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Abstract. We review and slightly generalize some definitions and results on
the essential dimension.

The notion of essential dimension of an algebraic group was introduced by
Buhler and Reichstein in [6] and [21]. Informally speaking, essential dimension
ed(G) of an algebraic group G over a field F is the smallest number of algebraically
independent parameters required to define a G-torsor over a field extension of F .
Thus, the essential dimension ofGmeasures complexity of the category ofG-torsors.

More generally, the essential dimension of a functor from the category Fields/F
of field extensions of F to the category Sets of sets was discussed in [2].

Let p be a prime integer. Essential p-dimension edp(G) of an algebraic group
was introduced in [22]. The integer edp(G) is usually easier to calculate than
ed(G), and it measures the complexity of the category of G-torsors modulo “effects
of degree prime to p”.

In the present paper we study essential dimension and p-dimension of a functor
Fields/F → Sets in a uniform way (Section 1). We also introduce essential p-
dimension of a class of field extensions of F , or equivalently, of a detection functor
T : Fields/F → Sets, i.e., a functor T with T (L) consisting of at most one element
for every L.

For every functor T : Fields/F → Sets, we associate the class of field extensions
L/F such that T (L) ̸= ∅. The essential p-dimension of this class is called canonical
p-dimension of T . Note that canonical p-dimension of a detection functor was
introduced in [16] with the help of so-called generic fields that are defined in terms
of places of fields. We show that this notion of the canonical p-dimension coincides
with ours under a mild assumption (Theorem 1.16).

In Section 2, we introduce essential p-dimension of a presheaf of sets S on the

category Var/F of algebraic varieties over F . We associate a functor S̃ : Fields/F →
Sets to every such an S, and show that edp(S) = edp(S̃) (Proposition 2.6). In

practice, many functors Fields/F → Sets are of the form S̃ for some presheaf of
sets S. This setting allows us to define p-generic elements a ∈ S(X) for S and

show that edp(S) = edp(a) (Theorem 2.9). Thus, to determine edp(S) or edp(S̃) it
is sufficient to compute the essential p-dimension of a single generic element.
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2 A. MERKURJEV

Following the approach developed by Brosnan, Reichstein and Vistoli in [3],
in Section 3 we define essential p-dimension of a fibered category over Var/F . In
Section 4, we consider essential dimension of an algebraic group scheme and in
Section 5 the essential p-dimension of finite groups. Technical results used in the
paper are summarized in the Appendix.

We use the following notation:
We write Fields/F for the category of finitely generated field extensions over F

and field homomorphisms over F . For any L ∈ Fields/F , we have tr. degF (L) <∞.
In the present paper, the word “scheme” over a field F means a separated

scheme of finite type over F and a “variety” over F is an integral scheme over F .
Note that by definition, every variety is nonempty.

The category of algebraic varieties over F is denoted by Var/F . For any X ∈
Var/F , the function field F (X) is an object of Fields/F and tr. degF (X) = dim(X).

Let f : X 99K Y be a rational morphism of varieties over F of the same
dimension. The degree deg(f) of f is zero if f is not dominant and is equal to the
degree of the field extension F (X)/F (Y ) otherwise.

An algebraic group scheme over F in the paper is a group scheme of finite type
over F .

If R is a ring, we write M(R) for the category of finitely generated right R-
modules.

Acknowledgment: I am grateful to Zinovy Reichstein for useful conversations and
comments.

1. Definition of the essential p-dimension

The letter p in the paper denotes either a prime integer or 0. An integer k is
said to be prime to p when k is prime to p if p > 0 and k = 1 if p = 0.

1.1. Essential p-dimension of a functor. Let T : Fields/F → Sets be a
functor. Let α ∈ T (L) and f : L→ L′ a field homomorphism over F . The field L′

can be viewed as an extension of L via f . Abusing notation we shall write αL′ for
the image of α under the map T (f) : T (L)→ T (L′).

Let K,L ∈ Fields/F , β ∈ T (K) and α ∈ T (L). We write α ≻p β if there
exist a finite field extension L′ of L of degree prime to p and a field homomorphism
K → L′ over F such that αL′ = βL′ . In the case p = 0, the relation α ≻p β will be
written as α ≻ β and simply means that L is an extension of K with α = βL.

Lemma 1.1. The relation ≻p is transitive.

Proof. Let α ∈ T (L), β ∈ T (K) and γ ∈ T (J). Suppose α ≻p β and β ≻p γ,
i.e., there exist finite extensions K ′ of K and L′ of L, both of degree prime to p
and F -homomorphisms J → K ′ and K → L′ such that αL′ = βL′ and βK′ = γK′ .
By Lemma 6.1, there is a field extension L′′/L′ of degree prime to p and a field
homomorphism K ′ → L′′ extending K → L′. We have αL′′ = βL′′ = γL′′ and
[L′′ : L] is prime to p, hence α ≻p γ. �

Let K,L ∈ Fields/F . An element α ∈ T (L) is said to be p-defined over K and
K is a field of p-definition of α if α ≻p β for some β ∈ T (K). In the case p = 0, we
say that α is defined over K and K is a field of definition of α. The latter means
that L is an extension of K and α = βL for some β ∈ T (K).
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The essential p-dimension of α, denoted edp(α), is the least integer tr. degF (K)
over all fields of p-definition K of α. In other words,

edp(α) = min{tr. degF (K)}
where the minimum is taken over all fields K/F such that there exists an element
β ∈ T (K) with α ≻p β.

The essential p-dimension of the functor T is the integer

edp(T ) = sup{edp(α)}
where the supremum is taken over all α ∈ T (L) and fields L ∈ Fields/F .

We write ed(T ) for ed0(T ) and simply call ed(T ) the essential dimension of T .
Clearly, ed(T ) ≥ edp(T ) for all p.

Informally speaking, the essential dimension of T is the smallest number of
algebraically independent parameters required to define T .

An element α ∈ T (L) is called p-minimal if edp(α) = tr.degF (L), i.e., whenever
α ≻p β for some β ∈ T (K), we have tr. degF (K) = tr.degF (L). By Lemma 1.1,
for every α ∈ T (L) there is a p-minimal element β ∈ T (K) with α ≻p β. It follows
that edp(T ) is the supremum of edp(α) over all p-minimal elements α.

1.2. Essential p-dimension of a scheme. Let X be a scheme over F . We
can view X as a functor from Fields/F to Sets taking a field extension L/F to the
set of L-points X(L) := MorF (SpecL,X).

Proposition 1.2. For any scheme X over F , we have edp(X) = dim(X) for
all p.

Proof. Let α : SpecL → X be a point over a field L ∈ Fields/F with image
{x}. Every field of p-definition of α contains an image of the residue field F (x).
Moreover, α is p-defined over F (x) hence edp(α) = tr.degF F (x) = dim(x). It
follows that edp(X) = dim(X). �

1.3. Classifying variety of a functor. Let f : S → T be a morphism
of functors from Fields/F to Sets. We say that f is p-surjective if for any field
L ∈ Fields/F and any α ∈ T (L), there is a finite field extension L′/L of degree
prime to p such that αL′ belongs to the image of the map S(L′)→ T (L′).

Proposition 1.3. Let f : S → T be a p-surjective morphism of functors from
Fields/F to Sets. Then edp(S) ≥ edp(T ).

Proof. Let α ∈ T (L) for a field L ∈ Fields/F . By assumption, there is a
finite field extension L′/L of degree prime to p and an element β ∈ S(L′) such
that f(β) = αL′ in T (L′). Let K be a field of p-definition of β, i.e., there is a
field extension L′′/L′ of degree prime to p, an F -homomorphism K → L′′ and an
element γ ∈ S(K) such that βL′′ = γL′′ . It follows from the equality

f(γ)L′′ = f(γL′′) = f(βL′′) = f(β)L′′ = αL′′

that α is p-defined over K, hence edp(β) ≥ edp(α). The result follows. �
Let T : Fields/F → Sets be a functor. A scheme X over F is called p-classifying

for T if there is p-surjective morphism of functors X → T .
Propositions 1.2 and 1.3 yield:

Corollary 1.4. Let T : Fields/F → Sets be a functor and let X be a p-
classifying scheme for T . Then dim(X) ≥ edp(T ).
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1.4. Restriction. Let K ∈ Fields/F and T : Fields/F → Sets a functor. The
restriction TK of the functor T is the composition of T with the natural functor
Fields/K → Fields/F that is the identity on objects.

Proposition 1.5. Let K ∈ Fields/F and let T : Fields/F → Sets be a functor.
Then for every p, we have:

(1) edp(TK) ≤ edp(T ).
(2) If [K : F ] is finite and relatively prime to p, then edp(TK) = edp(T ).

Proof. (1): Let α ∈ TK(L) for a field L ∈ Fields/K. We write α′ for the
element α considered in the set T (L). Every field of p-definition of α is also a field
of p-definition of α′, hence edp(α) ≤ edp(α

′) and edp(TK) ≤ edp(T ).

(2): Let α ∈ T (L) for some L ∈ Fields/F . By Lemma 6.1, there is a field
extension L′/L of degree prime to p and an F -homomorphism K → L′. As L′ ∈
Fields/K, there is a field extension L′′/L′ of degree prime to p, a subfield K ′ ⊂
L′′ in Fields/K and an element β ∈ T (K ′) with βL′′ = αL′′ and tr. degF (K

′) =
tr. degK(K ′) ≤ edp(TK). Hence α is p-defined over K ′. It follows that edp(α) ≤
edp(TK) and edp(T ) ≤ edp(TK). �

1.5. Essential p-dimension of a class of field extensions. In this section
we introduce essential p-dimension of a class of fields and relate it to the essential
p-dimension of certain functors.

