
R-EQUIVALENCE IN SPINOR GROUPS

VLADIMIR CHERNOUSOV(1) AND ALEXANDER MERKURJEV(2)

The notion of R-equivalence in the set X(F ) of F -points of an algebraic
varietyX defined over a field F was introduced by Manin in [11] and studied for
linear algebraic groups by Colliot-Thélène and Sansuc in [3]. For an algebraic
group G defined over a field F , the subgroup RG(F ) of R-trivial elements in
the group G(F ) of all F -points is defined as follows. An element g belongs to
RG(F ) if there is a rational morphism f : A1

F → G over F , defined at the points
0 and 1 such that f(0) = 1 and f(1) = g. In other words, g can be connected
with the identity of the group by the image of a rational curve. The subgroup
RG(F ) is normal in G(F ) and the factor group G(F )/RG(F ) = G(F )/R is
called the group of R-equivalence classes.

The group of R-equivalence classes is very useful while studying the rational-
ity problem for algebraic groups, the problem to determine whether the variety
of an algebraic group is rational or stably rational. We say that a group G is
R-trivial, if G(E)/R = 1 for any field extension E/F . If the variety of a group
G is stably rational over F , then G is R-trivial. Thus, if one can establish
non-triviality of the group of R-equivalence classes G(E)/R just for one field
extension E/F , the group G is not stably rational over F .

The group of R-equivalence classes for adjoint semisimple classical groups
was computed in [15]. This computation was used to obtain examples of non-
rational adjoint algebraic groups.

Consider simply connected algebraic groups of classical types. Let G =
GL1(A) be the algebraic group of invertible elements of a central simple F -
algebra A of dimension n2, H = SL1(A) the subgroup in G of the reduced
norm 1 elements. The group H is a simply connected group of inner type An−1.
V. Voskresenskĭı [29] has shown that the natural homomorphism A× → K1(A)
induces an isomorphism

G(F )/RH(F )
∼- K1(A).

Thus the group of R-equivalence classes H(F )/R is the reduced Whitehead
group SK1(A). If index ind(A) is squarefree, then SK1(A⊗FL) = 1 for any field
extension, i.e., the group H is R-trivial [5, §23]. If ind(A) is not squarefree,
A. Suslin conjectured in [26] that H is not R-trivial (and therefore, is not
stably rational). This conjecture is still open. The only known case [12] is
when ind(A) is divisible by 4.
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In the outer case An−1, a simply connected algebraic group is isomorphic to
the special unitary group SU(B, τ) of a central simple algebra B of dimension
n2 over a quadratic extension of F with involution τ of the second kind [9,
§26]. The group of R-equivalence classes of SU(B, τ) was computed in [2].

Simply connected groups of type Cn, the symplectic groups, are rational
[30, 2, Prop. 2.4]. In the remaining classical cases Bn and Dn simply con-
nected groups are the twisted forms of the spinor groups of non-degenerate
quadratic forms. In the present paper we give a computation of the group of
R-equivalence classes in these remaining cases.

To describe the main result of the paper, for an algebraic variety X over a
field F , denote A0(X,K1) the cokernel of the residue homomorphism⨿

x∈X(1)

K2F (x)×
∂-

⨿
x∈X(0)

K1F (x),

where X(p) is the set of all points in X of dimension p. Let (V, q) be a non-
degenerate quadratic space over F . In [23], M. Rost defined a natural homo-
morphism

Γ+(V, q) - A0(X,K1),

where Γ+(V, q) is the special Clifford group of (V, q) and X is the projective
quadric hypersurface given by q. We give another definition of Rost’s homo-
morphism and prove that it induces isomorphisms (Theorem 6.2)

Γ+(V, q)/R Spin(V, q) ≃ A0(X,K1),

Spin(V, q)/R ≃ A0(X,K1),

where A0(X,K1) is the kernel of the norm homomorphism

N1 : A0(X,K1) - K1(F ) = F×.

The result allows to use machinery of algebraic K-theory while dealing with
the groups of R-equivalence classes.

The rationality of the group Spin(V, q) implies that the group A0(X,K1) is
trivial. In particular, Spin(V, q) is rational if q = f ⊥ g, where f is a Pfister
neighbor and dim g ≤ 2 [16, Th. 6.4]. Note that triviality of A0(X,K1) in the
case when q is a Pfister neighbor (M. Rost, [23]) was used by V. Voevodsky in
the proof of the Milnor Conjecture.

The main result of the paper (Theorem 5.10) can be applied for some other
classical groups. In particular we recover isomorphism (Theorem 6.1)

K1(A) = GL1(A)/R SL1(A) ≃ A0(X,K1)

for a central simple algebra A and the Severi-Brauer variety X corresponding
to A. This isomorphism was originally obtained in [18].

Another application deals with some twisted forms of spinor groups. Let
A be a central simple algebra of even dimension and let (σ, f) be a quadratic
pair on A [9, §5.B]. If ind(A) ≤ 2, there are isomorphisms (Theorem 6.5)

Γ(A, σ, f)/R Spin(A, σ, f) ≃ A0(X,K1),
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Spin(A, σ, f)/R ≃ A0(X,K1),

where Γ(A, σ, f) is the Clifford group of the quadratic pair and X is the involu-
tion variety. The group Spin(A, σ, f) is a general twisted form of the classical
spinor group of type Dn, n ̸= 4. With the restriction on the index of A the
result covers all simply connected groups of type Dn with odd n.

The paper is organized as follows.
In the first section we discuss the machinery we use in the paper: R-

equivalence, cycle modules, invariants of algebraic groups, etc. In the second
section the main objects of the paper are introduced: a reductive group G
together with a character ρ : G → Gm and a smooth projective variety X
satisfying certain conditions. We will keep these assumptions and notation
throughout the paper. We also consider three basic examples.

In the next section we define a homomorphism

αF : G(F )/RH(F ) - A0(X,K1),

where H = ker ρ. The following two sections are devoted to the proof of
the fact that αF is an isomorphism (Theorem 5.10). First of all, we develop
evaluation technique (section 4) and then use it to construct the inverse of αF ,
a homomorphism βF .

In the last section we consider applications. First of all, we formulate the
main result in the three special cases corresponding to examples given in section
2. At the end we consider spinor groups of “generic” quadratic forms. In
particular we exhibit examples of non-rational spinor groups of quadratic forms
of every dimension ≥ 6. Some examples of non-rational spinor groups in
dimensions ≡ 2 (mod 4) were given by V. Platonov in [21]. Note that the
spinor groups of quadratic forms of dimension < 6 are rational being the
groups of rank ≤ 2.

We would like to thank M. Ojanguren and M. Rost for useful discussions.

Notation
The letter F always denotes a perfect infinite field.
We denote Kn(F ) the Milnor K-groups of F [19].
A variety is a separated scheme of finite type over a field.
For an algebraic variety X over a field F and a commutative F -algebra R

by X(R) we denote the set of R-points MorF
(
Spec(R), X

)
of X. We identify

the set X(F ) of rational points of X with a subset of X.
For a variety X over F , denote X(p) the set of all points in X of dimension p.

If E/F is a field extension, XE denotes X×SpecF SpecE. For any x ∈ X, F (x)
is the residue field of x. The degree deg x of a closed point x is [F (x) : F ]. The
F -algebra of regular functions on X is F [X]. If X is irreducible and reduced,
F (X) is the function field of X.

An algebraic group G over F is a smooth affine group scheme over F . We
consider G as a functor E 7→ G(E) from the category of field extensions of F
to the category of groups.
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In order to distinguish between algebraic groups and their groups of F -
points, we use symbols in bold for certain algebraic groups. For example,
Spin(V, q) is an algebraic group, but Spin(V, q) is the (abstract) group of F -
points Spin(V, q)(F ).

For an algebraic torus T denote T∗ the group of co-characters Hom(Gm, T ).

1. Preliminaries

In this section we introduce necessary definitions and prove some auxiliary
results.

1.1. R-equivalence. Let Y be an irreducible variety over a field F , L = F (Y )
the function field of Y . For a point y ∈ Y denote Oy the local ring of y on Y .

