
CLASSIFICATION OF SPECIAL REDUCTIVE GROUPS

ALEXANDER MERKURJEV

Abstract. We give a classification of special reductive groups over arbitrary fields that
improves a theorem of M. Huruguen.

1. Introduction

An algebraic group G over a field F is called special if for every field extension K/F
all G-torsors over K are trivial. Examples of special linear groups include:

1. The general linear group GLn, and more generally the group GL1(A) of invertible
elements in a central simple F -algebra A;

2. The special linear group SLn and the symplectic group Sp2n;

3. Quasi-trivial tori, and more generally invertible tori (direct factors of quasi-trivial tori).

4. If L/F is a finite separable field extension and G is a special group over L, then the
Weil restriction RL/F (G) is a special group over F .

A. Grothendieck proved in [3] that a reductive group G over an algebraically closed
field is special if and only if the derived subgroup of G is isomorphic to the product of
special linear groups and symplectic groups.

In [4] M. Huruguen proved the following theorem.

Theorem. Let G be a reductive group over a field F . Then G is special if and only if the
following three condition hold:

(1) The derived subgroup G′ of G is isomorphic to

RL/F (SL1(A))×RK/F (Sp(h))

where L and K are étale F -algebras, A an Azumaya algebra over L and h an
alternating non-degenerate form over K.

(2) The coradical G/G′ of G is an invertible torus.
(3) For every field extension K of F , the abelian group S(K;G) is trivial.

The group S(K;G) is a certain factor group of the group of isomorphism classes of
Z ′-torsors over SpecK, where Z ′ is the center of G′. Unfortunately, as noticed in [4],
condition (3) (which is in fact infinitely many conditions for all field extension K/F ) is
not easy to check in general.

In the present paper we replace condition (3) by solvability of a system of congruences
over Z involving numerical (discrete) invariants of the reductive group G (Theorem 4.1),
a condition that is relatively easy to check.

We use the following notation.
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2 A. MERKURJEV

F is the base field, Fsep a separable closure of F , Γ = ΓF := Gal(Fsep/F ) the absolute
Galois group of F ;

Gm = SpecF [t, t−1] multiplicative group.
If G is an algebraic group (a group scheme of finite type) over F , and K/F is a field

extension, we write TorsG(K) for the pointed set of isomorphism classes of G-torsors over
SpecK. If G is commutative, TorsG(K) is an abelian group.

If G is a reductive group over F , we let G′ denote the derived group of G that is a
semisimple group over F . The factor group G/G′ is a torus that is called the coradical of
G.

If X is a scheme over F and K/F is a field extension, we set XK := X ×F SpecK. We
also write Xsep for XFsep .

2. Preliminary results

2.1. Γ-lattices. In this section, Γ is an arbitrary profinite group. A Γ-lattice is a free
abelian group N of finite rank with a continuous Γ-action by group automorphisms. We
write NΓ for the subgroup of Γ-invariant elements in N .

The dual lattice N∨ is defined as Hom(N,Z) with the Γ-action given by (γf)(n) =
f(γ−1n) for f ∈ N∨. The pairing

N∨ ⊗N → Z, f ⊗ n 7→ 〈f, n〉 := f(n)

is Γ-equivariant: 〈γf, γn〉 = 〈f, n〉.
Let X be a finite Γ-set (with a continuous Γ-action). The free abelian group Z[X] with

basis X is a Γ-lattice. A Γ-lattice N is permutation if N admits a Γ-invariant Z-basis X,
i.e., N ' Z[X].

The Γ-invariant bilinear form B on Z[X] defined by B(x, x′) = δx,x′ for x, x′ ∈ X yields
a canonical isomorphism between the Γ-lattice Z[X] and its dual.

