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1. Introduction

It was proven in [5] that for every field F of characteristic not 2, the norm
residue homomorphism

hF : K2F/2K2F → 2BrF,

taking the class of a symbol {a, b} to the class of the quaternion algebra (a, b)F
in the Brauer group is an isomorphism. The proof used a specialization argu-
ment reducing the problem to the study of the function field of a conic curve
and a comparison theorem of A. Suslin on the K2-group of the function field of
a conic curve [10] that in its turn, was based on Quillen’s computation of the
higher K-theory of a conic curve. Other “elementary” proofs of the bijectivity
of hF , avoiding higher K-theory, but still using the specialization argument
were given in [1] and [12].

In the present paper we give another self-contained proof of the bijectivity of
hF avoiding the specialization argument. The proof is based on the exactness
of the sequence (cf., [10])

K2F → K2F (C)
∂−→
⨿
x∈C

F (x)×
N−→ F×,

where C is a projective conic curve over a field F . The “elementary” proof
of exactness of the sequence, we give here, uses a careful treatment of the
geometry of a conic curve. We explore a bijective correspondence between
closed points of degree 2 on C and quadratic subfields of the corresponding
quaternion algebra.

2. Milnor K-theory of fields

Let F be a field. The graded Milnor ring K∗(F ) of F is the factor ring of
the tensor ring over Z of the multiplicative group F× by the ideal generated
by the tensors of the form a⊗ b with a+ b = 1 (see [7]). The class of a tensor
a1⊗a2⊗ . . .⊗an in K∗(F ) is denoted by {a1, a2, . . . , an} and is called a symbol.
We have K0(F ) = Z, K1(F ) = F× and K2(F ) is generated by the symbols
{a, b} with a, b ∈ F× that are subject to the following relations:

(M1) {aa′, b} = {a, b}+ {a′, b}, {a, bb′} = {a, b}+ {a, b′};
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(M2) {a, b} = 0 if a+ b = 1.

A field homomorphism F → E induces a ring homomorphism K∗(F ) →
K∗(E), u 7→ uE, makingK∗ a functor from the category of fields to the category
of graded abelian groups.

Let L be a field with a discrete valuation v and residue field F . There is the
residue homomorphism

∂ : K∗L→ K∗−1F

uniquely determined by the following condition. If a0, a1, . . . , an ∈ L× such
that v(ai) = 0 for all i = 1, 2, . . . n then

∂({a0, a1, . . . , an}) = v(a0){ā1, . . . , ān},
where ā ∈ F denotes the residue of a.

If p ∈ L× is a prime element, i.e., v(p) = 1, we define the specialization
homomorphism

sp : K∗L→ K∗F

by the formula sp(u) = ∂({−p} · u). We have

sp({a1, a2, . . . , an}) = {b̄1, b̄2, . . . , b̄n},
where bi = ai/p

v(ai).

Example 2.1. Consider the discrete valuation v of the field of rational func-
tions F (t) given by the irreducible polynomial t. For every u ∈ K∗F , we have
st(uF (t)) = u. In particular, the homomorphism K∗F → K∗F (t) is injective.

If E/F is a finite field extension, there is the K∗(F )-linear norm homomor-
phism

NE/F : K∗(E) → K∗(F )

that coincides with the usual norm map on K1(E) = E× [3, Ch.IX, §3].
Let F be a field of characteristic different from 2. For every a, b ∈ F× the

class of the quaternion algebra (a, b)F (see Example 3.3) in the Brauer group
Br(F ) has exponent 2. Moreover, the algebra (a, b)F is split if a + b = 1
(Example 3.1). The class of (a, b)F in Br(F ) is bilinear with respect to a and
b. Hence there is a well defined norm residue homomorphism

hF : K2F/2K2F → 2BrF,

taking {a, b}+ 2K2F to the class of the quaternion algebra (a, b)F .
The rest of the paper is devoted to the proof of the following theorem.

Theorem 2.2. For every field F of characteristic not 2, the norm residue
homomorphism

hF : K2F/2K2F → 2BrF,

is an isomorphism.

3. Geometry of conic curves

In this section we establish interrelations between projective conic curves
and corresponding quaternion algebras. The basic reference is the book [4].
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3.1. Quaternion algebras and conic curves. Let F be a field (of arbitrary
characteristic). A quaternion F -algebra is a dimension 4 central simple F -
algebra. A quaternion algebra is either a division algebra or it is split, i.e.,
isomorphic to the matrix algebra M2(F ).

Example 3.1. Let L/F be a Galois quadratic field extension and let b ∈ F×.
We define the quaternion algebra (L/F, b) as the vector space L⊕Lv, where v
is a symbol, with the multiplication rules v2 = b and vx = σ(x)v, where x ∈ L
and σ is the generator of the Galois group of L/F . The algebra (L/F, b) is
split if and only if b is a norm in the quadratic extension L/F . In fact any
quaternion F -algebra is isomorphic to (L/F, b) for some L/F and b.

If char(F ) ̸= 2, we have L = F (
√
a) for some a ∈ F×. We write (a, b)F for

(L/F, b).

Every quaternion algebra Q carries a canonical involution a 7→ ā. If Q =
(L/F, b) and a = x+yv for x, y ∈ L, then ā = σ(x)−yv. There are the reduced
trace linear map

Trd : Q→ F, a 7→ a+ ā

and the reduced norm quadratic map

Nrd : Q→ F, a 7→ aā.

Every element a ∈ Q satisfies the equation

a2 − Trd(a)a+Nrd(a) = 0.

Set
V = Ker(Trd) = {a ∈ Q : ā = −a},

so that V is a 3-dimensional subspace of Q. Note that x2 = −Nrd(x) ∈ F for
any x ∈ V , and the map q : V → F given by q(x) = x2 is a quadratic form on
V . The space V is the orthogonal complement to 1 in Q with respect to the
non-degenerate bilinear form on Q:

(a, b) 7→ Trd(ab).

The equation q(x) = 0 defines a smooth projective conic curve C in the
projective plane P(V ).

The following proposition is well known.

Proposition 3.2. The following conditions are equivalent:

(1) Q is split;
(2) C has a rational point;
(3) C is isomorphic to the projective line P1.