LetX be another algebraic variety defined over F . ClearlyX(Oy) is a subset
in X(L). We say that an element u ∈ X(L) is defined at y if u ∈ X(Oy). If u is
defined at y, then the image u(y) under the map X(Oy) → X

(
F (y)

)
, induced

by the natural surjection Oy → F (y), is called the value of u at y.
We consider the rational function field F (t) as the function field of the affine

line A1
F or the projective line P1

F . We say that an element u = u(t) ∈ X
(
F (t)

)
is defined at a rational point a ∈ P1

F (F ) if it is defined at the corresponding
point of P1

F . The value at a we denote u(a).
Let G be an algebraic group defined over F . An element g ∈ G(F ) is called

R-trivial if there is g(t) ∈ G
(
F (t)

)
defined at the points t = 0 and t = 1

such that g(0) = 1 and g(1) = g [3]. In other words, there exists a rational
morphism f : A1

F → X, defined at t = 0 and t = 1 such that f(0) = 1 and
f(1) = g.

The set of all R-trivial elements in G(F ) we denote RG(F ). It is a normal
subgroup in G(F ). The factor group G(F )/R = G(F )/RG(F ) is called the
group of R-equivalence classes. For a field extension E/F we define the group
G(E)/R as the group of R-equivalence classes of the group GE over E. We
say that a group G is R-trivial if G(E)/R = 1 for any field extension E/F .

The following properties of R-equivalence can be found in [3], [6, Lemme
2.1] and [7, Lemme II.1.1].

1. Let g(t) ∈ G
(
F (t)

)
be defined at two rational points t = a and t = b.

Then the value g(a) · g(b)−1 belongs to RG(F ).
2. If G is stably rational, i.e., G × An

F is birationally isomorphic to Am
F for

some n and m, then G is R-trivial.
3. The functor E 7→ G(E)/R is rigid, i.e., for a purely transcendental

field extension L/F the natural homomorphism G(F )/R → G(L)/R is an
isomorphism.

1.2. Cycle modules. Cycle modules were introduced by M. Rost in [22]. A
cycle module M over a field F is an object function E 7→ M∗(E) from the
category of field extensions of F to the category of Z-graded abelian groups
together with some data and rules [22, §2]. The data includes a graded mod-
ule structure on M under the Milnor ring K∗(F ), a degree 0 homomorphism
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α∗ : M(E) → M(L) for any field homomorphism α : E → L, a degree 0
homomorphism (norm map) α∗ : M(L) → M(E) for any finite field homo-
morphism α : E → L over F and also a degree −1 residue homomorphism
∂v : M(E) → M

(
κ(v)

)
for a discrete, rank one, valuation v on E (here κ(v) is

the residue field). For example, the Milnor K-groups K∗ for field extensions
of F form a cycle module over F .

For a variety X over F and a cycle module M over F one can define a
complex [22, §5]

. . . - Cp(X;M,n)
∂p- Cp−1(X;M,n) - . . . ,

where

(1) Cp(X;M,n) =
⨿

x∈X(p)

Mn+p

(
F (x)

)
.

The p-th homology group of this complex is denoted Ap(X,Mn).
In particular if M∗ = K∗ is the cycle module of Milnor K-groups, we get the

K-homology groups Ap(X,Kn). In particular,

CHp(X) = Ap(X,K−p)

are the Chow groups of classes of cycles on X of dimension p.

Example 1.1. Let X be a variety over F . As shown in [22, §7], the function
E 7→ A0(XE, K∗) is a cycle module over F denoted A0[X,K∗]. We will be
using this cycle module later to define invariants of certain algebraic groups.

Let M be a cycle module over F and let Y be an irreducible variety over F
of dimension d, y ∈ Y a point of codimension 1. We say that an element u ∈
Mn

(
F (Y )

)
is unramified at y if u belongs to the kernel of the homomorphism

induced by the differential ∂d in the complex (1):

∂d,y : Mn

(
F (Y )

)
- Mn−1

(
F (y)

)
.

The subgroup of all elements in Mn

(
F (Y )

)
unramified at all points of codi-

mension 1 in Y is denoted A0(Y,Mn). Clearly,

A0(Y,Mn) = Ad(Y,Mn−d).

For a morphism of varieties f : Y ′ → Y with smooth Y there is well defined
inverse image homomorphism [22, §12]

f ∗ : A0(Y,Mn) - A0(Y ′,Mn).

Let y be a smooth point of Y . The evaluation homomorphism

A0(Y,Md) - Md

(
F (y)

)
, v 7→ v(y)

is the restriction to A0(Y,Md) of the inverse image homomorphism

i∗ : A0(U,Md) - A0
(
SpecF (y),Md

)
= Md

(
F (y)

)
,

where U is a smooth open neighborhood of y and i : SpecF (y) → U is the
canonical morphism.
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We say that an element v ∈ Md

(
F (Y )

)
is defined at y ∈ Y if there is an

open neighborhood U of y such that v ∈ A0(U,Md). If v is defined at a smooth
point y, then the value v(y) is well defined.

1.3. Invariants of algebraic groups. Let G be a connected algebraic group
over a field F and let M be a cycle module over F . For any d ∈ Z, we consider
Md as a functor from the category of field extensions of F to the category of
abelian groups. An invariant of G in M of dimension d is a morphism (natural
transformation) of functors G → Md [17]. In other words, an invariant is a
collection of compatible group homomorphisms

G(E) - Md(E)

for all field extensions E/F .
Consider two projections and multiplication morphisms p1, p2,m : G×G →

G. An element α ∈ A0(G,Md) is called multiplicative, if

p∗1(α) + p∗2(α) = m∗(α) ∈ A0(G×G,Md).

By [17, 2.1], a multiplicative element α of the group A0(G,Md) defines an
invariant u of G in M of dimension d as follows. For a point g ∈ G(E), i.e.,
for a morphism Spec(E) → G the value u(g) ∈ Md(E) is the image of α under
the inverse image homomorphism

A0(G,Md) - A0(SpecE,Md) = Md(E).

Conversely, any invariant u of G in M of dimension d can be obtained from a
multiplicative element α of the group A0(G,Md) this way.

Invariants are compatible with the evaluations at smooth points.

Proposition 1.2. Let Y be an irreducible variety over F , let y ∈ Y be a
smooth point. Then for any invariant u of an algebraic group G in a cycle
module M of dimension d and any g ∈ G

(
F (Y )

)
defined at y, the element

uF (Y )(g) ∈ Md

(
F (Y )

)
is defined at y and

(
uF (Y )(g)

)
(y) = uF (y)

(
g(y)

)
.

Proof. Since g is defined at y, there is an open smooth neighborhood U of y
containing in the set of definition of g. We consider g as a morphism g : U → G.
Let i : SpecF (y) → U be the natural morphism. Denote by α ∈ A0(G,Md)
the multiplicative element corresponding to the invariant u. Then uF (Y )(g) =
g∗(α) belongs to A0(U,Md) and hence is defined at y. Moreover, the value
uF (Y )(g)(y) is equal to i

∗◦g∗(α) = g(y)∗(α) = uF (y)

(
g(y)

)
since g◦i = g(y). �

1.4. Index of a character. Let ρ : G → Gm be a non-trivial character of
a reductive group G. The index ind ρ of ρ is the least positive integer in the
image of the composition

G
(
F ((t))

) ρ- F ((t))×
v- Z

where v is the discrete valuation of the field of formal Laurent series F ((t)).
By [14, Prop. 4.2], ind ρ is the smallest n ∈ N such that there exists a group
homomorphism ν : Gm → G with the composition ρ ◦ ν being the n-th power
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endomorphism of Gm. In other words, nZ is the image of the induced homo-
morphism of co-character groups T∗ → (Gm)∗ = Z where T is a maximal split
torus of G.

In the following Proposition we collect some properties of the index.

Proposition 1.3. 1. For a finite field extension L/F , ind ρ divides the product
[L : F ] · ind ρL.
2. The following three conditions are equivalent:

(a) ind ρ = 1;
(b) The homomorphism ρ splits;
(c) For any field extension E/F , the homomorphism ρ(E) : G(E) → E× is
surjective.

3. For any purely transcendental extension E/F , ind ρ = ind ρE.

Proof. 1. Let n = ind ρL. Then tn belongs to the image of ρ
(
L(t)

)
: G

(
L(t)

)
→

L(t)×. By the norm principle for monic polynomials [14, Cor. 4.5], t[L:F ]·n

belongs to the image of ρ
(
F (t)

)
, hence ind ρ divides [L : F ] · n.

2. Clearly, (a) ⇒ (b) ⇒ (c). To show (c) ⇒ (a), we take E = F ((t)).
3. The group T∗ does not change under purely transcendental extensions.

�
1.5. Norms. Let X be a complete variety over F . For any m ≥ 0 there is a
well defined norm homomorphism [22]

Nm : A0(X,Km) - Km(F ), N
(∑

(x, ux)
)
=

∑
NF (x)/F (ux).