If N is a Γ-lattice and X a finite Γ-set, write N [X] for the Γ-lattice N ⊗Z Z[X]. An
element n =

∑
x∈X nx ⊗ x in N [X] is Γ-invariant if and only if γnx = nγx for all γ ∈ Γ

and x ∈ X. In particular, nx ∈ NΓx where Γx ⊂ Γ is the stabilizer of x.
Let X be the disjoint union of the Γ-orbits X1, X2, . . . , Xs. Choose representatives

xi ∈ Xi and let Γi ⊂ Γ be the stabilizer of xi. Then the collection (nx)x∈X such that
n ∈ N [X]Γ is uniquely determined by nxi for i = 1, 2, . . . , s which can be arbitrary
elements in NΓi respectively. This establishes a group isomorphism

N [X]Γ ' NΓ1 ⊕NΓ2 ⊕ · · · ⊕NΓs .

2.2. Étale algebras. Let L be an étale algebra over a field F . Write X for the finite
Γ-set of all F -algebra homomorphisms L→ Fsep. Note that L can be reconstructed from
X as the F -algebra of all Γ-equivariant maps X → Fsep. The correspondence L ↔ X
extends to an anti-equivalence between the category of étale F -algebras and the category
of finite Γ-sets.

Write a finite Γ-set X as the disjoint union of Γ-orbits X1, X2, . . . , Xs. The correspond-
ing étale F -algebra L is the product L1×L2× · · · ×Ls of finite separable field extensions
Li/F such that Li ↔ Xi.
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If L ↔ X, then the Fsep-algebra L ⊗F Fsep is isomorphic to the Fsep-algebra (Fsep)X

of all maps X → Fsep. It follows that the Γ-modules K0(L ⊗F Fsep) and the permu-
tation Γ-module Z[X] are naturally isomorphic. Taking Γ-invariant elements we get an
isomorphism K0(L) ' Z[X]Γ.

We write ∆L ∈ K0(L ⊗F L) for the class of L viewed as an L ⊗F L-module via the
product homomorphism L⊗F L→ L. Under the isomorphism K0(L⊗F L) ' Z[X ×X]Γ

the element ∆L corresponds to the diagonal element ∆X =
∑

x∈X(x, x).

2.3. Algebraic tori. Let T be an algebraic torus over F . The character group

T ∗ := HomFsep(Tsep, (Gm)sep)

is a Γ-lattice of rank dim(T ). The dual group T∗ := (T ∗)∨ is the co-character Γ-lattice of
all homomorphisms (Gm)sep → Tsep over Fsep.

The torus T can be reconstructed from the character Γ-lattice T ∗ as follows:

T = Spec
(
Fsep[T ∗]Γ

)
.

The correspondence T ↔ T ∗ extends to an anti-equivalence between the category of
algebraic tori over F and the category of Γ-lattices.

If R is a commutative F -algebra, then the group of R-points of a torus T is equal to

T (R) = HomΓ

(
T ∗, (R⊗F Fsep)×

)
=
(
T∗ ⊗Z (R⊗F Fsep)×

)Γ
.

Viewing every character in T ∗ as an invertible function on Tsep yields a Γ-equivariant
embedding of T ∗ into Fsep[T ]× ⊂ Fsep(T )× = (F (T )⊗F Fsep)× that represents the generic
point of T in T (F (T )) over the function field F (T ).

A torus P is called quasi-trivial if P ∗ is a permutation Γ-lattice. A quasi-trivial torus
is isomorphic to the Weil restriction RL/F (Gm,L), where L is the étale F -algebra corre-
sponding to a Γ-invariant basis X of P ∗. According to Section (2.1), the co-character
Γ-lattice P∗ = (P ∗)∨ is also isomorphic to Z[X].

Let P be a quasi-trivial torus with P ∗ = Z[X] for a Γ-set X. The function field Fsep(P )
is the purely transcendental extension Fsep(X) of Fsep in the independent variables fromX.
For every variable x ∈ X, the discrete x-adic valuation vx on the field Fsep(P ) = Fsep(X)
gives a group homomorphism Fsep(P )× → Z. All the valuations vx for x ∈ X yield a
Γ-equivariant homomorphism Fsep(P )× → Z[X] = P ∗ that splits the embedding of P ∗

into Fsep(P )×. Taking Γ-invariant elements, we get a factorization

K0(L) = (P ∗)Γ → F (P )× → (P ∗)Γ = K0(L)

of the identity of K0(L).