If Q is a division algebra, the degree of any finite splitting field extension is
even. Therefore, the degree of every closed point of C is even. Moreover, since
Q is split over a quadratic subfield of Q, the conic C has a point of degree 2.
Thus, the image of the degree homomorphism deg : Pic(C) → Z is equal to
2Z. Note also that the degree homomorphism is injective since it is so over a
splitting field. In other words, any divisor on C of degree zero is principal.
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Example 3.3. If charF ̸= 2, there is a basis 1, i, j, k of Q such that a = i2 ∈
F×, b = j2 ∈ F×, k = ij = −ji. Then V = Fi ⊕ Fj ⊕ Fk and C is given by
the equation aX2 + bY 2 − abZ2 = 0.

Example 3.4. If charF = 2, there is a basis 1, i, j, k ofQ such that a = i2 ∈ F ,
b = j2 ∈ F , k = ij = ji + 1. Then V = F1 ⊕ Fi ⊕ Fj and C is given by the
equation X2 + aY 2 + bZ2 + Y Z = 0.

For every a ∈ Q define the linear form la on V by the formula

la(x) = Trd(ax).

Since Trd is a non-degenerate bilinear form on Q, every linear form on V is
equal to la for some a ∈ Q.

The proof of the following statement is straightforward.

Lemma 3.5. Let a, b ∈ Q and α, β ∈ F . Then

(1) la = lb if and only if a− b ∈ F ;
(2) lαa+βb = αla + βlb;
(3) lā = −la;
(4) la−1 = −(Nrd a)−1 · la if a is invertible.

Every element a ∈ Q \ F generates a quadratic subalgebra F [a] = F ⊕ Fa
of Q. Conversely, every quadratic subalgebra K of Q is of the form F [a] for
any a ∈ K \ F . By Lemma 3.5, the linear form la on V does not depend, up
to a multiple, on the choice of a ∈ K \F . Hence the line in P(V ) given by the
equation la(x) = 0 is determined by K. The intersection of this line with the
conic C is a degree two effective divisor on C. Thus, we have got the maps

Quadratic
subalgebras of Q

→ Rational points
of P(V ∗)

=
Lines

in P(V )
→ Degree 2 effective

divisors on C

Proposition 3.6. These two maps are bijections.

Proof. The first map is a bijection since every line in P(V ) is given by the
equation la = 0 for some a ∈ Q \ F and a generates a quadratic subalgebra
of Q. The second map is a bijection since the embedding of C as a closed
subscheme of P(V ) is given by a complete linear system. �

Remark 3.7. Degree 2 effective divisors on C are rational points of the sym-
metric square S2C. Proposition 3.6 essentially asserts that S2C is isomorphic
to the projective plane P(V ∗).

Suppose Q is a division algebra. The conic curve C has no rational points.
Quadratic subalgebras of Q are quadratic (maximal) subfields of Q. A degree
2 effective cycle on C is a closed point of degree 2. Thus, by Proposition 3.6,
we have bijections
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Quadratic
subfields of Q

∼→ Rational points
of P(V ∗)

=
Lines

in P(V )
∼→ Points of

degree 2 in C

In what follows we will be frequently using the constructed bijection between
the set of quadratic subfields of Q and the set of degree 2 closed points of C.

3.2. Key identity. In the following proposition we write a multiple of the
quadratic form q on V as a degree two polynomial of linear forms.

Proposition 3.8. For any a, b, c ∈ Q,

lab̄ · lc + lbc̄ · la + lcā · lb =
(
Trd(cba)− Trd(abc)

)
· q.

Proof. We write T for Trd in the proof. For every x ∈ V we have:

lab̄(x) · lc(x) = T (ab̄x)T (cx)

= T
(
a(T (b)− b)x

)
T (cx)

= T (ax)T (b)T (cx)− T (abx)T (cx)

= T (ax)T (b)T (cx)− T
(
abT (cx)x

)
= T (ax)T (b)T (cx)− T (abc)x2 + T (abxc̄x),

lbc̄(x) · la(x) = T (bc̄x)T (ax)

= T
(
(T (b)− b̄)c̄x

)
T (ax)

= T (c̄x)T (b)T (ax)− T (b̄c̄x)T (ax)

= −T (ax)T (b)T (cx)− T
(
b̄c̄xT (ax)

)
= −T (ax)T (b)T (cx)− T (b̄c̄xax) + T (b̄c̄ā)x2

= −T (ax)T (b)T (cx)− T (axb̄c̄x) + T (cba)x2

lcā(x) · lb(x) = T (cāx)T (bx)

= −T (ac̄x)T (bx)
= −T

(
aT (bx)c̄x

)
= −T (abxc̄x) + T (axb̄c̄x).

It remains to add all three equalities. �

3.3. Residue fields of points of C and quadratic subfields of Q. Sup-
pose Q is a division algebra. Recall that quadratic subfields of Q correspond
bijectively to degree 2 points of C. We would like to identify a quadratic sub-
field of Q with the residue field of the corresponding point in C of degree
2.
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Choose a quadratic subfield K ⊂ Q. For every a ∈ Q \ K one has Q =
K ⊕ aK. We define the map

φa : V
∗ → K

by the rule: if c = u+ av for u, v ∈ K, then φa(lc) = v. Clearly,

φa(lc) = 0 ⇐⇒ c ∈ K.

By Lemma 3.5, φa is a well defined F -linear map. For another element b ∈
Q \K we have

(1) φb(lc) = φb(la)φa(lc),

hence the maps φa and φb differ by the multiple φb(la) ∈ K×. The map φa

extends in a usual way to an F -algebra homomorphism

φa : S
•(V ∗) → K

(here S• denotes the symmetric algebra).
Let x ∈ C ⊂ P(V ) be the point of degree 2 corresponding to the quadratic

subfield K. The local ring OP(V ),x is the subring of the quotient field of the

symmetric algebra S•(V ∗) generated by the fractions lc
ld

for all c ∈ Q and

d ∈ Q \K.
Fix an element a ∈ Q \ F . We define the F -algebra homomorphism

φ : OP(V ),x → K

by the formula

φ
( lc
ld

)
=
φa(lc)

φa(ld)
.

Note that φa(ld) ̸= 0 since d /∈ K and the map φ does not depend on the
choice of a ∈ Q \K in view of (1).

We claim that the map φ vanishes on the quadratic form q defining C in
P(V ). Proposition 3.8 gives a formula for a multiple of the quadratic form q
with the coefficient α = Trd(cba)− Trd(abc).

Lemma 3.9. There exist a ∈ Q \K, b ∈ K and c ∈ Q such that α ̸= 0.

