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1. Introduction

LetG be an algebraic group over a field F , V a generically free representation
of G (i.e., the stabilizer of the generic point in V is trivial) and U ⊂ V a G-
equivariant open subset such that there is a G-torsor f : U −→ U/G. This
is a versal G-torsor, in particular, every G-torsor over a field extension K/F
with K infinite is isomorphic to the fiber of f over a K-point of U/G. Thus,
the K-points of U/G parameterize all G-torsors over Spec(K).

We think of U/G as an approximation of the classifying space BG. The sta-
ble birational and retract rational equivalence classes of U/G are independent
of the choice of V and U . We simply say that BG is stably rational (respec-
tively, retract rational) if so is U/G. In these cases all the G-torsors over field
extensions of F can be parameterized by algebraically independent variables.

The stable (retract) non-rationality of BG can be detected by cohomologi-
cal invariants which were introduced by J.-P. Serre in [23]. A cohomological
invariant of an algebraic group G over a field F with coefficients in a Galois
module M over F assigns naturally to every G-torsor over a field extension
K/F a Galois cohomology class of K with coefficients in M . A cohomological
invariant I is called unramified if all values of I over a field extension K/F
are unramified with respect to all discrete valuations of K over F . A relation
between retract rationality of BG and unramified invariants is given by the
following statement:

If G admits a non-constant unramified cohomological invariant, then the
classifying space BG is not retract rational.

For example, this was used by D. Saltman who disproved Noether’s Conjec-
ture on the rationality of classifying spaces of finite groups by showing that
certain finite groups admit a non-constant degree 2 unramified cohomological
invariant.

It is still an open problem whether there exists a connected algebraic group
G over an algebraically closed field such that BG is not retract rational.

In the present paper we review and slightly improve some classical results
on the properties of classifying spaces and cohomological invariants. We don’t
impose any restrictions on the ground field F . The coefficient module Q/Z(j)
includes nontrivial p-primary component if p = char(F ) > 0. In particular,
Galois cohomology groups with values in Q/Z(j) do not form a cycle module
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of M. Rost if char(F ) > 0 since the residue homomorphisms are not always
defined. Moreover, the étale cohomology groups with coefficients in Qp/Zp(j)
are not homotopy invariant. All this makes some proofs more involved. We
also present a new simpler proof of Rost’s theorem on the determination of an
invariant by its value at the generic torsor. In particular, non-smooth algebraic
groups are allowed. We also consider retract rational varieties over arbitrary
fields and give a classification of degree 1 invariants.

A variety over a field F in the paper is an integral separated scheme of finite
type over F . If R is a commutative F -algebra and X a variety over F , we write
X(R) for the set MorF (SpecR,X) of R-points of X.

An algebraic group is a linear group scheme of finite type over a field, not
necessarily smooth or connected.

2. Galois cohomology

2.1. The complexes Q/Z(j). For every j ∈ Z, the complex Q/Z(j) in the
derived category of sheaves of abelian groups on the big étale site of SpecF is
defined as the direct sum of two complexes. The first complex is the sheaf

colim
n

(µ⊗j
n )

placed in degree 0, where µ⊗j
n is the jth tensor power of the Galois module

µn of nth roots of unity. The second complex is nontrivial only in the case
p = char(F ) > 0 and it is defined via logarithmic de Rham-Witt differentials
(see [14, I.5.7] or [15]). In particular, Q/Z(0) = Q/Z and the p-part of Q/Z(j)
is trivial if j < 0.

For a scheme X over F , we write Hn
(
X,Q/Z(j)

)
for the degree n étale

cohomology group of X with values in Q/Z(j). For example,

H2
(
X,Q/Z(1)

)
= H2

ét(X,Gm) = Br(X)

is the (cohomological) Brauer group of X.

2.2. Residue homomorphisms. For a variety X over F and a closed sub-
scheme Z ⊂ X we write Hn

Z

(
X,Q/Z(j)

)
for the étale cohomology group of X

with support in Z and values in Q/Z(j) (see [19, Ch. III, §1]). Let X(i) be
the set of points in X of codimension i. For a point x ∈ X(1) set

Hn
x

(
X,Q/Z(j)

)
= colim

x∈W
Hn

{x}∩W

(
W,Q/Z(j)

)
,

where the colimit is taken over all open subsets W ⊂ X containing x. Write

∂x : Hn
(
F (X),Q/Z(j)

)
−→ Hn+1

x

(
X,Q/Z(j)

)
for the residue homomorphisms arising from the coniveau spectral sequence [6,
§1.2].

Remark 2.1. If l is a prime integer different from char(F ), then by purity [19,
Chapter VI, §5], the primary l-component of Hn+1

x

(
X,Q/Z(j)

)
is isomorphic

to Hn−1
(
F (x),Ql/Zl(j−1)

)
and the l-component of ∂x is the standard residue

homomorphism of a cycle module (see [20]).
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If X is a smooth variety over F and x ∈ X(1), the sequence

0 −→ Hn
(
OX,x,Q/Z(j)

)
−→ Hn

(
F (X),Q/Z(j)

) ∂x−→ Hn+1
x

(
X,Q/Z(j)

)
is exact (see [6, Proposition 2.1.2]).

2.3. The sheaves Hn
(
Q/Z(j)

)
. Let X be a smooth variety over F . Write

Hn
(
Q/Z(j)

)
for the Zariski sheaf on X associated with the presheaf

U 7→ Hn
(
U,Q/Z(j)

)
of the étale cohomology groups. Pulling back to the generic point of X yields
an exact sequence

0 −→ H0
Zar

(
X,Hn(Q/Z(j))

)
−→ Hn

(
F (X),Q/Z(j)

) ∂−→
⨿

x∈X(1)

Hn+1
x

(
X,Q/Z(j)

)
,

where ∂ =
⨿
∂x (see [6, §2.1]).