2.4. Reduced norm. Let A be a central simple algebra over F . The degree deg(A) of A is
the square root of dimF (A). By Wedderburn’s theorem, A 'Mk(D) for a central division
algebra D over F . The index ind(A) of A is the degree of D. Thus, deg(A) = k · ind(A).

The exact forgetful functor A-mod→ F -mod yields the norm homomorphism

N
A/F
i : Ki(A)→ Ki(F )
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on K-groups. The group K0(A) is infinite cyclic generated by the class of the irreducible
left A-module Dk := D ⊕ · · · ⊕D (k times). Moreover,

N
A/F
0 ([Dk]) = dimF (Dk) = deg(A) · ind(A) ∈ Z = K0(F ).

Let NrdA0 : K0(A) → K0(F ) = Z be the homomorphism taking [Dk] to ind(A). Thus,

N
A/F
0 = deg(A) · NrdA0 and Im(NrdA0 ) = ind(A) ·K0(F ).
More generally, let L be an étale F -algebra and A an Azumaya algebra over L. Write

L = L1×L2× · · · ×Ls, where Li are fields and A = A1×A2× · · · ×As, where each Ai is
a central simple algebra over Li. The component-wise maps Nrd0 yield a homomorphism
NrdA0 : K0(A)→ K0(L).

If A is a central simple algebra over F , denote by NrdA : K1(A) → K1(F ) = F× the

reduced norm homomorphism satisfying N
A/F
1 = (NrdA)n (see [2]). More generally, if A

is an Azumaya algebra over étale F -algebra L, we have a well defined homomorphism

NrdA : K1(A)→ K1(L) = L×.

2.5. Huruguen groups. Let L be an étale F -algebra and A an Azumaya algebra over
L. If L = L1 × L2 × · · · × Ls is a product of fields, then A = A1 × A2 × · · · × As, where
each Ai is a central simple algebra of some degree ni over Li and

RL/F (SL1(A)) = RL1/F (SL1(A1))×RL2/F (SL1(A2))× · · · ×RLs/F (SL1(As)).

Let K be an étale F -algebra and h an alternating non-degenerate form over K. If
K = K1 ×K2 × · · · ×Kt is a product of fields, then h is a product of alternating forms
of some dimensions 2m1, 2m2, . . . , 2mt respectively, and

RK/F (Sp(h)) = RK1/F (Sp2m1
)×RK2/F (Sp2m2

)× · · · ×RKt/F (Sp2mt
).

Let G be a reductive algebraic group over F . M. Huruguen proved in [4] that if G is
special then

(1) The derived subgroup G′ of G is isomorphic to

RL/F (SL1(A))×RK/F (Sp(h)),

where L and K are étale F -algebras, A an Azumaya algebra over L and h an alternating
non-degenerate form over K.

(2) The coradical G/G′ of G is an invertible torus.

We call a reductive group G satisfying (1) and (2) a Huruguen group. Write G′ =
G′1 ×G′2, where G′1 = RL/F (SL1(A)) and G′2 = RK/F (Sp(h)).

Example 2.1. (Standard Huruguen groups) Following the notation as above set G1 :=
RL/F (GL1(A)) and G2 := RK/F (GSp(h)), where GSp(h) is the group of symplectic simil-
itudes (see [5, §23]). Then G = G1 ×G2 is a Huruguen group. Indeed,

G′ = RL/F (SL1(A))×RK/F (Sp(h))

and G/G′ = P1×P2, where P1 = RL/F (Gm,L) and P2 = RK/F (Gm,K). The homomorphism

G1 → P1 is given by the reduced norm homomorphism NrdA.
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The center Z of G is isomorphic to P1×P2, so the exact sequence 1→ Z ′ → Z → S → 1,
where Z ′ is the center of G′, is isomorphic to

(2.2) 1→ Z ′ → P1 × P2
ν1×ν2−−−→ P1 × P2 → 1.