Proof. Pick any b ∈ K\F and any a ∈ Q such that ab ̸= ba. Clearly, a ∈ Q\K.
Then α = Trd

(
(ba − ab)c

)
is nonzero for some c ∈ Q since the bilinear form

Trd is non-degenerate on Q. �

Choose a, b and c as in Lemma 3.9. We have φa(lb) = 0 since b ∈ K,
φa(la) = 1 and φa(lab̄) = b̄. Write c = u + av for u, v ∈ K, then φa(lc) = v.
Since bc̄ = bū + bv̄ā = bū + Trd(bv̄ā) − avb̄, we have φa(lbc̄) = −vb̄ and by
Proposition 3.8,

αφ(q) = φa(lab̄)φa(lc) + φa(lbc̄)φa(la) + φa(lcā)φa(lb) = b̄v − vb̄ = 0.

Since α ̸= 0, we have φ(q) = 0.
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The local ring OC,x coincides with the factor ring OP(V ),x/qOP(V ),x. There-
fore, φ factors through an F -algebra homomorphism

φ : OC,x → K.

Let e ∈ K \F . The function le
la
is a local parameter of the local ring OC,x, i.e.,

it generates the maximal ideal of OC,x. Since φ
(
le
la

)
= 0, the map φ induces a

field isomorphism

(2) F (x)
∼→ K

of degree 2 field extensions of F . We have proved

Proposition 3.10. Let Q be a division quaternion algebra, let K ⊂ Q be a
quadratic subfield and let x ∈ C be the corresponding point of degree 2. Then
the residue field F (x) is canonically isomorphic to K over F . Let a ∈ Q and
b ∈ Q\K. Write a = u+bv for unique u, v ∈ K. Then the value ( la

lb
)(x) ∈ F (x)

of the function la
lb

at the point x corresponds to the element v ∈ K under the

isomorphism (2).

4. Key exact sequence

Let C be a smooth curve over a field F . For every (closed) point x ∈ C
there is the residue homomorphism

∂x : K2F (C) → K1F (x) = F (x)×

induced by the discrete valuation of the local ring OC,x.
In this section we prove the following

Theorem 4.1. Let C be a conic curve over a field F . The sequence

K2F → K2F (C)
∂−→
⨿
x∈C

F (x)×
N−→ F×,

where ∂ =
⨿
∂x and N is given by the norm maps NF (x)/F , is exact.

Remark 4.2. Theorem 4.1 was originally proven in [10] as a consequence
of Quillen’s computation of the higher K-theory of a conic curve [8, §8, Th.
4.1] and a theorem of Rehmann and Stuhler on the group K2 of a quaternion
algebra [9].

4.1. Filtration on K2F (C). For a divisor a on C set

L(a) = {f ∈ F (C)× such that div(f) + a ≥ 0} ∪ {0}.
The set L(a) is a linear F -subspace of F (C). The following lemma is a simple
case of the Riemann-Roch theorem.

Lemma 4.3.

dimL(a) =

{
deg a+ 1, if deg a ≥ 0;
0, otherwise.

Proof. Extending the base field we can assume that C splits, i.e., C ≃ P1 by
Proposition 3.2. The result follows by a direct computation. �
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If C splits, the statement of Theorem 4.1 is Milnor’s computation of K2F (t)
given in [7, Th. 2.3]. So we may (and will) assume that C is not split. We
know that the degree of every closed point of C is even.

Fix a closed point x0 ∈ C of degree 2. For every n ∈ Z, set Ln = L(nx0).
Clearly,

Ln · Lm ⊂ Ln+m.

By Lemma 4.3, dimLn = 2n + 1 if n ≥ 0, Ln = 0 if n < 0 and L0 = F . We
also write L×

n for Ln \ {0}. Note that the value g(x) in F (x) is defined for
every g ∈ L×

n and a point x ̸= x0.
Since any divisor on C of degree zero is principal, for every point x ∈ C

of degree 2n we can choose a function px ∈ L×
n such that div(px) = x − nx0.

In particular, px0 ∈ F×. Note that px is uniquely determined up to a scalar
multiple. Clearly, px(x) = 0 if x ̸= x0. Every function in L×

n can be written as
the product of a nonzero constant and finitely many px for some points x of
degree at most 2n.

Lemma 4.4. Let x ∈ C be a point of degree 2n different from x0, and let
g ∈ Lm be such that g(x) = 0. Then g = pxq for some q ∈ Lm−n. In
particular, g = 0 if m < n.

Proof. Consider the F -linear map

ex : Lm → F (x), ex(g) = g(x).

If m < n, the map ex is injective since x does not belong to the support of
the divisor of a function in L×

m. Suppose that m = n and g ∈ Ker ex. Then
div(g) = x − nx0 and hence g is a multiple of px. Thus, the kernel of ex is
1-dimensional. By dimension count (Lemma 4.3), ex is surjective.

Therefore, for arbitrary m ≥ n, the map ex is surjective and

dimKer ex = dimLm − deg(x) = 2m+ 1− 2n.

The image of the injective linear map Lm−n → Lm of the multiplication by px
is contained in Ker ex and has dimension dimLm−n = 2m+1− 2n. Therefore,
Ker ex = pxLm−n. �

For every n ∈ Z, let Mn be the subgroup of K2F (C) generated by the
symbols {f, g} with f, g ∈ L×

n , i.e., Mn = {L×
n , L

×
n }. We have the following

filtration:

(3) 0 =M−1 ⊂M0 ⊂M1 ⊂ · · · ⊂ K2F (C).

Note thatM0 coincides with the image of the homomorphism K2F → K2F (C)
and K2F (C) is the union of all Mn. Indeed, the group F (C)× is the union of
the subsets L×

n .
If f ∈ L×

n , the degree of every point of the support of div(f) is at most
2n. In particular, ∂x(Mn−1) = 0 for every point x of degree 2n. Therefore, for
every n ≥ 0 we have a well defined homomorphism

∂n :Mn/Mn−1 →
⨿

deg x=2n

F (x)×
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induced by ∂x over all points x ∈ C of degree 2n.
We refine the filtration (3) by adding an extra termM ′ betweenM0 andM1.

Set M ′ = {L×
1 , L

×
0 } = {L×

1 , F
×}. In other words, the group M ′ is generated

by M0 and the symbols of the form {px, α} for all points x ∈ C of degree 2
and all α ∈ F×.

Denote by A′ the subgroup of
⨿

deg x=2 F (x)
× consisting of all families (αx)

such that αx ∈ F× for all x and
∏

x αx = 1. Clearly, ∂1(M
′/M0) ⊂ A′.