In particular, if m = 0, the image of

N0 : CH0(X) = A0(X,K0) - K0(F ) = Z
is equal to nZ, where n = gcd(deg x) for all closed points x ∈ X.

The kernel of Nm we denote A0(X,Km).

2. Assumptions

In this section we introduce two objects: a character ρ of a (connected)
reductive group G over F and a variety X over F satisfying certain properties.
We will keep this notation and the assumptions throughout the paper.

Let ρ : G → Gm be a non-trivial character of a reductive group G. We as-
sume that G is a rational group and the group scheme H = Ker(ρ) is smooth.
The subgroup RH(F ) ⊂ G(F ) is normal by [2, Lemma 1.2]. Hence the homo-
morphism of the groups of F -points ρ(F ) : G(F ) → F× induces a homomor-
phism

ρF : G(F )/RH(F ) - F×

with the kernel H(F )/R.
If ρ satisfies the equivalent conditions of Proposition 1.3(2), then ρF is an

isomorphism. Indeed, ρ splits, hence the variety of G is isomorphic to H×Gm.
In particular, the group H is stably rational and RH(F ) = H(F ). Therefore,
ρF is injective and hence is an isomorphism.



8 V. CHERNOUSOV, A. MERKURJEV

Assume that there is a complete smooth variety X over F satisfying the
following conditions:

1. For any field extension L/F , the norm homomorphism

N0 = N0
L : A0(XL, K0) - K0(L) = Z

is injective, i.e., A0(XL, K0) = 0.
2. For any field extension L/F such that X(L) ̸= ∅, the norm homomor-

phism
N1 = N1

L : A0(XL, K1) - K1(L) = L×

is an isomorphism.
3. For any field extension L/F ,

ind ρL = gcd
x∈(XL)(0)

(deg x).

In particular, if X(L) ̸= ∅, then ind ρL = 1.

Proposition 2.1. For any field extension L/F , the image of ρ(L) : G(L) →
L× coincides with the image of the norm homomorphism

N1 = N1
L : A0(XL, K1) - K1(L) = L×.

Proof. Let x ∈ (XL)(0), E = L(x). Since X(E) ̸= ∅, the condition 3 for X
implies that ρ(E) : G(E) → E× is surjective. It follows from the rationality
of G and the norm principle [14, Th. 3.9] for the field extension E/L that
NE/L(E

×) ⊂ Im
(
ρ(L)

)
and hence Im(N1

L) ⊂ Im
(
ρ(L)

)
.

Conversely, by [14, Th. 4.3], the image of ρ(L) is the product of the sub-

groups B(E)
def
= NE/L(E

×)ind ρE for all finite field extensions E/L. By the
property 3 of X, (E×)ind ρE is contained in the image of N1

E, hence B(E) ⊂
Im(N1

L) and Im
(
ρ(L)

)
⊂ Im(N1

L). �
2.1. Examples. We consider three basic examples.

Example 2.2. Let A be a central simple algebra over F of dimension n2,
G = GL1(A) the group of invertible elements in A. More precisely, G(R) =
(A⊗F R)× for any commutative unitary F -algebra R. The group G is rational
being an open subvariety of the affine space of A.

The reduced norm homomorphism [5, §22] gives rise to a character ρ : G →
Gm. The kernel H of ρ is the special linear group SL1(A). It is absolutely
simple simply connected algebraic group of type An−1 [9, Th. 26.9].

Let X be the Severi-Brauer variety of right ideals in A of dimension n [9,
§1.C]. Note that X(E) ̸= ∅ for a field extension E/F if and only if the algebra
AE = A⊗F E splits.

The variety X satisfies the properties 1-3:
1. The injectivity of N0 for X is proved in [20] (see also [18]) .
2. If X(L) is not empty, XL ≃ Pn−1

L . For projective spaces the norm
homomorphism N1

L is an isomorphism by [24].
3. The index ind ρL is equal to the index of the algebra AL. On the other

hand, for any closed point x ∈ XL, the field L(x) splits AL, hence ind(AL)
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divides deg(x). If E/L is a splitting field of AL of degree ind(AL), thenX(E) ̸=
∅; thus, ind(AL) = gcdx∈(XL)(0)

(deg x).

Example 2.3. Let (V, q) be a non-degenerate quadratic space over F of dimen-
sion n ≥ 2, let G be the special Clifford group Γ+(V, q) of the quadratic space
(V, q) [9, 23.A]. The character ρ is the spinor norm homomorphism G → Gm.
There is an exact sequence

1 - Gm
- G - O+(V, q) - 1,

where O+(V, q) is the special orthogonal group of (V, q). By Hilbert Theo-
rem 90, this sequence splits rationally, hence G is birationally equivalent to
O+(V, q)×Gm and therefore is rational since the orthogonal group is rational
([30] if char(F ) ̸= 2 and [2, Prop. 2.4] in general).

The kernel H of ρ is the spinor group Spin(V, q). It is absolutely simple
simply connected algebraic group of type Bm if n = 2m + 1 and Dm if n =
2m > 4 (semisimple if n = 4).

Let X be the projective quadric hypersurface given in the projective space
P(V ) by the equation q = 0. The variety X satisfies the properties 1-3:

1. The injectivity of N0 for X is proved in [8] and [27].
2. We need to show that if q is isotropic, then N1 : A0(X,K1) → F× is

an isomorphism. As shown in [8], there is an open subset U ⊂ X isomorphic
to an affine space, a rational point z ∈ Z = X \ U and a vector bundle
Z \ {z} → X ′ where X ′ is a subquadric in X of codimension 2. The variety Z
is a singular projective quadric corresponding to a degenerate quadratic form
with one-dimensional radical. Since U is an affine space, by [25], A0(X,K1) =
A0(Z,K1). The statement follows from

Lemma 2.4. The norm map Nm : A0(Z,Km) → Km(F ) is an isomorphism.

Proof. Since Z has a rational point, Nm is surjective. In order to prove that
Nm is an isomorphism, it suffices to show that A0(Z,Km) = Km(F ) · [z]. By
the vector bundle theorem [25],

A0(Z \ {z}, Km) = A−1(X
′, Km+1) = 0.

The desired equality follows from exactness of the localization sequence

Km(F ) = A0(z,Km) - A0(Z,Km) - A0(Z \ {z}, Km) = 0.

�
3. If qL is anisotropic, then ind ρL = 2 = gcdx∈(XL)(0)

(deg x) since odd degree

field extensions of L do not split qL by Springer’s Theorem. If qL is isotropic,
then the spinor norm if surjective and clearly, ind ρL = 1 = gcdx∈(XL)(0)

(deg x).

Example 2.5. Let A be a central simple algebra over F of dimension n2 =
(2m)2, n ≥ 4. Denote by Sym(A, σ) (resp. Skew(A, σ)) the space of symmetric
(resp. skew-symmetric) elements in A under σ. A quadratic pair on A is a cou-
ple (σ, f), where σ is an involution of the first kind onA and f : Sym(A, σ) → F
is a linear map such that:
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1. dimF Sym(A, σ) = n(n + 1)/2 and TrdA

(
Skew(A, σ)

)
= 0, where Trd is

the reduced trace map;
2. f

(
a+ σ(a)

)
= TrdA(a) for all a ∈ A [9, §5.B].

Let G be the Clifford group Γ(A, σ, f) of (A, σ, f) and ρ : G → Gm the
spinor norm homomorphism. Similarly to Example 2.3, it follows from the
exactness of the sequence [9, 23.B]

1 - Gm
- G - O+(A, σ, f) - 1,

that the group G is rational.
The kernelH of ρ is the spinor group Spin(A, σ, f) [9, p.351]. It is absolutely

simple simply connected algebraic group of type Dm if m > 2 (semisimple if
m = 2). In fact, any simply connected group of type Dm, m ̸= 4, is the spinor
group of some quadratic pair by [9, Th. 26.15].

If A splits, i.e., A = EndF (V ) for a vector space V over F , the quadratic
pair is given by a non-degenerate quadratic form q on V [9, Prop. 5.11] and
the groups G and H coincide with those in Example 2.3.

A right ideal I ⊂ A is called isotropic with respect to the quadratic pair
(σ, f) [9, Def. 6.5] if the following conditions hold:

1. σ(I) · I = 0;
2. f(a) = 0 for all a ∈ I ∩ Sym(A, σ).
We say that a quadratic pair (σ, f) is isotropic if A contains a nonzero

isotropic ideal.
The variety X = I(A, σ, f) of all isotropic ideals of dimension n is called

the involution variety of the quadratic pair (σ, f). (In the case char(F ) ̸= 2,
the involution varieties have been introduced in [28].) If A splits, X coincides
with the projective quadric hypersurface considered in Example 2.3.

Assume now that ind(A) ≤ 2. The variety X satisfies the properties 1-3:
1. The injectivity of N0 for X is proved in [13].
2. If X(L) ̸= ∅ for a field extension L/F , the variety XL is a projective

isotropic quadric considered in Example 2.3, hence the condition holds.
3. If AL splits and (σL, fL) is isotropic, the spinor norm is surjective and

therefore, ind ρL = 1 = gcdx∈(XL)(0)
(deg x). Otherwise, ind ρL = 2 and for any

closed point x ∈ XL, the degree of x is even. Since ind(A) ≤ 2, by [13], there
is a closed point in X of degree 2 and therefore gcdx∈(XL)(0)

(deg x) = 2. Note

that the condition 3 does not hold if ind(A) > 2.

Remark 2.6. The statements in [13] and [14] quoted in Example 2.5 are
proved under assumption char(F ) ̸= 2. But the proofs carry over in the
general case too.

2.2. More norms. The group G is rational. As shown in [2, Sect. 4], for any
finite field extension L/F there is a well defined norm homomorphism

NL/F : G(L)/RH(L) - G(F )/RH(F ).

The homomorphism ρ commutes with the norms, i.e., the following diagram
commutes
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G(L)/RH(L)
ρL - L×

G(F )/RH(F )

NL/F

? ρF - F×.

NL/F

?

The norm N is transitive [2, Sect. 4]: for a finite field extension E/L,
NE/F = NL/F ◦ NE/L.

3. Invariant α

3.1. Definition of the invariant. We would like to define a one-dimensional
invariant α of G in the cycle module A0[X,K∗], i.e., to construct a collection
of compatible group homomorphisms

αE : G(E) - A0(XE, K1)

for all field extensions E/F , so α is an invariant of dimension 1. By (1.3), such
an invariant can be determined by an unramified multiplicative element of the
group A0(XF (G), K1).

The character ρ can be considered as a regular function in F (G)×. Clearly,
ρ is the image of the generic element ξ of G under

ρ
(
F (G)

)
: G

(
F (G)

)
- F (G)×.

Hence, by Proposition 2.1, there is an α ∈ A0(XF (G), K1) such that N1
F (G)(α) =

ρ.

Lemma 3.1. Any such α is unramified with respect to all codimension 1 points
of G, i.e., α ∈ A0(G,A0[X,K1]).

Proof. Let x be a point of G of codimension 1. In the commutative diagram

A0(XF (G), K1)
N1

F (G)- F (G)×

A0(XF (x), K0)

∂x

? N0
F (x) - Z

vx

?

the bottom homomorphism is injective by property 1 of X. Since ρ ∈ F (G) is
an invertible regular function, vx(ρ) = 0, hence ∂x(α) = 0, i.e., α is unramified.

�
Thus, Lemma implies that for any point g ∈ G(F ) and any α as above there

is a well defined value α(g) ∈ A0(X,K1).
The element α is not uniquely determined. To make a canonical choice of α

we need the following
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Lemma 3.2. The functor E 7→ A0(XE, K1) is rigid, i.e., the natural homo-
morphism

A0(X,K1) - A0(XF (t), K1)

is an isomorphism.

Proof. Using the formalism of cycle modules [22, Prop 2.2], we get the following
commutative diagram with exact sequence in the top row:

0 - A0(X,K1) - A0(XF (t), K1) -
⨿
p∈A1

A0(XF (p), K0) - 0

0 - F×

N1
F

?
- F (t)×

N1
F (t)

?
-

⨿
p∈A1

Z

⨿
?

N0
F (p)

- 0

The result follows by the Snake Lemma and injectivity of the right vertical
arrow (the property 1 of X).

�
Corollary 3.3. If Y is a rational irreducible variety, the natural homomor-
phism

A0(X,K1) - A0(XF (Y ), K1)

is an isomorphism.

Since G is a rational group, it follows from the Corollary that the element
α is uniquely determined modulo A0(X,K1), hence it is uniquely determined
by the value α(1) ∈ A0(X,K1). Therefore, there exists a unique α such that
α(1) = 0. We will assume such a normalization.

Lemma 3.4. The element α is multiplicative.

Proof. We need to show that the element

κ
def
= p∗1(α) + p∗2(α)−m∗(α)

is trivial in A0(XF (G×G), K1). Since the function ρ ∈ F (G)× is multiplicative,
we have

N1
F (G×G)(κ) = p∗1

(
ρ(ξ)

)
· p∗2

(
ρ(ξ)

)
·m∗(ρ(ξ))−1

=

ρ(ξ × 1) · ρ(1× ξ) · ρ(ξ × ξ)−1 = 1,

i.e., κ ∈ A0(XF (G×G), K1). But G×G is a rational group, hence by Corollary

3.3, κ ∈ A0(X,K1), i.e., κ is constant. Finally, the element κ is normalized,
κ(1) = 0, hence κ = 0. �

Thus, the element α defines an invariant of the group G which we also denote
α, so that we have a collection of compatible homomorphisms

αE : G(E) - A0(XE, K1)

for any field extension E/F .
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3.2. Properties of α.

Proposition 3.5. The composition G(F )
αF- A0(X,K1)

NF- F× coincides
with ρ(F ).

Proof. Let g ∈ G(F ). Consider the following commutative diagram

A0(XF (G), K1)
N1

F (G)- F (G)×

A0(X,K1)

i

? N1
F - F×

j

?

where i and j are the evaluation homomorphisms at g. We have

N1
F

(
αF (g)

)
= N1

F

(
i(α)

)
= j

(
N1

F (G)(α)
)
= j(ρ) = ρ(g).

�

Proposition 3.6. The map αF factors through a homomorphism (still denoted
αF )

G(F )/RH(F ) - A0(X,K1).

Proof. Let h(t) be an element of H
(
F (t)

)
defined at the points t = 0 and t = 1

such that h(0) = 1. The image of h(t) under αF (t) belongs to A0(XF (t), K1) =

A0(X,K1), i.e., it is constant. By Proposition 1.2, the homomorphism α com-
mutes with the evaluations, hence

αF

(
h(1)

)
= αF (t)(h)(1) = αF (t)(h)(0) = αF

(
h(0)

)
= 0.

�

In particular, αF induces a homomorphism

H(F )/R - A0(X,K1).

Finally, we prove that α commutes with the norms.

Proposition 3.7. Let L/F be a finite field extension. Then the following
diagram commutes

G(L)/RH(L)
αL- A0(XL, K1)

G(F )/RH(F )

NL/F

? αF- A0(X,K1)

NL/F

?
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Proof. The difference of two compositions NL/F ◦ αL − αF ◦ NL/F can be con-
sidered as an invariant of the group G′ = RL/F (G) and therefore is given by
an element γ ∈ A0(XF (G′), K1). Since ρ commutes with the norms, the image

N1(γ) in F (G′)× is trivial, hence γ ∈ A0(XF (G′), K1). Since the group G′ is

rational, by Corollary 3.3, γ ∈ A0(X,K1), hence γ is constant and therefore
γ = γ(1) = 0. �

3.3. Homomorphism νF . Let ind ρ = n. By 1.4, there is a homomorphism
ν : Gm → G such that the composition ρ ◦ ν is the n-th power map. Then ν
defines a homomorphism

νF : F× = Gm(F )
ν(F )- G(F ) - G(F )/RH(F ).

Lemma 3.8. The map νF does not depend on the choice of ν.

Proof. Assume that ρ◦ν = ρ◦ν ′ for another homomorphism ν ′. Then ν ′ = ν ·φ
for some morphism φ : Gm → H (not necessarily a homomorphism). Clearly,
φ(1) = 1 and therefore φ(a) ∈ RH(F ) for all a ∈ F×. Hence ν ′(a) ≡ ν(a)
modulo RH(F ). �

The composition ρF ◦ νF is the n-th power endomorphism of F×.
If ind ρ = 1, i.e., ρ ◦ ν = id, then νF is the inverse isomorphism to ρF .

4. Evaluation

We elaborate the evaluation technique which we use in the next section.

4.1. Value at a point. Let Y be an irreducible variety over a field F , L =
F (Y ) the function field of Y , y ∈ Y . We say that an element v ∈ G(L)/RH(L)
is defined at the point y if v is represented by an element of G(Oy), where Oy

is the local ring of y, i.e., if v is represented by an element of G(L) defined at
y.

