below, we have a € (F*)%. O
Lemma 4.3. Leta € F* and s > 0 be such that for every field extension K/F
and every p € H'(K,Q/Z) of order s one has pU(a) = 0 in H*(K,Q/Z(1)) =
Br(K). Then a € (F*)*.
Proof. Let H = Z/sZ. Choose an H-torsor X — Y with smooth Y, Pic(X) =
0 and F[X]* = F*. (For example, take an approximation of EH — BH.) By
[B] or [7], there is an exact sequence

Pic(X)"¥ — H*(H, F[X]*) — Br(Y),
which yields an injective map F*/F** — Br(F(Y)) as H*(H, F[X]*) =
H?*(H,F*) = F*/F** and Br(Y) injects into Br(F(Y)) by [@, Corollary
2.6]. This map takes a to p U (a), where p € H'(F(Y),Q/Z) corresponds

);
to the cyclic extension F(X)/F(Y). As pU (a) = 0 by assumption, we have
€ (F™)s. O

)
)

4b. Indecomposable invariants. In this section we compute the groups of
indecomposable invariants of adjoint groups of inner type.
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Type An1

In the split case we have G = PGL,,, the projective general linear group,
n>2 N, =2"/Ze, where e = e; + e+ - - - +e,. The root lattice is generated
by the simple roots é; — €3, — €3,...,€n_1 — €n, C = Ay/A, ~ Z/nZ. The
generator of Sym?(A,,)" is the form

_ 1 _
i<j
The matrix D (see Section BH) is the identity matrix I,,. The inverses of Cartan
matrices here and below are taken from [@, Appendix F:

n—1 n-—2 n—3 2 1
n—2 2(n—2) 2(n—3) : 4 2
ot n-32mn-3) 3n-3) : 6 3
2 4 6 20n—2) n-2
1 2 3 o on—2 n-1

By Proposition B,

_ 2 w | 2nZq, if nis even;
QG) = Sym™(A,)" = { nZq, if nis odd.

Ifa:=37"_ e" % € Z[A]", we have by (E33),
1 - _
co(a) = —3 Z(xl —7,;)° = —nZ:UZQ = —2nq € Dec(G).
It follows that Dec(G) = Q(G) if n is even.
Suppose that n is odd. If b= >"7" | " € Z[A,]", we have by (B3),

1

ca(b) = . Z(ni’l)Q = —n?q € Dec(G).

As n is odd, ged(2n,n?) = n, hence ng € Dec(G) and again Dec(G) = Q(G).

Thus, Inv*(G, Q/Z(2))ina = Q(G)/ Dec(G) = 0.

A G-torsor is given by a central simple algebra A of degree n (here and
below see [[E]). The twist of G by A is the group PGL;(A). The Tits classes of
algebras for this group are the multiples of [A] in Br(F). In view of Proposition
and B, we have

Theorem 4.4. Let G = PGL{(A) for a central simple algebra A over F.
Then

Inv’(G,Q/Z(2)), .. ~ F*/F*".
An element x € F* corresponds to the invariant taking a central simple algebra
A" of degree n to the cup-product ([A'] — [A]) U (z).
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Type B,

In the split case we have G = Oj 41, the special orthogonal group, n > 2,
Ay =Z" + Ze, where e = S(ey +es + -+ -+ ¢,), A, = Z" and C ~ Z/27Z. The
generator of Sym?(A,,)" is the form ¢ = 5 22 and D = diag(1,1,...1,2),

1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 = e e .
1 2 3 : n-2 n—2 n-—2
1 2 3 : n-2 n—1 n-—1

1/2 1 3/2 % n—2)/2 (n—1)/2 n/2

By Proposition B4, Q(G) = Sym*(A,)V = 2Zq.
Ifa:=>" (e +e ") € Z[A]Y, we have

1 2 2
ca(a) = 5 Z(ml + (—x;)%) = —2q € Dec(QG).

It follows that Dec(G) = Q(G), so Inv* (G, Q/Z(2))ina = Q(G)/ Dec(G) = 0.