Theorem 4.1 is a consequence of the following three propositions.

Proposition 4.5. If n ≥ 2, the map

∂n :Mn/Mn−1 →
⨿

deg x=2n

F (x)×

is an isomorphism.

Proposition 4.6. The restriction ∂′ :M ′/M0 → A′ of ∂1 is an isomorphism.

Proposition 4.7. The sequence

0 →M1/M
′ ∂1−→

( ⨿
deg x=2

F (x)×

)
/A′ N−→ F×

is exact.

Proof of Theorem 4.1. Since K2F (C) is the union of Mn, it is sufficient to
prove that the sequence

0 →Mn/M0
∂−→

⨿
deg x≤2n

F (x)×
N−→ F×

is exact for every n ≥ 1. We proceed by induction on n. The case n = 1
follows from Propositions 4.6 and 4.7. The induction step is guaranteed by
Proposition 4.5. �
4.2. Proof of Proposition 4.5. We will construct the inverse map of ∂n.

Lemma 4.8. Let x ∈ C be a point of degree 2n > 2. Then for every u ∈ F (x)×

there exist f ∈ L×
n−1 and h ∈ L×

1 such that (f
h
)(x) = u.

Proof. The F -linear map

ex : Ln−1 → F (x), f 7→ f(x)

is injective by Lemma 4.4. Hence,

dimCoker ex = deg(x)− dimLn−1 = 2n− (2n− 1) = 1.

Consider the F -linear map

g : L1 → Coker ex, g(h) = u · h(x) + Im ex.

Since dimL1 = 3, the kernel of g contains a nonzero function h ∈ L×
1 . We have

u · h(x) = f(x) for some f ∈ L×
n−1. Since deg x > 2 the value h(x) is nonzero.

Hence u = (f
h
)(x). �
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Let x ∈ C be a point of degree 2n > 2. We define a map

ψx : F (x)× →Mn/Mn−1

as follows. By Lemma 4.8, for an element u ∈ F (x)× choose f ∈ L×
n−1 and

h ∈ L×
1 such that (f

h
)(x) = u. We set

ψx(u) =
{
px,

f

h

}
+Mn−1.

Lemma 4.9. The map ψx is a well defined homomorphism.

Proof. Let f ′ ∈ L×
n−1 and h′ ∈ L×

1 be two functions with (f
′

h′ )(x) = u. Then
f ′h − fh′ ∈ Ln and (f ′h − fh′)(x) = 0. By Lemma 4.4, f ′h − fh′ = λpx for

some λ ∈ F . If λ = 0, f
h
= f ′

h′ .

Suppose λ ̸= 0. Since λpx
f ′h

+ fh′

f ′h
= 1 we have

0 =
{λpx
f ′h

,
fh′

f ′h

}
≡
{
px,

f

h

}
−
{
px,

f ′

h′

}
mod Mn−1.

Hence, {px, fh}+Mn−1 = {px, f
′

h′}+Mn−1, so that the map ψ is well defined.

Let u3 = u1u2 ∈ F (x)×. Choose fi ∈ L×
n−1 and hi ∈ L×

1 such that ( fi
hi
)(x) =

ui (i = 1, 2, 3). The function f1f2h3 − f3h1h2 belongs to L2n−1 and has zero
value at x. By Lemma 4.4, f1f2h3 − f3h1h2 = pxq for some q ∈ Ln−1. Since
pxq

f1f2h3
+ f3h1h2

f1f2h3
= 1 we have

0 =
{ pxq

f1f2h3
,
f3h1h2
f1f2h3

}
≡
{
px,

f3
h3

}
−
{
px,

f1
h1

}
−
{
px,

f2
h2

}
mod Mn−1.

Thus, ψx(u3) = ψx(u1) + ψx(u2). �
By Lemma 4.9, we have the homomorphism

ψn =
∑

ψx :
⨿

deg x=2n

F (x)× →Mn/Mn−1.

We claim that ∂n and ψn are isomorphisms inverse to each other. If x is a
point of degree 2n > 2 and u ∈ F (x)×, choose f ∈ L×

n−1 and h ∈ L×
1 such that

(f
h
)(x) = u. We have

∂x(
{
px,

f

h

}
) =

(f
h

)
(x) = u

and the symbol {px, fh} has no nontrivial residues at other points of degree 2n.
Therefore, ∂n ◦ ψn is the identity.

To finish the proof of Proposition 4.5 it is sufficient to show that ψn is
surjective. The group Mn/Mn−1 is generated by classes of the form {px, g} +
Mn−1 and {px, py} + Mn−1, where g ∈ L×

n−1 and x, y are distinct points of
degree 2n. Clearly

{px, g}+Mn−1 = ψx

(
g(x)

)
,

hence {px, g}+Mn−1 ∈ Imψn.
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By Lemma 4.8, there are f ∈ L×
n−1 and h ∈ L×

1 such that px(y) = (f
h
)(y).

The function pxh− f belongs to L×
n+1 and has zero value at y. By Lemma 4.4,

pxh− f = pyq for some q ∈ L×
1 . Since

pyq

pxh
+ f

pxh
= 1 we have

0 =
{ pyq
pxh

,
f

pxh

}
≡ {px, py} mod Im(ψn). �

4.3. Proof of Proposition 4.6. We define a homomorphism

ρ : A′ →M ′/M0

by the rule

ρ
(⨿

αx

)
=
∑

deg x=2

{px, αx}+M0.

Since ∂x{px, α} = α, ∂x0{px, α} = α−1 for every x ̸= x0 and the product
of all αx is equal to 1, the composition ∂′ ◦ ρ is the identity. Clearly, ρ is
surjective. �

4.4. Generators and relations of A(Q)/A′. It remains to prove Proposition
4.7. Now the quaternion division algebra Q defining the conic curve C comes
into play. By Proposition 3.10, the norm homomorphism⨿

deg x=2

F (x)× → F×

is canonically isomorphic to the norm homomorphism

(4)
⨿

K× → F×,

where the coproduct is taken over all quadratic subfields K ⊂ Q. Note that
the norm map NK/F : K× → F× is the restriction of the reduced norm Nrd
on K. Let A(Q) be the kernel of the norm homomorphism (4). Under the
identification the subgroup A′ of

⨿
F (x)× corresponds to the subgroup of

A(Q) (we still denote it by A′) consisting of all families (aK) with aK ∈ F×

and
∏
aK = 1. In other words, A′ is the intersection of A(Q) and

⨿
F×. Now

Proposition 4.7 asserts that the canonical homomorphism

(5) ∂1 :M1/M
′ → A(Q)/A′

is an isomorphism. In the proof of Proposition 4.7 we will construct the inverse
isomorphism. In order to do that it is convenient to have a presentation of the
group A(Q)/A′ by generators and relations.