Let L and K be in Fields/F . We write L ≻p K if there is a finite field extension
L′/L of degree prime to p and a field homomorphism K → L′ over F . In particular,
L ≻p K if K ⊂ L. The relation ≻p coincides with the relation introduced in Section
1.1 for the functor T : Fields/F → Sets defined by T (L) = {L} (one-element set).
It follows from Lemma 1.1 that this relation is transitive.

Let C be a class of fields in Fields/F closed under extensions, i.e., if K ∈ C
and L ∈ Fields/K, then L ∈ C. For any L ∈ C, let edCp(L) be the least integer
tr. degF (K) over all fields K ∈ C with L ≻p K. The essential p-dimension of the
class C is the integer

edp(C) := sup{edCp(L)}
over all fields L ∈ C. We simply write ed(C) for edp(C) with p = 0.

Essential p-dimensions of classes of fields and functors are related as follows.
Let C be a class of fields in Fields/F closed under extensions. Consider the functor
TC : Fields/F → Sets defined by

TC(L) =

{
{L}, if L ∈ C;
∅, otherwise.

By the definition of the essential p-dimension, we have

edp(C) = edp(TC).

Recall that a field L ∈ C, considered as an elements of TC(L), is called p-

minimal if edCp(L) = tr. degF (L). In other words, L is p-minimal if for any K ∈ C
with L ≻p K we have tr. degF (L) = tr. degF (K). It follows from the definition that

edp(C) = sup{tr. degF (L)}

over all p-minimal fields in C.
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The functor TC is a detection functor, i.e., a functor T such that the set T (L)
has at most one element for every L. The correspondence C 7→ TC is a bijection
between classes of field extensions closed under extensions and detection functors.

1.6. Canonical p-dimension of a functor. Let T : Fields/F → Sets be
a functor. Write CT for the class of all fields L ∈ Fields/F such that T (L) ̸=
∅. The canonical p-dimension cdimp(T ) of the functor T is the integer edp(CT ).
Equivalently, cdimp(T ) = edp(TC) for the detection functor TC with C = CT .

In more details, for a field L ∈ Fields/F satisfying T (L) ̸= ∅ we have edCp(L) is
the least integer tr. degF K over all fields K with L ≻p K and T (K) ̸= ∅. Then

cdimp(T ) = sup{edCp(L)}

over all fields L ∈ Fields/F satisfying T (L) ̸= ∅.
Note that the canonical dimension (respectively, canonical p-dimension) of a

functor to the category of pointed sets was defined in [1] (respectively, [16]) by
means of generic splitting fields. We consider a relation to generic fields in Section
1.7.

Proposition 1.6. For a functor T : Fields/F → Sets, we have cdimp(T ) ≤
edp(T ). If T is a detection functor, then cdimp(T ) = edp(T ).

Proof. There is a (unique) natural surjective morphism T → TC with C = CT .
It follows from Proposition 1.3 that cdimp(T ) = edp(TC) ≤ edp(T ). �

Let X be a scheme over F . Viewing X as a functor from Fields/F to Sets, we
have the canonical p-dimension cdimp(X) of X defined. In other words, cdimp(X)
is the essential p-dimension of the class

CX := {L ∈ Fields/F such that X(L) ̸= ∅}.

By Propositions 1.2 and 1.6, cdimp(X) ≤ edp(X) = dim(X).

Proposition 1.7. Let X be a smooth complete variety over F . Then cdimp(X)
is the least dimension of the image of a morphism X ′ → X, where X ′ is a variety
over F admitting a dominant morphism X ′ → X of degree prime to p. In particular,
cdim(X) is the least dimension of the image of a rational morphism X 99K X.

Proof. Let Z ⊂ X be a closed subvariety and let X ′ → X and X ′ → Z be
dominant morphisms with the first one of degree prime to p. Replacing X ′ by the
closure of the graph of the diagonal morphism X ′ → X × Z we may assume that
X ′ is complete.

Let L be in Fields/F with X(L) ̸= ∅ and f : SpecL→ X a morphism over F .
Let {x} be the image of f . As x is non-singular, there is a geometric valuation v
of F (X) over F with center x and F (v) = F (x) ⊂ L (cf. Lemma 6.6). We view
F (X) as a subfield of F (X ′). As F (X ′)/F (X) is a finite extension of degree prime
to p, by Lemma 6.4 there is an extension v′ of v on F (X ′) such that F (v′)/F (v)
is a finite extension of degree prime to p. Let x′ be the center of v′ on X ′ and
z the image of x′ in Z. As F (x′) ⊂ F (v′), the extension F (x′)/F (x) is finite of
degree prime to p. Since L ≻p F (x) ≻p F (z), we have L ≻p F (z) by Lemma 1.1.
Therefore,

edCp(L) ≤ tr. degF F (z) ≤ dim(Z),

where C = CX and hence cdimp(X) ≤ dim(Z).
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Conversely, note that X has a point over the field F (X). Choose a finite
extension L′/F (X) of degree prime to p and a subfield K ⊂ L′ such that X(K) ̸= ∅
and tr. degF (K) = edCp

(
F (X)

)
. Let Z be the closure of the image of a point

SpecK → X. We have dim(Z) ≤ tr. degF (K). The compositions SpecL′ →
SpecF (X) → X and SpecL′ → SpecK → Z yield a model X ′ of L′ and two
dominant morphisms X ′ → X of degree prime to p and X ′ → Z (cf. Appendix
6.1). We have

cdimp(X) ≥ edCp
(
F (X)

)
= tr.degF (K) ≥ dim(Z). �

As we noticed above, one has cdimp(X) ≤ dim(X) for every scheme X. We
say that a scheme X over F is p-minimal if cdimp(X) = dim(X). A scheme X is
minimal if it is p-minimal with p = 0. Every p-minimal scheme is minimal.

Proposition 1.7 then yields:

Corollary 1.8. Let X be a smooth complete variety over F . Then

(1) X is p-minimal if and only if for any variety X ′ over F admitting a
surjective morphism X ′ → X of degree prime to p, every morphism X ′ →
X is dominant.

(2) X is minimal if and only if every rational morphism X 99K X is dominant.

Let X and Y be varieties over F and d = dim(X). A correspondence from X
to Y , denoted α : X  Y , is an element α ∈ CHd(X × Y ). If dim(Y ) = d, we write
αt : Y  X for the image of α under the exchange isomorphism CHd(X × Y ) ≃
CHd(Y ×X).

Let α : X  Y be a correspondence. Assume that Y is complete. The projec-
tion morphism p : X×Y → X is proper and hence the push-forward homomorphism

p∗ : CHd(X × Y )→ CHd(X) = Z · [X]

is defined [11, § 1.4]. The integer mult(α) ∈ Z such that p∗(α) = mult(α) · [X]
is called the multiplicity of α. For example, if α is the the class of the closure of
the graph of a rational morphism X 99K Y of varieties of the same dimension, then
mult(α) = 1 and mult(αt) = deg(f).

Proposition 1.9. Let X be a complete variety of dimension d over F . Suppose
that for a prime integer p and every correspondence α ∈ CHd(X × X) one has
mult(α) ≡ mult(αt) modulo p. Then X is p-minimal.

Proof. Let f and g : X ′ → X be morphisms from a complete variety X ′ of
dimension d and let α ∈ CHd(X × X) be the class of the closure of the image of
(f, g) : X ′ → X × X. Then mult(α) = deg(f) and mult(αt) = deg(g). Hence by
assumption, deg(f) ≡ deg(g) modulo p. If deg(f) is relatively prime to p, then so
is deg(g). In particular, g is dominant. By Corollary 1.8(1), X is p-minimal. �

Example 1.10. Let q be a non-degenerate anisotropic quadratic form on a
vector space V over F of dimension at least 2 and let X be the associated quadric
hypersurface in P(V ) (cf. [9, §22]). The first Witt index i1(q) of q is the Witt index
of q over the function field F (X). It is proved in [15, Prop. 7.1] that the condition
of Proposition 1.9 holds for X and p = 2 if and only if i1(q) = 1. In this case X is
2-minimal. It follows that cdim2(X) = cdim(X) = dim(X) if i1(q) = 1. In general,
cdim2(X) = cdim(X) = dim(X)− i1(q) + 1 (cf. [15, Th. 7.6]).
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Example 1.11. Let A be a central simple algebra over F of dimension n2 and
X = SB(A) the Severi-Brauer variety of right ideals in A of dimension n. In is
shown in [15, Th. 2.1] that if A is a division algebra of dimension a power of
a prime integer p, then the condition of Proposition 1.9 holds for X and p. In
particular, X is p-minimal. It follows that for any central simple algebra A of p-
primary index, we have cdimp(X) = cdim(X) = ind(A)−1. Moreover, the equality
cdimp(X) = indp(A)− 1, where indp(A) is the largest power of p dividing indp(A),
holds for every central simple algebra A.

This example can be generalized as follows.

Example 1.12. Let p be a prime integer and D a (finite) p-subgroup of the
Brauer group Br(F ) of a field F . Let A1, A2, . . . , As be central simple F -algebras
whose classes in Br(F ) generate D. Let X = X1×· · ·×Xs, where Xi = SB(Ai) for
every i = 1, . . . , s. Suppose that dim(X) is the smallest possible (over all choices of
the generators). Then the condition of Proposition 1.9 holds for X and p (cf. [14,
Cor. 2.6, Rem. 2.9]) and hence X is p-minimal.