The homomorphism ν1 : P1 → P1 is the ni-power map on the i-th component RLi/F (Gm)
of P1 and ν2 : P2 → P2 is the square map. Note that the groups G1, G2 and G are special.

We show that every Huruguen group is the pull-back of the standard Huruguen group.

Proposition 2.3. Let G be a Huruguen group and G̃ the standard Huruguen group with

(G̃)′ = G′ as in Example 2.1. Then there is a homomorphism

λ̄ := (λ1, λ2) : S = G/G′ → G̃/G̃′ = P1 × P2

of the coradical tori such that G ' G̃ ×G̃/G̃′ S. The homomorphism λ̄ is uniquely deter-

mined modulo the image of (ν∗1 , ν
∗
2) : Hom(S, P1 × P2)→ Hom(S, P1 × P2).

Proof. The exact sequence (2.2) of groups of multiplicative type in Example 2.1 yields an
exact sequence

Hom(S, P1 × P2)
(ν∗1 ,ν

∗
2 )

−−−−→ Hom(S, P1 × P2)→ Ext(S, Z ′)→ Ext(S, P1 × P2).

As S is invertible and P1× P2 is a quasi-trivial torus, the group Ext(S, P1× P2) is trivial
(see [1, Lemme 1]). It follows that the exact sequence 1 → Z ′ → Z → S → 1 is the
pull-back of (2.2) with respect to a group homomorphism λ̄ : S → P1×P2. Therefore, the

exact sequence 1 → G′ → G → S → 1 is the pull-back of 1 → G′ → G̃ → P1 × P2 → 1
with respect to λ̄. �

Let G be a Huruguen group with coradical S. Let G̃ be the standard Huruguen group

with (G̃)′ = G′ as in Example 2.1. The coradical of G̃ is P1 × P2, where P1 and P2 are
quasi-trivial tori. Write

ρ̄ = (ρ1, ρ2) : G̃ = G̃1 × G̃2 → P1 × P2

for the canonical homomorphism. By Proposition 2.3, there is a group homomorphism

λ̄ = (λ1, λ2) : S → P1 × P2

such that G is the pull-back of G̃ with respect to λ̄.
Write for simplicity P for P1 and λ : S → P for λ1.

Lemma 2.4. The following conditions are equivalent

(1) The group G is special.
(2) The homomorphism

G̃(K)× S(K)
(ρ̄,λ̄)−−→ P (K)× P2(K)

is surjective for all field extensions K/F .
(3) The homomorphism

G̃1(K)× S(K)
(ρ1,λ)−−−→ P (K)

is surjective for all field extensions K/F .
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Proof. In the diagram

S(K)

λ̄
��

// TorsG′(K) // TorsG(K)

��

// TorsS(K)

G̃(K)
ρ̄ // P (K)× P2(K) // TorsG̃′(K) // TorsG̃(K)

with exact rows the sets TorsG̃(K) and TorsS(K) are singletons as G̃ and S are special
groups. The equivalence (1)⇔ (2) follows by the diagram chase. The equivalence (2)⇔
(3) follows from the fact that the map ρ2 : G̃2(K)→ P2(K) is surjective as the group G̃′2
is special. �

Proposition 2.5. The Huruguen group G is special if and only if the generic point of P
is in the image of the homomorphism

(Nrd, λ) : K1(A⊗F F (P ))× S(F (P ))→ (L⊗F F (P ))× = P (F (P )).

Proof. Recall that G̃1 = GL1(A) and for every field extension K/F the image of the map

ρ1 : G̃1(K)→ P (K) coincides with the image of the reduced norm homomorphism

Nrd : K1(A⊗F K)→ (L⊗F K)× = P (K).