We define a map (not a homomorphism!)

Q× →
(⨿

K×)/A′, a 7→ ã

as follows. If a ∈ Q× is not a scalar, it is contained in a unique quadratic
subfield K of Q. Therefore, a defines an element of the coproduct

⨿
K×. We

denote by ã the corresponding class in
(⨿

K×)/A′. If a ∈ F×, of course, a
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belongs to all quadratic subfields. Nevertheless a defines a unique element ã
of the factor group

(⨿
K×)/A′ (we place a in any quadratic subfield). Clearly

(6) (̃ab) = ã · b̃ if a and b commute.

(Note that we use the multiplicative notation for the operation in the factor
group.) Obviously, the group (

⨿
K×)/A′ is an abelian group generated by ã

for all a ∈ Q× with the set of defining relations given by (6).
The group A(Q)/A′ is generated (as an abelian group) by the products

ã1ã2 . . . ãn, where ai ∈ Q× with Nrd(a1a2 . . . an) = 1, with the following set of
defining relations:

(1) (ã1ã2 . . . ãn) · (ãn+1ãn+2 . . . ãn+m) = (ã1ã2 . . . ãn+m);

(2) ãb̃(̃a−1)(̃b−1) = 1;
(3) If ai−1 and ai commute, then ã1 . . . ãi−1ãi . . . ãn = ã1 . . . ãi−1ai . . . ãn.

The set of generators is too large for our purposes. In the following sub-
section we will find another presentation of A(Q)/A′ (Corollary 4.22). More
precisely, we will define an abstract group G by generators and relations (with
the “better” set of generators) and prove that G is isomorphic to A(Q)/A′.

4.5. The group G. Let Q be a division quaternion algebra over a field F .
Consider the abelian group G defined by generators and relations as follows.
The sign ∗ will be used to denote the operation in G (and 1 for the identity
element).

Generators: the symbols (a, b, c) for all ordered triples a, b, c of elements
of Q× such that abc = 1. Note that if (a, b, c) is a generator of G then so are
the cyclic permutations (b, c, a) and (c, a, b).

Relations:
(R1) : (a, b, cd) ∗ (ab, c, d) = (b, c, da) ∗

(
bc, d, a) for all a, b, c, d ∈ Q× such

that abcd = 1;
(R2) : (a, b, c) = 1 if a and b commute.

For an (ordered) sequence a1, a2, . . . , an (n ≥ 1) of elements of Q× such that
a1a2 . . . an = 1 we define a symbol

(a1, a2, . . . , an) ∈ G

by induction on n. The symbol is trivial if n = 1 or 2. If n ≥ 3 we set

(a1, a2, . . . , an) = (a1, a2, . . . , an−2, an−1an) ∗ (a1a2 . . . an−2, an−1, an).

Note that if a1a2 . . . an = 1 then a2 . . . ana1 = 1.

Lemma 4.10. The symbols do not change under cyclic permutations, i.e.,
(a1, a2, . . . , an) = (a2, . . . , an, a1) if a1a2 . . . an = 1.
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Proof. Induction on n. The statement is clear if n = 1 or 2. If n = 3,

(a1, a2, a3) = (a1, a2, a3) ∗ (a1a2, a3, 1) (relation R2)
= (a2, a3, a1) ∗ (a2a3, 1, a1) (relation R1)
= (a2, a3, a1) (relation R2).

Suppose that n ≥ 4. We have

(a1, a2, . . . , an) =(a1, . . . , an−2, an−1an) ∗ (a1a2 . . . an−2, an−1, an) (definition)

=(a2, . . . , an−2, an−1an, a1) ∗ (a1a2 . . . an−2, an−1, an) (induction)

=(a2, . . . , an−2, an−1ana1) ∗ (a2a3 . . . an−2, an−1an, a1)

∗ (a1a2 . . . an−2, an−1, an) (definition)

=(a2, . . . , an−2, an−1ana1) ∗ (a1, a2a3 . . . an−2, an−1an)

∗ (a1a2 . . . an−2, an−1, an) (case n = 3)

=(a2, . . . , an−2, an−1ana1) ∗ (a2a3 . . . an−2, an−1, ana1)

∗ (a2a3 . . . an−1, an, a1) (relation R1)

=(a2, . . . , an−2, an−1, ana1) ∗ (a2a3 . . . an−1, an, a1) (definition)

=(a2, . . . an, a1) (definition).

�
Lemma 4.11. If a1a2 . . . an = 1 and ai−1 commutes with ai for some i, then
(a1, . . . , ai−1, ai, . . . , an) = (a1, . . . , ai−1ai, . . . , an).

Proof. We may assume that n ≥ 3 and i = n by Lemma 4.10. We have

(a1, . . . , an−2, an−1, an) = (a1, . . . , an−2, an−1an) ∗ (a1a2 . . . an−2, an−1, an) (definition)

= (a1, . . . , an−2, an−1an) (relation R2).

�
Lemma 4.12. (a1, . . . , an) ∗ (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).

Proof. Induction on m. By Lemma 4.11, we may assume that m ≥ 3. We have

L.H.S. = (a1, . . . , an) ∗ (b1, . . . , bm−1bm) ∗ (b1b2 . . . bm−2, bm−1, bm) (definition)

= (a1, . . . , an, b1, . . . , bm−1bm) ∗ (b1b2 . . . bm−2, bm−1, bm) (induction)

= (a1, . . . , an, b1, . . . , bm) (definition).

�
As usual, we write [a, b] for the commutator aba−1b−1.

Lemma 4.13. Let a, b ∈ Q×.
1. For every nonzero b′ ∈ Fb + Fba one has [a, b] = [a, b′]. Similarly,

[a, b] = [a′, b] for every nonzero a′ ∈ Fa+ Fab.
2. For every nonzero b′ ∈ Fb + Fba + Fbab there exists a′ ∈ Q× such that

[a, b] = [a′, b] = [a′, b′].
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Proof. 1. We have b′ = bx, where x ∈ F + Fa. Hence x commutes with a and
therefore [a, b] = [a, b′]. The proof of the second statement is similar.

