
MAXIMAL INDEXES OF FLAG VARIETIES
FOR SPIN GROUPS

ROSTISLAV A. DEVYATOV, NIKITA A. KARPENKO, AND ALEXANDER S. MERKURJEV

Abstract. We establish the sharp upper bounds on the indexes for most of the twisted
flag varieties under the spin groups Spin(n).
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Part 1. Odd dimension

1. Introduction

Let F be any field and let V be an F -vector space of finite odd dimension 2n+1 for some
integer n > 0. Let q : V → F be a non-degenerate quadratic form (see [6, Definition 7.17]).
For any m = 1, . . . , n, the mth orthogonal grassmannian Xm of q is defined as the variety
of m-dimensional totally isotropic subspaces in V . Thus, Xm is a closed subvariety inside
the usual m-grassmannian of the vector space V . The two extremes here are studied the
most in the literature: the projective quadric X1 and the highest orthogonal grassmannian
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Xn (see, e.g., [16] and [17] by A. Vishik; see [6] for a more exhaustive list of results and
references).

For quadratic forms of even dimension, the similar varieties and the question formulated
below will be considered in the second part of the paper.

The variety Xm has a rational point if and only if the Witt index iW (q) of the quadratic
form q is at least m. The index i(Xm) of the variety Xm (or of any other algebraic variety)
is defined as the g.c.d. of the degrees of its closed points. Since q can be completely split
by a multiquadratic field extension, i(Xm) is a power of 2. Namely, i(Xm) is the maximal
2-power dividing the degree of every finite field extension L/F satisfying iW (qL) ≥ m.
The question considered in this paper is as follows: given n and m, what is the maximal

value of i(Xm) when F , V , q vary (more precisely, we let F vary over all field extensions
of a fixed field) and the Clifford invariant of q (i.e., the Brauer class [C0(q)] of the even
Clifford algebra C0(q)) is trivial? Since this maximal value is known to be realized at any
generic quadratic forms with trivial Clifford invariant (defined below), what we want is
just to determine i(Xm) in the case of a generic q. Note that if we drop the condition on
triviality of the Clifford invariant, the answer to the modified question becomes 2m for
any m. Clearly, this is an upper bound for the original question.

Multiplication of q by a non-zero element of F does not change the varieties Xm.
In the case of trivial Clifford invariant, the similarity class of the quadratic form q is
given by a Spin(2n + 1)-torsor E over F . Instead of the similarity class, one sometimes
prefers to speak about its (unique up to isomorphism) discriminant 1 representative (see
[6] for definition of discriminant in arbitrary characteristic). (And any Spin(2n + 1)-
torsor over F yields a similarity class of a (2n + 1)-dimensional quadratic form with
Brauer trivial even Clifford algebra. By the way, saying “generic q” above we meant that
it was given by a generic torsor defined as the generic fiber of the quotient morphism
GL(N) → GL(N)/ Spin(2n + 1) for an embedding Spin(2n + 1) ↪→ GL(N) with some
N ≥ 1.)

Moreover, one has Xm ' E/P for an appropriate parabolic subgroup P ⊂ Spin(2n+1).
In other terms, Xm is the flag variety Spin(2n + 1)/P twisted by E. For an arbitrary
proper parabolic subgroup P ⊂ Spin(2n+ 1), the twisted flag variety E/P is the variety
of flags of totally isotropic subspaces in V of some dimensions 1 ≤ m1 < · · · < mr ≤ n
(with some r ≥ 1). The index of this variety coincides with i(Xmr) and therefore does
not require additional investigation.

The case of the highest orthogonal grassmannian Xn has been done by B. Totaro in [15].
(Note that i(Xn) = i(Xn−1) = i(Xn−2) if defined.) The answer and the proof there are
quite complicated. For generic q, the integer i(Xn) is equal to 2t, where t is approximately
n− 2 log2(n).
For the other extreme – the projective quadric X1, the answer is much simpler: it is just

2 = 2m if we only look at the forms q of dimension at least 7. In other terms, the evident
upper bound i(Xm) ≤ 2m turns out to be sharp here. Note that this answer is equivalent
to the following assertion: there are anisotropic forms q with trivial Clifford invariant in
every dimension dim q ≥ 7. (We do not know a simple proof for this statement. Several
different proofs are presented in the appendix.)
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In this paper we show for arbitrary m ≤ n that the evident upper bound 2m is sharp
provided that 2n−m > dimXm (see Theorem 4.2). In fact, the number m only needs to
be slightly smaller than t. For instance, for n = 2021 the equality i(Xm) = 2m holds for
generic q if m ≤ 2000 and t = 2001 by [15, Theorem 0.1]. Since i(Xm) ≤ i(Xn) for any
m, the formula max i(Xm) = 2m fails for m > 2001. So, m = 2001 is the only value of m
for which Theorem 4.2 and [15, Theorem 0.1] together do not determine if it satisfies the
formula.
Actually, an overwhelming majority of the natural numbers n have the same property:

the formula i(Xm) = 2m holds for m < t and fails for m > t. More precisely, the
proportion of such n < N tends to 1 when N → ∞. Note that for such numbers n,
we know that m 7→ log2 i(Xm) is an integer-valued increasing function with j 7→ j for
j = 1, . . . , t − 1 and n 7→ t, but we don’t know where exactly this function jumps from
t− 1 to t.