If F is a finite field, the algebra A is split and Nrd is surjective for every K and G is
special by Lemma 2.4. Therefore, we may assume that F is infinite. The statement of
the proposition is a consequence of Lemma 2.4 and the following lemma applied to the
homomorphism (ρ, λ) : G1 × S → P .

Lemma 2.6. Let H → T be a homomorphism of algebraic groups with T a rational,
smooth and connected group over an infinite field F . If the generic point of T in T (F (T ))
is in the image of H(F (T )) → T (F (T )), then the map H(K) → T (K) is surjective for
every field extension K/F .

Proof. As T is smooth and connected, T is geometrically integral. In particular, the
function field F (T ) is defined. By assumption, the morphism H → T is split at the
generic point of T , i.e., there is a nonempty open subset U ⊂ T and a morphism U → H
such that the composition U → H → T is the inclusion. It follows that the subset
U(K) ⊂ T (K) is contained in the image of H(K)→ T (K). Let t ∈ T (K). Consider the
nonempty open subset W = t·U−1

K ∩UK in TK . As T is a rational variety and the field F is
infinite, we have W (K) 6= ∅. Then t ∈ U(K) ·U(K) is in the image of H(K)→ T (K). �

2.6. Associated character. We keep the notation of the previous section. Let X be the
Γ-set corresponding to the F -algebra L, thus P ∗ ' Z[X]. For every x ∈ X write nx for
the degree of the central simple A⊗LFsep, where the tensor product is taken with respect
to the homomorphism x : L→ Fsep. Clearly, nx = ni if x ∈ Xi.

The homomorphism λ : S → P determines an element a ∈ S∗[X]Γ via the isomorphisms

HomF (S, P ) = HomΓ(S∗,Z[X]) = (S∗ ⊗ Z[X])Γ = S∗[X]Γ.

We call a the character associated with G.
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We write a =
∑

x∈X ax⊗x ∈ S∗[X]Γ with ax ∈ (S∗)Γx (see Section 2.1). By Proposition

2.3, ax is uniquely determined modulo nx · (S∗)Γx .

3. Two key propositions

Let L be an étale F -algebra and let X be the corresponding Γ-set. The Weil restriction

AX := RL/F (A1
L) = Spec(Fsep[X])Γ,

where Fsep[X] is a polynomial ring on the variables in X, is the affine space A(L) of the
vector space L over F . The quasi-trivial torus P = RL/F (Gm,L) is the principal open
subset of AX given by the function h =

∏
x∈X x ∈ F [AX ], i.e.,

F [P ] = F [AX ][h−1].

Note that h is the norm NL(AX)/F (AX)(x) for every x ∈ X.
For every variable x ∈ X write vx for the x-adic valuation on the rational function field

Fsep(X) and also of its restriction to the subfield F (AX) = F (P ). Let X1, X2, . . . , Xs be
all Γ-orbits in X. For every i write hi for the product of all x ∈ Xi. Then h is the product
of all hi and each hi is an irreducible (prime) element of the polynomial ring F [AX ]. Note
that vx is the discrete valuation on F (AX) associated with hi, where i is so that x ∈ Xi.
In particular, vx = vx′ on F (P ) if x and x′ lie in the same Γ-orbit. We will write vi for vx
if x ∈ Xi.

For every i, let Zi ⊂ AX be the irreducible hypersurface given by the equation fi = 0.
The function field F (Zi) is the residue field of the valuation vi. The scheme (Zi)sep is the
union of |Xi| irreducible hypersurfaces given by the equations x = 0 for x ∈ Xi. Fix a
point x ∈ Xi and identify Li with the subfield (Fsep)Γx , where Γx is the stabilizer of x in
Γ. Let L′i be the étale Li-algebra corresponding to the Γx-set Xi \ {x} and let P ′i be the
quasi-trivial torus RL′i/Li

(Gm,L′i
) over Li. Viewing P ′i as a scheme over F , we see that P ′i

is an open subscheme of Zi (see [6, §2]). Therefore, F (Zi) = Li(P
′
i ). In particular, the

residue field F (Zi) of vi is a purely transcendental field extension of Li.