2. There is nonzero a′ ∈ Fa + Fab such that b′ ∈ Fb + Fba′. By the first
part, [a, b] = [a′, b] = [a′, b′]. �

Corollary 4.14. 1. Let [a, b] = [c, d]. Then there are a′, b′ ∈ Q× such that
[a, b] = [a′, b] = [a′, b′] = [c, b′] = [c, d].

2. Every two commutators in Q× can be written in the form [a, b] and [c, d]
with b = c.

Proof. 1. If [a, b] = 1 = [c, d], we can take a′ = b′ = 1. Otherwise, the sets
{b, ba, bab} and {d, dc} are linearly independent. Let b′ be a nonzero element
in the intersection of the subspaces Fb + Fba + Fbab and Fd + Fdc. The
statement follows from Lemma 4.13.

2. Let [a, b] and [c, d] be two commutators. We may clearly assume that
[a, b] ̸= 1 ̸= [c, d], so that the sets {b, ba, bab} and {c, cd} are linearly indepen-
dent. Choose a nonzero element b′ in the intersection of Fb + Fba + Fbab
and Fc + Fcd. By Lemma 4.13, [a, b] = [a′, b′] for some a′ ∈ Q× and
[c, d] = [b′, d]. �

Lemma 4.15. Let h ∈ Q×. The following conditions are equivalent:

(1) h = [a, b] for some a, b ∈ Q×;
(2) h ∈ [Q×, Q×];
(3) Nrd(h) = 1.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (1); Let K be a separable quadratic subfield containing h. (If h is purely
inseparable, then h2 ∈ F and therefore h = 1.) Since NK/F (h) = Nrd(h) = 1,
by the classical Hilbert theorem 90, h = b̄b−1 for some b ∈ K×. By the
Noether-Skolem theorem, b̄ = aba−1 for some a ∈ Q×. �

Let h ∈ Q× be such that Nrd(h) = 1. Then by Lemma 4.15, h = [a, b] =
aba−1b−1 for some a, b ∈ Q×. Consider the following element

ĥ = (b, a, b−1, a−1, h) ∈ G.

Lemma 4.16. The element ĥ does not depend on the choice of a and b.

Proof. Let h = [a, b] = [c, d]. By Corollary 4.14(1) we may assume that either
a = c or b = d. Consider the first case (the latter case is similar). We write
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d = bx, where x commutes with a. We have

(d, a, d−1, a−1, h) = (bx, a, x−1b−1, a−1, h)

= (bx, x−1, b−1) ∗ (b, x, a, x−1b−1, a−1, h) (Lemmas 4.11, 4.12)

= (bx, x−1, b−1) ∗ (a−1, h, b, x, a, x−1b−1) (Lemma 4.10)

= (a−1, h, b, x, a, x−1b−1, bx, x−1, b−1) (Lemma 4.12)

= (a−1, h, b, a, b−1) (Lemma 4.11)

= (b, a, b−1, a−1, h) (Lemma 4.10).

�

Lemma 4.17. For every h1, h2 ∈ [Q×, Q×] we have

ĥ1h2 = ĥ1 ∗ ĥ2 ∗ (h1h2, h−1
2 , h−1

1 ).

Proof. By Corollary 4.14(2), h1 = [a1, c] and h2 = [c, b2] for some a1, b2, c ∈ Q×.
Then h1h2 = [a1b

−1
2 , b2cb

−1
2 ] and

ĥ1 ∗ ĥ2 ∗ (h1h2, h−1
2 , h−1

1 ) = (c, a1, c
−1, a−1

1 , h1, h2, b2, c, b
−1
2 , c−1) ∗ (h1h2, h−1

2 , h−1
1 )

= (b2, c, b
−1
2 , c−1, c, a1, c

−1, a−1
1 , h1, h2) ∗ (h−1

2 , h−1
1 h1h2)

= (b2, c, b
−1
2 , a1, c

−1, a−1
1 , h1h2)

= (b2, c, b
−1
2 , b2c

−1b−1
2 ) ∗ (b2cb−1

2 , a1, c
−1, a−1

1 , h1h2)

= (b−1
2 , b2c

−1b−1
2 , b2, c) ∗ (c−1, a−1

1 , h1h2, b2cb
−1
2 , a1)

= (b−1
2 , b2c

−1b−1
2 , b2, c, c

−1, a−1
1 , h1h2, b2cb

−1
2 , a1)

= (b−1
2 , b2c

−1b−1
2 , b2, a

−1
1 , h1h2, b2cb

−1
2 , a1b

−1
2 , b2a

−1
1 , a1)

= (b2, a
−1
1 , h1h2, b2cb

−1
2 , a1b

−1
2 , b2c

−1b−1
2 ) ∗ (b2a−1

1 , a1, b
−1
2 )

= (b2a
−1
1 , a1, b

−1
2 , b2, a

−1
1 , h1h2, b2cb

−1
2 , a1b

−1
2 , b2c

−1b−1
2 )

= (b2a
−1
1 , h1h2, b2cb

−1
2 , a1b

−1
2 , b2c

−1b−1
2 )

= (b2cb
−1
2 , a1b

−1
2 , b2c

−1b−1
2 , b2a

−1
1 , h1h2)

= ĥ1h2.

�

Let a1, a2, . . . , an ∈ Q× such that Nrd(h) = 1 where h = a1a2 . . . an. We set

((a1, a2, . . . , an)) = (a1, a2, . . . , an, h
−1) ∗ ĥ ∈ G.

Lemma 4.18. ((a1, a2, . . . , an)) ∗ ((b1, b2, . . . , bm)) = ((a1, . . . , an, b1, . . . , bm)).
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Proof. Set h = a1 . . . an, h
′ = b1 . . . bm. We have

L.H.S. = (a1, a2, . . . , an, h
−1) ∗ (b1, b2, . . . , bm, (h′)−1) ∗ ĥ ∗ ĥ′

= (a1, a2, . . . , an, b1, b2, . . . , bm, (h
′)−1, h−1) ∗ ĥ ∗ ĥ′

= (a1, a2, . . . , an, b1, b2, . . . , bm, (hh
′)−1) ∗ (hh′, (h′)−1, h) ∗ ĥ ∗ ĥ′

= (a1, a2, . . . , an, b1, b2, . . . , bm, (hh
′)−1) ∗ ĥh′ (Lemma 4.17)

= R.H.S.

�

The following Lemma is a consequence of the definition and Lemma 4.11.