A conjecture in the direction of Theorem 4.2 has been suggested for quadratic forms
of even dimension in [9] as a possible enhancement of some results from [2]. Extended to
quadratic forms of odd dimension it would affirm that (outside of small n) the maximal
value of i(Xm) is 2

m in the case of m ≤ n/2. Our main result here not only confirms this
for n ≥ 13 but also drastically extends the range of m for larger n.
In the next section we suggest a method of bounding the indexes of twisted flag varieties

under any split reductive algebraic group. On the example of the spin groups, we see then
that this method is capable to provide interesting results.

Acknowledgements. We thank Burt Totaro and Alexander Vishik for valuable
comments.

2. General considerations

Let G be a split reductive group over a field F . Let T ⊂ B ⊂ P ⊂ G be a split
maximal torus, a Borel subgroup, and a parabolic subgroup of G. There is a canonical
homomorphism of graded rings

fP : CH(BP ) → CH(G/P ).

The ring on the left is the Chow ring of the classifying space of P , originally defined in
[14], which coincides with the P -equivariant Chow ring CHP (SpecF ) of the point (see [5]).
And the homomorphism fP is simply the pull-back CHP (SpecF ) → CHP (G) = CH(G/P )
with respect to the structure morphism of the F -variety G.
For d := dimG/P , we have CHd(G/P ) = Z and the cokernel of CHd(BP ) → CHd(G/P )

has a finite order iP ≥ 1. It is shown in [12, Theorem 6.4] (generalizing a theorem of A.
Grothendieck) that the integer iP thus defined is the index of the variety E/P , where E
is any generic G-torsor (over a field extension of F ). So, for G a spin group, this will be
the integer of our interest.
In fact, for any (not necessarily generic) E, there are canonical homomorphisms

CH(BP ) → CH(E/P ) → CH(G/P )
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with composition fP . The first one is defined similarly to fP . The second one is defined
as the composition

CH(E/P ) → CH(E/P )K
∼−→ CH(G/P )K = CH(G/P ),

where K/F is an extension field such that the G-torsor EK is trivial; it is independent of
the choice of K as well as of the choice of trivialization for EK (see [8, Corollary 4.2]). For
generic E, by homotopy invariance and localization property of equivariant Chow groups,
the map CH(BP ) → CH(E/P ) is surjective. Thus we get

Proposition 2.1 ([12, Theorem 6.4]). The image of fP is contained in the image of
CH(E/P ) → CH(G/P ) for any E. For generic E, the two images coincide. �

If the parabolic subgroup P is special, the ring CH(BP ) is identified with CH(BT )W =

S(T̂ )W , where W is the Weyl group of P , T̂ is the group of characters of T , and S is
the symmetric ring functor (see [5, Proposition 6] together with [11, Proof of Proposition
6.1]). This makes it possible to compute the index iP (and constitutes the starting point
in obtaining the result of [15]).

For instance, B is a special parabolic subgroup with trivial Weyl group so that we have

fB : S(T̂ ) → CH(G/B).

Unfortunately, for arbitrary (not necessarily special) P , a computation of CH(BP ) is
sometimes (or rather most of the time) out of reach. However there still is a canonical

homomorphism of graded rings CH(BP ) → S(T̂ )W . (It is neither injective nor surjective
in general, but becomes an isomorphism after tensoring with Q.) Indeed, the restriction

of action yields a homomorphism CH(BP ) → CH(BT ) = S(T̂ ) whose image consists of
W -invariant elements.

Lemma 2.2. There is one and unique homomorphism of graded rings

f ′
P : S(T̂ )

W → CH(G/P )

such that the composition

CH(BP ) −−−→ S(T̂ )W
f ′
P−−−→ CH(G/P )

is fP . The square

S(T̂ )
fB=f ′

B−−−−→ CH(G/B)x x
S(T̂ )W

f ′
P−−−→ CH(G/P )

commutes.

Proof. The group CH(G/P ) is (torsion) free. The cokernel (as well as the kernel) of

CH(BP ) → S(T̂ )W is torsion, [5, Proposition 6] (reduction to the Levi subgroup of P is
explained in [11, Proof of Proposition 6.1]). This implies unicity of f ′

P .
By [1, Proposition 20.5], for any extension field K/F , the map G(K) → (G/P )(K)

of the sets of K-points is surjective. Applying this property to the function field of the
variety G/P , one sees that the P -torsor given by the generic fiber of the quotient map
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G → G/P is trivial. In particular, the generic fiber of the projection π : G/B → G/P has
a rational point. The class x ∈ CH(G/B) of its closure in G/B satisfies π∗(x) = 1. By
projection formula, for any y ∈ CH(G/P ) we have π∗(π

∗(y) ·x) = y ·π∗(x) = y. It follows
that

π∗ : CH(G/P ) → CH(G/B)

is a split monomorphism. In particular, its cokernel is (torsion) free (see also [7, Remark
3.3]).