Proposition 3.1. Let L and M be two étale F -algebras and A an Azumaya M-algebra.
Then there is a commutative diagram

K0(A⊗F L)

Nrd0

��

fA // K1(A⊗F F (P ))

Nrd
��

gA // K0(A⊗F L)

Nrd0

��
K0(M ⊗F L)

fM // K1(M ⊗F F (P ))
gM // K0(M ⊗F L)

such that

(1) The compositions gA ◦ fA and gM ◦ fM are the identity maps.
(2) If M = L, then fL(∆L) is the generic point of P in K1(L⊗F F (P )) = P (F (P ))×.

Proof. We may clearly assume that M is a field. Assume first that M = F . The homo-
morphisms fF and gF were defined in Section 2.3.

We define the map fA as follows. Write L = L1 × L2 × · · · × Ls as above. The group
K0(A ⊗F L) is the direct sum of K0(A ⊗F Li) over all i. Choose any x ∈ Xi, where
Xi ↔ Li. We can identify Li with the field (Fsep)Γx , where Γx is the stabilizer of x in
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Γ. Thus, we can view x is a function in Li(P )× = K1(Li(P )). Define the map fA on
K0(A⊗F Li) as the composition

K0(A⊗F Li)→ K1((A⊗F Li)⊗Li
Li(P )) = K1(A⊗F Li(P ))→ K1(A⊗F F (P )),

where the first map is multiplication by x ∈ K1(Li(P )), i.e., it takes the class of a left
projective A⊗F Li-module Q to the class of the automorphism of multiplication by x in
Q, and the last homomorphism in the norm map for the field extension Li(P )/F (P ).

To prove commutativity of the left square of the diagram consider the following diagram

K0(A⊗F Li)

Nrd0

��

// K1(A⊗F Li(P ))

Nrd
��

// K1(A⊗F F (P ))

Nrd
��

K0(Li) // K1(Li(P )) // K1(F (P )),

where the first map in each row is multiplication by x and the second map is the norm
map for the field extension Li(P )/F (P ). The right square is commutative as the reduced
norm commutes with the usual norm. The composition in the top row is fA and in the
bottom row takes 1 to the product in F (P )× = K1(F (P )) of all elements from the orbit
Xi. Therefore, the composition in the bottom row coincides with fF restricted to K0(Li).

It suffices to prove that the left square in this diagram is commutative. Write A⊗F Li '
Mk(D), where D is a division algebra of degree d = ind(A ⊗F Li) over Li. The group
K0(A ⊗F Li) = K0(Mk(D)) is generated by the class [Q] of the standard free left D-
module Q = Dk. Identifying Q with the left ideal of Mk(D) of all matrices with all
terms but the first column zero, we see that the group D× = AutMk(D)(Q) embeds into
AutMk(D)(Mk(D)) = GLk(D) via d 7→ diag(d, 1, . . . , 1). It follows that the image of [Q] in
K1(A⊗FLi(P )) = K1(Mk(D)⊗Li

Li(P )) is given by the diagonal matrix diag(x, 1, . . . , 1) ∈
Mk(D⊗Li

Li(P )) whose reduced norm in Li(P )× = K1(Li(P )) is equal to xd. Finally, the
image of [Q] under Nrd0 is equal to d · 1 ∈ K0(Li) and the bottom map in the left square
of the diagram takes 1 to x. This proves commutativity of the left square of the above
diagram and hence of the left square of the diagram in the statement of the proposition.

In order to define the map gA we need the following statement.

Lemma 3.2. Let A be a central simple F -algebra, K/F a field extension and v a discrete
valuation on K over F with residue field K. Then

Im
[
K1(A⊗F K)

Nrd−−→ K×
v−→ Z

]
⊂ ind(A⊗F K) · Z.