2.4. Unramified cohomology. Let K/F be a field extension and v a dis-
crete valuation of K over F with valuation ring R. Following [5] and [7], we
say that an element a ∈ Hn

(
K,Q/Z(j)

)
is unramified with respect to v if a

belongs to the image of the map Hn
(
R,Q/Z(j)

)
−→ Hn

(
K,Q/Z(j)

)
. We

write Hn
nr

(
K,Q/Z(j)

)
for the subgroup of all elements in Hn

(
K,Q/Z(j)

)
that

are unramified with respect to all discrete valuations of K over F . We have a
natural homomorphism

(1) Hn
(
F,Q/Z(j)

)
−→ Hn

nr

(
K,Q/Z(j)

)
.

Proposition 2.2. [2, Proposition 5.1] Let K/F be a purely transcendental field
extension. Then the homomorphism (1) is an isomorphism.

Lemma 2.3. Let K be an extension of an infinite field F and a ∈ Hn
(
K,Q/Z(j)

)
such that aK(t) ∈ Hn

nr

(
K(t),Q/Z(j)

)
. Then a ∈ Hn

nr

(
K,Q/Z(j)

)
.

Proof. We simply writeH(−) forHn
(
−,Q/Z(j)

)
. Let v be a discrete valuation

of K over F , R ⊂ K the discrete valuation ring of v, M maximal ideal of R

and R̃ the localization of the polynomial ring R[t] at the prime ideal M [t].

Then R̃ is a discrete valuation ring with quotient field F (t). By assumption,

aK(t) belongs to the image of H(R̃) −→ H(K(t)). As the étale cohomology
commutes with colimits by [19, Ch. III, Lemma 1.16], there is a polynomial
f ∈ R[t] \M [t] such that the image of a in H

(
K[t]f

)
belongs to the image of

γ∗ : H
(
R[t]f

)
−→ H

(
K[t]f

)
, where γ is the embedding of R[t]f into K[t]f .

Since the residue field R/M contains F , it is infinite by the assumption.
Therefore, there exists an element r ∈ R such that f(r) ∈ R×. Consider the
diagram

R[t]f

αR

��

γ // K[t]f

αK

��
R

βR

OO

δ // K

βK

OO
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with the evaluation homomorphisms t 7→ r from the top row to the bottom row
and the other homomorphisms the natural inclusions. We have α∗

K(a) = γ∗(b)
for some b ∈ H(R[t]f ) and therefore,

a = β∗
K(α

∗
K(a)) = β∗

K(γ
∗(b)) = δ∗(β∗

R(b)) ∈ Im(δ∗).

Hence a is unramified with respect to v. �

Let X be a smooth variety over F and x ∈ X(1). Then the local ring OX,x

is a discrete valuation ring and let vx be the corresponding discrete valuation
on F (X). It follows from the exact sequence in §2.2 that an element a ∈
Hn

(
F (X),Q/Z(j)

)
is unramified with respect to the discrete valuation vx if

and only if ∂x(a) = 0.
As shown in §2.3, H0

Zar

(
X,Hn(Q/Z(j))

)
is identified with the subgroup of

all elements in Hn
(
F (X),Q/Z(j)

)
that are unramified with respect to vx for

all x ∈ X(1). Moreover, we have

Hn
nr

(
F (X),Q/Z(j)

)
⊂ H0

Zar

(
X,Hn(Q/Z(j))

)
⊂ Hn

(
F (X),Q/Z(j)

)
.

3. Retract rational varieties

The notion of a retract rational field was introduced in [22]. Retract rational
varieties were defined in [8, §1]. We extend the definition and the properties of
retract rational varieties to the case of an arbitrary base field (not necessarily
infinite).

Let X be a variety over a field F . For a (commutative) local F -algebra
R with residue field R, we say that X has the R-lifting property if there is
a nonempty open subset W ⊂ X such that the map W (R) −→ W (R) is
surjective.

Note that if W ′ ⊂ W are two open subsets of X and w in W ′(R) belongs to
the image of W (R) −→ W (R), then w ∈ Im

(
W ′(R) −→ W ′(R)

)
since R is a

local ring.
It follows that if X has the R-lifting property and a variety Y is birationally

isomorphic to X, then Y also has the R-lifting property.

Proposition 3.1. Let X be a variety over F . Then the following conditions
are equivalent:

(1) X has the R-lifting property for all local F -algebras R.
(2) X has the R-lifting property for all R with infinite residue field R.
(3) X has the R-lifting property for all R with R ≃ F (X).
(4) There is a morphism f : Y −→ X, where Y is an open subset of the

affine space An
F for some n, and a rational morphism g : X 99K Y such

that f ◦ g = 1X .
(5) There is a morphism f : Y ′ −→ W , where Y ′ is an open subset of the

affine space An
F for some n and W ⊂ X a nonempty open subset such

that the map Y ′(K) −→ W (K) is surjective for every field extension
K/F .
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Proof. (1) ⇒ (2) is trivial.

(2) ⇒ (3): We may assume that R ≃ F (X) is a finite field. In this case
X = Spec(R). If R = F , i.e., X = Spec(F ), then X has the R-lifting property.
We show that the case R ̸= F does not occur. Let S be a localization of
the polynomial ring F [x1, . . . , xn] with respect to a prime ideal such that the
residue field is isomorphic to R(t). If R ̸= F , i.e., R/F is a nontrivial finite
field extension, we have X(R(t)) ̸= ∅ and X(S) = ∅ as F is algebraically closed
in S. Hence X does not have the S-lifting property for the local ring S with
infinite residue field, a contradiction.

(3) ⇒ (4): Choose an F -algebra homomorphism α : F [x1, . . . , xn] −→ F (X)
such that the quotient field of the image of α is equal to F (X). Let P = Ker(α).
The F -algebra R = F [x1, . . . , xn]P is a local F -algebra with residue field F (X).

Let W ⊂ X be the open subset in the definition of the R-lifting property.
By assumption, the map W (R) −→ W (F (X)) is surjective. Therefore, there
exists a morphism β : Spec(R) −→W such that the composition

SpecF (X)
γ−→ Spec(R)

β−→W ↪→ X

is the generic point of X. The map β yields a morphism

f : Y −→W ↪→ X,

where Y = SpecF [x1, . . . , xn]h for some h ∈ F [x1, . . . , xn] \ P . The map γ
gives a rational morphism g : X 99K Y with the required property.