Let A be a central simple F -algebra of degree n. Consider the class CA of all
splitting fields of A in Fields/F . Let X = SB(A), so dim(X) = n − 1. We write
cdimp(A) for cdimp(X) and cdim(A) for cdim(X). Since A is split over a field
extension E/F if and only if X(E) ̸= ∅, we have

cdimp(A) = cdimp(CA) = cdimp(X)

for every p ≥ 0. Write n = q1q2 · · · qr where the qi are powers of distinct primes.
Then A is a tensor product A1 ⊗ A2 ⊗ . . . ⊗ Ar, where Ai is a central division
F -algebra of degree qi. A field extension E/F splits A if and only if E splits
Ai for all i. In other words, X has an E-point if and only if the variety Y =
SB(A1)× SB(A2)× · · · × SB(Ar) has an E-point. Hence

(1) cdim(A) = cdim(X) = cdim(Y ) ≤ dim(Y ) =
r∑

i=1

(qi − 1).

It was conjectured in [8] that the inequality in (1) is actually an equality. This
is proved in [15, Th. 2.1] (see also [1, Th. 11.4]) in the case when r = 1, i.e., when
deg(A) is power of a prime integer. The case n = 6 was settled in [8].

1.7. Canonical dimension and generic fields. Let F be a field and let C
be a class of fields in Fields/F . A field L ∈ C is called p-generic in C if for any field
K ∈ C there is a geometric F -place L ⇀ K ′, where K ′ is a finite extension of K
of degree prime to p (cf. Appendix 6.2). In the case p = 0 we simply say that L is
generic in C. Clearly, if L is generic, then it is p-generic for all p.

Example 1.13. If X is a smooth variety, then by Lemma 6.6, the function field
F (X) is generic.

Lemma 1.14. If L is a p-generic field in C and L ≻p M with M ∈ C, then M
is p-generic.

Proof. Take any K ∈ C. There are field extensions K ′/K and L′/L of degree
prime to p, a geometric F -place L ⇀ K ′ and an F -homomorphism M → L′. By
Lemma 6.5, there is a field extension K ′′/K ′ of degree prime to p and a geometric
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F -place L′ ⇀ K ′′ extending the place L ⇀ K ′. The composition M → L′ ⇀ K ′′

is a geometric place and K ′′/K is an extension of degree prime to p. Hence M is
p-generic. �

We say that a class C is closed under specializations, if for any F -place L ⇀ K
with L ∈ C we have K ∈ C. Clearly if C is closed under specializations, then C is
closed under extensions.

Example 1.15. If a variety X is complete, then the class CX is closed under
specializations. Indeed, let L ⇀ K be an F -place with X(L) ̸= ∅. If R ⊂ L is
the valuation ring of the place, then X(R) ̸= ∅ as X is complete. It follows that
X(K) ̸= ∅ since there is an F -homomorphism R→ K.

Theorem 1.16. Let C be a class of fields in Fields/F and p ≥ 0 satisfying:

(1) C has a p-generic field.
(2) C is closed under specializations.

Then edp(C) is the least tr.degF (L) over all p-generic fields L ∈ C.

Proof. Let L ∈ C be a p-generic field with the least tr. degF (L). By Lemma
1.14, any field M ∈ C with L ≻p M is also p-generic. Hence L is p-minimal. It
follows that tr.degF (L) ≤ edp(C).

Let L ∈ C be a p-generic field and K ∈ C an arbitrary p-minimal field. There
is a place L K ′ over F , where K ′ is an extension of K of degree prime to p. Let
K ′′ ⊂ K ′ be the image of the place. As C is closed under specializations, we have
K ′′ ∈ C. Since K ≻p K ′′ and K is p-minimal, we have tr.degF (K

′′) = tr. degF (K).
Hence

tr. degF (L) ≥ tr. degF (K
′′) = tr. degF (K).

Therefore, tr. degF (L) ≥ edp(C). �

Remark 1.17. By Examples 1.13 and 1.15, for a smooth complete variety X
over F , the class CX satisfies the conditions of the theorem. In particular, for such
an X, the integer cdimp(X) coincides with the canonical p-dimension introduced
in [16].

Example 1.18. Let G be either a (finite) étale or a split (connected) reductive
group over F . Let B be a Borel subgroup in G and E a G-torsor over a field
extension L of F . Then E has an L-point if and only if E/B has an L-point. As
E/B is a smooth complete variety, the class the class CE satisfies the conditions of
Theorem 1.16, hence cdimp(E) can be computed using p-generic splitting fields as
in [16].

2. Essential p-dimension of a presheaf of sets

By a presheaf of sets on Var/F we mean a functor S : (Var/F )op → Sets. If
f : X ′ → X is a morphism in Var/F and a ∈ S(X), then abusing notation we shall
often write aX′ for the image of a under the map S(f) : S(X)→ S(X ′).

Definition 2.1. Let S be a presheaf of sets on Var/F . Let X,Y ∈ Var/F and
a ∈ S(X), b ∈ S(Y ). We write a >p b if there is a variety X ′ ∈ Var/F , a morphism
g : X ′ → Y and a dominant morphism f : X ′ → X of degree prime to p such that
aX′ = bX′ in S(X ′).
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Let S be a presheaf of sets on Var/F and a ∈ S(X) for some X ∈ Var/F .
The essential dimension of a, denoted edp(a), is the least dim(Y ) over all elements
b ∈ S(Y ) for a variety Y with a >p b. As a >p a, we have edp(a) ≤ dim(X).

The essential p-dimension of the functor S is the integer

edp(S) = sup{edp(a)}
over all a ∈ S(X) and varieties X ∈ Var/F . We also write ed(S) for edp(S) if
p = 0.

The relation >p is not transitive in general. We refine this relation as follows.
We write a ◃p b if a >p b and in addition, in Definition 2.1, the morphism g is
dominant. We also write a Ip b if a >p b and in addition, in Definition 2.1, the
morphism f satisfies the following condition: for every point x ∈ X, there is a point
x′ ∈ X ′ with f(x′) = x and [F (x′) : F (x)] prime to p.

Lemma 2.2. Let S be a presheaf of sets on Var/F , a ∈ S(X), b ∈ S(Y ) and
c ∈ S(Z).

(1) If a >p b and b Ip c, then a >p c.
(2) If a ◃p b and b >p c, then a >p c.

Proof. In the definition of a >p b, let f : X ′ → X be a dominant morphism
of degree prime to p and g : X ′ → Y a morphism. In the definition of b >p c,
let h : Y ′ → Y be a dominant morphism of degree prime to p and k : Y ′ → Z
a morphism. Let y ∈ Y be the image of the generic point of X ′ under g. In the
case (1), there is an y′ ∈ Y ′ such that f(y′) = y and [F (y′) : F (y)] is prime to p.
In the case (2), y is the generic point of Y . If y′ is the generic point of Y ′, then
[F (y′) : F (y)] is prime to p. Thus in any case, [F (y′) : F (y)] is prime to p. Hence
by Lemma 6.3, there is a commutative square of morphisms of varieties

X ′′ m−−−−→ X ′

l

y g

y
Y ′ h−−−−→ Y

with m dominant of degree prime to p. Then the compositions f ◦m and k ◦ l yield
a >p c. �

Let a ∈ S(X) and V ⊂ X a subvariety. We write a|V for the restriction of a
on V .

Lemma 2.3. Let S be a presheaf of sets on Var/F , a ∈ S(X) and b ∈ S(Y ).
Suppose that a >p b. Then:

(1) There is an open subvariety U ⊂ X such that (a|U ) Ip b.
(2) There is a closed subvariety Z ⊂ Y such that a ◃p (b|Z).
Proof. Choose a varietyX ′ ∈ Var/F , a morphism g : X ′ → Y and a dominant

morphism f : X ′ → X of degree prime to p such that aX′ = bX′ in S(X ′).

(1): By Lemma 6.2, there exists a nonempty open subset U ⊂ X such that for
every x ∈ U there is a point x′ ∈ X ′ with f(x′) = x and the degree [F (x′) : F (x)]
prime to p. Then the restrictions f−1(U)→ U and f−1(U)→ Y yield (a|U ) Ip b.

(2): Let Z be the closure of the image of g. We have a ◃p (b|Z). �
Corollary 2.4. Let S be a presheaf of sets on Var/F and a ∈ S(X). Then

there is an element b ∈ S(Y ) such that edp(a) = dim(Y ) and a ◃p b.
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Proof. By the definition of the essential p-dimension, there is b ∈ S(Y ) such
that edp(a) = dim(Y ) and a >p b. By Lemma 2.3, there is a closed subvariety
Z ⊂ Y such that a ◃p (b|Z). In particular, a >p (b|Z). As dim(Y ) is the smallest
integer with the property that a >p b, we must have dim(Z) = dim(Y ), i.e., Z = Y .
It follows that a ◃p b. �

2.1. The associated functor S̃. Let S be a presheaf of sets on Var/F . We

define a functor S̃ : Fields/F → Sets as follows. Let L ∈ Fields/F . The sets S(X)
over all models X of L form a direct system with respect to morphisms of models
(cf. Appendix 6.1). Set

S̃(L) = colimS(X).

In particular, for any X ∈ Var/F , we have a canonical map S(X) → S̃(L) with

L = F (X). We write ã ∈ S̃(L) for the image of an element a ∈ S(X). For every

L ∈ Fields/F , any element of S̃(L) is of the form ã for some a ∈ S(X), where X is
a model of L.

An F -homomorphism of fields L → L′ yields a morphism X ′ → X of the

corresponding models and hence the maps of sets S(X)→ S(X ′) and S̃(L)→ S̃(L′)

making S̃ a functor.

Recall that we have the relations >p and ≻p defined for the functors S and S̃
respectively.

Lemma 2.5. Let S be a presheaf of sets on Var/F , X ∈ Var/F , K ∈ Fields/F

a ∈ S(X) and β ∈ S̃(K). Then ã ≻p β if and only if there is a model Y of K and

an element b ∈ S(Y ) such that b̃ = β and a ◃p b.

Proof. ⇒: There is a finite field extension L′/F (X) of degree prime to p and
an F -homomorphism K → L′ such that ãL′ = βL′ . One can choose a model X ′

of L′ and Y of K together with two dominant morphisms X ′ → X and X ′ → Y ,
the first of degree prime to p, that induce field homomorphisms F (X) → L′ and
K → L′ respectively. Replacing Y and X ′ by open subvarieties, we may assume
that there is b ∈ S(Y ) with b̃ = β. The elements aX′ and bX′ may not be equal in
S(X ′) but they coincide when restricted to an open subvariety U ⊂ X ′. Replacing
X ′ by U , the variety Y by an open subvariety W in the image of U and b by b|W
we get the a ◃p b.

⇐: Choose a variety X ′ ∈ Var/F , a dominant morphism g : X ′ → Y and a
dominant morphism f : X ′ → X of degree prime to p such that aX′ = bX′ in S(X ′).
Then F (Y ) and F (X ′) are subfields of F (X ′), the degree [F (X ′) : F (X)] is prime

to p and ãF (X′) = b̃F (X′) = βF (X′), hence ã ≻p β. �
Proposition 2.6. Let S be a presheaf of sets on Var/F , X ∈ Var/F and

a ∈ S(X). Then edp(a) = edp(ã) for all p. Moreover, edp(S) = edp(S̃).

Proof. By Corollary 2.4, there is b ∈ S(Y ) such that edp(a) = dim(Y ) and

a ◃p b. It follows from Lemma 2.5 that ã ≻p b̃. Hence

edp(ã) ≤ tr. degF F (Y ) = dim(Y ) = edp(a).

Let β ∈ S̃(L) be so that ã ≻p β and edp(ã) = tr. degF (L). By Lemma 2.5, we

can choose a model Y of L and an element b ∈ S(Y ) so that b̃ = β and a >p b.
Hence

edp(a) ≤ dim(Y ) = tr. degF (L) = edp(ã). �
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2.2. Generic elements. Let S be a presheaf of sets on Var/F and X ∈
Var/F . An element a ∈ S(X) is called p-generic for S if for any open subvariety
U ⊂ X and any b ∈ S(Y ) with the infinite field F (Y ) we have b >p (a|U ). Note
that F (Y ) is infinite if either F is infinite or dim(Y ) > 0. We say that a is generic
if a is p-generic for p = 0. If a is generic, then a is p-generic for all p.

Generic elements provide an upper bound for the essential dimension.

Proposition 2.7. Let S be a presheaf of sets on Var/F and a ∈ S(X) a
p-generic element for S. Then edp(S) ≤ dim(X).

Proof. Let b ∈ S(Y ). If the field F (Y ) is finite, we have edp(b) = 0. If F (Y )
is infinite, b >p a since a is p-generic. By the definition of the essential p-dimension,
in any case, edp(b) ≤ dim(X), hence edp(S) ≤ dim(X). �

Clearly, if a is p-generic, then so is the restriction a|U ∈ S(U) for any open
subvariety U ⊂ X. This can be generalized as follows.

Proposition 2.8. Let S be a presheaf of sets on Var/F , X,Y ∈ Var/F , a ∈
S(X) and b ∈ S(Y ). Suppose that a >p b and a is p-generic. Then b is also
p-generic for S.

Proof. Let c ∈ S(Z) with the field F (Z) infinite and V ⊂ Y an open subva-
riety. Clearly, a >p (b|V ). By Lemma 2.3(1), we have (a|U ) Ip (b|V ) for an open
subvariety U ⊂ X. Since a is p-generic, we have c >p (a|U ). By Lemma 2.2(1),
c >p (b|V ), hence b is p-generic. �

Theorem 2.9. Let S be a presheaf of sets on Var/F . If a ∈ S(X) is a p-generic
element for S, then

edp(S) = edp(S̃) = edp(ã) = edp(a).

Proof. In view of Proposition 2.6, it suffices to prove that edp(S) ≤ edp(a).
Choose an element c ∈ S(Z) such that a >p c and edp(a) = dim(Z). By Lemma
2.3(1), there is an open subvariety U ⊂ X such that (a|U ) Ip c.

Let Y ∈ Var/F and let b ∈ S(Y ) be any element. If the field F (Y ) is finite,
we have edp(b) = 0. Otherwise, as a is p-generic, we have b >p (a|U ). It follows
from Lemma 2.2(1) that b >p c. Hence, in any case, edp(b) ≤ dim(Z) = edp(a) and
therefore, edp(S) ≤ edp(a). �

Let S be a presheaf of sets on Var/F . An element α ∈ S̃(L) is called p-generic

for S̃ is α = ã for a p-generic element a for S.

Example 2.10. One can view a schemeX over F as a presheaf of sets on Var/F

by X(Y ) := MorF (Y,X) for every Y ∈ Var/F . Then the functor X̃ : Fields/F →
Sets coincides with the one in Proposition 1.2. It follows from Theorem 2.9 that
edp(X) = dim(X) for all p.

By Proposition 2.7, for a p-generic element a ∈ S(X), one has edp(S) ≤
dim(X). The following proposition asserts that edp(S) is equal to the dimension of
a closed subvariety of X with a certain property.

Proposition 2.11. Let S be a presheaf of sets on Var/F and a ∈ S(X) a
p-generic element for S. Suppose that either F is infinite or edp(S) > 0. Then
edp(S) = min dim(Z) over all closed subvarieties Z ⊂ X such that a >p (a|Z).
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Proof. For any closed subvariety Z ⊂ X with a >p (a|Z) one has edp(S) =
edp(a) ≤ dim(Z). We shall show that the equality holds for some Z ⊂ X.

By Corollary 2.4, there is b ∈ S(Y ) with dim(Y ) = edp(a) = edp(S) and a ◃p b.
By assumption, the field F (Y ) is infinite. As a is p-generic, we have b >p a. By
Lemma 2.3(2), there is a closed subvariety Z ⊂ X such that b ◃p (a|Z). It follows
that dim(Z) ≤ dim(Y ) = edp(S). By Lemma 2.2(2), a >p (a|Z). �

Remark 2.12. The assumption in the proposition can not be dropped (cf.
Remark 4.7).

An element a ∈ S(X) is called p-minimal if edp(a) = dim(X), i.e., whenever
α >p β for some β ∈ S(Y ), we have dim(X) ≤ dim(Y ). By Lemma 2.2(2) and
Corollary 2.4, for every a ∈ S(X), there is a p-minimal b ∈ S(Y ) such that edp(a) =
dim(Y ) and a ◃p b. It follows that edp(S) is the maximum of edp(α) over all p-
minimal elements α.

A p-minimal element with p = 0 is called minimal.
If a ∈ S(X) is p-generic p-minimal, then edp(S) = dim(X).
If a ∈ S(X) is a p-generic element for S and b ∈ S(Y ) is a p-minimal element

satisfying a ◃p b, then by Proposition 2.8, b is also p-generic, and hence edp(S) =
dim(Y ).

The following statement gives a characterization of p-generic p-minimal ele-
ments.

Proposition 2.13. Let S be a presheaf of sets on Var/F and a ∈ S(X) a
p-generic element for S. Suppose that either F is infinite or edp(S) > 0. Then a
is p-minimal if and only if for any two morphisms f and g from a variety X ′ to X
such that S(f)(a) = S(g)(a) with f dominant of degree prime to p, the morphism
g is also dominant.

Proof. Suppose a is p-minimal and let f and g be morphisms in the statement
of the proposition. Let Z be the closure of the image of g, so a >p (a|Z). By
Proposition 2.11, dim(X) = edp(S) ≤ dim(Z), hence Z = X and g is dominant.

Suppose a is not p-minimal. By Proposition 2.11, there is a proper closed
subvariety Z ⊂ X such that a >p (a|Z), i.e., there are morphisms f : X ′ → X and
g′ : X ′ → Z such that S(f)(a) = S(g′)(a|Z) and f is dominant of degree prime to
p. If g : X ′ → X if the composition of g′ with the embedding of Z into X, then
S(f)(a) = S(g)(a) and g is not dominant. �

Specializing to the case p = 0 we have:

Corollary 2.14. In the conditions of the proposition, a is minimal if and
only if for any two morphisms f and g from a variety X ′ to X such that S(f)(a) =
S(g)(a) with f a birational isomorphism, the morphism g is dominant.

3. Essential p-dimension of fibered categories

The notion of the essential p-dimension can be defined for fibered categories
over Var/F or Fields/F as follows (cf. [3]).

Let A be a category and φ : A → Var/F a functor. For a variety Y ∈ Var/F ,
we write A(Y ) for the fiber category of all objects ξ in A with φ(ξ) = Y and
morphisms over the identity of Y . We assume that the category A(Y ) is essentially
small for all Y , i.e., the isomorphism classes of objects form a set.
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Suppose that A is a fibered category over Var/F (cf. [26]). In particular, for any
morphism f : Y → Y ′ in Var/F , there is a pull-back functor f∗ : A(Y ′) → A(Y )
such that for any two morphisms f : Y → Y ′ and g : Y ′ → Y ′′ in Var/F , the
composition f∗ ◦ g∗ is isomorphic to (g ◦ f)∗.

Let A be a fibered category over Var/F . For any Y ∈ Var/F , we write SA(Y )
for the set of isomorphism classes of objects in the category A(Y ). The functor
f∗ for a morphism f : Y → Y ′ in Var/F induces a map of sets SA(Y

′) → SA(Y )
making SA a presheaf of sets on Var/F . We call SA the presheaf of sets associated
with A. The essential p-dimension edp(A) of A (respectively, the canonical p-
dimension cdimp(A) of A) is defined as edp(SA) (respectively, cdimp(SA)).

Remark 3.1. In a similar fashion, one can define the essential p-dimension for
fibered categories over Fields/F . This notion agrees with the one given above in
view of Theorem 2.9.

Example 3.2. Let X be a scheme over F . Consider the category Var/X of
varieties over X, i.e., morphisms Y → X for a variety Y over F . Morphisms in
Var/X are morphisms of varieties over X. The functor Var/X → Var/F taking
Y → X to Y together with the obvious pull-back functors f∗ make Var/X a
fibered category. For any variety Y , the fiber category over Y is equal to the set
MorF (Y,X). Hence the associated presheaf of sets on Var/F coincides with X
viewed as a presheaf as in Example 2.10. It follows that edp(Var/X) = dim(X) for
all p.

Example 3.3. Let G be an algebraic group scheme over a field F . The clas-
sifying space BG of the group G is the category with objects (right) G-torsors
q : E → Y with Y ∈ Var/F and morphisms between G-torsors q : E → Y and
q′ : E′ → Y ′ given by commutative diagrams

E −−−−→ E′y y
Y −−−−→ Y ′

with the top arrow a G-equivariant morphism. For every Y ∈ Var/F , the fiber
category BG(Y ) is the category of G-torsors over Y . We write edp(G) for edp(BG)
and call this integer the essential p-dimension of G. Equivalently, by Proposition
2.6, edp(G) is the essential p-dimension of the functor Fields/F → Sets taking a
field L to the set of isomorphism classes of G-torsors over L.

Example 3.4. We can generalize the previous example as follows. Let an
algebraic group scheme G act on a scheme X over F . We define the fibered category
X/G as follows. An object in X/G over a variety Y is a diagram

E
f−−−−→ X

q

y
Y

where q is a G-torsor and f is a G-equivariant morphism. Morphisms of diagrams
in X/G are defined in the obvious way. The functor X/G → Var/F takes the
diagram to the scheme Y . The set SX/G(Y ) consists of all isomorphism classes of
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the diagrams above. For any field L ∈ Fields/F , an element of the set S̃X/G(L) is
given by the diagram

E′ f ′

−−−−→ X

q′
y

SpecL

where q′ is a G-torsor and f ′ is a G-equivariant morphism.
Note that if X is a G-torsor over a scheme Y , then X/G ≃ Y , and if X =

SpecF , then X/G = BG.

3.1. Gerbes. Let C be a commutative algebraic group scheme over F . There
is the notion of a gerbe banded by C (cf. [19, p. 144], [13, IV.3.1.1], see also examples
below). There exists a bijection between the flat cohomology group H2(F,C) :=
H2

fppf (SpecF,C) and the set of isomorphism classes of gerbes banded by C. The

trivial element in H2(F,C) corresponds to the classifying space BC, so BC is a
trivial (split) gerbe banded by C. In general, a gerbe banded by C can be viewed
as a “twisted form” of BC.

Example 3.5. Let

1→ C → G→ H → 1

be an exact sequence of algebraic group schemes with C a commutative group and
E → SpecF an H-torsor. The group G acts on E via the map G → H. The
category E/G is a gerbe banded by C. The corresponding element in H2(F,C) is
the image of the class of E under the connecting map

H1(F,H)→ H2(F,C).

Example 3.6. (Gerbes banded by µn) Let A be a central simple F -algebra
and n an integer with [A] ∈ Brn(F ) = H2(F, µn). Let X be the Severi-Brauer
variety of A. Denote by XA the gerbe banded by µn corresponding to [A]. It is
shown in [3] that if n is a power of a prime integer p, then

edp(XA) = ed(XA) = cdimp(XA) + 1 = cdim(XA) + 1 = ind(A).

Example 3.7. One can generalize the previous example as follows. Let p
be a prime integer and C a diagonalizable algebraic group scheme of rank s and
exponent p over F . In other words, C is isomorphic to the product of s copies of
µp. An element θ ∈ H2(F,C) determines a gerbe X banded by C. Consider the
homomorphism β : C∗ → Br(F ) taking a character χ ∈ C∗ to the image of θ under
the map H2(F,C) → H2(F,Gm) = Br(F ) induced by χ. It follows from [14, 3.1]
that

(2) edp(X ) = ed(X ) = cdimp(X ) + s = cdim(X ) + s.

For a generating set χ1, χ2, . . . , χs of C∗, let A1, A2, . . . , As be central division
F -algebras such that [Ai] = β(χi). Set Xi = SB(Ai) and X = X1 × · · · × Xs.
Clearly, the gerbe X is split over a field extension L of F if and only if all the
algebras Ai are split over L if and only if X has a point over L. It follows that
cdimp(X ) = cdimp(X).
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By Example 1.12, any basis of Ker(β) over Z/pZ can be completed to a basis
χ1, χ2, . . . , χs of C∗ such that X is p-minimal, i.e.,

cdimp(X) = dim(X) =

s∑
i=1

(
ind(Ai)− 1

)
=

s∑
i=1

(
indβ(χi)− 1

)
.

It follows from (2) that

edp(X ) =
s∑

i=1

indβ(χi).

4. Essential p-dimension of algebraic group schemes

Let G be an algebraic group scheme over a field F . A G-space is a finite dimen-
sional vector space V with a (right) linear G-action. (Equivalently, the natural map
G→ GL(V ) is a finite dimensional representation of G.) We say that G acts on V
generically freely (or V is generically free) if there is a nonempty open G-invariant
subset V ′ ⊂ V and a G-torsor V ′ → X for some scheme X over F (cf. [2, Def. 4.8
and 4.10]).

One can construct G-spaces V with generically free action as follows. Embed
G into GL(W ) as a subgroup for some vector space W of finite dimension and set
V = End(W ). We view V as a G-space via right multiplications. Then GL(W ) is
an open G-invariant subset in V and the natural morphism GL(W )→ GL(W )/G
is a G-torsor.

Theorem 4.1. (cf. [22, Lemma 6.6], [12, Example 5.4]) Let G be an algebraic
group scheme over a field F and V a G-space. Suppose that G acts on V generically
freely, i.e., there is a nonempty open subset V ′ ⊂ V and a G-torsor a : V ′ → X for
some scheme X. Then the torsor a is p-generic for all p.

Proof. Let b : E → Y be a G-torsor with the infinite field F (Y ). Let U ⊂ X
be an open subvariety. We need to show that b >p (a|U ). Replacing X by U and
V ′ by a−1(U) we may assume that U = X. We shall show that b >p a.

The morphism a× b : V ′×E → X×Y is a (G×G)-torsor. Considering G as a
diagonal subgroup of G×G we have a G-torsor c : V ′×E → Z and a commutative
diagram

V ′ ←−−−− V ′ × E −−−−→ E

a

y c

y b

y
X

g←−−−− Z
f−−−−→ Y

with the projections in the top row. The scheme V ′ × E is an open subset of the
(trivial) vector bundle V × E over E. By descent, Z is an open subset of a vector
bundle over Y . Therefore, the generic fiber of f is an open set of a vector space
over the infinite field F (Y ) and hence it has a point over F (Y ), i.e., the generic
fiber of f has a splitting. It follows that there is an open subvariety W ⊂ Y such
that f has a splitting h : W → Z over W .

Set E′ := W ×Z (V ′ × E). In the commutative diagram with fiber product
squares

E′ −−−−→ V ′ × E −−−−→ Ey c

y b

y
W

h−−−−→ Z
f−−−−→ Y
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the composition in the bottom row is the inclusion morphism. Hence E′ = E|W
and the left vertical arrow coincides with b|W . The commutative diagram

E ←−−−− E|W −−−−→ V ′

b

y b|W
y a

y
Y ←−−−− W

gh−−−−→ X
then yields b >p a for all p. �

Corollary 4.2. (cf. [2, Prop. 4.11]) Let G be an algebraic group scheme over
a field F . Then edp(G) ≤ dim(V )− dim(G) for every generically free G-space V .

Corollary 4.3. Let G be an algebraic group scheme over a field F and H a
subgroup of G. Then edp(G) + dim(G) ≥ edp(H) + dim(H).

Proof. Let a : V ′ → X be the p-generic G-torsor as in Theorem 4.1. Since H
acts on V generically freely, there is a p-generic H-torsor b : V ′ → Y . Let a >p c
for a G-torsor c : E → Z with dim(Z) = edp(G). Let d : E → S be the H-torsor
associated to c. As a >p c, we have b >p d and hence

edp(H) ≤ dim(S) = dim(E)− dim(H)

= dim(Z) + dim(G)− dim(H) = edp(G) + dim(G)− dim(H). �

4.1. Torsion primes and special groups. For a scheme X over F we let
nX denote the gcd deg(x) over all closed points x ∈ X.

Let G be an algebraic group scheme over F . A prime integer p is called a torsion
prime for G if p divides nE for a G-torsor E → SpecL over a field extension L/F
(cf. [24, Sec. 2.3]).

An algebraic group scheme G over F is called special if for any field extension
L/F , every G-torsor over SpecL is trivial. Clearly, special group schemes have no
torsion primes.

The last statement of the following proposition was proven in [21, Prop. 5.3]
in the case of algebraically closed field F .

Proposition 4.4. Let G be an algebraic group scheme over F . Then a prime
integer p is a torsion prime for G if and only if edp(G) ̸= 0. An algebraic group
scheme G is special if and only if ed(G) = 0.

Proof. Let p ≥ 0. Suppose that p is not a torsion prime for G if p > 0 or G is
special if p = 0. Let E → SpecL be a G-torsor over L ∈ Fields/F . As p is relatively
prime to nE , there is a finite field extension E′/E such that the G-torsor EL′ is
split and hence comes from a trivial G-torsor over F . It follows that edp(E) = 0
and hence edp(G) = 0.

Conversely, suppose that edp(G) = 0 for p ≥ 0. Assume that F is infinite.
Choose a p-minimal p-generic G-torsor E → X. We claim that nE is relatively
prime to p. Since dim(X) = edp(G) = 0, we have X = SpecL for a finite field
extension L/F . Let E′ be a trivial G-torsor over F . As E is generic and the field
F is infinite, we have E′ >p E, i.e., there is a finite field extension L′/L of degree
prime to p such that EL′ ≃ E′

L′ . Thus EL′ is trivial and hence nE is relatively
prime to p as nE divides [L′ : L].

Let γ : I → SpecK be a G-torsor over a field extension K/F . We need to
show that nI is relatively prime to p. We may assume that K ∈ Fields/F . Choose



ESSENTIAL DIMENSION 17

a model c : J → Z of γ, i.e., a G-torsor c with Z a model of K and γ the generic
fiber of c. As a is generic, we have c >p a, i.e., a fiber product diagram

J ←−−−− J ′ −−−−→ E

c

y c′

y a

y
Z

f←−−−− Z ′ −−−−→ X.

with f a dominant morphism of degree prime to p and a G-torsor c′. Let I ′ →
SpecK ′ be the generic fiber of c′. Since nI′ divides nE and nE is relatively prime
to p, the integer nI′ is also relatively prime to p. It follows that nI is relatively
prime to p since nI divides [K ′ : K]nI′ .

Now let F be a finite field and edp(G) = 0. If G is smooth and connected, then
G is special (cf. [25]). In general, if G◦ is the connected component of the identity
and G′ = G/G◦, then the categories BG and BG′ are equivalent, in particular,
edp(G) = edp(G

′) and G and G′ have the same torsion primes. Thus, we may
assume that G = G′ is an étale group scheme. Let K/F be a finite splitting field
of G, i.e., GK is a finite constant group. Every torsion prime of GK is a torsion
prime of G and edp(GK) = 0 by Proposition 1.5(1), so we may assume that G is a
constant group.

We claim that the order of G is relatively prime to p. If not, let H be a finite
subgroup of G of order p if p > 0 and of any prime order if p = 0. We have
edp(G) ≥ edp(H) > 0 by Corollary 4.3, a contradiction. Thus, |G| is relatively
prime to p. Then every G-torsor E (a Galois G-algebra) is split by a finite field
extension of degree prime to p, i.e., nE is relatively prime to p and p is not a torsion
prime of G. �

Theorem 4.5. Let G be an algebraic group scheme. Assume that either G is
not special or F is infinite. Let a : E → X be a generic G-torsor and let d be the
smallest dimension of the image of a rational G-equivariant morphism E 99K E.
Then ed(G) = d− dim(G).

Proof. Let f : E 99K E be a rational G-equivariant morphism. Denote by
f ′ : X 99K X the corresponding rational morphism. Let Z be the closure of the
image of f ′, so dimension of the image of f is equal to dim(Z) + dim(G). There
are morphisms g : X ′ → X and h : X ′ → Z with g a birational isomorphism such
that g∗(E) ≃ h∗(E|Z), i.e., a > (a|Z). The statement of the theorem follows now
from Proposition 2.11. �

Corollary 4.6. Let G be an algebraic group scheme. Assume that either G
is not special or F is infinite. Let a : E → X be a generic G-torsor. Then a is
minimal if and only if every rational G-equivariant morphism E 99K E is dominant.

Remark 4.7. Corollary 4.6 fails for special groups over a finite field. Indeed,
let G be the trivial group over a finite field and let X be the affine line with all
rational points removed. Since X has no rational points, every rational morphism
X 99K X is dominant. But the identity morphism of X, which is obviously a generic
G-torsor, is not a minimal G-torsor as ed(G) = 0.

4.2. A lower bound. The following statement was proven in [3].

Theorem 4.8. Let f : G→ H be a homomorphism of algebraic group schemes.
Then for any H-torsor E over F , we have edp(G) ≥ edp(E/G)− dim(H).
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Proof. Let L/F be a field extension and let x = (J, q, α) be an object of E/G
over Spec(L). Let β : f∗(J) → E be the isomorphism of H-torsors induced by α.
Choose a field extension L′/L of degree prime to p and a subfield K ⊂ L′ over F
such that tr.degF (K) = edp(J) and there is a G-torsor I over K with IL′ ≃ JL′ .

We shall write Z for the scheme of isomorphisms IsoK

(
f∗(J), EK

)
of H-torsors

over K. Clearly, Z is a torsor over K for the twisted form AutK
(
f∗(J)

)
of H, so

dimK(Z) = dim(H). The image of the morphism SpecL′ → Z over K representing
the isomorphism βL′ is a one-point set {z} of Z. Therefore, βL′ and hence xL′ are
defined over K(z). It follows that

edp(J) + dim(H) = tr. degF (K) + dimK(Z) ≥ tr. degF
(
K(z)

)
≥ edp(x).

Hence

edp(G) ≥ edp(J) ≥ edp(x)− dim(H),

and edp(G) ≥ edp(E/G)− dim(H). �

4.3. Essential dimension of spinor groups. Let Spinn, n ≥ 3, be the split
spinor group over a field of characteristic 2. The following inequalities are proved
in [5, Th. 3.3] if n ≥ 15:

ed2(Spinn) ≥ 2(n−1)/2 − n(n− 1)/2 if n is odd

ed2(Spinn) ≥ 2(n−2)/2 − n(n− 1)/2 if n ≡ 2 (mod 4)

ed2(Spinn) ≥ 2(n−2)/2 + 1− n(n− 1)/2 if n ≡ 0 (mod 4)

Moreover, if char(F ) = 0, then

ed2(Spinn) = ed(Spinn) = 2(n−1)/2 − n(n− 1)/2 if n is odd

ed2(Spinn) = ed(Spinn) = 2(n−2)/2 − n(n− 1)/2 if n ≡ 2 (mod 4)

ed2(Spinn) ≤ ed(Spinn) ≤ 2(n−2)/2 + n− n(n− 1)/2 if n ≡ 0 (mod 4)

We improve the lower bound for ed2(Spinn) in the case n ≡ 0 (mod 4).

Theorem 4.9. Let n be a positive integer divisible by 4 and Spinn the split
spinor group over a field F of characteristic different from 2. Let 2k be the largest
power of 2 dividing n. Then

ed2(Spinn) ≥ 2(n−2)/2 + 2k − n(n− 1)/2.

Proof. The center C of the group G = Spinn is isomorphic to µ2 × µ2. The
factor group H = G/C is the special projective orthogonal group (cf. [17]). An
H-torsor over a field extension L/F determines a central simple algebra A with an
orthogonal involution σ of trivial discriminant. The image of the map C∗ → Br(L)
is equal to {0, [A], [C+], [C−]}, where C+ and C− are simple components of the
Clifford algebra C(A, σ). By [18], there is a field extension L/F and an H-torsor
E over L such that ind(C+) = ind(C−) = 2(n−2)/2 and ind(A) = 2k, the largest
power of 2 dividing n. By Example 3.7,

ed2(E/G) = ind(A) + ind(C+) = 2(n−2)/2 + 2k.

It follows from Theorem 4.8 that

ed2(Spinn) ≥ ed2(E/G)− dim(H) = 2(n−2)/2 + 2k − n(n− 1)/2. �
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Corollary 4.10. If n is a power of 2 and char(F ) = 0 then

ed2(Spinn) = ed(Spinn) = 2(n−2)/2 + n− n(n− 1)/2.

Below is the table of values dn := ed2(Spinn) = ed(Spinn) over a field of
characteristic zero (cf. [5]):

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
dn 0 0 0 0 4 5 5 4 5 6 6 7 23 24 120 103 341

The torsors for Spinn are essentially the isomorphism classes of quadratic forms in
I3, where I is the fundamental ideal in the Witt ring of F . A jump of the value
of ed(Spinn) when n > 14 is probably related to the fact that there is no simple
classification of quadratic forms in I3 of dimension greater than 14.

5. Essential p-dimension of finite groups

Let G be a finite group. We consider G as a constant algebraic group over
a field F . A G-torsor E over Spec(L) for a field extension L/F is of the form
E = Spec(A), where A is a Galois G-algebra over L. Thus, the fibered category
BG is equivalent to the category of Galois G-algebras over field extensions of F .

A generically free G-space is the same as a faithful G-space, i.e., a G-space V
such that the group homomorphism G → GL(V ) is injective. By Corollary 4.2,
ed(G) ≤ dim(V ) for any faithful G-space V . The essential dimension ed(G) can
be smaller than dimension of every any faithful G-space V . For example, for the
symmetric group Sn one has ed(Sn) ≤ n − 2 if n ≥ 3 (cf. [6, Th. 6.5]), whereas
the least dimension of a faithful Sn-space is equal to n− 1. Note that the value of
ed(Sn) is unknown for n ≥ 7.

Computation of the essential p-dimension of a finite group G for p > 0 is
somewhat simpler. The following proposition shows that G can be replaced by a
Sylow p-subgroup.

Proposition 5.1. Let G be a finite group and H ⊂ G a Sylow p-subgroup.
Then edp(G) = edp(H).

Proof. By Corollary 4.3, edp(G) ≥ edp(H). Let A be a Galois G-algebra over
a field L ∈ Fields/F . Then the subalgebra AH of H-invariant elements is an étale
L-algebra of rank prime to p. Let e ∈ AH be an idempotent such that K = AHe is
a field extension of L of degree prime to p. Then Ae is a Galois H-algebra over K.
Choose a field extension K ′/K of degree prime to p and a subfield M ⊂ K over F
such that there is a Galois H-algebra B over M with B ⊗M K ′ ≃ Ae ⊗K K ′ and
edp(Ae) = tr. degF (M) ≤ edp(H).

For any Galois H-algebra C we write C for the algebra MapH(G,C) of H-
equivariant maps G → C. Clearly, C has structure of a Galois G-algebra. Con-
sidering A as a Galois H-algebra over AH , we have an isomorphism of Galois
G-algebras

A⊗L (AH)→ A

taking a⊗ a′ to the map f : G→ A defined by f(g) = g(a)a′. It follows that

B ⊗M K ≃ Ae⊗K K ′ ≃ Ae⊗K K ′ ≃ A⊗L (AHe)⊗K K ′ = A⊗L K ′.

Hence, A is p-defined over M and the essential p-dimension of the Galois G-algebra
A is at most tr. degF (M) ≤ edp(H). It follows that edp(G) ≤ edp(H). �
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By Proposition 1.5(2), the integer edp(G) does not change under field extensions
of F of degree prime to p. It follows then from Proposition 5.1 that edp(G) ≤
dim(V ) for any faithful H-space V for a Sylow p-subgroup H of G over the field
F (ξp), where ξp is a primitive p-th root of unity.

The following statement was proven in [14, Th. 4.1, Rem. 4.8].

Theorem 5.2. Let p be a prime integer and let F be a field of characteristic
different from p. Then the essential p-dimension edp(G) over F of a finite group
G is equal to the least dimension of a faithful H-space of a Sylow p-subgroup H of
G over the field F (ξp).

Proof. By Propositions 1.5 and 5.1, we may assume that G is a p-group and
F contains a primitive p-th root of unity.

By Corollary 4.2, it suffices to find a faithful G-space V with edp(G) ≥ dim(V ).
Denote by C the subgroup of all central elements of G of exponent p and set

H = G/C, so we have an exact sequence

(3) 1→ C → G→ H → 1.

Let E → SpecF be an H-torsor over F and let C∗ denote the character group
Hom(C,Gm) of C. The H-torsor E over F yields the homomorphism

(4) βE : C∗ → Br(F )

taking a character χ : C → Gm to the image of the class of E under the composition

H1(F,H)
∂−→ H2(F,C)

χ∗−→ H2(F,Gm) = Br(F ),

where ∂ is the connecting map for the exact sequence (3). Note that as µp ⊂ F×,
we can identify C with (µp)

s, i.e., C is a diagonalizable group of exponent p.

Consider the gerbe E/G banded by C. The class of E/G in H2(F,C) coincides
with the image of the class of E under ∂.

By Example 3.7, there is a basis χ1, χ2, . . . , χs of C∗ such that

(5) edp(E/G) =
s∑

i=1

indβE(χi).

Now we choose a specific E, namely a generic H-torsor over a field extension L

of F . Let χ : C → Gm be a character and Rep(χ)(G) the category of all G-spaces
such that vc = χ(c)v any c ∈ C and v ∈ V . By Theorem 6.7,

(6) indβE(χ) = gcd dim(V )

over all G-spaces V in Rep(χ)(G). Note that dimension of every irreducible G-
space is a power of p. Indeed, let q be the order of G. By [23, Th. 24], every
irreducible G-space is defined over the field K = F (µq). Since F contains p-th
roots of unity, the degree [K : F ] is a power of p. Let V be an irreducible G-space
over F . Write VK as a direct sum of irreducible G-spaces Vj over K. As each Vj

is absolutely irreducible, dim(Vj) divides q and hence dim(Vj) is a power of p. The
group Γ = Gal(K/F ) permutes transitively the Vj . As |Γ| is a power of p, the
number of the Vi’s is also a power of p.

Hence, the gcd in (6) can be replaced by min. Therefore, for any character

χ ∈ C∗, there is a G-space Vχ ∈ Rep(χ)(G) such that indβE(χ) = dim(Vχ). Let V
be the direct sum of the Vχi for i = 1, . . . , s. It follows from (5) that

edp(E/G) = dim(V ).
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Applying Proposition 1.5(1) and Theorem 4.8 for the gerbe E/G over the field L,
we get the inequality

edp(G) ≥ edp(GL) ≥ edp(E/G) = dim(V ).

It suffices to show that V is a faithful G-space. Since the χi form a basis of C∗, the
C-space V is faithful. Let N be the kernel of V . We have N ∩ C = {1}. As every
nontrivial normal subgroup of G intersects C nontrivially, it follows that N = {1},
i.e., the G-space V is faithful. �

Corollary 5.3. Let G be a p-group and let F be a field containing p-th roots
of unity. Then ed(G) coincides with edp(G) and is equal to the least dimension of
a faithful G-space over F .

Proof. Let V be a faithful G-space of the least dimension. Then by Theorem
5.2 and Corollary 4.2,

dim(V ) = edp(G) ≤ ed(G) ≤ dim(V ). �

The case of a cyclic group was considered in [10]:

Corollary 5.4. Let G be a cyclic group of a primary order pn and let F be a
field containing p-th roots of unity. Then ed(G) = edp(G) = [F (ξpn) : F

]
.

Proof. The G-space F (ξpn) with a generator of G acting by multiplication by
ξpn is a faithful irreducible G-space of the least dimension. �

6. Appendix

6.1. Models. For any X ∈ Var/F , the field F (X) lies in Fields/F . Con-
versely, let L ∈ Fields/F . A model of L is a variety X ∈ Var/F together with an
isomorphism F (X) ≃ L over F . A morphism of two models X and X ′ of L is a
(unique) birational isomorphism between X and X ′ preserving the identifications
of the field F (X) and F (X ′) with L.

Let K ⊂ L be a subfield and Y a model of K, so we have a morphism SpecL→
Y . Then there is a model X of L and a dominant morphism f : X → Y inducing
the field embedding K ↪→ L. Indeed, we can start with any model X of L and
then replace it by the graph of the corresponding rational morphism X 99K Y . The
morphism f is called a model of the morphism SpecL→ Y .

Let p be a prime integer.

Lemma 6.1 (cf. [14, Lemma 3.3]). Let K be an arbitrary field, K ′/K a finite
field extension of degree prime to p, and K → L a field homomorphism. Then
there exists a field extension L′/L of degree prime to p and a field homomorphism
K ′ → L′ extending K → L.

Proof. We may assume that K ′ is generated over K by one element. Let
f(t) ∈ F [t] be its minimal polynomial. Since the degree of f is prime to p, there
exists an irreducible divisor g ∈ L[t] of f over L such that deg(g) is prime to p. We
set L′ = L[t]/(g). �

Lemma 6.2. Let f : X ′ → X be a morphism of varieties over F of degree prime
to p. Then there is an open subvariety U ⊂ X such that for every x ∈ U there exists
a point x′ ∈ X ′ with f(x′) = x and the degree [F (x′) : F (x)] prime to p.
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Proof. Let U ⊂ X be an open subvariety such that the restriction f−1(U)→
U of f is flat of degree d (prime to p). Then for every x ∈ U , the fiber f−1(x) is
a finite scheme over F (x) of degree d, i.e., f−1(x) = SpecA for an F (x)-algebra A
of dimension d. The artinian ring A is a product of local rings Ai with maximal
ideals Pi. We have

d =
∑

dim(Ai) =
∑

dim(Ai/Pi) · l(Ai),

where l(Ai) is the length of the A-module Ai and dimension is taken over F (x). As
d is prime to p, there is an i such that dim(Ai/Pi) is prime to p. The corresponding
point x′ ∈ f−1(x) satisfies the required conditions. �

Lemma 6.3. Let g : X → Y and h : Y ′ → Y be morphisms of varieties over
F . Let y ∈ Y be the image of the generic point of X. Suppose that there is a point
y′ ∈ Y ′ such that h(y′) = y and [F (y′) : F (y)] is prime to p. Then there exists a
commutative square of morphisms of varieties

X ′ m−−−−→ X

l

y g

y
Y ′ h−−−−→ Y

with m dominant of degree prime to p.

Proof. We view the residue field F (y) as a subfield of the fields F (X) and
F (y′). By Lemma 6.1, there is a field extension L of F (X) and F (y′) such that
[L : F (X)] is prime to p. The natural morphisms SpecL → X and SpecL → Y ′

yield a morphism SpecL → X ×Y Y ′. Clearly, a model X ′ → X ×Y Y ′ of this
morphism together with the projections m : X ′ → X and l : X ′ → Y ′ fit in the
required diagram. �

6.2. Valuations and places. A geometric valuation of a field L ∈ Fields/F is
a valuation v of L over F with residue field F (v) such that rank(v) = tr.degF (L)−
tr. degF F (v). The residue field of a geometric valuation is necessarily finitely gen-
erated over F (cf. [27]).

Let L and K be field extensions of F . An F -place π : K ⇀ L is a local ring
homomorphism R → K of a valuation ring R in L containing F . The ring R is
called the valuation ring of π. We say that π is geometric is the valuation of R is
geometric.

If π : L ⇀ K and ρ : M ⇀ L are two places, then the composition of places
π ◦ ρ : M ⇀ K is defined. If π and ρ are geometric, then so is π ◦ ρ.

A geometric place is a composition of places with discrete geometric valuation
rings.

Lemma 6.4. Let L ∈ Fields/F , let v be a geometric valuation of L over F
and let L′/L be a finite field extension of degree prime to p. Then there exists a
geometric valuation v′ of L′ extending v such that the degree of the residue field
extension F (v′)/F (v) is prime to p.

Proof. If L′/L is separable and v1, . . . , vk are all the extensions of v on L′,
then [L′ : L] =

∑
ei[F (vi) : F (v)] where ei is the ramification index (cf. [27, Ch.

VI, Th. 20 and p. 63]). It follows that the integer [F (vi) : F (v)] is prime to p for
some i.
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If L′/L is purely inseparable of degree q, then the valuation v′ of L′ defined by
v′(x) = v(xq) satisfies the desired properties. The general case follows. �

This lemma translates to the language of place as follows:

Lemma 6.5. [16, Lemma 3.2] Let L ∈ Fields/F , let ρ : L ⇀ K be a geometric
F -place and let L′/L be a field extension of degree prime to p. Then there exists a
field extension K ′/K of degree prime to p and an extension L′ ⇀ K ′ of the place
ρ.

Lemma 6.6. Let X be an algebraic variety over F and x ∈ X a nonsingular
point. Then there is a geometric valuation of F (X) with center x and residue field
F (x).

Proof. Choose a regular system of parameters a1, a2, . . . , an in the regular
local ring R = OX,x. Let Mi be the ideal of R generated by a1, . . . , ai. Set
Ri = R/Mi and Pi = Mi+1/Mi. Denote by Fi the quotient field of Ri, in particular,
F0 = F (X) and Fn = F (x). The localization ring (Ri)Pi

is a discrete geometric
valuation ring with quotient field Fi and residue field Fi+1, therefore it determines
a geometric place Fi ⇀ Fi+1. The valuation corresponding to the composition of
places

F (X) = F0 ⇀ F1 ⇀ . . . ⇀ Fn = F (x)

is a geometric valuation satisfying the required conditions. �

6.3. Indices of algebras. Let G be a finite group and C a central subgroup.
We set H = G/C. Let W be a faithful H-space and W ′ an open subset of the affine
space of W where H acts freely, so that there is an H-torsor π : W ′ → Y . Let E
be the generic fiber of the H-torsor π. It is a generic H-torsor over the function
field L = F (Y ). Consider the homomorphism βE : C∗ → Br(F ) defined in (4).

Let χ : C → Gm be a character and let Rep(χ)(G) be the category of all
G-spaces such that vc = χ(c)v any c ∈ C and v ∈ V .

Theorem 6.7. Let G be a finite group and let C be a central subgroup of G.
Assume that |C| is not divisible by charF . Set H = G/C and let E be a generic
H-torsor. Then for any character χ ∈ C∗, we have indβE(χ) = gcd dim(V ) over

all G-spaces V in Rep(χ)(G).

In the rest of the section we give a proof of this theorem.
Let S be a commutative ring and H a finite group acting on S (on the right)

by ring automorphisms. Set

R = SH := {s ∈ S such that sh = s for all h ∈ H}

and denote by S ∗H the crossed product with trivial factors. Precisely, S ∗H
consists of formal sums

∑
h∈H hsh with sh ∈ S. The product is given by the rule

(hs)(h′s′) = (hh′)(sh
′
s′).

Let M be a (right) S-module. Suppose that H acts on M on the right such
that (ms)h = mhsh. Then M is a right S∗H-module by m(hs) = mhs. Conversely,
a right S∗H-module is a right S-module together with a right H-action as above.
If M is a right S ∗H-module, then the subset MH of H-invariant elements in M
is an R-module. We have a natural S-module homomorphism MH ⊗R S → M ,
m⊗ s 7→ ms.
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We say that S is a Galois H-algebra over R is the morphism SpecS → SpecR
is an H-torsor.

Proposition 6.8. (cf. [7]) The following are equivalent:

(1) S is an Galois H-algebra over R.
(2) The morphism SpecS → SpecR is an H-torsor.
(3) For any h ∈ H, h ̸= 1, the elements sh − s with s ∈ S generate the unit

ideal in S.
(4) For every left S ∗H-module M , the natural map MH ⊗R S → M is an

isomorphism.

Corollary 6.9. Let S be an Galois H-algebra over R. Then the functors
between the categories of finitely generated right modules

M(R)→ M(S∗H), N 7→ N ⊗R S

M(S∗H)→ M(R), M 7→MH

are equivalences inverse to each other.

Proof of Theorem 6.7. Let W be a faithful H-space. Let S denote the
symmetric algebra of the dual space W ∗. The group H acts on S. Set R = SH ,
Y = Spec(R) and L = F (Y ) the quotient field of R.

For any h ∈ H, h ̸= 1, there is a linear form φh ∈ W ∗ satisfying (φh)
h ̸= φh.

Set
r =

∏
h,h′∈H,h ̸=1

(
(φh)

hh′
− (φh)

h′)
in S. We have r ∈ R and r ̸= 0. For any h ̸= 1, the element (φh)

h−φh is invertible
in the localization ring Sr. By Proposition 6.8, the localization ring Sr is a Galois
H-algebra over Rr.

Let χ : C → Gm be a character of C. Note that G acts upon S via the group
homomorphism G → H, so we have the ring S ∗G defined. We write M(χ)(S ∗G)
for the full subcategory of M(S∗G) consisting of all modules M with mc = χ(c)m

for all m ∈M and c ∈ C. We also write K
(χ)
0 (S∗G) for the Grothendieck group of

M(χ)(S∗G). Note that K
(χ)
0 (S∗G) is a natural direct summand of K0(S∗G).

Fix a G-space U ∈ Rep(χ)(G) and set USr = U ⊗F Sr. We have

End(U)⊗F Sr ≃ EndSr

(
USr

)
.

The conjugation G-action on End(U) factors through an H-action. Consider the

algebra A = EndSr

(
USr

)H
over Rr. By Proposition 6.8(4),

A⊗Rr Sr ≃ EndSr

(
USr

)
,

hence A is an Azumaya Rr-algebra (by descent, as Sr is a faithfully flat Rr-algebra).
Recall that L = F (Y ) is the quotient field of R. Set

A = A⊗Rr L.

Clearly, A is a central simple algebra over L of degree dimU . We also have

A =
(
End(U)⊗F L′)H ,

where L′ is the quotient field of S. Moreover, [A] = βE(χ) in Br(L).
The localization in algebraic K-theory provides a surjective homomorphism

(7) K0(A)→ K0(A).
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By Corollary 6.9, the category of right A-modules and right EndSr

(
USr

)
∗H-

modules are equivalent. Thus the functor M 7→MH induces an isomorphism

(8) K0

(
EndSr (USr ) ∗H

) ∼→ K0(A).

The category of right EndSr

(
USr

)
∗H-modules is equivalent to the subcategory

of right EndSr

(
USr

)
∗G-modules with the group C acting trivially. Hence we have

an isomorphism

(9) K
(1)
0

(
EndSr (USr )∗G

) ∼→ K0

(
EndSr (USr )∗H

)
.

By Morita equivalence, the functors

M(Sr ∗G)→ M
(
EndSr (USr )∗G

)
, N 7→ N ⊗F U∗

M
(
EndSr

(USr
)∗G

)
→ M(Sr ∗G), M 7→M ⊗End(U) U

are equivalences inverse to each other. Moreover, under these equivalences, the
subcategory M(χ)(Sr ∗G) corresponds to M(1)

(
EndSr (USr )∗G

)
. Hence we get an

isomorphism

(10) K
(χ)
0

(
Sr ∗G

) ∼→ K
(1)
0

(
EndSr (USr )∗G

)
.

By localization, we have a surjection

(11) K
(χ)
0

(
S∗G

)
→ K

(χ)
0

(
Sr ∗G

)
.

The ring S is graded with S0 = F . We view the ring B = S∗G as a graded ring
with B0 = F ∗G = FG (the group algebra). Note that B is a free left B0-module.
As the global dimension of the polynomial ring S is finite, we can choose a finite
projective resolution P • → F of the S-module F = S0. Since B is a free right
S-module, B⊗S P • → B⊗S F is a finite projective resolution of the left B-module
B ⊗S F = FG = B0. Hence B0 has finite Tor-dimension as a left B-module.

Therefore, B satisfies the conditions of the following theorem:

Theorem 6.10. [20, Th. 7] Let B =
⨿

i≥0 Bi be a graded Noetherian ring.
Suppose:

(1) B is flat as a left B0-module,
(2) B0 is of finite Tor-dimension as a left B-module.

Then the exact functor M(B0) → M(B) taking an M to M ⊗B0 B yields an iso-
morphism

K0(B0)
∼→ K0(B).

By Theorem 6.10, applied to the graded ring B = S ∗G, there is a canonical
isomorphism

K0

(
Rep(G)

)
= K0(FG) = K0(B0)

∼→ K0(B) = K0

(
S∗G

)
.

Moreover, this isomorphism takes K0

(
Rep(χ)(G)

)
onto K

(χ)
0

(
S ∗G

)
, i.e., we have

an isomorphism

(12) K0

(
Rep(χ)(G)

) ∼→ K
(χ)
0

(
S∗G

)
.

The surjective composition K0

(
Rep(χ)(G)

)
→ K0(A) of the surjective maps

(7)-(12) takes the class of a G-space V ∈ Rep(χ)(G) to the class of the right A-
module (

V ⊗F U∗ ⊗F L′)H
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of dimension dim(V ) ·dim(U) over the field L. On the other hand, the group K0(A)
is infinite cyclic group generated by the class of a simple module of dimension
ind(A) · dim(U) over L. The result follows. �
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