Proof. Let R ⊂ K be the valuation ring of v and let CA be the Serre subcategory of
R-torsion modules in the abelian categoryM(A⊗F R) of finitely generated left AF ⊗R-
modules. By dévissage (see [7, §5]), we have Ki(CA) = Ki(A⊗FK) and the factor category
M(A⊗F R)/CA is equivalent to M(A⊗F K).

Similarly, in the case A = F we have the subcategory CF ⊂M(R) such that Ki(CF ) =
Ki(K) and M(R)/CF 'M(K).

The exact functor i : M(A ⊗F R) → M(R) induced by the natural homomorphism
R → A ⊗F R takes the subcategory CA into CF . Therefore, we have a commutative
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diagram

K1(A⊗F K)

(i1)∗
��

∂A // K0(A⊗F K)

(i0)∗
��

K1(K)
∂F // K0(K),

where the horizontal maps are the connecting homomorphisms in localization sequences
and the vertical maps are induced by the functor i. By [7, Lemma 5.16], ∂F coincides
with v : K× → Z. We also have (i1)∗ = NA/F = Nrdn and the image of (i0)∗ coincides

with n · ind(A⊗F K)Z, where n = deg(A) (see Section 2.4). The result follows. �

We apply this lemma to the field K = F (P ) and the discrete valuation vi on K for some
i. Recall that the residue field Ki of vi is purely transcendental over Li, hence K0(A⊗F
Ki) = K0(A⊗F Li). The image of Nrd0 in Zs = K0(L) is equal to

∐s
i=1 ind(A⊗F Li) · Z.

It follows from Lemma 3.2 that the map gA exists and unique.
The commutative diagram in the statement of the proposition is constructed in the case

M = F . The case of a general M reduces to the one when W is a field. Finally, we apply
the above case (when A is central over the base field) to the algebra A over M and the
étale M -algebra M ⊗F L in place of L. Thus, the commutative diagram is constructed in
the general case.

We know that gM ◦ fM is the identity. This implies that the composition gA ◦ fA is also
the identity since the map Nrd0 is injective.

Finally, to prove (2) we may assume that L is split, so K0(L ⊗F L) = Z[X × X]
and ∆L = ∆X =

∑
x∈X(x, x). Then fL(∆L) in P (F (P )) = Hom(P ∗, F (P )×) is the

homomorphism taking every x ∈ X to x ∈ F (P )×, i.e., it is the canonical embedding of
P ∗ into F (P )× representing the generic point of P . �

Let L and M be étale F -algebras, and set P = RL/F (Gm,L), Q = RM/F (Gm,M).

Proposition 3.3. Let S be an algebraic torus over F and µ : S → Q a group homomor-
phism. Then there is a commutative diagram

(S∗ ⊗ P ∗)Γ

µ∗⊗id
��

// S(F (P ))

µ

��

// (S∗ ⊗ P ∗)Γ

µ∗⊗id
��

(Q∗ ⊗ P ∗)Γ // Q(F (P )) // (Q∗ ⊗ P ∗)Γ

K0(M ⊗F L)
fM // K1(M ⊗F F (P ))

gM // K0(M ⊗F L).

Proof. It suffices to consider the case when F is separably closed, so both L and M are
split. Recall that P ∗ is the canonical direct summand of F (P )×. Since S(F (P )) = S∗ ⊗
F (P )×, we get the first row of the diagram. The second row is similar. The commutativity
readily follows from the definitions. �
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4. Classification theorem

Theorem 4.1. Let G be a reductive group over a field F . Then G is special if and only
if the following three conditions hold:

(1) The derived subgroup G′ of G is isomorphic to

RL/F (SL1(A))×RK/F (Sp(h))

where L and K are étale F -algebras, A an Azumaya algebra over L and h an
alternating non-degenerate form over K;