We would like to show that the value v(y) is well defined at least if Y = A1
F

and y is a rational point t = b, b ∈ F . Let Ob be the local ring of all functions
in F (A1

F ) = F (t) defined at y.

Lemma 4.1. For any h(t) ∈ H(Ob) ∩ RH
(
F (t)

)
the value h(b) belongs to

RH(F ).

Proof. Choose h(s, t) ∈ H
(
F (s, t)

)
such that h(0, t) = 1 and h(1, t) = h(t).

The element h(s, t) is given by an algebra homomorphism f : F [H] → F (s, t)
with the property that the image of f is contained in the localization F [s, t]q
where the polynomial q ∈ F [s, t] is such that q(0, t) and q(1, t) are nonzero
polynomials in F [t]. Since F is infinite, there is c ∈ F such that q(0, c) ̸= 0
and q(1, c) ̸= 0. Then the elements h(0, t) and h(1, t) in H

(
F (t)

)
are defined

at the point t = c and h(0, c) = 1, h(1, c) = h(c). Hence the element h(s, c) ∈
H
(
F (s)

)
is defined at s = 0, s = 1 and therefore h(c) = h(1, c)/h(0, c) ∈

RH(F ). On the other hand, h(t) = h(1, t) is defined at t = b and t = c, hence
h(b)/h(c) ∈ RH(F ). Finally, h(b) = h(c) · h(b)/h(c) ∈ RH(F ). �
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Lemma shows that if an element v(t) ∈ G
(
F (t)

)
/RH

(
F (t)

)
is defined at a

point t = b, then the value v(b) = v|t=b ∈ G(F )/RH(F ) is well defined.
We show that the homomorphism νF commutes with the evaluations.

Proposition 4.2. Let g(s) ∈ F (s)× is defined at a point s = a, a ∈ F . Then
νF (s)

(
g(s)

)
is defined at s = a and

νF (s)
(
g(s)

)
(a) = νF

(
g(a)

)
.

Proof. By Proposition 1.3(3), ind(ρ) = ind(ρF (s)), hence ν ⊗F F (s) can be

taken in the definition of νF (s). �

4.2. Properties of the evaluation.

Lemma 4.3. Let O be the local ring of a smooth point y of a rational ir-
reducible variety Y , L = F (Y ). Assume that ρL(w) ∈ O× for an element
w ∈ G(L)/RH(L). Then w is defined at y.

Proof. Let w be represented by w̃ ∈ G(L). By [4, Th. 3.2], the right vertical
map in the commutative diagram with exact rows

G(O)
ρ - O× - H1

ét(O, H)

G(L)
?

∩

ρ - L×
?

∩

- H1
ét(L,H)

?

is injective. Since ρ(w̃) ∈ O×, there exists u ∈ G(O) such that ρ(u) = ρ(w̃).
Replacing w̃ by w̃ · u−1, we may assume that ρ(w̃) = 1, i.e., w̃ ∈ H(L).
Therefore, since L/F is purely transcendental, w ∈ H(L)/R = H(F )/R is
constant and hence is defined at y. �

Let O be a local F -algebra. For any variety Y over F consider a map
jY : Y (O) → Y defined as follows. Let v be a point of Y (O), i.e., v is a
morphism SpecO → Y . We set jY (v) = v(x) where x is the closed point of
SpecO.

Lemma 4.4. The image of jG : G(O) → G is dense.

Proof. Since G is rational, the group of rational points G(F ) is dense in G [1,
Cor. 18.3]. Hence the image of jG is also dense in G. �
Corollary 4.5. Assume that the residue field of a local F -algebra O is F .
Then for any nonempty open subset U ⊂ G, G(O) = U(O) · U(O).

Proof. For a g ∈ G(O) denote its value in G(F ) by ḡ. The group G is con-
nected, hence the set ḡU−1∩U is nonempty. By Lemma 4.4, there is g1 ∈ G(O)
such that ḡ1 ∈ ḡU(F )−1∩U(F ). Since ḡ1 ∈ U(F ), the image of the closed point
under g1 : SpecO → G is contained in U , hence Im(g1) ⊂ U and g1 ∈ U(O).
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Set g2 = g−1
1 g. Again, ḡ2 ∈ U(F ) implies that g2 ∈ U(O). Finally, g = g1g2

and g1, g2 ∈ U(O). �
Lemma 4.6. Let O be the local ring of an F -point p = (a, b) of the affine plane
SpecF [s, t]. Assume that an element w = w(s, t) ∈ G

(
F (s, t)

)
/RH

(
F (s, t)

)
is defined at p, i.e., is represented by an element w̃ ∈ G(O). Then w is defined
at s = a over F (t), the value w(a, t) = w|s=a is defined at t = b and the value
(w|s=a)|t=b in G(F )/RH(F ) is represented by w̃(p).

Proof. Let O1 be the local ring of the point s = a over F (t) and O2 the
local ring of the point t = b over F . The inclusion O ⊂ O1 and evaluation
homomorphisms

O s=a- O2
t=b- F, O1

s=a- F (t)

induce the following commutative diagram

G(O) - G(O2) - G(F )

G(O1)
?

- G
(
F (t)

)
.

?

The image of w̃ in G(O1) represents w, hence w is defined in s = a over F (t).
The value w(a, t) = w|s=a is represented by the image of w̃ in G(O2), hence
w(a, t) is defined at t = b and the value (w|s=a)|t=b coincides with the image
of w̃ in G(F ), i.e., it is equal to w̃(p).

�
Corollary 4.7. (w|t=b)|s=a = (w|s=a)|t=b.

4.3. Evaluation and norms. We prove that the norms commute with the
evaluation.

Lemma 4.8. Let L/F be a finite field extension, let

v(s) ∈ G
(
L(s)

)
/RH

(
L(s)

)
be an element defined at s = a, a ∈ F . Then NL(s)/F (s)

(
v(s)

)
is defined at

s = a and (
NL(s)/F (s)v(s)

)
(a) = NL/F

(
v(a)

)
.

Proof. By the definition of the norm map N given in [2], there is a nonempty
open subset U ⊂ RL/F (GL) and a morphism i : U → G such that for any field
extension E/F the restriction to U(E) of the composition

RL/F (GL)(E) = G(L⊗F E) - G(L⊗F E)/RH(L⊗F E)
NL/F- G(E)/RH(E)

is given by the composition

U(E)
i(E)- G(E) - G(E)/RH(E).
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Let O be the local ring in F (s) of the point s = a. If v(s) is represented by
an element ṽ ∈ U(O), then NL(s)/F (s)

(
v(s)

)
is represented by i(ṽ) ∈ G(O) and

hence is defined at s = a. It follows from the commutativity of the diagram

U(O)
i - G(O)

U(F )

p

? i - G(F )
?

that
(
NL(s)/F (s)v(s)

)
(a) is represented by (ip)(ṽ) and hence it is equal to

NL/F

(
v(a)

)
. The general case follows from Corollary 4.5.

�
The Proposition 4.2 then implies

Corollary 4.9. Let L/F be a finite field extension, let g(s) ∈ L(s)× be a
function defined at s = a, a ∈ F . Then NL(s)/F (s)ν

L(s)
(
g(s)

)
is defined at the

point s = a and (
NL(s)/F (s)ν

L(s)g(s)
)
(a) = NL/Fν

L
(
g(a)

)
.

The following Lemma is the first application of the evaluation technique.
The idea of the proof of the Lemma (and a series of statements in the next
section) is as follows. Suppose we would like to prove an equality v = 1 in
some “rigid object”, where v is “R-trivial”, i.e., there is a rational family v(s)
such that v(0) = 1 and v(1) = v. Since v(s) takes values in a rigid object,
v(s) is a constant family, hence v = v(1) = v(0) = 1. Shortly: a map from
“R-trivial” to “rigid” is constant.

Let L/F be a finite field extension such that ind ρL = 1. Then by Proposition
1.3(1), ind ρ divides [L : F ].

Lemma 4.10. Let L/F be a finite field extension such that ind ρL = 1. Then
for any a ∈ F×,

NL/F

(
νL(a)

)
= νF (a)[L:F ]/ind(ρ).

Proof. Consider the following two elements in G
(
F (s)

)
/RH(F (s)

)
:

v(s) = NL(s)/F (s)

(
νL(s)(1− s+ sa)

)
,

w(s) = νF (s)(1− s+ sa)[L:F ]/indρ.

Since ρ commutes with the norms and ind ρF (s) = ind ρ by Proposition 1.3(3),

ρ
(
v(s)

)
= NL(s)/F (s)(1− s+ sa) = (1− s+ sa)[L:F ] = ρ

(
w(s)

)
,

we have q(s)
def
= v(s) · w(s)−1 ∈ H

(
F (s)

)
/R = H(F )/R, i.e., q(s) is constant.

By Corollary 4.9 and Proposition 4.2,
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1 = q(0) = q(1) = NL/F

(
νL(a)

)
/νF (a)[L:F ]/indρ.

�

5. Homomorphism βF

In this section we prove that αF is an isomorphism by constructing its inverse
βF .

5.1. Definition of βF . For a closed point x ∈ X we define a homomorphism

F (x)× - G(F )/RH(F ), u 7→ NF (x)/F

(
νF (x)(u)

)
,

and hence we have a homomorphism⨿
x∈X(0)

F (x)× - G(F )/RH(F ).

We will prove that this homomorphism is trivial on the image of the differential
in the complex (1):

(2)
⨿

x∈X(1)

K2

(
F (x)

) ∂-
⨿

x∈X(0)

F (x)×

and hence factors through a well defined homomorphism

βF : A0(X,K1) → G(F )/RH(F ).

The closure of a point y ∈ X(1) is a projective curve in X. Let C be the
normalization of this curve. By the definition of the complex (1), [22, 3.2], the
image of K2

(
F (y)

)
under ∂ in (2) coincides with the image of the composition

K2

(
F (C)

) ∂-
⨿

c∈C(0)

F (c)× -
⨿

x∈X(0)

F (x)×,

where the second homomorphism is induced by the norm maps F (c)× → F (x)×

for all pairs c|x. Hence, by the transitivity of the norm map N , it suffices to
show that the composition

(3) K2

(
F (C)

) ∂-
⨿

c∈C(0)

F (c)× - G(F )/RH(F )

is zero. Note that the curve C is smooth projective and by the property 3 of
X, ind ρF (c) = 1 for all points c ∈ C since X

(
F (c)

)
̸= ∅.

For a function f ∈ F (C)× we denote Sup(f) ⊂ C the support of the principal
divisor div(f). Clearly, Sup(f) = ∅ if and only if f ∈ F×. For any closed point
x ∈ C we denote vx the discrete valuation of F (C) associated to x.

Lemma 5.1. The group K2

(
F (C)

)
is generated by the symbols {f, g} for all

f, g ∈ F (C)× such that Sup(f) ∩ Sup(g) = ∅.
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Proof. For any n ≥ 0, denote An the subgroup in K2

(
F (C)

)
generated by the

symbols {f, g} for all f, g ∈ F (C)× such that | Sup(f) ∩ Sup(g)| ≤ n. Clearly
A0 ⊂ A1 ⊂ · · · ⊂ K2

(
F (C)

)
and we would like to show that A0 = K2

(
F (C)

)
.

We prove first that A1 = K2

(
F (C)

)
. Let f, g ∈ F (C)× be such that

| Sup(f)∩Sup(g)| = n > 1. For a point x ∈ Sup(f)∩Sup(g) consider a function
h ∈ F (C)× such that vx(h) = vx(f) and vy(h) = 0 for all y ∈ Sup(g), y ̸= x.
Then {f, g} = {h, g}+{fh−1, g} and {h, g} ∈ A1, {fh−1, g} ∈ An−1, therefore
An = An−1 for n > 1. The descending induction shows that A1 = K2

(
F (C)

)
.

It remains to show that A1 = A0. Let f, g ∈ F (C)× be such that Sup(f) ∩
Sup(g) = {x} for a point x ∈ C. The curve C ′ = C \ {x} is affine and
the supports of the divisors of f and g on C ′ are disjoint. Choose a nonzero
regular function h ∈ F [C ′] such that vy(h) = −vy(f) for all y ∈ C ′ with
vy(f) < 0 and vy(h) = 0 for all y ∈ C ′ with vy(g) ̸= 0. Then fh ∈ F [C ′]
and {f, g} = {fh, g} − {h, g} and functions in the pairs (fh, g) and (h, g)
have disjoint supports on C ′. Thus, we may assume that f ∈ F [C ′]. A similar
argument shows that we may also assume that g ∈ F [C ′]. Let n = −vx(f) > 0,
m = −vx(g) > 0 and d = gcd(n,m). Set n′ = n/d and m′ = m/d. We have

m′{f, g} = {fm′
, g} = {h, g} where h = fm′

(1−g)n′ . Since vx(h) = 0 and the

divisors of g and 1 − g are disjoint on C ′, the symbol {h, g} belongs to A0,
i.e., m′{f, g} ∈ A0. Similarly, n′{f, g} ∈ A0. Finally, n′ and m′ are relatively
prime, hence {f, g} ∈ A0. �

By Lemma 5.1, in order to prove that βF is well defined, it suffices to
show that the composition (3) is trivial on symbols {f, g} with the functions
f, g ∈ F (C)× satisfying Sup(f) ∩ Sup(g) = ∅. By the definition of the residue
homomorphism ∂, we have to check that

(4)
∏

x∈Sup(f)

NF (x)/F

(
νF (x)g(x)

)vx(f)
=

∏
x∈Sup(g)

NF (x)/F

(
νF (x)f(x)

)vx(g)
.

We may assume that one of the functions f or g, say f , is not constant. Thus
f defines a finite morphism f : C → P1

F . Denote by ex the ramification index
of a point x ∈ C. We identify the function field F (t) of P1

F with a subfield in
F (C). Under this identification, t = f . Thus, if f(x) = 0, then ex = vx(t) and
if f(x) = ∞, then ex = −vx(t). Set

u(t) = NF (C)/F (t)

(
νF (C)(g)

)
∈ G

(
F (t)

)
/RH

(
F (t)

)
,

h(t) = ρ
(
u(t)

)
= NF (C)/F (t)(g) ∈ F (t)×.

The following Lemma is standard.

Lemma 5.2. Let b ∈ P1(F ) and let l ∈ F (C)× be a function defined and
nonzero at all points x ∈ C such that f(x) = b. Then(

NF (C)/F (t)(l)
)
(b) =

∏
f(x)=b

NF (x)/F

(
l(x)

)ex
.
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Lemma 5.3. Let b ∈ P1(F ) be such that b /∈ f
(
Sup(g)

)
. Then u(t) is defined

at t = b and

u(b) =
∏

f(x)=b

NF (x)/F

(
νF (x)g(x)

)ex ∈ G(F )/RH(F ).

Proof. Let g(s) = 1− s+ sg ∈ F (C)(s)×. Consider the following elements:

v(s) =
∏

f(x)=b

NF (x)(s)/F (s)

(
νF (x)(s)g(s)(x)

)ex ∈ G
(
F (s)

)
/RH(F (s)

)
,

w(s, t) = NF (C)(s)/F (s,t)

(
νF (C)(s)g(s)

)
∈ G

(
F (s, t)

)
/RH(F (s, t)

)
.

The function ρ
(
w(s, t)

)
= NF (C)(s)/F (s,t)

(
g(s)

)
is defined at the points s =

0, t = b and s = 1, t = b. By Lemma 4.3, w(s, t) is defined at these points.
Lemma 4.6 implies that w(s, b) ∈ G

(
F (s)

)
/RH(F (s)

)
is well defined. Since

by Lemma 5.2, applied to the field F (s) and function l = g(s),

ρ
(
v(s)

)
=

∏
f(x)=b

NF (x)(s)/F (s)

(
g(s)(x)

)ex
= NF (C)(s)/F (s,t)

(
g(s)

)
(b)

=ρ
(
w(s, t)

)
(b) = ρ

(
w(s, b)

)
,

we have q(s)
def
= v(s) ·w(s, b)−1 ∈ H

(
F (s)

)
/R = H(F )/R, i.e., q(s) is constant.

By Corollaries 4.9 and 4.7,

w(s, b)|s=1 = w(1, t)|t=b = u(b) and w(s, b)|s=0 = w(0, t)|t=b = 1.

Corollary 4.9 implies that

v(1) =
∏

f(x)=b

NF (x)/F

(
νF (x)g(x)

)ex
, v(0) = 1,

hence
1 = q(0) = q(1) =

∏
f(x)=b

NF (x)/F

(
νF (x)g(x)

)ex · u(b)−1.

�
Lemma 5.4. Let a, b ∈ F , a ̸= 0, and let l(t) ∈ F (t)× be a rational function
defined at t = 0, b

a
,∞. Then∏

p∈Gm

NF (p)/F

(
at(p)− b

)vp(l)
= l(

b

a
) · l(∞)−1.

Proof. Since both sides of the equality are multiplicative in l(t), we may assume
that l(t) = p(t)/(t− c)n where p(t) ̸= t is an irreducible polynomial of degree
n and c ∈ F is different from 0 and b

a
. In this case at(p)− b is a root of p

(
t+b
a

)
and the product reduces to

NF (p)/F

(
at(p)− b

)
(ac− b)n

=
(−a)np( b

a
)

(ac− b)nl(∞)
= l(

b

a
) · l(∞)−1.

�
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Since Sup(f) and Sup(g) are disjoint, h(t) is defined at the points t = 0,∞,
hence by Lemma 4.3, u(0) and u(∞) are well defined. By [14, Th. 4.4],
ind ρF (p) divides vp(h).

Lemma 5.5.∏
p∈Gm

NF (p)/F

(
νF (p)

(
t(p)

)vp(h)/ ind ρF (p)

)
= u(0) · u(∞)−1 ∈ G(F )/RH(F ).

Proof. Consider the following two elements in G
(
F (s)

)
/RH(F (s)

)
:

v(s) =
∏
p∈Gm

NF (p)(s)/F (s)

(
νF (p)(s)

(
1− s+ st(p)

)vp(h)/ ind ρF (p)

)
,

w(s) = u(
s− 1

s
) · u(∞)−1.

Since ρ commutes with the norms, by Lemma 5.4 applied to the field F (s) and
a = s, b = s− 1,

ρ
(
v(s)

)
=

∏
p∈Gm

NF (p)(s)/F (s)

(
1− s+ st(p)

)vp(h)
=

h(
s− 1

s
) · h(∞)−1 = ρ

(
w(s)

)
,

we have q(s)
def
= v(s) · w(s)−1 ∈ H

(
F (s)

)
/R = H(F )/R, i.e., q(s) is constant.

Corollary 4.9 implies that

1 = q(0) = q(1) =
∏
p∈Gm

NF (p)/F

(
νF (p)

(
t(p)

)vp(h)/ ind ρF (p)

)
· u(0)−1 · u(∞).

�
Lemma 5.6. For any closed point p ∈ Gm ⊂ P1

F ,∏
f(x)=p

NF (x)/F (p)

(
νF (x)f(x)

)vx(g)
= νF (p)

(
t(p)

)vp(h)/ ind ρF (p)

in G
(
F (p)

)
/RH(F (p)

)
.

Proof. Since f(x) = t(p) ∈ F (p)× and∑
f(x)=p

vx(g) · [F (x) : F (p)] = vp(h),

we have ∏
f(x)=p

NF (x)/F (p)

(
νF (x)(f(x)

)vx(g)
= (Lemma 4.10)

∏
f(x)=p

νF (p)
(
t(p)

)vx(g)·[F (x):F (p)]/ ind ρF (p) =

νF (p)
(
t(p)

)vp(h)/ ind ρF (p) .

�
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Now we can prove (4):∏
x∈Sup(f)

NF (x)/F

(
νF (x)g(x)

)vx(f)
=

∏
f(x)=0,∞

NF (x)/F

(
νF (x)(g(x))

)vx(t)
= (Lemma 5.3)

u(0)·u(∞)−1 = (Lemma 5.5)∏
p∈Gm

NF (p)/F

(
νF (p)

(
t(p)

)vp(h)/ ind ρF (p)

)
= (Lemma 5.6)

∏
p∈Gm

NF (p)/F

∏
f(x)=p

NF (x)/F (p)

(
νF (x)f(x)

)vx(g)
=

∏
x∈Sup(g)

NF (x)/F

(
νF (x)f(x)

)vx(g)
.

Thus, the homomorphism βF is well defined.

5.2. Properties of βF . We prove first that βF commutes with the norms.

Proposition 5.7. For any finite field extension L/F the following diagram
commutes

A0(XL, K1)
βL- G(L)/RH(L)

A0(X,K1)

NL/F

? βF- G(F )/RH(F )

NL/F

?

Proof. Let x ∈ XL be a closed point, u ∈ L(x)×. Denote by y the image of
x under the natural morphism XL → X and by v the norm NL(x)/F (y)(u) ∈
F (y)×. Since ρ commutes with the norms and by a property of the map ν,
νE = (ρE)−1 for any field extension E/F such that X(E) ̸= ∅, we have

NL(x)/F (y)ν
L(x)(u) = νF (y)

(
NL(x)/F (y)(u)

)
= νF (y)(v).

Then NL/F (x, u) = (y, v) and

βF

(
NL/F (x, u)

)
=βF (y, v) = NF (y)/F

(
νF (y)(v)

)
= NF (y)/F

(
NL(x)/F (y)ν

L(x)(u)
)

=NL/F

(
NL(x)/Lν

L(x)(u)
)
= NL/F

(
βL(x, u)

)
.

�

Corollary 5.8. The composition

A0(X,K1)
βF- G(F )/RH(F )

αF- A0(X,K1)

is the identity.



R-EQUIVALENCE IN SPINOR GROUPS 23

Proof. Assume first that X(F ) ̸= ∅. Then for any x ∈ X(F ) and a ∈ F×,

N1
F

(
αF (βF (x, a))

)
= ρF

(
βF (x, a)

)
= ρF

(
νF (a)

)
= a = N1

F (x, a),

hence αF ◦ βF is the identity since N1
F : A0(X,K1) → F× is an isomorphism

by the property 2 of X.
In the general case, by Propositions 3.7 and 5.7, for any finite field extension

L/F the following diagram is commutative

A0(XL, K1)
βL- G(L)/RH(L)

αL- A0(XL, K1)

A0(X,K1)

NL/F

? βF- G(F )/RH(F )

NL/F

? αF- A0(X,K1).

NL/F

?

Since the composition in the top row is the identity if X(L) ̸= ∅, the com-
position αF ◦ βF is the identity on the image of NL/F for such field extensions.
But these images generate the group A0(X,K1). �

Lemma 5.9. Let p(t) be a monic irreducible polynomial over F different from

t and t − 1, L = F (p)
def
= F [t]/p(t)F [t]. Then there is an element u(t) ∈

G
(
F (t)

)
/RH

(
F (t)

)
such that

• ρ
(
u(t)

)
= p(t)ind ρL;

• u(t) is defined at t = 0, t = 1;
• u(0), u(1) ∈ Im βF .

Proof. Let θ ∈ L be the canonical root of p(t). For a closed point x ∈ XL,
consider the element

ux(t) = NL(x)(t)/F (t)

(
νL(x)(t)(t− θ)

)
∈ G

(
F (t)

)
/RH

(
F (t)

)
.

Clearly,

ρ
(
ux(t)

)
= NL(x)(t)/F (t)(t− θ) =

NL(t)/F (t)(t− θ)deg x = p(t)deg x.

For a = 0 or 1, by Lemma 4.3 and Corollary 4.9, ux(t) is defined at t = a and

ux(a) = NL(x)/F

(
νL(x)(a− θ)

)
= NL/F (u

′)

where u′ = NL(x)/L

(
νL(x)(a− θ)

)
. By the definition of β, u′ ∈ Im(βL). Hence,

Proposition 5.7 implies that ux(a) ∈ Im(βF ).
Since by the property 3 of X, gcd deg(x) = ind ρL, there are finitely many

closed points xi ∈ XL and integers mi such that
∑

mi deg xi = ind ρL. Then
the element u(t) =

∏
uxi

(t)mi satisfies the necessary conditions. �

Theorem 5.10. The maps αF and βF are mutually inverse isomorphisms.
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Proof. In view of Corollary 5.8 it is sufficient to show that βF is surjective. Let
g ∈ G(F )/RH(F ). Since G is a rational group, there is

u(t) ∈ G
(
F (t)

)
/RH

(
F (t)

)
defined at t = 0, 1 such that u(0) = 1 and u(1) = g. Set

ρ
(
u(t)

)
= a ·

∏
pi(t)

ki

where a ∈ F× and pi are monic irreducible polynomials over F . By [14, Th.
4.4], a = ρ(w) for some w ∈ G(F )/RH(F ) and ind ρF (pi) divides ki for all

i. By Lemma 5.9, there exist elements ui(t) ∈ G
(
F (t)

)
/RH

(
F (t)

)
such that

ρ
(
ui(t)

)
= pi(t)

ki , u(t) is defined at t = 0, 1 and ui(0), u(1) ∈ Im βF . Set

v(t) = w ·
∏

ui(t), h(t) = u(t) · v(t)−1.

Clearly, ρ
(
h(t)

)
= 1, hence h(t) ∈ H

(
F (t)

)
/R = H(F )/R is constant. Thus,

g =
u(1)

u(0)
=

v(1)

v(0)
∈ Im βF .

�

Corollary 5.11. The map αF induces an isomorphism H(F )/R ≃ A0(X,K1).

6. Applications

We apply Theorem 5.10 and Corollary 5.11 in the situation considered in
Examples 2.2, 2.3 and 2.5.

First of all, we get another proof of the following Theorem [18].

Theorem 6.1. Let A be a central simple algebra over F , X be the Severi-
Brauer variety of A. Then there are canonical isomorphisms

K1(A) = GL1(A)/R SL1(A) ≃ A0(X,K1),

SK1(A) = SL1(A)/R ≃ A0(X,K1).

In the following two theorems we get a computation of the group of R-
equivalence classes in spinor groups.

Theorem 6.2. Let (V, q) be a non-degenerate quadratic space over F , X be
the corresponding projective quadric hypersurface. Then there are canonical
isomorphisms

Γ+(V, q)/R Spin(V, q) ≃ A0(X,K1),

Spin(V, q)/R ≃ A0(X,K1).

Corollary 6.3. If q = f ⊥ g, where f is a Pfister neighbor and dim g ≤ 2,
then the group A0(X,K1) is trivial.

Proof. By [16, Th. 6.4], the group Spin(V, q) is rational. �
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Remark 6.4. One can show that the homomorphism

αF : Γ+(V, q) → A0(X,K1)

coincides with one defined by M. Rost in [23].

Theorem 6.5. Let A be a central simple algebra over F of even dimension and
index at most 2 with a quadratic pair (σ, f), X be the corresponding involution
variety. Then there are canonical isomorphisms

Γ(A, σ, f)/R Spin(A, σ, f) ≃ A0(X,K1),

Spin(A, σ, f)/R ≃ A0(X,K1).

Remark 6.6. Theorem 6.5 covers all simply connected groups of type Dm

with odd m.

6.1. Generic quadric hypersurfaces. Let F be a field of characteristic dif-
ferent from 2. Let q be a non-degenerate quadratic form over F of dimension
n. Consider the quadratic form q′ = ⟨t⟩ ⊥ qF (t) over the rational function field
F (t). Since qF (t) is a subform of q′, the group Spin(q)F (t) is a subgroup of
Spin(q′).

Theorem 6.7. Spin(q)/R ≃ Spin(q′)/R.

Proof. Consider the hypersurface Y in A1
F × Pn

F given by the equation tT 2
0 +

q(T ) = 0 in the coordinates t, T0 : T1 : . . . : Tn. The subvariety Z ⊂ Y
given by T0 = 0 is isomorphic to A1

F × X, where X is the projective quadric
corresponding to q. The generic fiber of the projection f : Y → A1

F is the
projective quadric X ′ corresponding to q′ over the field F (t). The top row of
the following diagram is the exact sequence corresponding to the morphism f
[22, §8]

⨿
p∈A1

A1(Yp, K0)
i- A1(Y,K0) - A0(X

′, K1)
∂-

⨿
p∈A1

A0(Yp, K0)

F (t)×

N1

? ∂ -
⨿
p∈A1

Z

⨿
N0

?

where Yp is the fiber of f over p ∈ A1. Notice first that the right vertical
homomorphism is injective. Indeed, if p ̸= 0, the fiber Yp is a smooth quadric
and the norm homomorphism N0 : A0(Yp, K0) → Z is injective (Example 2.3).
If p = 0, the variety Yp is a singular projective quadric corresponding to a
degenerate quadric with one-dimensional radical, i.e., Yp is of the form of the
variety in Lemma 2.4. Hence the result follows from Lemma 2.4.

Let U = Y \Z, i.e., U is an open subvariety in Y defined by T0 ̸= 0. Clearly,
U is isomorphic to the affine space An

F . The localization exact sequence for
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(Y, U) and the homotopy invariance yield then an isomorphism

A1(Y,Km) ≃ A0(X,Km+1)

for any m ≥ 0. Thus the diagram above gives the following exact sequence⨿
p∈A1

A1(Yp, K0)
i- A0(X,K1) - A0(X

′, K1) - 0.

In view of Theorem 5.10, it suffices to show that i = 0, i.e., for every closed
point p ∈ A1

F , the direct image homomorphism

ip : A1(Yp, K0) - A1(Y,K0)

is trivial. More generally, we will prove that for any m ≥ 0, the direct image
homomorphism

imp : A1(Yp, Km) - A1(Y,Km)

is trivial.
Assume first that p ̸= 0, i.e., the fiber Yp is a smooth projective quadric.

Consider the graph ∆ ⊂ Yp × Y of the embedding of Yp into Y . The idea to
use the following Lemma is due to M. Rost.

Lemma 6.8. If ∆ represents the trivial class in CHn−1(Yp × Y ), then imp is
the trivial homomorphism.

Proof. By [10], the direct image imp is the composition

A1(Yp, Km)
g- An+1(Yp × Y,Km−n)

k- A1(Yp × Y,Km)
h- A1(Y,Km),

where g is the inverse image homomorphism with respect to the projection
Yp × Y → Yp, k is the multiplication by the class of ∆ in

CHn−1(Yp × Y ) = An−1(Yp × Y,K1−n)

and h is the direct image under the projection Yp × Y → Y . �
It remains to check that the class of ∆ is trivial. The variety Yp×Y is given

in A1
F × Pn

F × A1
F × Pn

F with the coordinates t, T0 : . . . : Tn, s, S0 : . . . : Sn by
the equations

tT 2
0 + q(T ) = 0, sS2

0 + q(S) = 0, t = t(p).

Consider the closed subvariety V in Yp×Y given by the equations SiTj = SjTi

for all i, j = 1, 2, . . . , n. The restriction l on V of the function SiT0

S0Ti
− 1 does

not depend on the choice of i = 1, 2, . . . , n. It is straightforward to check that
∆ is the divisor of l on V so has trivial image in CHn−1(Yp × Y ) .

Finally assume p = 0. The fiber Y0 is a degenerate quadric with the singular
point y given by T0 = 1, Ti = 0 for i ≥ 1. There is a natural vector bundle

Y0 \ {y} - X, (t, T0 : T1 : . . . : Tn) 7→ (T1 : . . . : Tn).

The localization exact sequence and the homotopy invariance then yield iso-
morphisms

A1(Y0, Km) ≃ A1(Y0 \ {y}, Km) ≃ A0(X,Km+1).
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The group A0(X,Km+1) is generated by the norms of the group

A0(XL, Km+1) = Km+1(L)

in all finite field extensions L/F such that X(L) ̸= ∅. Since the homomor-
phisms im0 are K∗-linear and commute with the norms, it suffices to prove that
i00 = 0. But this is clear since the image of i00 belongs to A0(X,K0) = 0. �

Example 6.9. Let q be a non-degenerate quadratic form of dimension 6 over
F , L = F (t1, t2, . . . , tn) field of rational functions. Consider the quadratic form
q′ = ⟨t1, t2, . . . , tn⟩ ⊥ qL over L. By Theorem 6.7, for any field extension E/F ,

Spin(qE)/R ≃ Spin(q′EL)/R.

Assume that q remains anisotropic over the discriminant quadratic extension
F (

√
disc(q)). Then by [16, Cor. 9.2], Spin(qE)/R ̸= 0 for some field extension

E/F . Hence Spin(q′EL)/R ̸= 0 and therefore, the group Spin(q′) is not ratio-
nal. In particular we get examples of non-rational spinor groups for quadratic
forms of any dimension ≥ 6. Note that some examples of non-rational spinor
groups in dimensions ≡ 2 (mod 4) were given in [21].

Example 6.10. Let q be the “generic” quadratic form ⟨t1, t2, . . . , tn⟩, n ≥ 2,
over the rational function field L = F (t1, t2, . . . , tn). It follows from Example
6.9 that for any n, Spin(q)/R = 1 but the group Spin(q) is not rational if and
only if n ≥ 6.

Remark 6.11. If char(F ) = 2, the form q′ in Theorem 6.7 is degenerate if
dim(q) is odd. Let q′′ be the orthogonal sum of the form qF (s,t) with the non-
degenerate binary form sX2+XY + tY 2 over the field F (s, t). Then q′′ is non-
degenerate and one can prove that the natural map Spin(q)/R → Spin(q′′)/R
is an isomorphism.
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