(4) ⇒ (1): Let W ⊂ X be the domain of definition of g. The composition

W
g−→ Y

f−→ X is the inclusion. Let R be a local F -algebra. In the commu-
tative diagram

W (R)

a
��

g // Y (R)

b
��

f // X(R)

c
��

W (R)
g // Y (R)

f // X(R)

the map b is surjective since An
F (R) −→ An

F (R) is surjective, Y is open in An
F

and R is local. It follows that every point in W (R) is in the image of c and
hence is in the image of a since R is local.

(4) ⇒ (5): Let W be the domain of definition of g and let Y ′ = f
−1
(W ). Then

the composition W −→ Y ′ −→ W is the identity. It follows that the map
Y ′(K) −→ W (K) is surjective for every field extension K/F .

(5) ⇒ (4): A lift in Y ′(F (W )) of the generic point from W (F (W )) yields a
rational map X 99K Y ′ such that the composition X 99K Y ′ −→ W ↪→ X is
the identity. �

A variety X is called retract rational if X satisfies the equivalent conditions
of Proposition 3.1. If X is retract rational and a variety Y is birationally
isomorphic to X, then Y is also retract rational.



6 A. MERKURJEV

Lemma 3.2. A variety X over F is retract rational if and only if X × A1
F is

retract rational.

Proof. Suppose X×A1
F is retract rational and let U ⊂ X×A1

F be a nonempty
subset such that the map U(R) −→ U(R) is surjective for all local F algebras
R. Let W be the image of U under the projection X × A1

F −→ X. As the
projection is a flat morphism, W is a nonempty open subset of X.

Let R be a local F -algebra with infinite residue field R. The fiber of the
projection U −→ W over a point x ∈ W (R) is a nonempty open subset of A1

R
.

As the field R is infinite, the fiber has an R-point. It follows that there is a
point in U(R) over x.

The top map in the diagram

U(R)

��

// U(R)

��

W (R) // W (R)

is surjective. It follows that x is in the image of the bottom map. By Propo-
sition 3.1(2), X is retract rational. �

Corollary 3.3. Let X be a retract rational variety and Y a variety stably
birationally isomorphic to X. Then Y is also retract rational. A stably rational
variety is retract rational.

Proposition 3.4. Let X be a smooth variety over F . Consider the following
properties of X:

(1) X is a rational variety.
(2) X is a stably rational variety.
(3) X is a retract rational variety.
(4) The natural homomorphism

Hn
(
F,Q/Z(j)

)
−→ Hn

nr

(
F (X),Q/Z(j)

)
is an isomorphism.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4).

Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (3) is proved in Corollary 3.3.

(3) ⇒ (4): Since X is retract rational, there is a (dominant) morphism f :
Y −→ X, where Y is an open open subset of the affine space An

F for some n,
and a rational morphism g : X 99K Y such that f ◦g = 1X . LetW ⊂ X be the
domain of definition of g. We have the following commutative diagram with
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all vertical maps injective:

Hn
nr

(
F (X),Q/Z(j)

)
� _

��

α // Hn
nr

(
F (Y ),Q/Z(j)

)
� _

��

H0
Zar

(
X,Hn(Q/Z(j))

)
� _

��

β // H0
Zar

(
Y,Hn(Q/Z(j))

)
// H0

Zar

(
W,Hn(Q/Z(j))

)
� _

��

Hn
(
F (X),Q/Z(j)

)
= Hn

(
F (W ),Q/Z(j)

)
.

By diagram chase, β is injective. It follows that α is injective. By Proposition
2.2, Hn

nr

(
F (Y ),Q/Z(j)

)
= Hn

(
F,Q/Z(j)

)
. Therefore, Hn

nr

(
F (X),Q/Z(j)

)
=

Hn
(
F,Q/Z(j)

)
. �

4. Retract rational classifying spaces

4.1. Versal torsors. Let G be an algebraic group over a field F . A G-torsor
E over a variety X is called weakly versal if every G-torsor T −→ Spec(K) for
a field extension K/F with K infinite is isomorphic to the pull-back of E with
respect to a point Spec(K) −→ X, or equivalently, there is a fiber product
square

T

��

// E

��
Spec(K) // X

with the top G-equivariant morphism.
A G-torsor E −→ X is called versal if for every nonempty open subset

W ⊂ X, the restriction EW −→ W of the torsor E −→ X is weakly versal.

4.2. Standard torsors. Let G be an algebraic group, V a generically free
G-representation and U ⊂ V a G-equivariant open subset together with a
G-torsor U −→ U/G. We call this torsor a standard G-torsor.

By [11, Part 1, §5.4], a standard G-torsor U −→ U/G is versal.

Example 4.1. Embed G as a subgroup into GL(W ) for a finite dimensional
vector space W over F . Then G acts generically freely on the affine space of
V := EndF (W ) and taking U = GL(W ) ⊂ V , we have U/G = GL(W )/G.

We think of U/G as an approximation of the classifying space BG (which
we don’t define). The stable birational equivalence class (and hence retract
rational equivalence class by Corollary 3.3) of U/G is well defined by the no-
name Lemma [4]. We simply say that BG is stably rational (respectively,
retract rational) if so is U/G.

The implication (2) ⇒ (1) in the following statement was proved in [8,
Proposition 3.15].

Proposition 4.2. Let G be an algebraic group over F . The following condi-
tions are equivalent.
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(1) The classifying space BG is retract rational.
(2) For every local F -algebra R with infinite residue field R, every G-torsor

over R can be lifted to a G-torsor over R.
(3) There is a weakly versal G-torsor over an open subset Y ⊂ An

F for some
n.

Proof. (1) ⇒ (3): Let U −→ U/G be a standard G-torsor. As U/G is retract
rational, there are nonempty open subsets W ⊂ U/G and Y ⊂ An

F , and
morphisms

W −→ Y −→ U/G

with the composition the inclusion. Let E −→ Y be the pull-back of the versal
torsor U −→ U/G. The pull-back J −→W of E −→ Y to W is the restriction
UW −→ W of U −→ U/G and hence is weakly versal. Therefore, E −→ Y is
also weakly versal.