A G-torsor is given by the similarity class of a nondegenerate quadratic form
p of dimension 2n + 1. The twist of G by p is the special orthogonal group
O™ (p) of the form p. The only nontrivial Tits class of algebras for this group
is the class of the even Clifford algebra Cy(p) of p. In view of Proposition E=3
and I, we have

Theorem 4.5. Let G = O (p) for a nondegenerate quadratic form p of di-
mension 2n + 1. Then

Inv?(G,Q/Z(2))

An element © € F* corresponds to the invariant taking the similarity class
of a nondegenerate quadratic form p' of dimension 2n + 1 to the cup-product

([Co(@)] = [Co(p)) U (2)-

~ F*/F*2,

norm

Type Cy,

In the split case we have G = PGSp,,,, the projective symplectic group,
n >3, Ay, = 7Z", A, consists of all > a;e; with > a; even, C' ~ Z/27Z. The
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generator of Sym?*(A,,)V is ¢ =Y, 22. D = diag(2,2,...2,1) and

1 1 1 1 1 1/2
1 2 2 2 2 1

1 2 3 ¢ 3 3 3/

1 2 3 :n-2n-2 (n—-2)/2
1 2 3 :n—-2n—-1 (n-1)/2
1 2 3 :n—-2n-1 n/2

By Proposition B4,

Zq, if n =0 modulo 4;
Q(G) = Sym*(A)Y =< 2Zq, if n =2 modulo 4;
47q, if n is odd.

If a:=Y,(e* + e %) € Z[A,]V, we have

ca(a) = — Z(Zwi)z = —4q € Dec(G).

It follows that Dec(G) = Q(G) if n is odd.

Suppose that n is even. If b:= 37, (e"*% +e%~%) € Z[A,]", we have

1
er(b) = = > (@i — ;) + (zi + ;)°] = —2(n — 1)q € Dec(G).
i#]

As n is even, ged(4,2(n — 1)) = 2, we have 2¢ € Dec(G). On the other hand,
by [B, Part II, Lemma 14.2], Dec(G) C 2¢Z, therefore, Dec(G) = 2¢Z.

It follows that

v’ (G, Q/2(2));,q = Q(G)/ Dec(G) = { /2R T = 0 modulo 4

A G-torsor is given by a pair (A, o), where A is a central simple algebra of
degree 2n and o is a symplectic involution on A. The twist of G by (A, o) is
the projective symplectic group PGSp(A, o). The only nontrivial Tits class
of algebras for this group is the class of the algebra A. In view of Proposition
23 and B, we have

Theorem 4.6. Let G = PGSp(A, o) for a a central simple algebra of degree
2n with symplectic involution o. Then

Inv’(G,Q/Z(2)),, ~ F*/F*.
An element x € F* corresponds to the invariant taking a pair (A’,o’) to the
cup-product ([A’'] — [A]) U (x).
Ifn is not divisible by 4, we have Inv® (G, Q/Z(2) I Inv?(G, Q/Z(Z))dec.
If n is divisible by 4, the group Inv® (G,Q/Z(Q)) 4 s cyclic of order 2.

in



DEGREE THREE COHOMOLOGICAL INVARIANTS OF SEMISIMPLE GROUPS 19

In the case n is divisible by 4 and char(F’) # 2 an invariant I of order 2
generating Inv®(G, Q/Z(2)),,, was constructed in [0, §4]. Thus, in this case
we have

Inv?(G,Q/Z(2)), . =Inv*(G,Q/Z(2)) .. & (Z/2Z)] ~ F*|F** & (L/27).

Type D,

In the split case we have G = PGOJ , the projective orthogonal group,
n >4, N, = Z" + Ze, where ¢ = %(el +es+---+ep), A, consists of all Y ase;
with > a; even, C' is isomorphic to Z/2Z @ Z/2Z if n is even and to Z/4Z if
n is odd. The generator of Sym*(A,,)" is the form ¢ = 1 3 27 and D = I,,

11 1 1 1/2 1/2

12 2 2 1 1

1 2 3 : 3 3/2 3/2
Ol = e e

1 2 3 : n—-2 (n-2)/2 (n—2)/2

/2 1 3/2 @ (n—2)/2 n/4 (n—2)/4

1/2 1 3/2 @ (n—2)/2 (n—2)/4 n/4
By Proposition B4,

27q, if n =0 modulo 4;
Q(G) = Sym*(A)Y =< 4Zq, if n =2 modulo 4;
8Zq, if n is odd.

If a:=Y,(e* + e 2*) € Z[A,]V, we have

c(a) = — Z(Zwi)z = —8¢ € Dec(G).

It follows that Dec(G) = Q(G) if n is odd.

Suppose that n is even. If b:= 37, (e%+% +e%7%) € Z[A,]", we have

1
ex(b) = — > @i = 2))* + (2 + 2;)*] = —4(n — 1)q € Dec(G).
i#

As n is even, ged(8,4(n — 1)) = 4, we have 4¢g € Dec(G). On the other hand,
by [B, Part II, Lemma 15.2], Dec(G) C 4Zq, therefore, Dec(G) = 4Zq.

It follows that

v’ (G, Q/Z(2)),,4 = Q(G)/ Dec(G) = { ((fz/ iZ)g, il n =0 modulo 4

A G-torsor is given by a quadruple (A, o, f,e), where A is a central simple
algebra of degree 2n, (o, f) is a quadratic pair on A of trivial discriminant and
e an idempotent in the center of the Clifford algebra C(A, o, f). The twist
of G by (A, 0, f,e) is the projective orthogonal group PGO™ (A, o, f). The
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nontrivial Tits classes of algebras for this group are the class of the algebra A
and the classes of the two components C*(A, o, f) of the Clifford algebra. In
view of Proposition 33 and B, we have

Theorem 4.7. Let G = PGO™ (A, 0, f) for a a central simple algebra of degree
2n with quadratic pair (o, f) of trivial discriminant. Then

X X2 X X2 ; ; .
(G, Q/2(2) = { (/o) @ T e

Ifn is even and x+, 2= € F*, then the corresponding invariant takes a quadru-

ple (A’ o', f',€) to
([CH(A o' )] =[CH (A, o, H])Ua™)+([C7 (A o', f)]=[C7 (A, 0, /) U (7).

If n is even and x € F*, then the corresponding invariant takes a quadruple
(A o', f'€) to ([C+(A/,a/,f’)] — [C*(A, o, f)]) U ().
Ifn is not divisible by 4, we have Inv® (G, @/Z(2))norm = Inv*(G, Q/Z(Q))dec.

If n is divisible by 4, the group Inv® (G,@/Z(2))ind is cyclic of order 2.

In the case n is divisible by 4 and char(F’) # 2 we sketch below a construction
of a nontrivial indecomposable invariant I of order 2 for a split adjoint group
G = PGOJ,. A G-torsor X over F is given by a triple (4,0,¢), where A
is a central simple algebra over F' with an orthogonal involution ¢ of trivial
discriminant and e is a nontrivial idempotent of the center of the Clifford
algebra of (A, o) (see [, §29F]). We need to determine the value of I(X) in

We have G = Aut(A,0,¢e) = PGO™(A, o). The exact sequence

1 — py — O"(A,0) — PGOT(A,0) — 1,

where O" (A, o) is the special orthogonal group, yields an exact sequence
H'(F,07(A,0)) <% H'(F,PGO*(4,0)) = Br(F).

The reduction method used in ] for the construction of an indecomposable
degree 3 invariant for a symplectic involution works as well in the orthogonal
case. It reduces the general situation to the case ind(A) < 4. In this case
the algebra A is isomorphic to Ms(B) for a central simple algebra B as 2n is
divisible by 8 and hence it admits a hyperbolic involution ¢’. By [[3, Proposi-
tion 8.31], one of the two components of the Clifford algebra C(A,¢’) is split.
Let € be the corresponding idempotent in the center of C'(A4,0¢"). (If both
components split, then A is split by [[3, Theorem 9.12], and we let ¢’ be any
of the two idempotents.)

The element 0(A,o’,€') is trivial, hence (A,o0’,¢') = ¢(v) for some v €
H'(F,0%(A,0)). The set H'(F,0%(A,0)) is described in the [IH, §29.27] as
the set of equivalence classes of pairs (a,z) € A X F such that a is o-symmetric
invertible element and 22 = Nrd(a). Thus, v = (a, z) for such a pair (a,z) and
we set [(X) = [A] U (z).
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Type Eg

We have C ~ Z/3Z and D = I,

45 6 4 23
510 12 8 4 6
o1 1] 61218 1269
314 8 12 10 5 6
2 4 6 5 43
36 9 6 36

By Proposition B3, Q(G) = Sym*(A,)V = 3Zq.

Write §; € Z[A,,]" for the sum of elements in the W-orbit of ¢*i. We have
c2(01) = 6q, c2(02) = 24q, c2(d3) = 150q¢ by [M@, §2] and rank(d;) = [W(Ej) :
W (Ds)] = 27, rank(d3) = [W(Es) : W(A; + Ay)] = 216. Note that d2 and d,ws
belong to Z[A,]". By (B32),

c2(0103) = rank(07)ca(d3) 4 rank(d3)ce(01) = 27 - 150 + 216 - 6 = 53464.

As ged(24,5346) = 6, we have 6g € Dec(G). On the other hand, ¢2(d;) € 6Zq
for all 7 by [I@, §2], hence Dec(G) = 6Zq. Thus,

Inv’ (G, Q/Z(2)),., = Q(G)/ Dec(G) = (3Z/6Z)q.

Note that the exponents of the groups Inv?(G)gec and Inv?®(G)pq are relatively
prime.

Theorem 4.8. Let G be an adjoint group of type Eg of inner type. Then
Inv?(G,Q/Z(2))  ~ (F*/F**) @ (Z/2Z).

It follows from the computation that the pull-back of the generator of
Inv®(@)ing to Inv?(G)porm is 3 times the Rost invariant Rg. This was observed
in [, Proposition 7.2] in the case char(F") # 2.

norm

Type Er

We have C ~ Z/2Z and D = I,

6 8 6 4
12 16 12 8
16 24 18 12
12 18 15 10
§ 12 10 8
2 4 6 5 4
4 8 12 9 6

By Proposition B4, Q(G) = Sym*(A,)V = 47Zq.
We have ¢,(01) = 36¢g and c2(d7) = 12¢ by [[@, §2] and rank(d7) = [W(E7) :
W (Es)] = 56. Note that §; and 62 belong to Z[A,]".

= O 00 O =

W W Lo =N
—_

o 90

N W o ©
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By (822),
cp(02) = 2rank(67)cz(d7) = 2 - 56 - 12 = 1344,

As ged(36,1344) = 12, we have 12¢ € Dec(G). On the other hand, cy(d;) €
12Zq for all ¢ by [, §2], hence Dec(G) = 12Zq. Thus,

v (G, Q/Z(2))ima = Q(G)/ Dec(G) = (4Z/12Z)q.
Theorem 4.9. Let G be an adjoint group of type E- of inner type. Then
Inv? (G, Q/Z(2)) ~ (F*)F**) @& (Z/37).

It follows from the computation that the pull-back of the generator of
Inv? (@)ing to Inv?(G)porm is 4 times the Rost invariant Rg. This was observed
in [, Proposition 7.2] in the case char(F") # 3.

Every inner semisimple group of the types G, Fj and Eg is simply connected.
Then the group Inv?(G, Q/Z(2))nemm is of order 2, 6 and 60, respectively (see
B, Part II]).

Recall that the groups Inv?’(G')ind are all the same for all inner twisted forms
of G. This is not the case for Inv?(Q)ina = Inv?(G). Write égen for a “generic”
twisted form of G (see [, §6]). For such groups the Rost number ng,.. 18 the
largest possible. Their values can be found in [B, Part II].

norm

Theorem 4.10. Let G be an adjoint semisimple group of inner type, GG
a universal cover. Then the map

v (G)ina ~ IV (Gien)ina — Iv*(Gigen)ina = Iv*(Gigen) = (Z/n, Z) R,

is injective. In the case G is simple, the group Inv®(G)ma is nonzero only in
the following cases:

C,, n is divisible by 4: Inv*(Q)ima = (Z/2Z)Rg,
D,,, n is divisible by 4: Inv®(G)ina = (2Z/4Z) R,
Es: Inv*(G)ing = (3Z/6Z) R,

Er: Inv?(G)ing = (4Z/12Z) R

5. RESTRICTION TO THE GENERIC MAXIMAL TORUS

Let G be a semisimple group over F' and T, the generic maximal torus of ¢
defined over F(X'), where X is the variety of maximal tori in G (see Example
B). We can restrict invariants of G to invariant of Ty, via the composition

v (G, Q/Z(3)) — Inv™(Gray, Q/Z(5)) 3 Inv™ (Tyen, Q/Z(3)).

The degree 3 invariants of algebraic tori have been studied in [m].
Suppose that G is quasi-split. Then the character group of Tge, is isomor-
phic to the weight lattice A with the A-action (see Example B). The exact
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sequence 0 - A — A, — O — 0, Example B, Theorem B9 and [0, Theorem

4.3] yield a diagram
H'(F,C(1)) Iv*(G,Q/Z(2)),  —= Z[A]*/ Dec(A)

| |

H2(F(X), Tyen(1)) — Inv® (Tyen, Q/Z(2)) A2/ Dec(A).

norm

Theorem 5.1. Let G be a quasi-split group over a perfect field F', Tye, the
generic mazrimal torus. Then the homomorphism

Inv" (G, Q/Z(])) — Inv" (Tgena Q/Z(]))

15 1njective, i.e., every invariant of G is determined by its restriction on the
generic maximal torus.

Proof. Consider the morphism 7 — X as in Example Bd. Let V' be a generi-
cally free representation of GG such that there is an open G-invariant subscheme
U C V and a G-torsor U — U/G. The group scheme 7 over X acts naturally
on U x X. Consider the factor scheme (U x X)/T. In fact, we can view this
as a variety as follows. Let Ty be a quasi-split maximal torus in GG. The Weyl
group W of Ty acts on (U/Ty) x (G/Ty) by w(Tyu, gTy) = (Towu, gw'Ty).
Then (U x X)/T can be viewed as a factor variety ((U/Ty) x (G/Tp))/W.
Note that the function field of (U x X)/T is isomorphic to the function field
of Up(x)/Tgen over F(X).
We claim that the natural morphism

FUXX) /T — UG

is surjective on K-points for any field extension K/F. A K-point of U/G is a
G-orbit O C U defined over K. As F'is perfect, by [Z3, Theorem 11.1], there is
a maximal torus 7' C GG and a T-orbit O C O defined over K. Then the pair
(O',T) determines a point of ((U x X)/T)(K) over O. The claim is proved.

It follows from the claim that the generic fiber of f has a rational point (over
F(U/G)). Therefore, the natural homomorphism

(5.1) H"(F(U/G),Q/Z(j)) — H"(F(X)(Urx)/Ten), Q/Z(3))
is injective.

Let I € Inv"(G,Q/Z(j)) be an invariant with trivial restriction on Tye,. Let
Pgen be the generic fiber of p : U — U/G and let gg, be the generic fiber
of ¢ : Upxy = Urx)/Tgen. Then the pull-back of pge, with respect to the
field extension F'(X)(Up(x)/Teen)/F(U/G) is isomorphic to the pull-back of
gen under the change of group homomorphism 7., — G. It follows that

0= RGS<I) (Qgen) = I(pgen)F(X)(UF(X)/Tgcn)-

As (B1) is injective, we have I(pgen) = 0 in H"(F(U/G),Q/Z(j)) and hence
I =0 by [B, Part II, Theorem 3.3] or [0, Theorem 2.2]. O
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