Lemma 4.19. If ai−1 commutes with ai for some i, then
((a1, . . . , ai−1, ai, . . . , an)) = ((a1, . . . , ai−1ai, . . . , an)).

Lemma 4.20. ((a, b, a−1, b−1)) = 1.

Proof. Set h = [a, b]. We have

L.H.S. = (a, b, a−1, b−1, h−1) ∗ ĥ = (a, b, a−1, b−1, h−1) ∗ (b, a, b−1, a−1, h) = 1.

�

We would like to establish an isomorphism between G and A(Q)/A′. We
define a homomorphism π : G→ A(Q)/A′ by the formula

π(a, b, c) = ãb̃c̃ ∈ A(Q)/A′,

where a, b, c ∈ Q× such that abc = 1. Clearly, π is well defined.
Let a1, a2, . . . , an ∈ Q× such that a1a2 . . . an = 1. By induction on n we get

π(a1, a2, . . . , an) = ã1ã2 . . . ãn ∈ A(Q)/A′.

Let h ∈ [Q×, Q×]. Write h = [a, b] for a, b ∈ Q×. We have

π(ĥ) = π(b, a, b−1, a−1, h) = h̃.

If a1, a2, . . . , an ∈ Q× such that Nrd(h) = 1 where h = a1a2 . . . an, then

(7) π((a1, a2, . . . , an)) = π(a1, a2, . . . , an, h
−1) ∗ π(ĥ) = ã1ã2 . . . ãn.

Define a homomorphism θ : A(Q)/A′ → G as follows. Let a1, a2, . . . , an ∈
Q× be such that Nrd(a1a2 . . . an) = 1. We set

(8) θ(ã1ã2 . . . ãn) = ((a1, a2, . . . , an)).

The relation at the end of subsection 4.4 and Lemmas 4.18, 4.19 and 4.20 show
that θ is a well defined homomorphism. Formulas (7) and (8) give

Proposition 4.21. The maps π and θ are isomorphisms inverse to each other.
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Corollary 4.22. The group A(Q)/A′ is generated by the products ãb̃c̃ for all
ordered triples a, b, c of elements of Q× such that abc = 1 satisfying the follow-
ing set of defining relations:

(R1′)
(
ãb̃(c̃d)

)
·
(
(ãb)c̃d̃

)
=
(
b̃c̃(d̃a)

)
·
(
(d̃a)b̃c̃

)
for all a, b, c, d ∈ Q× such

that abcd = 1;
(R2′) ãb̃c̃ = 1 if a and b commute.

4.6. Proof of Proposition 4.7. We need to prove that the homomorphism
∂1 in (5) is an isomorphism.

The fraction la
lb

for a, b ∈ Q \ F can be considered as a nonzero rational

function on C, la
lb
∈ F (C)×.

Lemma 4.23. Let K0 be the quadratic subfield of Q corresponding to the fixed
point x0 and let b ∈ K0 \ F . Then the space L1 consists of fractions la

lb
for all

a ∈ Q.

Proof. Obviously la
lb

∈ L1. It follows from Lemma 3.5, that the space of all

fractions la
lb
is 3-dimensional and by Lemma 4.3, dimL1 = 3. �

By Lemma 4.23, the group M ′ is generated by symbols of the form { la
lb
, α}

for all a, b ∈ Q \ F and α ∈ F× and the group M1 is generated by symbols
{ la
lb
, lc
ld
} for all a, b, c, d ∈ Q \ F .

Let a, b, c ∈ Q be such that abc = 1. We define an element

[a, b, c] ∈M1/M
′

as follows. If at least one of a, b and c belongs to F× we set [a, b, c] = 0.
Otherwise the linear forms la, lb and lc are nonzero and we set

[a, b, c] =
{ la
lc
,
lb
lc

}
+M ′.

Lemma 3.5 and the equality {u,−u} = 0 in K2F (C) yield:

Lemma 4.24. Let a, b, c ∈ Q× be such that abc = 1 and let α ∈ F×. Then

(1) [a, b, c] = [b, c, a];
(2) [αa, α−1b, c] = [a, b, c];
(3) [a, b, c] + [c−1, b−1, a−1] = 0;
(4) If a and b commute, then [a, b, c] = 0.

Lemma 4.25. ∂1[a, b, c] = ãb̃c̃.

Proof. We may assume that none of a, b and c is a constant. Let x, y and z
be the points of C of degree 2 corresponding to quadratic subfields F [a], F [b]
and F [c] that we identify with F (x), F (y) and F (z) respectively.

Consider the following element in the class [a, b, c]:

w =
{ la
lc
,
lb
lc

}
+
{ lb
lc
,Nrd(a)

}
+
{ lb
la
,−Nrd(b)

}
.
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By Proposition 3.10 (we identify residue fields with the corresponding qua-
dratic extensions) and Lemma 3.5,

∂x(w) =
lb
lc
(x)
(
−Nrd(b)

)−1
= −Nrd(b)

lb−1

lb−1a−1

(x)
(
−Nrd(b)

)−1
= a,

∂y(w) =
lc
la
(y)
(
−Nrd(ab)

)
= −Nrd(a)−1 lb−1a−1

la−1

(x)
(
−Nrd(ab)

)
= −Nrd(a)−1b̄−1

(
−Nrd(ab)

)
= b,

∂z(w) = − la
lb
(z)Nrd(a)−1 = Nrd(a)

lbc
lb
(x)Nrd(a)−1 = c.

�

Lemma 4.26. Let a, b, c, d ∈ Q \ F be such that cd, da /∈ F and abcd = 1.
Then { lalc

lcdlda
,
lbld
lcdlda

}
∈M ′.

Proof. Plugging in Proposition 3.8 the elements c−1, ab and b for a, b and c
respectively and using Lemma 3.5 we get elements α, β, γ ∈ F× such that on
the conic C,

αlalc + βlbld + γlcdlda = 0.

Then

− αlalc
γlcdlda

− βlbld
γlcdlda

= 1

and

0 =
{
− αlalc
γlcdlda

,− βlbld
γlcdlda

}
≡
{ lalc
lcdlda

,
lbld
lcdlda

}
mod M ′.

�

Proposition 4.27. Let a, b, c, d ∈ Q× be such that abcd = 1. Then

[a, b, cd] + [ab, c, d] = [b, c, da] + [bc, d, a].