(2) The coradical S = G/G′ of G is an invertible torus;

(3) There exists b =
∑

x∈X bx ⊗ x ∈ S∗[X]Γ such that

〈ax, by〉 ≡
{

1 mod dx,y, if x = y;
0 mod dx,y, otherwise,

where X = HomF -alg(L, Fsep), a =
∑

x∈X ax ⊗ x ∈ S∗[X]Γ is the character
associated with G (see Section 2.6) and dx,y = ind(A ⊗L Mx,y) with Mx,y =

Im(L⊗F L
(x,y)−−→ Fsep) viewed as an L-algebra via x : L→Mx,y.

Proof. By Propositions 2.5, 3.1 and 3.3, the group G is special if and only if ∆X is
contained in the image of the homomorphism

θ = (Nrd0, a⊗ idZ[X]) : K0(A⊗F L)⊕ (S∗ ⊗ Z[X])Γ → K0(L⊗F L) = Z[X ×X]Γ.

If (x, y) ∈ X×X write Mx,y for the image of L⊗F L→ Fsep taking u⊗ v to x(u) · y(v).
Note that L⊗F L is isomorphic to the product of fields Mx,y over a set of representatives
(x, y) of all Γ-orbits in X × X. We view Mx,y as an L-algebra with respect to the
homomorphism L→ L⊗F L→Mx,y, where the first map takes l to l ⊗ 1.

Since Mx,y and Mx′,y′ are isomorphic as L-algebras when (x, y) and (x′, y′) belong to
the same Γ-orbit in X ×X, we have dx,y = dx′,y′ .

Denote by C the subgroup of Z[X ×X] generated by dx,y · (x, y) over all x, y ∈ X. The
image in Z[X ×X]Γ of K0(A⊗F L) under θ coincides with CΓ.

The map θ restricted to (S∗ ⊗ Z[X])Γ takes an element b =
∑

x∈X bx ⊗ x ∈ S∗[X]Γ to∑
(x,y)

〈ax, by〉(x, y) ∈ Z[X ×X]Γ.

Therefore, the diagonal ∆X =
∑

x∈X(x, x) is contained in the image of θ if and only if
there is b ∈ S∗[X]Γ such that 〈ax, by〉 is congruent to 1 modulo dx,y if x = y and is divisible
by dx,y otherwise. �

Remark 4.2. According to Section 2.1 to give b ∈ S∗[X]Γ is the same as to give elements
bi ∈ (S∗)

Γi , where Γi ⊂ Γ are the stabilizers of representatives of Γ-orbits in X. Also, the
numbers dx,y and 〈ax, by〉 stay the same if the pair (x, y) is replaced by a pair (x′, y′) in
the same Γ-orbits in X ×X. Therefore, the conditions (3) in Theorem 4.1 for the pairs
(x, y) and (x′, y′) are equivalent.

Example 4.3. Assume that G is a Huruguen group such that the algebra L is split, i.e.,
L = F s for some integer s. Then X = {1, 2, . . . , s} and Z[X] = Zs with trivial Γ-action.
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Write A = A1×A2× · · · ×As, where Ai is a c.s.a. over F and let di := ind(Ai). We have
di,j = di.

The character associated with G is a homomorphism a : S → (Gm)s given by a tuple
(a1, a2, . . . , as) of characters in (S∗)Γ. We write a∗ for the associated map S∗ → Zs. We
claim that G is special if and only if the composition

(S∗)
Γ q−→ Zs p−→

s∐
i=1

Z/diZ,

where q is the restriction of a∗ on (S∗)
Γ, is surjective. Indeed, by Theorem 4.1, G is special

if and only if there is b ∈ HomΓ(Zs, S∗) = Hom(Zs, (S∗)
Γ) such that p ◦ q ◦ b = p. The

latter condition implies that p ◦ q is surjective. Conversely, if p ◦ q is surjective, then b
exists as Zs is a free abelian group.
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