(3) ⇒ (2): Let R be a local F -algebra with infinite residue field R. The top
map in the commutative diagram

Y (R)

��

// Y (R)

��

TorsG(R) // TorsG(R)

is surjective as Y is an open subset of an affine space. The right vertical map
is surjective since R is infinite. Therefore, the bottom map is surjective.

(2) ⇒ (1): Embed G as a subgroup into GLN for some N and consider
the variety X = GLN /G. Let R be a local F -algebra with infinite residue
field R. We will show that X has the R-lifting property. Let x ∈ X(R). By
assumption, the corresponding G-torsor over R can be lifted to a G-torsor J
over R. As R is local, by Hilbert Theorem 90, the map

X(R) −→ TorsG(R)

is surjective, therefore, there is x̃ ∈ X(R) mapping to J . The image x′ ∈ X(R)
of x̃ and x give the same G-torsor over R. Since

TorsG(R) ≃ X(R)/GLN(R),

we have x = gx′ for some g ∈ GLN(R). Since the map GLN(R) −→ GLN(R)
is surjective, there is g̃ ∈ GLN(R) over g. The image of g̃x̃ under the map
X(R) −→ X(R) is gx′ = x. �
4.3. Classifying spaces of spinor groups. We consider an example here.
Let F be a field of characteristic different from 2. For every n, consider the
quadratic form

qn =

{
mH, if n = 2m;
⟨1⟩ ⊥ mH, if n = 2m+ 1,

where H is the hyperbolic plane. Write O+
n , Spinn and Γ+

n for the (split)
special orthogonal, spinor and even Clifford groups of qn, respectively.



INVARIANTS OF ALGEBRAIC GROUPS 9

Let R be a local F -algebra. The set TorsO+
n
(R) = H1

ét(R,O
+
n ) is identified

with the set of isomorphism classes of non-degenerate quadratic forms of rank
n over R and determinant (−1)m, if n = 2m or n = 2m + 1. The connecting
map H1

ét(R,O
+
n ) −→ H2

ét(R,Gm) = Br(R) for the exact sequence

1 −→ Gm −→ Γ+
n −→ O+

n −→ 1

takes a form q to the Clifford invariant of q which is the class of the Clifford
algebra C(q) in Br(R) if n is even, and to the class of the even Clifford algebra
C0(q) if n is odd. It follows that the set TorsΓ+

n
(R) = H1

ét(R,Γ
+
n ) is identified

with the set of isomorphism classes of non-degenerate quadratic forms of rank
n over R of determinant (−1)m and trivial Clifford invariant.

Lemma 4.3. The space BΓ+
2m is retract rational if and only if BΓ+

2m−1 is
retract rational.

Proof. Let R be a local F -algebra with infinite residue field. By Proposition
4.2, it suffice to show that BΓ+

2m−1 has the R-lifting property if and only if so

does BΓ+
2m. Let q ∈ TorsΓ+

2m−1
(R) be a non-degenerate quadratic forms of rank

n over R of determinant (−1)m−1 and trivial even Clifford invariant. Consider
the form q′ = (−q) ⊥ ⟨1⟩. We have det(q′) = (−1)m and by [10, Proposition
11.4],

[C(q′)] = [C0(q
′ ⊥ ⟨−1⟩)] = [C0(−q ⊥ H)] = [C0(q)] = 0 ∈ Br(R).

It follows that q′ ∈ TorsΓ+
2m
(R). Let Q′ be a lift of q′ in TorsΓ+

2m
(R). Write

Q′ = P ⊥ ⟨r⟩ for some r ∈ R× with r̄ = 1 and a (2m− 1)-dimensional form P
over R. Let Q := −rP . Then Q ∈ TorsΓ+

2m−1
(R) and we have

(−Q) ⊥ ⟨1⟩ = rP ⊥ ⟨1⟩ = r(P ⊥ ⟨r⟩) = rQ′.

It follows that

(−Q) ⊥ ⟨1⟩ = r̄Q
′
= Q

′
= q′ = (−q) ⊥ ⟨1⟩.

Hence Q is a lift of q.
Now let q′ ∈ TorsΓ+

2m
(R). Write q′ = q ⊥ ⟨a⟩ for some a ∈ R and q a (2m−1)-

dimensional form over R. Then aq′ = aq + ⟨1⟩, hence −aq ∈ TorsΓ+
2m−1

(R).

Choose A ∈ R× with A = a. Let P be a lift in TorsΓ+
2m−1

(R) of −aq and set

Q′ := A(−P ⊥ ⟨1⟩). Then Q′ ∈ TorsΓ+
2m
(R) and

Q
′
= A(−P ⊥ ⟨1⟩) = a(aq ⊥ ⟨1⟩) = q ⊥ ⟨a⟩ = q′.

It follows that Q′ is a lift of q′. �
Theorem 4.4. (cf., [8, Theorem 4.15]) The classifying spaces BΓ+

n and BSpinn

are retract rational if n ≤ 14.

Proof. We first show that BΓ+
n is retract rational. By Lemma 4.3 it suffices to

assume that n is even. We will proof the R-lifting property for a local F -algebra
R. We use the classification of quadratic forms of dimension n = 2m ≤ 14 of
determinant (−1)m and trivial even Clifford invariant given in [12].
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• If n ≤ 6, then TorsΓ+
n
(R) is trivial.

• TorsΓ+
8
(R) consists of all multiples of 3-fold Pfister forms.

• The map TorsΓ+
8
(R) −→ TorsΓ+

10
(R) taking q to q ⊥ H is a bijection.

• TorsΓ+
12
(R) consists of tensor products of a binary form and a 6-dimensional

form of determinant −1.
• TorsΓ+

14
(R) consists of the corestriction (with respect to the trace map)

of the form
√
d φ′ for a quadratic extension R(

√
d)/R, where φ′ is the

7-dimensional pure subform of a 3-fold Pfister form φ over R(
√
d).

The proofs of the lifting property in all the cases are similar. We consider only
the case n = 14. Consider a form q in TorsΓ+

14
(R). Let D ∈ R× be a lift of d

and set S = R(
√
D) = R[t]/(t2 − D). Let Φ be a 3-fold Pfister form over S

lifting φ. Then the corestriction of the form
√
D Φ′ in the extension S/R is a

lift of q in TorsΓ+
14
(R). By Proposition 4.2, BΓ+

n is retract rational.

The exact sequence

1 −→ Spinn −→ Γ+
n

Sn−→ Gm −→ 1,

where Sn is the spinor norm homomorphism, yields a Gm-torsor BSpinn −→
BΓ+

n . It follows that BSpinn is stably birational to BΓ+
n and hence is retract

rational for n ≤ 14 by Corollary 3.3. �
Conjecture 4.5. If n ≥ 15, the space BSpinn is not retract rational.

5. Cohomology of classifying spaces

Let E be a G-torsor over a variety X. Write En for the product of n copies
of E. We have a G-torsor En → En/G for all n and therefore a simplicial
scheme E•/G.

Let H be a contravariant functor from the category of smooth schemes over
F to the category of abelian group. Set

H(E•/G) := Ker(p∗1 − p∗2) ⊂ H(X),

where p∗1 and p∗2 are induced by the two projections (the face maps of E•/G)
pi : E

2/G −→ E/G = X.

Remark 5.1. IfH is a sheaf on the big Zariski site over F , the groupH(E•/G)
coincides with the group of sections H0

Zar(E
•/G,H) of H over E•/G (see [9,

5.1.3]).

Let E ′ → X ′ be another G-torsor and f1, f2 : E ′ −→ E two G-equivariant
morphisms. Then f1 and f2 induce morphisms of simplicial schemes f •

1 , f
•
2 :

E ′•/G −→ E•/G.

Lemma 5.2. The homomorphisms f ∗
1 , f

∗
2 : H(E•/G) −→ H(E ′•/G) are equal.

Proof. It is standard that the morphisms f •
1 and f •

2 are (canonically) homo-
topic, and therefore, yield the same homomorphisms f ∗

1 = f ∗
2 . Precisely, f1

and f2 yield a morphism (homotopy) h = (f1, f2) : X = E ′/G −→ E2/G
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such that fi = pi ◦ h. Therefore, f ∗
1 = h∗ ◦ p∗1 coincides with f ∗

2 = h∗ ◦ p∗2 on
H(E•/G) = Ker(p∗1 − p∗2). �

Now let E −→ X be a versal G-torsor and E ′ −→ X ′ another G-torsor with
the generic fiber T −→ SpecF (X ′). If F (X ′) is infinite, by definition of the
weak versality, there is a G-equivariant morphism T −→ E. Hence there is a
nonempty open subset W ⊂ X ′ and a G-equivariant morphism E ′

W −→ E. It
follows that there is a canonical homomorphism H(E•/G) −→ H(E ′

W
•/G).

Consider the following “purity condition” on a G-torsor E −→ X (and the
functor H):

(PC): The restriction homomorphism H(E•/G) −→ H(E•
W/G) is an iso-

morphism for every nonempty open subset W ⊂ X.

Therefore, if we assume that E −→ X is a versal G-torsor and the torsor
E ′ −→ X ′ satisfies the condition (PC), we get a canonical homomorphism

(2) H(E•/G) −→ H(E ′•/G).

Symmetrically, if we assume in addition that the torsor E ′ −→ X is also versal
and the torsor E −→ X with F (X) infinite satisfies the condition (PC), then
the homomorphism (2) is an isomorphism, i.e., the group H(E•/G) does not
depend on the versal torsor E −→ X up to canonical isomorphism.

Lemma 5.3. The condition (PC) holds for every standard G-torsor U −→
U/G and the functor H(Y ) = H0

Zar

(
Y,Hn(Q/Z(j))

)
for every n and j.

Proof. Let X = U/G andW ⊂ X be a nonempty open subset. By [2, Proposi-
tion A 9], we have H(U•

W/G) ⊂ Ker(∂), where ∂ is the residue homomorphism
in the commutative diagram

0 // H(X)

p∗1−p∗2

��

// H(W )

p∗1−p∗2

��

∂ //
⨿

x∈X(1)\W (1)

Hn+1
x

(
X,Q/Z(j)

)

0 // H(U2/G) // H(U2
W/G).

The rows are exact by §2.3. The statement follows by diagram chase. �
It follows from Lemma 5.3 that the groupH0

Zar

(
U•/G,Hn(Q/Z(j))

)
does not

depend on the choice of the standard G-torsor up to canonical isomorphism.
We denote this group by H0

Zar

(
BG,Hn(Q/Z(j))

)
.

6. Invariants of algebraic groups

Let G be an algebraic group over a field F . Consider the functor

TorsG : FieldsF −→ Sets,

where FieldsF is the category of field extensions of F , taking a field K to the
set TorsG(K) of isomorphism classes of G-torsors over SpecK. Let

H : FieldsF −→ Abelian Groups
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be another functor. As defined in [11], an H-invariant of G is a morphism of
functors

I : G- torsors −→ H,

viewed as functors to Sets. In other words, an invariant is a natural in K
collection of maps of sets TorsG(K) −→ H(K) for every field extension K/F .

We write Inv(G,H) for the group of H-invariants of G.
An invariant I ∈ Inv(G,H) is called normalized if I(E) = 0 for every

trivial G-torsor E. The normalized invariants form a subgroup Inv(G,H)norm
of Inv(G,H) and

Inv(G,H) ≃ H(F )⊕ Inv(G,H)norm.

Let h : E −→ X be a weakly versal torsor defined in §5. The generic fiber
Egen of h is the generic torsor over SpecF (X). The evaluation at the generic
torsor yields a homomorphism

θG : Inv(G,H) −→ Hn(F (X), H), I 7→ I(Egen).

Consider the following “injectivity condition” on the functor H:

(IC): The homomorphism H(K) −→ H(K(Y )) is injective for every smooth
variety Y over a field extension K/F with a K-rational point.

The following statement was previously known in the case G is smooth (see
[11]).

Proposition 6.1. Suppose that a functor H satisfies the condition (IC). Then
the map θG is injective.

Proof. Let I ∈ Inv(G,H) be an invariant such that I(Egen) = 0. We will show
that for every G-torsor T −→ Spec(K) for a field extension K/F , the value
I(T ) is trivial. Replacing K by K(t) if necessary, we may assume that K is
infinite.

Consider the following commutative diagram

T

��

T × E

f

��

goo // E

��
Spec(K) Y //oo X

with Y = (T×E)/G, the two fiber product squares and the vertical morphisms
the G-torsors. Let K ′ = K(Y ) be the function field of Y and T ′ the generic
fiber of f . Then the G-torsors

TK′ := T ×K Spec(K ′) and (Egen)K′ := (Egen)×F (X) Spec(K
′)

are both isomorphic to T ′. It follows that

I(T )K′ = I(TK′) = I(T ′) = I
(
(Egen)K′

)
= I(Egen)K′ = 0.

The torsor E is weakly versal, hence, there is a G-equivariant morphism T −→
E. Therefore, the morphism g in the diagram has a G-equivariant section. It
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follows that Y has a K-rational point. By assumption, the map H(K) −→
H(K ′) is injective and hence I(T ) = 0. �

We will be considering the cohomology functors H taking a field K/F to the
Galois cohomology Hn

(
K,Q/Z(j)

)
and write Invn

(
G,Q/Z(j)

)
for the group

of cohomological invariants of G of degree n with coefficients in Q/Z(j).

Lemma 6.2. The functors H(K) = Hn
(
K,Q/Z(j)

)
satisfy the condition (IC)

for all n and j.

Proof. Let Y be a variety over a field K with a K-rational point y. The com-
pletion of the local ring OY,y at y is the of power series ring K[[t1, t2, . . . , td]],
where d = dim(Y ). Therefore, K(Y ) is a subfield of the iterated power series
field K((t1)) . . . ((td)). Thus, it suffices to show that for every field L, the map
H(L) −→ H

(
L((t))

)
is injective. This was proved in [11, Part 2, Proposition

A.9]. �
Consider a standard G-torsor U −→ U/G =: X and let Egen −→ SpecF (X)

be its generic fiber. Since the pull-back of U −→ U/G with respect to any of
the two projections U2/G −→ X coincides with the G-torsor U2 −→ U2/G,
the pull-backs of the generic G-torsor Egen −→ SpecF (X) with respect to the
two morphisms SpecF (E2/G) −→ SpecF (X) induced by the projections are
isomorphic. Hence for every invariant I ∈ Inv

(
G,Hn(Q/Z(j))

)
we have

p∗1
(
I(Egen)

)
= I

(
p∗1(Egen)

)
= I

(
p∗2(Egen)

)
= p∗2

(
I(Egen)

)
in Hn

(
F (E2/G),Q/Z(j)

)
. It follows that the image of θG is contained in the

subgroup

H0
Zar

(
BG,Hn(Q/Z(j))

)
⊂ H0

Zar

(
X,Hn(Q/Z(j))

)
⊂ Hn

(
F (X),Q/Z(j)

)
.

Theorem 6.3. Let G be an algebraic group over a field F . Then θG yields an
isomorphism

Invn
(
G,Q/Z(j)

) ∼−→ H0
Zar

(
BG,Hn(Q/Z(j))

)
.

Proof. The inverse isomorphism was constructed in [2, Theorem 3.4] in the
case F is an infinite field as follows. Let u ∈ H0

Zar

(
BG,Hn(Q/Z(j))

)
. We

define an invariant in Invn
(
G,Q/Z(j)

)
by taking a G-torsor J −→ Spec(K)

to the image of u under the pull-back homomorphism

H0
Zar

(
BG,Hn(Q/Z(j))

)
−→ H0

Zar

(
Spec(K),Hn(Q/Z(j))

)
= Hn(K,Q/Z(j)),

induced by a G-equivariant morphism f : J −→ U . By Lemma 5.2, the result
is independent of the choice of f .

Now let F be a finite field. It suffices to prove that for a given prime
integer p, the p-primary components A(F ) and B(F ) of the groups in the
statement are isomorphic. Let l be a prime integer different from p and F ′/F
an infinite Galois field extension with the Galois group ∆ a pro-l-group. Since
the field F ′ is infinite, the map A(F ′) −→ B(F ′) is an isomorphism. By a
restriction-corestriction argument, the map A(F ) −→ B(F ) is identified with
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the homomorphism A(F ′)∆ −→ B(F ′)∆ of the groups of ∆-invariant elements
and hence is an isomorphism. �

6.1. Unramified invariants. Let G be an algebraic group over F . An in-
variant I ∈ Invn(G,Q/Z(j)) is called unramified if for every field extension
K/F and every T ∈ TorsG(K), we have I(T ) ∈ Hn

nr(K/F,Q/Z(j)). We
will write Invnnr(G,Q/Z(j)) for the subgroup of all unramified invariants in
Invn(G,Q/Z(j)).

Proposition 6.4. Let G be an algebraic group over a field F . Then an in-
variant I ∈ Invn

(
G,Q/Z(j)

)
is unramified if and only if

I(Egen) ∈ Hn
nr

(
F (U/G),Q/Z(j)

)
.

Proof. By an argument similar to the one in the proof of Theorem 6.3 we
may assume that F is infinite. Suppose I(Egen) ∈ Hn

nr

(
F (U/G),Q/Z(j)

)
and

let T ∈ TorsG(K). Consider the variety Y = (T × U)/G and the natural
morphisms Y −→ Spec(K) and Y −→ U/G. As in the proof of Proposition
6.1, the torsors Egen and T are isomorphic over the field K(Y ). It follows that

I(T )F (Y ) = I(Egen)F (Y ) ∈ Hn
nr

(
K(Y ),Q/Z(j)

)
.

Since K(Y )/K is a purely transcendental field extension, we have I(T ) ∈
Hn

nr

(
K,Q/Z(j)

)
by Lemma 2.3. �

We write Hn
nr

(
F (BG),Q/Z(j)

)
for Hn

nr

(
F (U/G),Q/Z(j)

)
.

Corollary 6.5. Let G be an algebraic group over a field F . Then θG yields an
isomorphism Invnnr

(
G,Q/Z(j)

) ∼−→ Hn
nr

(
F (BG),Q/Z(j)

)
.

Proposition 3.4 then implies the following corollary.

Corollary 6.6. If an algebraic group over F admits a non-constant unramified
cohomological invariant with values in Q/Z(j) for some j, then the classifying
space BG is not retract rational over F .

7. Degree 1 invariants with coefficients in Galois module

Let G be an algebraic group over a field F . Write π0(G) for the factor group
of G modulo the connected component of the identity G◦ of G. It is an étale
algebraic group over F .

Let M be a discrete ΓF -module, where ΓF = Gal(Fsep/F ) and let

α : π0(Gsep) −→M

be a ΓF -homomorphism. For every field extension K of F we then have the
composition

IαK : H1(K,G) −→ H1
(
K,π0(G)

) α∗
−→ H1(K,M),

where the first map is induced by the canonical surjection G −→ π0(G) and the
second one by α. We can view Iα as a normalized H-invariant of the group G
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with the functor H defined by H(K) = H1(K,M). We write Inv1(G,M) for
the group of H-invariants.

Note that the functor H satisfied the condition (IC). Indeed, if Y is a
smooth variety over a field extension K/F with a K-rational point, then
K is algebraically closed in K(Y ) and hence the restriction homomorphism
ΓK(Y ) −→ ΓK is surjective. Therefore, the inflation homomorphismH1(K,M) −→
H1(K(Y ),M) is injective.

The following proposition was mentioned in [16, §31.15] without proof.

Proposition 7.1. The map

φ : HomΓ

(
π0(Gsep),M

)
−→ Inv1(G,M)norm given by α 7→ Iα

is an isomorphism.

Proof. Consider the case when G is connected. We need to show that every
invariant I ∈ Inv1(G,M)norm is trivial. Let E be a G-torsor over a field
extension K/F . Since G is connected, the variety of G and hence the one of
E are geometrically irreducible. Therefore, the separable closure of K in the
function field K(E ′) of the associated reduced scheme E ′ = Ered coincides with
K. It follows that the restriction homomorphism ΓK(E′) −→ ΓK is surjective
and hence the inflation homomorphism

H1(K,M) −→ H1(K(E ′),M)

is injective. As E is trivial over K(E ′), we have I(E)K(E′) = 0 and hence
I(E) = 0 by the injectivity.

In the general case, we construct a map ψ inverse to φ. Let U −→ U/G be
a standard versal G-torsor. Its generic fiber Egen is the generic torsor over the
field F (U/G).

Let I(Egen) ∈ H1(F (U/G),M) be the value of a normalized invariant I
at the generic torsor Egen. Since U/G◦ −→ U/G is a surjective morphism,
we can view F (U/G) as a subfield of F (U/G◦). The image of I(Egen) in
H1(F (U/G◦),M) is the value of the restriction of I on G◦. By the first part
of the proof, the latter value is trivial.

For a field extension K/F , write

N(K) := Ker
(
H1(K(U/G),M) −→ H1(K(U/G◦),M)

)
.

We have proved that I(Egen) ∈ N(F ).
The field extension Fsep(U/G

◦) of Fsep(U/G) is Galois with Galois group
π0(Gsep). By exactness of the inflation-restriction sequence, we have

N(Fsep) = H1(π0(Gsep),M) = Hom(π0(Gsep),M)

since π0(Gsep) acts trivially on M . We define the map

ψ : Inv1(G,M) −→ HomΓ

(
π0(Gsep),M

)
by taking I to the image of I(Egen) under the homomorphism

N(F ) −→ N(Fsep)
Γ = HomΓ(π0(Gsep),M).
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To prove that the composition ψ ◦ φ is the identity, we may assume that
F is separably closed. Let I = φ(α) for some α ∈ Hom(π0(Gsep),M). By
construction, the element I(Egen) in H1(K,M) = Hom(ΓK ,M), where K =

F (U/G), is equal to the composition ΓK −→ π0(G)
α−→ M . It follows that

ψ(I) = α.
Now we prove that the composition φ◦ψ is the identity. For a field extension

F ′/F consider a homomorphism

βF ′ : HomΓ(π0(G),M) −→ H1(F ′(U/G),M)

as follows. The element βF ′(α) is defined as the image of the class of the
generic G-torsor under the composition

H1(F ′(U/G), G) −→ H1(F ′(U/G), π0(G))
α∗
−→ H1(F ′(U/G),M).

Taking F ′ = Fsep we get a commutative diagram

HomΓ(π0(G),M)

��

βF // H1(F (U/G),M)

j
��

Hom(π0(G),M)
βF ′ // H1(F ′(U/G),M).

Note that the bottom map βF ′ is the inflation.
Let I ∈ Inv1(G,M), α = ψ(I) ∈ HomΓ(π0(G),M) and I ′ = φ(α). We need

to show that I = I ′. By construction, βF (α) = I ′(E), where E is the generic
G-torsor over F (U/G). By the definition of ψ, j(I(E)) is the image of α under
the diagonal map in the diagram. It follows that I ′(E) − I(E) ∈ Ker(j). By
the inflation-restriction sequence, Ker(j) = H1(F,M), hence I ′(E) − I(E) =
bF (U/G) for an element b ∈ H1(F,M). The torsor E is trivial over F (U),
hence b vanishes over F (U). It follows that b = 0 as the map H1(F,M) −→
H1(F (U),M) is injective by (IC).

We proved that I and I ′ are equal at the generic torsor and hence I = I ′ by
Proposition 6.1. �

8. Brauer Invariants

The invariants with values in the Brauer group are the degree 2 cohomo-
logical invariants: Inv

(
G,Br

)
= Inv2

(
G,Q/Z(1)

)
. Let G be a (connected)

semisimple group over F and

1 −→ C −→ G̃ −→ G −→ 1

an exact sequence with G̃ a simply connected semisimple group and C finite

central subgroup of G̃ of multiplicative type. For every character χ ∈ C∗ :=
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Hom(C,Gm), consider the push-out diagram

1 // C

��

// G̃

��

// G // 1

1 // Gm
// G′ // G // 1.

Let K/F be a field extension. By Hilbert Theorem 90, the sequence

1 −→ Gm(Ksep) −→ G′(Ksep) −→ G(Ksep) −→ 1

is exact. Therefore, we have the connecting map

δK(χ) : TorsG(K) = H1(K,G) −→ H2(K,Gm) = Br(K).

This collection of maps δK(χ) over all K/F is an invariant of G (depending on
χ) with values in the Brauer group. Thus, we have a homomorphism

δ : C∗ −→ Inv(G,Br)norm.

Theorem 8.1. ([2, Theorem 2.4]) The map δ : C∗ −→ Inv(G,Br)norm is an
isomorphism.

The following theorem was proved by F. Bogomolov [3, Lemma 5.7] in char-
acteristic zero and in [2, Theorem 5.10] in general.

Theorem 8.2. Let G be a semisimple group over a field F . Then
Invnr(G,Br)norm = 0 and Brnr

(
F (BG)

)
= Br(F ).

Example 8.3. (see [22] and [11]) LetG be a cyclic group of order 8 and F = Q.
A G-torsor over a field extension K/F is a G-Galois cyclic algebra L over K.
The class of the central cyclic K-algebra (L/K, 16) of degree 8 in Br(K) is a
non-constant unramified degree 2 invariant ([11, Proposition 33.15]). It follows
that BG is not retract rational. In other words, if V is a faithful representation
of G over Q, then the variety V/G is not retract rational.

Example 8.4. Let F be an algebraically closed field. D. Saltman in [21]
constructed a finite group G such that BG is not retract rational over F (a
counter-example to Noether’s problem) by exhibiting a nontrivial unramified
invariant of G with values in the Brauer group. It was proved in [3] that
Brnr

(
F (BG)

)
for a finite group G is isomorphic to the subgroup of H3(G,Z)

consisting of all classes having trivial restrictions to all bicyclic subgroups of
G. In [13] examples of finite groups of order p5, p odd and 26 with nontrivial
group Brnr

(
F (BG)

)
were given.

Example 8.5. Let G be a cyclic group of prime order p. By [22], BG is retract
rational. But it was shown in [24] that BG is not stably rational if p = 47 and
F = Q.
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9. Invariants of degree 3 with coefficients in Q/Z(2)

Let G be a split semisimple group over F and C the kernel of the universal
cover of G. The cohomological cup-product

H2(K,Q/Z(1))⊗K× −→ H3(K,Q/Z(2))
for any field extension K/F yields a pairing

Inv2
(
G,Q/Z(1)

)
norm

⊗ F× −→ Inv3
(
G,Q/Z(2)

)
norm

.

By Theorem 8.1, the group Inv2
(
G,Q/Z(1)

)
norm

is isomorphic to C∗, so we
get a pairing

τ : C∗ ⊗ F× −→ Inv3
(
G,Q/Z(2)

)
norm

.

The image of τ is the group of decomposable invariants. We write Inv3
(
G,Q/Z(2)

)
ind

for the cokernel of τ .
Let T ⊂ G be a split maximal torus. The Weyl group W of G acts on the

character group T ∗ of T and therefore, on the symmetric powers Sn(T ∗) of
T ∗. Let x ∈ T ∗ and {x1, . . . , xm} the W -orbit of x in T ∗. Then the element
c2(x) :=

∑
i<j xixj belongs to S2(T ∗)W . Write Dec(G) for the subgroup of

S2(T ∗)W generated by the elements c2(x) over all x ∈ T ∗, so Dec(G) is the
subgroup of the “obvious” elements in S2(T ∗)W .

Theorem 9.1. [17, Theorem 3.9] Let G be a split semisimple group over F ,
T ⊂ G a split maximal torus and C the kernel of the universal cover of G.
Then there is an exact sequence

0 −→ C∗ ⊗ F× τ−→ Inv3
(
G,Q/Z(j)

)
norm

−→ S2(T ∗)W/Dec(G) −→ 0.

It follows from this theorem that

Inv3
(
G,Q/Z(2)

)
ind

≃ S2(T ∗)W/Dec(G).

This group was computed when G is semisimple (M. Rost, see [11]), when G
is adjoint (see [17]) and when G is (almost) simple in [1].

The unramified invariants of semisimple groups over an algebraically closed
fields were considered in [18].

Theorem 9.2. [18, Proposition 8.1. and Theorems 8.4 and 11.3] Let G be
a semisimple group over an algebraically closed field F and p a prime integer
different from char(F ). Then the p-primary component of Inv3nr(G, p) is trivial
in the following cases:

• G is a simply connected or adjoint group.
• G is a simple group.
• p is odd.

References

[1] H. Bermudez and A. Ruozzi, Degree 3 cohomological invariants of split simple groups
that are neither simply connected nor adjoint, J. Ramanujan Math. Soc. 29 (2014),
no. 4, 465–481.



INVARIANTS OF ALGEBRAIC GROUPS 19

[2] S. Blinstein and A. Merkurjev, Cohomological invariants of algebraic tori, Algebra Num-
ber Theory 7 (2013), no. 7, 1643–1684.

[3] F. A. Bogomolov, The Brauer group of quotient spaces of linear representations, Izv.
Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 485–516, 688.

[4] F. A. Bogomolov and P. I. Katsylo, Rationality of some quotient varieties, Mat. Sb.
(N.S.) 126(168) (1985), no. 4, 584–589.

[5] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, K-
theory and algebraic geometry: connections with quadratic forms and division algebras
(Santa Barbara, CA, 1992), Amer. Math. Soc., Providence, RI, 1995, pp. 1–64.

[6] J.-L. Colliot-Thélène, R. T. Hoobler, and B. Kahn, The Bloch-Ogus-Gabber theorem,
Algebraic K-theory (Toronto, ON, 1996), Amer. Math. Soc., Providence, RI, 1997,
pp. 31–94.

[7] J.-L. Colliot-Thélène and M. Ojanguren, Variétés unirationnelles non rationnelles: au-
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