Proof. We first notice that if one of the elements a, b, ab, c, d, cd belongs to
F×, the equality holds. Indeed, if a ∈ F×, then the equality reads [ab, c, d] =
[b, c, da] and follows from Lemma 4.24. If α = ab ∈ F×, then again by Lemma
4.24,

L.H.S. = 0 = [b, c, da] + [(da)−1, α−1c−1, αb−1] = R.H.S.

Now assume that none of the elements belong to F×. By Lemma 4.26, we
have in M1/M

′:
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0 =
{ lalc
lcdlda

,
lbld
lcdlda

}
+M ′

=
{ la
lcd
,
lb
lcd

}
+
{ lc
lda
,
lb
lda

}
+
{ la
lcd
,
ld
lda

}
+
{ lc
lda
,
ld
lcd

}
+M ′

= [a, b, cd]− [b, c, da] +
({ la

lda
,
ld
lda

}
+
{ lda
lcd
,
ld
lda

})
+
{ lc
lda
,
ld
lcd

}
+M ′

= [a, b, cd]− [b, c, da]− [bc, d, a] +
({ lda

lcd
,
ld
lcd

}
+
{ lc
lda
,
ld
lcd

})
+M ′

= [a, b, cd]− [b, c, da]− [bc, d, a] + [ab, c, d].

�

We are going to use the presentation of the group A(Q)/A′ by generators
and relations given in Corollary 4.22. We define a homomorphism

µ : A(Q)/A′ →M1/M
′

by the formula

µ(ãb̃c̃) = [a, b, c]

for all a, b, c ∈ Q such that abc = 1. It follows from Lemma 4.24(4) and
Proposition 4.27 that µ is well defined. Lemma 4.25 implies that ∂1 ◦ µ is the
identity.

To show that µ is the inverse of ∂1 it is sufficient to prove that µ is surjective.
The groupM1/M

′ is generated by elements of the form w = { la′
lc′
,
lb′
lc′
}+M ′ for

a′, b′, c′ ∈ Q \ F . We may assume that 1, a′, b′ and c′ are linearly independent
(otherwise, w = 0). In particular, 1, a′, b′ and a′b′ form a basis of Q, hence

c′ = α + βa′ + γb′ + δa′b′

for some α, β, γ, δ ∈ F with δ ̸= 0. We have

(γδ−1 + a′)(β + δb′) = ε+ c′

for ε = βγδ−1 − α. Set

a = γδ−1 + a′, b = β + δb′, c = (ε+ c′)−1.

We have abc = 1. It follows from Lemma 3.5 that

w =
{ la′
lc′
,
lb′

lc′

}
+M ′ =

{ la
lc
,
lb
lc

}
+M ′ = [a, b, c].

By definition of µ, we have µ(ãb̃c̃) = [a, b, c] = w, hence µ is surjective. The
proof of Proposition 4.7 is complete. �
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5. Hilbert theorem 90 for K2

Let L/F be a Galois quadratic field extension with the Galois group G =
{1, σ}. For every field extension E/F linearly disjoint with L/F , the field
LE = L ⊗F E is a quadratic Galois extension of E with the Galois group
isomorphic to G. The group G acts naturally on K2(LE). We write (1− σ)u
for σ(u)− u, u ∈ K2(LE). Set

V (E) = K2(LE)/(1− σ)K2(LE).

If E → E ′ is a homomorphism of field extensions of F linearly disjoint with
L/F , there is a natural homomorphism

V (E) → V (E ′).

Proposition 5.1. [11, 11.1.2] Let C be a conic curve over F and let L/F be a
Galois quadratic field extension such that C is split over L. Then the natural
homomorphism V (F ) → V

(
F (C)

)
is injective.

Proof. Let u ∈ K2L be such that uL(C) = (1− σ)v for some v ∈ K2L(C). For
a closed point x ∈ C the L-algebra L(x) = L ⊗F F (x) is isomorphic to the
product of residue fields L(y) for all closed points y ∈ CL over x ∈ C. By
∂x(v) ∈ L(x)× we denote the product of ∂y(v) ∈ L(y)× for all y over x.

Set ax = ∂x(v) ∈ L(x)×. We have

ax/σ(ax) = ∂x(v)/σ(∂x(v)) = ∂x
(
(1− σ)v

)
= ∂x

(
uL(C)

)
= 1,

i.e., ax ∈ F (x)×. By Theorem 4.1, applied to CL,∏
x∈C

NF (x)/F (ax) = NL/F

( ∏
y∈CL

NL(y)/L(ay)
)
= NL/F

( ∏
y∈CL

NL(y)/L(∂y(v))
)
= 1.

It follows from Theorem 4.1, applied to C, that there is w ∈ K2F (C) such
that ∂x(w) = ax for all x ∈ C. Set v′ = v − wL(X) ∈ KL(C). Since

∂x(v
′) = ∂x(v)∂x(w)

−1 = axa
−1
x = 1,

again, by Theorem 4.1, applied to CL, there exists s ∈ K2L with sL(C) = v′.
We have

(1− σ)sL(C) = (1− σ)v′ = (1− σ)v = uL(C),

i.e., (1 − σ)s − u splits over L(C). Since L(C)/L is a purely transcendental
extension, we have (1−σ)s−u = 0 (see Example 2.1) and hence u = (1−σ)s ∈
Im(1− σ). �
Corollary 5.2. For any finitely generated subgroup H ⊂ F× there is a field
extension F ′/F linearly disjoint with L/F such that the natural homomorphism
V (F ) → V (F ′) is injective and H ⊂ NL′/F ′(L′×) where L′ = LF ′.

Proof. By induction it is sufficient to assume that H is generated by one ele-
ment b. Set F ′ = F (C), where C is the conic curve associated with the quater-
nion algebra Q = (L/F, b). Since Q is split over F ′ we have b ∈ NL′/F ′(L′×)
by Example 3.1. The conic C is split over L, therefore, the homomorphism
V (F ) → V (F ′) is injective by Proposition 5.1. �
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For any two elements x, y ∈ L× we write ⟨x, y⟩ for the class of the symbol
{x, y} in V (F ). Consider the group homomorphism

f = fF : NL/F (L
×)⊗ F× → V (F ); f

(
NL/F (x)⊗ a

)
= ⟨x, a⟩.

The map f if well defined. Indeed, if NL/F (x) = NL/F (y) for x, y ∈ L×, we
have y = xzσ(z)−1 for some z ∈ L× by the classical Hilbert theorem 90. Then
{y, a} = {x, a}+ (1− σ){z, a} and hence ⟨y, a⟩ = ