
RATIONALITY PROBLEM FOR CLASSIFYING SPACES OF SPINOR
GROUPS

ALEXANDER S. MERKURJEV

Abstract. We study stably rationality and retract rationality properties of the classi-
fying spaces of split spinor groups Spinn over a field F of characteristic not 2.

1. Introduction

Let G be an algebraic group over a field F , V a generically free representation of G
(i.e., the stabilizer of the generic point in V is trivial) and U ⊂ V a G-invariant open
subset such that there is a G-torsor f : U −→ U/G. This is a versal G-torsor, i.e., every
G-torsor over a field extension K/F with K infinite is isomorphic to the fiber of f over a
K-point of U/G. Thus, the K-points of U/G parameterize all G-torsors over Spec(K).
We think of U/G as an approximation of the classifying space (stack) BG of all G-

torsors. The stable birational and retract rational equivalence classes of U/G are inde-
pendent of the choice of V and U . We simply say that BG is stably rational (respectively,
retract rational) if so is U/G. In fact, BG is retract rational if and only if all the G-torsors
over field extensions of F can be parameterized by algebraically independent variables.
We study the classifying spaces of split spinor groups Spinn over a field F of charac-

teristic not 2. The Spinn-torsors over a field extension K/F parameterize nondegenerate
quadratic forms of dimension n over K of trivial discriminant and Clifford invariant. If
n ≤ 6, all such forms are isomorphic, hence BSpinn is stably rational. We also show that
BSpinn is stably rational if n ≤ 10 (at least over F = C) and retract rational if n ≤ 16.
We prove several reincarnations of the space BSpinn. We show that BSpinn is stably

birational to the Severi-Brauer variety over the classifying space BO+
n of the special or-

thogonal group corresponding to the Azumaya algebra whose class in the Brauer group
if the Clifford invariant. As a consequence we show that BSpinn is stably birational to
BSpinn−1 if n is even. We also prove that BSpinn is stably birational to the classifying
space of an extraspecial finite group of order 2n if n is odd and 2n−1 if n is even.
We use the following notation.
A variety over a field F is an integral separated scheme of finite type over F .
An algebraic group over F is an affine group scheme of finite type over F .
An

F the affine space over F .
Gm = A1

F \ {0} the multiplicative group (torus).
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2. Rational and retract rational varieties

If X and Y are varieties over F , we write X ≈ Y if X and Y are birationally isomorphic,

i.e., the rational function fields F (X) and F (Y ) are isomorphic over F and X
s.b.
≈ Y if X

and Y are stably birational, i.e., X × Am
F ≈ Y × An

F for some m and n.
We say that X is a rational variety if X ≈ An

F for some n and stably rational if

X
s.b.≈ A0

F = SpecF .
We will use the following elementary lemma.

Lemma 2.1. Let f : Y → X be a morphism of varieties over F . Suppose that for every
field extension K/F and every point x ∈ X(K), the fiber of f over x is a rational variety

over K. Then Y
s.b.≈ X.

Proof. By assumption, the generic fiber Z of the morphism f is a rational variety over
the function field F (X). The result follows since F (Y ) ≃ F (X)(Z). �

A morphism of varieties f : Y → X over a field F is called weakly split if there is a
rational morphism g : X 99K Y such that f ◦ g is the identity of X. We say that f is split
if for every nonempty open subset U ⊂ Y there is a rational morphism g : X 99K Y such
that Im(g) ∩ U ̸= ∅ and f ◦ g = idX .

A variety X over F is weakly retract rational (respectively, retract rational) if there is
a nonempty open subvariety Y ⊂ An

F for some n and a weakly split (respectively, split)
morphism f : Y → X over F .

Every stably rational variety is retract rational and hence weakly retract rational (see
[11, §2]).

3. Versal torsors and classifying spaces

Let G be an algebraic group over F . A G-torsor Y → X over a variety X is called
versal if for every G-torsor E → Spec(K) for a field extension K/F with K an infinite
field and every nonempty open subset U ⊂ X, there is a point x ∈ U(K) such that the
G-torsor E → Spec(K) is isomorphic to the pull-back of Y → X with respect to x (see
[6]). Thus a versal G-torsor Y → X parameterizes all G-torsors over field extensions K/F
by the points of X over K.

Let G be an algebraic group over F , V a generically free representation of G over F . A
nonempty G-invariant open subset U of the affine space A(V ) of V such that there exists
a G-torsor U → U/G for a variety U/G over F is called a friendly open subset of V or a
friendly G-variety. Friendly open subset always exist (see [14, Proposition 4.7]) and the
torsor U → U/G is versal (see [6]). It is called a standard versal G-torsor.

Example 3.1. Let G = (µn)
r for some n and r, where µn is the group of roots of unity

of degree n. Then the natural representation F r of G is generically free and (Gm)r is a
friendly open subset of Ar

F = A(F r) with the G-torsor (Gm)r → (Gm)r/G = (Gm)r, so
(Gm)r is an approximation of BG. Note that a G-torsor over a field extension K/F is iso-

morphic to SpecK(a
1/n
1 , a

1/n
2 , . . . , a

1/n
r )→ SpecK for a point (a1, a2, . . . , ar) ∈ (Gm)r(K)

with ai ∈ K×.
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We think of U/G as an “approximation” of the stack BG of all G-torsors, which we
call the classifying space of G. The stable birational type of U/G does not depend on the
choice of V and U . The space BG is retract rational or stably rational if so is U/G.
We say that the G-torsors over field extensions of F are rationally parameterized if

there is a versal G-torsor Y → X with X a rational variety. The following statement was
proved in [11, Corollary 5.9].

Proposition 3.2. The G-torsors over field extensions of F are rationally parameterized
if and only if the classifying space BG is retract rational over F .

Let U be a friendly G-variety and let H ⊂ G be a subgroup. Then U is a friendly
H-variety. We think of the natural morphism U/H → U/G as an approximation of the
morphism BH → BG.
Let x be a K-point of U/G for a field extension K/F and J the corresponding G-torsor

over K, i.e., J is the inverse image of x under U → U/G. It follows that the fiber of the
morphism U/H → U/G over x is equal to J/H. Lemma 2.1 then yields the following
proposition.

Proposition 3.3. Let G be an algebraic group over F and H ⊂ G a subgroup. Suppose
that for every field extension K/F , and every G-torsor J over K, the variety J/H is

rational over K. Then BH
s.b.
≈ BG.

Example 3.4. Let G be a reductive algebraic group over F and T ⊂ G a maximal torus
over F . Let N be the normalizer of T in G. For a G-torsor J the group GJ := AutG(J)
is the twist of G by J . The morphism from J to the variety MaxTori(GJ) of maximal
tori in GJ taking j in J to the maximal torus of all φ in GJ such that φ(j) ∈ jT yields

an isomorphism J/N
∼→ MaxTori(GJ) (This is the twist of the isomorphism G/N

∼→
MaxTori(G) taking gN to gTg−1.) The variety MaxTori(GJ) is known to be rational

[3, Theorem 7.9]. Hence BN
s.b.≈ BG. This was proved in [1, Lemma 2.4] when F is

algebraically closed.

4. Quadratic forms

The references for the algebraic theory of quadratic forms are [10], [8] and [5].
Let F be a field of characteristic different from 2 and let q : V → F be a nondegenerate

quadratic form of dimension n over F . In an orthogonal basis of V the form q is diagonal:
q(x) = a1x

2
1 + a2x

2
2 + · · ·+ anx

2
n for a1, a2, . . . , an ∈ F×. We write

(4.1) q = ⟨a1, a2, . . . , an⟩.

The discriminant of q is disc(q) = (−1)n(n−1)/2a1a2 · · · an ∈ F×/F×2.
Write C(q) for the Clifford algebra of q (of dimension 2n) and C0(q) for the even

Clifford algebra. If n is even (respectively, odd), C(q) (respectively, C0(q)) is a central
simple algebra over F .
If n is even and disc(q) is trivial, C0(q) is the product of two copies of a central simple

algebra C+(q). If n is odd, we set C+(q) := C0(q). Thus, C
+(q) is a central simple algebra
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over F of degree 2m, where m is so that

n =

{
2m+ 1, if n is odd;
2m+ 2, if n is even.

The class of C+(q) in the Brauer group Br(F ) is the Clifford invariant of q.
If R is a commutative ring with 2 ∈ R× and a, b ∈ R×, we write (a, b) for the (gener-

alized) quaternion R-algebra generated by two elements x and y that are subject to the
relations x2 = a, y2 = b and yx = −xy. It is an Azumaya algebra of rank 4 over R.

If q is a form as in (4.1), the algebra C+(q) is the tensor product of m quaternion
F -algebras:

(4.2) C+(q) =

{
(a1, a2)⊗ (−a1a2a3,−a1a2a4)⊗ · · · , if n is odd;
(−a1a2,−a1a3)⊗ (a1a2a3a4, a1a2a3a5)⊗ · · · , if n is even.

We writeO(q) andO+(q) for the orthogonal and special orthogonal groups, respectively.
The even Clifford group Γ+(q) is a subgroup of the multiplicative group of the even Clifford
algebra C0(q). For a field extension K/F the group Γ+(q)(K) of K-points consists of all
products of even number of anisotropic vectors in the space VK = V ⊗F K. The spinor
group Spin(q) is the kernel of the spinor norm homomorphism Sn : Γ+(q)→ Gm taking
v1v2 · · · v2s to the product q(v1)q(v2) · · · q(v2s).

Let qh = ⟨1,−1, 1, . . . , (−1)n−1⟩. This is a split form, i.e., a quadratic form of dimension
n over F , trivial discriminant and maximal Witt index. The form qh is hyperbolic if n is
even.

We write On, O
+
n , Γ

+
n and Spinn for O(qh), O

+(qh), Γ
+(qh) and Spin(qh), respectively.

The groups O+
n and Spinn are split semisimple groups.

By [8, Chaper VII], there are the following bijections:

On -torsors over K ←→ Quadratic forms
of dimension n over K

O+
n -torsors over K ←→ Quadratic forms of dimension n

over K of trivial discriminant

The connecting map H1(K,O+
n )→ H2(K,Gm) = Br(K) for the exact sequence

1→ Gm → Γ+
n

θ−→ O+
n → 1,

where θ sends the product v1v2 · · · v2s to the product of reflections with respect to the vi’s,
takes a quadratic form q to the Clifford invariant of q. It follows that there is a bijection

Γ+
n -torsors over K ←→ Quadratic forms of dimension n over K

of trivial discriminant and Clifford invariant

Quadratic forms of dimension n of trivial discriminant and Clifford invariant are pa-
rameterized by independent parameters if n ≤ 14 (see [12, Theorem 4.4]). In other words,
by Proposition 3.2, the space BΓ+

n is retract rational if n ≤ 14.

Lemma 4.3. Let 1→ H → G→ Gm → 1 be an exact sequence. Then BH
s.b.≈ BG.
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Proof. The morphism BH → BG is approximated by f : U/H → U/G for a friendly
G-variety U . The morphism f is a Gm-torsor, hence it is generically split. Thus BH ≈
BG×Gm

s.b.
≈ BG. �

Corollary 4.4. The spaces BSpinn and BΓ+
n are stably birational. In particular, BSpinn

is retract rational if n ≤ 14.

Proof. Apply the Lemma 4.3 to the exact sequence

1→ Spinn → Γ+
n

Sn−→ Gm → 1. �

Remark 4.5. It is proved in [12, Theorem 4.4] (see also [4, Theorem 4.15]) that BSpinn

is weakly retract rational if n ≤ 14.

Every quadratic form of trivial discriminant and Clifford invariant of dimension at most
6 is split, i.e., the group BΓ+

n is special. This implies that the spaces BΓ+
n and BSpinn

are stably rational if n ≤ 6. We will see (Remark 5.8) that this is actually true for n ≤ 10
if F = C.
Let q : V → F be a nondegenerate quadratic form of dimension n over F of char-

acteristic not 2. An orthogonal decomposition of V is a tuple L = (L1, L2, . . . , Ln) of
1-dimensional subspaces of V such that V = L1 ⊥ L2 ⊥ · · · ⊥ Ln. Orthogonal de-
compositions of V form a variety Orth(q) over F . Every orthogonal decomposition L
yields a full flag of subspaces Vi = L1 ⊥ · · · ⊥ Li of V . Conversely, every full flag (Vi)
of subspaces of V such that the restriction of q to every Vi is nondegenerate, yields an
orthogonal decomposition L with Li the orthogonal complement of Vi−1 in Vi. It follows
that the variety Orth(q) is birational to the full flag variety of V and therefore, Orth(q)
is a rational variety.
Choose an orthogonal decomposition L and consider the subgroup H(q) of all elements

in O+(q) fixing L. Thus, H(q) is a finite subgroup of O+(q) of order 2n−1 acting by ±1
on each Li. As O

+(q) act transitively on Orth(q), we have Orth(q) ≃ O+(q)/H(q).
The group H(q) is canonically isomorphic to the kernel of the product homomorphism

(µ2)
n → µ2. An H(q)-torsor over F is given by a tuple a = (a1, a2, . . . , an) of elements

in F× with trivial product. The embedding of H(q) into O+(q) induces a map taking an
n-tuple a to the quadratic form ⊥n

i=1 ai(q|Li
).

AnO+(q)-torsor J over a field extensionK/F is the variety of isomorphisms between qK
and a quadratic form q′ over K of the same dimension and discriminant as qK . Moreover,
the variety J/H(q) is isomorphic to O+(q′)/H(q′) = Orth(q′). Hence the fiber of the
natural morphism

BH(q)→ BO+(q)

over q′ is isomorphic to Orth(q′), and therefore, is a rational variety. We have proved the
following lemma.

Lemma 4.6. For every O+(q)-torsor J over a field extension K/F , the variety J/H(q)
is rational over K. Each fiber of the natural morphism BH(q) → BO+(q) is a rational
variety.
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5. Severi-Brauer varieties

Let A be an Azumaya algebra of degree n over a variety X over F and let SB(X,A)
be the Severi-Brauer variety over X (see [7]). By definition SB(X,A) is an X-scheme
locally isomorphic to the projective space Pn−1 for the étale topology on X. The fiber
over a point x ∈ X(K) is the variety of right ideals of dimension n in the central simple
K-algebra A(x).

Suppose we have an exact sequence

1→ µ
i−→ G→ N → 1,

where µ is subgroup of Gm (thus, µ = Gm or µn for some n) and a representation
ρ : G → GL(V ) such that the composition ρ ◦ i coincides with the natural embedding
µ ↪→ Gm ↪→ GL(V ). We then have an induced homomorphism N → PGL(V ).

An N -torsor J over a variety X yields then an Azumaya algebra

A := (End(V )× J)/N

over X that is the twist of A by J . The twist

P(V )J := (P(V )× J)/N

of the projective space P(V ) is the Severi-Brauer variety SB(X,A) over X.
Let W be a generically free representation of N and U ⊂ W a friendly open subset.

Then the twist by the standard versal N -torsor U → U/N yields an Azumaya algebra A
over the approximation U/N of BN and a Severi-Brauer variety

(P(V )× U)/N

over U/N which we denote by SB(BN,A). The stable birational type of SB(BN,A) does
not depend on the choice of W and U .

Proposition 5.1. The classifying space BG is stably birational to SB(BN,A).

Proof. Let G̃ := (Gm×G)/µ, where µ is embedded into Gm×G via s 7→ (s, ρ(s−1)).

The representation ρ extends to a homomorphism ρ̃ : G̃ → GL(V ). Moreover, Gm is a

subgroup of G̃ and G̃/Gm ≃ N . Then

SB(BN,A) = (P(V )× U)/N = ((V \ 0)× U)/G̃

and (V \ 0)×U is a friendly open subset in V ⊕W for the group G̃, i.e., ((V \ 0)×U)/G̃

is an approximation of BG̃, hence SB(BN,A)
s.b.
≈ BG̃.

On the other hand, G is a subgroup of G̃ and the group G̃/G ≃ Gm /µ is either trivial

or isomorphic to Gm. Therefore, BG
s.b.
≈ BG̃ by Lemma 4.3. �

Consider the exact sequence

1→ µ2 → Spinn → O+
n → 1

and a (half-)spin representation Spinn → GL1(C
+
n ) = GL2m . We have then a projective

representation O+
n → PGL2m and the associated Azumaya algebra C+n over BO+

n . The
fiber of C+n over a quadratic form q of trivial discriminant (that is an O+

n -torsor) is the
algebra C+(q).
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By Proposition 5.1,

(5.2) BSpinn

s.b.
≈ SB

(
BO+

n , C+n
)
.

Let qh = ⟨1,−1, 1, . . . , (−1)n−1⟩ be a split quadratic form of dimension n and Hn :=
H(qh) the finite subgroup of O+

n defined in Section 4 for the standard orthogonal basis.
Write Bn for the pull-back of C+n under the morphism BHn → BO+

n . If b = (b1, b2, . . . , bn)
is a tuple representing an Hn-torsor, then the fiber of Bn over b is the algebra C+

n (q(b)),
where

(5.3) q(b) = ⟨b1,−b2, b3, . . . , (−1)n−1bn⟩

We have a pull-back diagram

SB(BHn,Bn)

��

// SB(BO+
n , C+n )

��
BHn

// BO+
n .

The fiber of the top morphism over a K-point x of SB(BO+
n , C+n ) is naturally isomorphic

to the fiber of the bottom map over the image of x in BO+
n (K). By Lemma 4.6, all such

fibers are rational varieties. In view of Lemma 2.1 and equation (5.2),

(5.4) BSpinn

s.b.
≈ SB

(
BO+

n , C+n
) s.b.
≈ SB

(
BHn,Bn

)
.

Write as above, n = 2m + 1 if n is odd and n = 2m + 2 if n is even. Consider the
torus (Gm)2m with coordinates x1, . . . , xm, y1, . . . , ym as an approximation of B(µ2)

2m (see
Example 3.1). Write Am for the tensor product

(x1, y1)⊗ (x2, y2) . . .⊗ (xm, ym)

of m quaternion algebras over the Laurent polynomial algebra

F [(Gm)2m] = F [x±1
1 , . . . , x±1

m , y±1
1 , . . . , y±1

m ].

Thus Am is an Azumaya algebra over B (µ2)
2m.

The kernel T of the product homomorphism (Gm)n → Gm is an approximation of the
classifying space BHn. If b = (b1, b2, . . . , bn) is a point of T , it follows from (4.2) and (5.3)
that in the case n is odd, we have

B(b) = C+(qb) = (b1,−b2)⊗ (b1b2b3,−b1b2b4)⊗ · · ·

is a tensor product of m quaternion algebras. The isomorphism between T and (Gm)2m

defined by x1 = b1, y1 = −b2, x2 = b1b2b3, y2 = −b1b2b4, . . . takes the algebra Bn to Am.
If n is even, we have

C+(q) = (b1b2,−b1b3)⊗ (b1b2b3b4,−b1b2b3b5)⊗ · · ·

is a tensor product ofm quaternion algebras. The isomorphism between T andGm×(Gm)2m

(with coordinates t, xi and yi) defined by t = b1, x1 = b1b2, y1 = −b1b3, x2 = b1b2b3b4, y2 =
−b1b2b3b5, . . . takes the algebra Bn to the pull-back of Am with respect to the projection
Gm×(Gm)2m → (Gm)2m.
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We have shown that in eather case,

SB
(
BHn,Bn

) s.b.
≈ SB

(
B(µ2)

2m,Am

)
.

It follows from (5.4) that

(5.5) BSpinn

s.b.≈ SB
(
B(µ2)

2m,Am

) s.b.≈ SB
(
(Gm)2m,Am

)
.

We have proved the following theorem.

Theorem 5.6. Let n = 2m + 1 or n = 2m + 2 for some m. Let Am be the tensor
product (x1, y1)⊗(x2, y2) . . .⊗(xm, ym) of m quaternion Azumaya algebras over (Gm)2m =
SpecF [x±1

1 , . . . , x±1
m , y±1

1 , . . . , y±1
m ]. Then

BSpinn

s.b.
≈ SB

(
(Gm)2m,Am

)
.

Corollary 5.7. The classifying spaces BSpin2m+1 and BSpin2m+2 are stably birational.

Corollary 5.8. If F = C, the classifying space BSpinn is stably rational for n ≤ 10.

Proof. We have noticed that BSpinn is stably rational for n ≤ 6 (over any field). It is
proved in [9] that BSpinn is stably rational for n = 7 and n = 10 if F = C. �

Let Am be the pull-back of Am to the generic point of (Gm)2m, i.e, Am is the tensor
product of quaternion algebras (xi, yi) over the field of rational functions K = F (x, y).
The reduced norm map Nrdm : Am → K for the algebra Am is given by a polynomial
in 22m + 2m variables: 22m coordinate functions on Am (in some basis for Am) and
x1, . . . , xm, y1, . . . , ym. This polynomial is homogeneous of degree 2m in the first set of
22m variables. By [13, Theorem 4.2], the Severi-Brauer variety is stably birational to the
hypersurface given by the reduced norm polynomial.

Corollary 5.9. The classifying space BSpinn is stably birational to the hypersurface in
the affine space A22m+2m given by the equation Nrdm = 0.

6. Comparison with the classifying space of finite groups

Suppose a quadratic form q : V → F over a field F with char(F ) ̸= 2 admits an
orthogonal basis v1, v2, . . . , vn such that q(vi) = 1 for all i, i.e., q is the sum of squares in
that basis. Consider the subgroup H(q) corresponding to the orthogonal decomposition
of V into orthogonal sum of the subspaces Fvi (see Section 4). Write Dn for the pre-image
of H(q) under the natural homomorphism Spin(q)→ O+

n with kernel µ2.
Since the group H(q) consists of all products of even number of reflections with respect

to the vectors vi, the groupDn consists of all products ±vi1vi2 · · · vik in the Clifford algebra
of q with i1 < i2 < · · · < ik ≤ n and k even. In particular, Dn is a finite constant group
of order 2n.

The group Dn is generated by the following elements:

c := −1, xi := v0vi ∈ Dn for i = 1, 2, . . . , n− 1.

We have the following relations:

c2 = [c, xi] = 1 and x2
i = [xi, xj] = c for all i ̸= j.
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Thus, Dn is a central extension of an elementary abelian 2-group of order 2n−1 generated
by the cosets of the xi’s by the cyclic subgroup of order 2 generated by c.

Theorem 6.1. Let q be the sum of n squares over a field F of characteristic different

from 2. Then Spin(q)
s.b.≈ BDn. If −1 is a square in F , then Spinn

s.b.≈ BDn.

Proof. Let I be a Spin(q)-torsor over a field extension K/F . Write J for the push-forward
of I with respect to the natural homomorphism Spin(q)→ O+(q), i.e., J = I/µ2. Thus,
J is an O+(q)-torsor over K. By Lemma 4.6, the variety

I/Dn ≃ J/Hn

is rational. It follows from Proposition 3.3 applied to the subgroup Dn of Spin(q) that

Spin(q)
s.b.
≈ BDn. If −1 is a square in F , the form q is split and Spin(q) = Spinn. �

If n = 2m + 1, the center C = {1, c} of Dn is cyclic of order 2 and the factor group
G/C is elementary abelian of order 22m, hence Dn is an extraspecial 2-group. Corollary
5.7 yields the following statement.

Corollary 6.2. Let −1 be a square in F and let n = 2m + 1 or n = 2m + 2 for some
m. Then BSpinn is stably birational to the classifying space BD2m+1 of the extraspecial
2-group D2m+1. In particular, BD2m+1 is retract rational for m ≤ 6.

Remark 6.3. There are exactly two extraspecial 2-groups of order 22m+1 up to iso-
morphism. It is proved in [2] that their classifying spaces are stably birational if F is
algebraically closed field of characteristic zero. In fact, it is sufficient to assume that −1
is a square in F .

7. More on quaternion algebras

In this section we prove that the classifying space of Spinn is stably birational to that
of a certain semisimple group of type A.
The center of (SL2)

m is the group (µ2)
m. Let Cm be the kernel of the product ho-

momorphism (µ2)
m → µ2. Write Sm for the factor group (SL2)

m/Cm, thus, we have an
exact sequence

1→ µ2 → Sm → (PGL2)
m → 1.

The mth tensor power (SL2)
m → GL2m of the tautological representation of SL2 yields a

representation Sm → GL2m and a homomorphism (PGL2)
m → PGL2m . The associated

Azumaya algebra Dm on B(PGL2)
m is the tensor product Q1⊗· · ·⊗Qm, where Qi is the

tautological quaternion Azumaya algebra over the ith factor BPGL2 of B(PGL2)
m.

By Proposition 5.1,

(7.1) BSm
s.b.
≈ SB

(
B(PGL2)

m,Dm

)
Consider the composition

(µ2)
2 ≃ H3 ↪→ O+

3 ≃ PGL2,

where the first isomorphism takes (x, y) to (x, xy, y).
By Lemma 4.6, every fiber of B(µ2)

2 → BPGL2 is a rational variety. In fact, this
map takes a pair {a, b} of elements in K× to the quaternion algebra (a, b) over K. The
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restriction of the algebra Dm under the map B(µ2)
2m → B(PGL2)

m is the algebra Am

defined in the previous section. Therefore, the fiber of the natural morphism

SB
(
B(µ2)

2m,Am

)
→ SB

(
B(PGL2)

m,Dm

)
is a rational variety. By Lemma 2.1,

SB
(
B(µ2)

2m,Am

) s.b.
≈ SB

(
B(PGL2)

m,Dm

)
.

It follows from (7.1) that

(7.2) BSm
s.b.
≈ SB

(
B(µ2)

2m,Am

)
.

Then (5.5) and (7.2) yield the following:

Theorem 7.3. Let n = 2m + 1 or n = 2m + 2 for some m. Let Sm be the factor group
(SL2)

m/Cm, where Cm is the kernel of the product homomorphism (µ2)
m → µ2. Then

BSpinn

s.b.
≈ BSm.

Note that the group Sm is a semisimple group of type A1 + · · · + A1 (m times) and
Spinn is a simply connected semisimple group of type Bm if n is odd and of type Dm+1 if
n is even.
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