Given any
x ∈ S(T̂ )W ⊂ S(T̂ ),

we can find a nonzero integer n with nx in the image of CH(BP ). The element fB(x) ∈
CH(G/B) has then the property nfB(x) = fB(nx) ∈ CH(G/P ). Consequently, fB(x) ∈
CH(G/P ) ⊂ CH(G/B). So, the restriction of the map fB to S(T̂ )W yields the required
map f ′

P . �
Remark 2.3. By [14, Theorem 1.3], the ring CH(BP ) can be viewed as the ring of all
assignments to every P -torsor over a smooth variety X of an element in CH(X) (natural

in X). The ring S(T̂ )W has a similar interpretation with “P -torsor” replaced by “Zariski
locally trivial P -torsor” ([4, Theorem 1]). In this interpretations, the homomorphism

CH(BP ) → S(T̂ )W is given by restriction of assignments. The homomorphisms fP and
f ′
P are given by evaluation of assignments at the P -torsor G → G/P ; here f ′

P is well
defined because this P -torsor is Zariski locally trivial.

It follows that the order of Coker
(
Sd(T̂ )W → CHd(G/P )

)
is a lower bound on iP . For

G a spin group, this lower bound is going to satisfy our needs.

3. Computation of invariants

Let R = Z[x1, . . . , xm, y1, . . . , yl] be the polynomial ring over Z in variables x1, . . . , xm

and y1, . . . , yl with some m, l ≥ 1. We consider the R-algebra R[z] with a generator z
subject to the relation

2z = x1 + · · ·+ xm + y1 + · · ·+ yl.

Let A := (Z/2Z)×l be the direct product of l copies of the group Z/2Z acting on R
as follows: for any i = 1, . . . , l, the ith copy of Z/2Z acts by changing the sign of yi
and trivially on the remaining variables. Note that RA is the subring in R generated by
x1, . . . , xm and the squares y21, . . . , y

2
l .

The action of A on R extends uniquely to R[z]: the 1 of the ith copy of Z/2Z maps z
to z − yi.

The orbit of the element z under this action consists of 2l elements z −
∑

i∈I yi, where
I runs over all subsets of {1, . . . , l}. We write z̃ ∈ R[z]A for the product of the elements
in the orbit of z.

We construct some more A-invariant elements fk (for k ≥ 0) in R[z]. We set

f0 := 2z − y1 − · · · − yl = x1 + · · ·+ xm ∈ RA.

Assume that for some k = 0, . . . , l − 2 the element fk is already constructed and has the
shape

(3.1) fk = 2z · gk + a1 + · · ·+ as,
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where gk is a polynomial with integer coefficients in z, y1, . . . yl and where a1, . . . , as for
some s ≥ 0 are monomials in y1, . . . , yl. Then we define fk+1 as one half of the difference

f 2
k − (a21 + · · ·+ a2s) = 2

(
2z
(
zg2k + (a1 + · · ·+ as)gk

)
+

∑
i ̸=j

aiaj

)
.

Note that the new polynomial fk+1 has the shape (3.1) allowing to continue the procedure.
We will also consider the induced action of A on the quotient ring R[z]/2R[z]. This

quotient is the polynomial ring S[z] in the variable z (which is the class of the above z
but is subject to no relations anymore) over the ring

S = F2[x1, . . . , xm, y1, . . . , yl]/(x1 + · · ·+ xm + y1 + · · ·+ yl),

which is itself a polynomial ring (over the field F2 in m+ l − 1 variables). Note that the
action of A on S is trivial and that the element z̃ ∈ S[z] (the class modulo 2 of the above
z̃ ∈ R[z]) is (still) A-invariant. In other terms, S[z]A ⊃ S[z̃].

Lemma 3.2. S[z]A = S[z̃].

Proof. Given any A-invariant f ∈ S[z], viewed as a polynomial in z, we remove its constant
term. Then f is divisible by z and, therefore, by every factor in the definition of z̃. Since
all these factors are distinct primes of the factorial ring S[z], f is divisible by z̃. Since S
is an integral domain, the quotient f/z̃ is A-invariant as well and so – by induction on
degree – is a polynomial in z̃. Therefore f ∈ S[z̃]. �
Proposition 3.3. The RA-algebra R[z]A is generated by the l elements z̃, f1, . . . , fl−1.

Proof. It suffices to prove the result form = 1. Indeed, we can view R[z] as the polynomial
ring over Z[z, y1, . . . , yl] in the variables x2, . . . , xm. A polynomial here is A-invariant if
and only if all its coefficients are. Moreover, our l potential generators are in the coefficient
ring Z[z, y1, . . . , yl].
So, below we work with the case m = 1. From now on, we view the ring R[z] as the

ring of polynomials over R′ := Z[y1, . . . , yl] in the (independent!) variable z.
Let f ∈ R′[z] be A-invariant. We prove that f is in the RA-subalgebra generated by

z̃, f1, . . . , fl−1 using induction on deg f .
If deg f ≤ 0, then f ∈ R′A ⊂ RA. Below we assume that deg f > 0.
If deg f ≥ 2l, then we let h be the highest power of z̃ with deg h ≤ deg f and we divide

f by h with remainder. The division goes through because the leading coefficient of h is
1. Since f and h are A-invariant, so are the partial quotient and the remainder. Besides,
their degrees are smaller than deg f .

We are left with the case 0 < deg f < 2l. By Lemma 3.2, all coefficients of f besides
the constant term are even (i.e., divisible by 2). We divide f with remainder by fk with
the highest k ∈ {0, 1, . . . , l − 1} such that 2k = deg fk ≤ deg f . By formula (3.1) as well
as by Lemma 3.2, all coefficients of fk besides the constant term are also even. Moreover,
the leading coefficient of fk is 2. Since the degree of fk is higher than half of the degree
of f , the division with remainder goes through. The partial quotient and the remainder
are A-invariant and have degrees smaller than deg f . �

For n := m + l, let c1, . . . , cn ∈ R be the elementary symmetric polynomials in
x1, . . . , xm, y1, . . . , yl. For convenience, we additionally set ci := 0 for i > n. The ring C
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of polynomials in c1, . . . , cn over Z is a subring in R. Let J be the ideal of C generated
by

(3.4) 2
(
c2i − c1c2i−1 + · · ·+ (−1)i−1ci−1ci+1

)
+ (−1)ic2i

with i = 1, . . . , n. Let I be the ideal of the ring R[z] consisting of the elements such
that after multiplication by an appropriate nonzero integer they are in the ideal of R[z]
generated by J .

Lemma 3.5. For every k = 0, . . . , l − 1, the element fk ∈ R[z] is congruent modulo I to
an element of R.

Proof. Inducting on k, we will prove the following (stronger) statement: the element 2zgk
is congruent modulo I to an element of C ′[y1, . . . , yl] ⊂ R, where C ′ is the ideal of the
polynomial ring C = Z[c1, . . . , cn] consisting of the polynomials without constant term.

The element 2zg0 = 2z = c1 is in C ′[y1, . . . , yl]. Assume that for some k = 0, . . . , n− 2,
the element 2zgk is congruent modulo I to an element of C ′[y1, . . . , yl]. Then (2zgk)

2 is
congruent modulo I to a square of an element of C ′[y1, . . . , yl]. Note that the square of
any element of C ′ is congruent modulo J to an element of 2C ′ (see formula (3.4) and [15,
discussion after Lemma 4.1]). Therefore 2z2g2k = (2zgk)

2/2 is congruent modulo I to an
element of C ′[y1, . . . , yl] and it follows that the element

2zgk+1 = 2z
(
zg2k + (a1 + · · ·+ as)gk

)
satisfies the same property. Indeed, recall that a1, . . . , as are monomials in y1, . . . , yl. So,
if 2zgk is congruent mogulo I to some h ∈ C ′[y1, . . . , yl], then (a1 + · · · + as)h is also in
C ′[y1, . . . , yl] and is congruent modulo I to 2z(a1 + · · ·+ as)gk. �

4. Main result

In this section, G is the split spin group Spin(2n+ 1) for some n ≥ 1 over an arbitrary
field F . As in [12, §8.2], we construct G out of a split quadratic form q defined on a vector
space V with a basis given by a vector g and vectors ei, fi, i = 1, . . . , n, where ei, fi are
pairwise orthogonal hyperbolic pairs orthogonal to g. Let us fix some m ∈ {1, . . . , n},
consider the m-dimensional totally isotropic subspace generated by e1, . . . , em and let
P ⊂ G be its stabilizer. Then P is a parabolic subgroup in G and the variety G/P is the
mth orthogonal grassmannian Xm of q.
We take for T ⊂ P the split maximal torus, mapped under the isogeny G → G/µ2 =

O+(2n + 1) (with the special orthogonal group) to the split maximal torus T ′ := Gn
m ↪→

O+(2n + 1) given by t(ei) = tiei, t(fi) = t−1
i fi, and t(g) = g, where t = (t1, . . . . , tn) ∈

Gn
m(F ). We have an exact sequence

1 → µ2 → T → T ′ → 1.

Writing x1, . . . , xn for the standard basis of Zn = T̂ ′, we therefore have T̂ = T̂ ′ + Zz,
where z := (x1 + · · ·+ xn)/2.
Let us set l := n−m. The Weyl group W of P is the direct product of the symmetric

group Sm and the Weyl group of O+(2l + 1), the latter being a semidirect product of

Sl by (Z/2Z)l. The action of W on T̂ ′ is given by the action of Sm by permutations of
x1, . . . , xm, the action of Sl by permutation of xm+1, . . . , xn, and the action of the ith copy
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of Z/2Z for i = 1, . . . , l by changing the sign of xm+i. This action extends uniquely to an

action of W on T̂ .
To comply with requirements of the previous section, we assume that m < n. Recall

that we wrote A for (Z/2Z)×l in the previous section. Let us identify S(T̂ ′) with the ring
R from there by identifying xm+i with yi for i = 1, . . . , l. The action of A we had there
is the restriction of the action of W ⊃ A we have now. The element z from the previous
section corresponds to the element z introduced here and S(T̂ ) = R[z]. The product z̃

from the previous section becomes an element of S2l(T̂ ).
The parabolic subgroup P contains the Borel subgroup B of G defined as the stabilizer

of the flag of the totally isotropic subspaces

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en〉 .
We are going to study the image of the composition S(T̂ )W ↪→ S(T̂ ) → CH(G/B). Note
that the variety G/B is the variety of complete flags of totally isotropic subspaces in

V and the image of R = S(T̂ ′) ↪→ S(T̂ ) → CH(G/B) is the subring H ⊂ CH(G/B)
generated by the first Chern classes of the tautological line bundles on G/B (c.f. [10]).
Note that these Chern classes are the images of x1, . . . , xn (and will be denoted x1, . . . , xn

at a later point).

Proposition 4.1. The image of S(T̂ )W in CH(G/B) is contained in the H-subalgebra

generated by the image of z̃ ∈ S2l(T̂ ).

Proof. We note that S(T̂ )W ⊂ S(T̂ )A and apply Proposition 3.3. The Chern classes of
the tautological rank n vector bundle on G/B satisfy relations (3.4) (see [6, Formula

86.15]). Besides, CH(G/B) is (torsion) free. Consequently, the ideal I ⊂ R[z] = S(T̂ )
from Lemma 3.5 vanishes in CH(G/B) and we are done by Lemma 3.5. �
Let us recall the dimension formula for the variety Xm:

dimXm = m(m− 1)/2 +m(2n+ 1− 2m).

Theorem 4.2. For 1 ≤ m ≤ n, let q be a generic (2n + 1)-dimensional quadratic form
with trivial Clifford invariant and let Xm be its mth orthogonal grassmannian. Then
i(Xm) = 2m provided that 2n−m > dimXm.

Proof. Let X be the variety of complete flags of totally isotropic subspaces for the form
q. We are going to work with the varieties X, X1, Xm, Xn and with their base change
X̄, X̄1, X̄m, X̄n to the algebraic closure of the base field.

As shown in [18, Statement 2.15], the class [pt] ∈ CH(X̄m) of a rational point pt on
X̄m is equal to

[pt] = ξm(l0)ξm(l1) . . . ξm(lm−1),

where li ∈ CHi(X̄1) is the class of a projective linear i-dimensional subspace on X̄1 and
ξm is the composition

ξm : CH(X̄1) → CH(X̄1,m) → CH(X̄m)

of the pull-back followed by the push-forward with respect to the projections of the flag
variety X1,m ⊂ X1 ×Xm. The image of [pt] under the pull-back CH(X̄m) → CH(X̄) with
respect to the projection X → Xm can be computed via
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Lemma 4.3 ([18, Lemma 2.6]). For any i = 0, . . . , n − 1, the image of ξm(li) under the
pull-back CH(X̄m) → CH(X̄m,m+1) is equal to ξm+1(li−1)+ξm+1(li)xm+1. Here we view the
ring CH(X̄m,m+1) as a CH(X̄m+1)-algebra via the pull-back with respect to the projective
bundle Xm,m+1 → Xm+1, xm+1 is the first Chern class of the tautological line bundle on
Xm,m+1, and l−1 := 0.

It follows that the image of [pt] under CH(X̄m) → CH(X̄m,m+1) equals(
ξm+1(l0)xm+1

)
·
(
ξm+1(l0) + ξm+1(l1)xm+1

)
· . . . ·

(
ξm+1(lm−2) + ξm+1(lm−1)xm+1

)
so that the coefficient at xm

m+1 is ξm+1(l0)ξm+1(l1) . . . ξm+1(lm−1). By iterating, the image
of [pt] under the pull-back CH(X̄m) → CH(X̄) will be a polynomial in xm+1, . . . , xn with
coefficients in CH(X̄n) such that the coefficient at xm

m+1x
m
m+2 . . . x

m
n is

ξn(l0)ξn(l1) . . . ξn(lm−1) ∈ CH(X̄n).

By Proposition 2.1, the image of the composition

(4.4) CH(Xm) → CH(X̄m) → CH(X̄)

coincides with the image of CH(BP ) → CH(G/P ) → CH(G/B) = CH(X̄). By Lemma

2.2, the latter image is contained in the image of S(T̂ )W → CH(G/B). By Proposition

4.1, since z̃ ∈ S2n−m
(T̂ ) and 2n−m > dimXm, every element a in the image of (4.4)

is a polynomial (with integer coefficients) in the first Chern classes x1, . . . , xn of the
tautological line bundles on X. By Lemma 4.5, the element a can be written uniquely
as a polynomial in x1, . . . , xn with coefficients in CH(X̄n), where each xi appears only in
degrees < i. By Lemma 4.6, the coefficients are polynomials in the Chern classes of T .

We conclude: if r is such that i(Xm) = 2r, the element 2rξn(l0)ξn(l1) . . . ξn(lm−1) ∈
CH(X̄n) is a polynomial in the Chern classes of T .

Recall ([6, Theorem 86.12 and Formula 86.5] originally proved in [17]) that the group
CH(X̄n) is free with a basis given by all 2n products of distinct ξn(l0), . . . , ξn(ln−1). The
elements 2ξn(l0), . . . , 2ξn(ln−1) are, up to a sign, the Chern classes of T ([6, Proposition
86.13]). The additive group of the subring in CH(X̄n), generated by these Chern classes,
is free with the basis given by the 2n products of distinct 2ξn(l0), . . . , 2ξn(ln−1). (For the
generalization of this fact to all Xm see [10, Theorem 2.1].) Therefore r = m. �

We recall two classical facts used in the above proof:

Lemma 4.5. Let X be a smooth variety with a rank n vector bundle E and let Y be the
variety of complete flags in E. Let x1, . . . , xn be the first Chern classes of the tautological
line bundles on Y . The CH(X)-module CH(Y ) is free with a basis given by the monomials
xa1
1 . . . xan

n satisfying the condition ai < i for all i.

Proof. Viewing Y → X is a chain of projective bundles, the statement follows from
Projective Bundle Theorem [6, Theorem 57.14]. �

Lemma 4.6. The ring of polynomials Z[x1, . . . , xn] in variables x1, . . . , xn, considered
as a module over the subring of symmetric polynomials, is free with a basis given by the
monomials xa1

1 . . . xan
n satisfying the condition ai < i for all i.
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Proof. Apply Lemma 4.5, taking for X the grassmannian of n-dimensional subspaces in a
vector space of large (better infinite) dimension and taking for E the tautological vector
bundle. �

Part 2. Even dimension

5. Introduction

Let us repeat the introduction of Part 1, replacing the quadratic forms of odd dimension
by the even dimensional ones and making the other necessary changes. There are a lot of
similarities between the even and the odd dimensional cases; we apologize for repetitions.
On the other hand, the picture here is somewhat messier or more complicated in places.

Let F be any field and let V be an F -vector space of finite even dimension 2n for some
integer n ≥ 1. Let q : V → F be a non-degenerate quadratic form. For any m = 1, . . . , n,
the mth orthogonal grassmannian Xm of q is defined as the variety of m-dimensional
totally isotropic subspaces in V . Thus, Xm is a closed subvariety inside the usual m-
grassmannian of V . The two extremes here are studied the most in the literature: the
projective quadric X1 and the highest orthogonal grassmannian Xn.
The variety Xm has a rational point if and only if the Witt index iW (q) of the quadratic

form q is at least m. Since q becomes hyperbolic over some multiquadratic field extension,
the index i(Xm) of the variety Xm is a power of 2. Namely, i(Xm) is the maximal 2-power
dividing the degree of every finite field extension L/F satisfying i(qL) ≥ m.
The question considered in this part is as follows: given n and m, what is the maximal

value of i(Xm) when F , V , q vary (more precisely, we let F vary over all field extensions
of a fixed field) and the discriminant and the Clifford invariant of q (now given by the
Brauer class of the total Clifford algebra C(q)) are trivial? Since this maximal value is
realized at the generic quadratic forms with trivial discriminant and Clifford invariant
(defined below), what we want is just to determine i(Xm) in the case of generic q. Note
that if we drop the condition on triviality of the invariants, the answer to the modified
question becomes 2m for any m. Clearly, this is an upper bound for the original question.

In the case of trivial invariants, the isomorphism class of the quadratic form q is given
by a Spin(2n)-torsor E over F . (And any Spin(2n)-torsor over F yields an isomorphism
class of a (2n)-dimensional quadratic form with trivial discriminant and Clifford invariant.
Saying “generic q” above we meant that it was given by a generic torsor defined as the
generic fiber of the quotient morphism GL(N) → GL(N)/ Spin(2n) for an embedding
Spin(2n) ↪→ GL(N) for some N .)

If m 6= n, one has Xm ' E/P for an appropriate parabolic subgroup P ⊂ Spin(2n).
The variety Xn consists of two connected components each of which is isomorphic to
E/P . For an arbitrary proper parabolic subgroup P ⊂ Spin(2n), the twisted flag variety
E/P is either the variety of flags of totally isotropic subspaces in V of some dimensions
1 ≤ m1 < · · · < mr ≤ n (with some r ≥ 1) or (if and only if mr = n) one of its two
isomorphic components. The index of this variety coincides with i(Xmr) and therefore
does not require additional investigation.
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The case of the highest orthogonal grassmannian Xn has been done in [15].1 (Note
that i(Xn) = i(Xn−1) = i(Xn−2) = i(Xn−3) if defined.) The answer and proof there
appear to be quite complicated. For generic q, the integer i(Xn) is equal to 2t, where t is
approximately n− 2 log2(n).

For the other extreme – the projective quadric X1, the answer is much more simple:
it is just 2 = 2m if we only look at the forms q of dimension at least 12. In other
terms, the evident upper bound i(Xm) ≤ 2m turns out to be sharp here. Note that this
answer is equivalent to the following assertion: there are anisotropic forms q with trivial
discriminant and Clifford invariant in every dimension dim q ≥ 12. (We do not know a
simple proof for this statement. Several different proofs are presented in the appendix.)
In this part we show for arbitrary m < n that the evident upper bound 2m is sharp

provided that 2n−m−1 > dimXm (see Theorem 7.2). This implies that an overwhelming
majority of the natural numbers n have the following property: the formula i(Xm) = 2m

holds for m < t and fails for m > t. More precisely, the proportion of such n < N tends
to 1 when N → ∞.

Theorem 7.2 confirms [9, Conjecture 3.3] for n ≥ 17. For large n, the theorem is
stronger than the statement of the conjecture.

6. Computation of invariants

In notation of §3, let A′ be the subgroup of A consisting of the elements with the trivial
sum of components.
The orbit of the element z under the action of A′ consists of 2l−1 elements. We write

ž ∈ R[z]A
′
for the product of the elements in the orbit of z. As a warm up, note that the

ring RA′
is generated by x1, . . . , xm, the squares y21, . . . , y

2
l , and the product y1 . . . yl.

Proposition 6.1. The RA′
-algebra R[z]A

′
is generated by the elements ž, f1, . . . , fl−2.

Proof. Just repeat the proof of Proposition 3.3 (including Lemma 3.2) replacing A by A′,
z̃ by ž, and l by l − 1. �

7. Main result

In this section, G is the split spin group Spin(2n) for some n > 1 over an arbitrary
field F . As in [12, §8.4], we construct G out of a hyperbolic quadratic form q defined
on a (2n)-dimensional vector space V with a basis given by vectors ei, fi, i = 1, . . . , n,
where ei, fi are pairwise orthogonal hyperbolic pairs. Let us fix some m ∈ {1, . . . , n− 1},
consider the m-dimensional totally isotropic subspace generated by e1, . . . , em and let
P ⊂ G be its stabilizer. Then P is a parabolic subgroup in G and the variety G/P is the
mth orthogonal grassmannian Xm of q.
We take for T ⊂ P the split maximal torus, mapped under the isogeny G → G/µ2 =

O+(2n) (with the special orthogonal group) to the split maximal torus T ′ := Gn
m ↪→

1Due to so-called exceptional (in the sense of [3]) isomorphism between Xn and the highest orthogonal
grassmannian of any non-degenerate 1-codimensional subform of q, our question on the highest orthogonal
grassmannian needs not to be considered for quadratic forms of even dimension.
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O+(2n) given by t(ei) = tiei and t(fi) = t−1
i fi, where t = (t1, . . . . , tn) ∈ Gn

m(F ). We have
an exact sequence

1 → µ2 → T → T ′ → 1.

Writing x1, . . . , xn for the standard basis of Zn = T̂ ′, we therefore have T̂ = T̂ ′ + Zz,
where z := (x1 + · · ·+ xn)/2.
Let us set l := n−m. The Weyl group W of P is the direct product of the symmetric

group Sm and the Weyl group of O+(2l), the latter being a semidirect product of Sl by

A′ ⊂ (Z/2Z)l for A′ introduced in §6. The action of W on T̂ ′ is given by the action of Sm

by permutations of x1, . . . , xm, the action of Sl by permutation of xm+1, . . . , xn, and the
action of A′ obtained by restriction of the action of (Z/2Z)l, where the ith copy of Z/2Z
acts by changing the sign of xm+i. This action extends uniquely to an action of W on T̂ .

Let us identify S(T̂ ′) with the ring R from the previous section by identifying xm+i

with yi for i = 1, . . . , l. The action of A′ we had there is the restriction of the action
of W ⊃ A′ we have now. The element z from the previous section corresponds to the
element z introduced here and S(T̂ ) = R[z]. The product ž from the previous section

becomes an element of S2l−1
(T̂ ).

The parabolic subgroup P contains the Borel subgroup B of G defined as the stabilizer
of the flag of the totally isotropic subspaces

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en〉 .
We are going to study the image of the composition S(T̂ )W ↪→ S(T̂ ) → CH(G/B).
Note that G/B is the variety of flags of totally isotropic subspaces in V of dimensions
1, . . . , n− 1, which is a component of the variety of flags of totally isotropic subspaces in
V of dimensions 1, . . . , n− 1, n. The image of S(T̂ ′) ↪→ S(T̂ ) → CH(G/B) is the subring
H ⊂ CH(G/B) generated by the Chern classes of the tautological line bundles on the
latter variety of flags.

Proposition 7.1. The image of S(T̂ )W in CH(G/B) is contained in the H-subalgebra

generated by the image of ž ∈ S(T̂ ).

Proof. We note that S(T̂ )W ⊂ S(T̂ )A
′
and apply Proposition 6.1. The Chern classes of

the tautological rank n vector bundle on G/B satisfy relations (3.4) (see [6, Formula

86.15]). Besides, CH(G/B) if (torsion) free. Consequently, the ideal I ⊂ R[z] = S(T̂ )
from Lemma 3.5 vanishes in CH(G/B) and we are done by Lemma 3.5. �

The dimension formula for the variety Xm is as follows:

dimXm = m(m− 1)/2 + 2m(n−m).

Theorem 7.2. For 1 ≤ m < n, let q be a generic (2n)-dimensional quadratic form with
trivial discriminant and Clifford invariant and let Xm be its mth orthogonal grassmannian.
Then i(Xm) = 2m provided that 2n−m−1 > dimXm.

Example 7.3. For m = 1, the condition 2n−m−1 > dimXm is satisfied if and only if
dim q ≥ 12.

Proof of Theorem 7.2. Let X be a component of the variety of flags of totally isotropic
subspaces of dimensions 1, . . . , n for the form q. We are going to work with the varieties
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X, X1, Xm, Xn and with their base change X̄, X̄1, X̄m, X̄n to the algebraic closure of
the base field. We replace Xn by one of its components – the one onto which X projects.

As shown in [18, Statement 2.15], the class [pt] ∈ CH(X̄m) of a rational point pt on
X̄m is equal to

[pt] = ξm(l0)ξm(l1) . . . ξm(lm−1),

where li ∈ CHi(X̄1) is the class of a projective linear i-dimensional subspace on X̄1 and
ξm is the composition

ξm : CH(X̄1) → CH(X̄1,m) → CH(X̄m)

of the pull-back followed by the push-forward with respect to the projections of the flag
variety X1,m ⊂ X1 ×Xm.

The image of [pt] under the pull-back CH(X̄m) → CH(X̄) can be computed via
[18, Lemma 2.6], a statement similar to Lemma 4.3. What we get is a polynomial in
xm+1, . . . , xn (the first Chern classes of the corresponding tautological line bundles on X)
with coefficients in CH(X̄n) such that the coefficient at xm

m+1x
m
m+2 . . . x

m
n is

ξn(l0)ξn(l1) . . . ξn(lm−1) ∈ CH(X̄n).

By Proposition 2.1, Lemma 2.2, and Proposition 7.1, since ž ∈ S2n−m−1
(T̂ ) and 2n−m−1 >

dimXm, every element a in the image of the composition

CH(Xm) → CH(X̄m) → CH(X̄)

is an integral polynomial in the first Chern classes x1, . . . , xn of the tautological line
bundles on X. By Lemma 4.5, the element a can be written uniquely as a polynomial
in x1, . . . , xn with coefficients in CH(X̄n), where each xi appears only in degrees < i. By
Lemma 4.6, the coefficients are polynomials in the Chern classes of T .
We conclude: if r is such that i(Xm) = 2r, the element 2rξn(l0)ξn(l1) . . . ξn(lm−1) ∈

CH(X̄n) is a polynomial in the Chern classes of T .
Recall ([6, Theorem 86.12 and Formula 86.5] originally proved in [17]) that the group

CH(X̄n) is free with a basis given by all 2n−1 products of distinct ξn(l0), . . . , ξn(ln−2).
The elements 2ξn(l0), . . . , 2ξn(ln−2) are, up to a sign, the first n − 1 Chern classes of T
([6, Proposition 86.13]), the nth Chern class being 0 (see [6, Proposition 86.17] or [10,
Theorem 2.1]). The additive group of the subring in CH(X̄n), generated by these Chern
classes, is free with the basis given by the 2n−1 products of distinct 2ξn(l0), . . . , 2ξn(ln−2).
(For the generalization of this fact to all Xm see [10, Theorem 2.1].) Therefore r = m. �

Appendix. Quadrics

In this appendix we list several different proofs of the fact Φ that i(X1) = 2 for a
generic quadratic form q of sufficiently large even dimension with trivial discriminant and
Clifford invariant. Note that by taking a 1-codimensional subform in q, the statement Φ
implies the similar statement on the quadratic forms of odd dimension.

Steenrod operations: Φ is a consequence of [6, Proposition 82.7] (which is due to
A. Vishik), whose proof makes use of Steenrod operations on the modulo 2 Chow groups
of algebraic varieties. In particular, it became available in characteristic 2 only after the
recent [13].
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More precisely, the Steenrod operations are used in the proof of [6, Corollary 80.8] on
the possible size of binary correspondences.

Essential dimension: In characteristic 0, Φ follows from [2, Theorem 4.2]. The
theorem roughly states that a generic quadratic form with trivial discriminant and Clifford
invariant and of sufficiently large dimension contains no proper even-dimensional subforms
of trivial discriminant. A non-degenerate quadratic form is anisotropic if and only if it
contains no 2-dimensional subforms of trivial discriminant (i.e., hyperbolic planes).

Totaro’s torsion index: Φ can be deduced from the computation of the index of the
highest orthogonal grassmannian made in [15]. Indeed, if for some n ≥ 6, a generic 2n-
dimensional quadratic form q with trivial discriminant and Clifford invariant is isotropic,
then l0 ∈ CH0(X̄1) is in the image of CH(X1) → CH(X̄1) so that ξn(l0) ∈ CH(X̄n) is in
the image of CH(Xn) → CH(X̄n). The latter image modulo 2 is known to be the subring
generated by ξn(ln−2). By [6, Formula (86.15)], it follows that n− 1 is a 2-power.

On the other hand, since q is isotropic, the index i(Xn), computed in [15], can’t be
higher than the index i(X ′

n−1) of the highest orthogonal grassmannian X ′
n−1 of a generic

2(n−1)-dimensional quadratic form q′ with trivial discriminant and Clifford invariant. It
follows by [15, Theorem 0.1] that n− 1 is not a 2-power.

Our main result: Φ is a particular case of Theorem 7.2 (see Example 7.3).
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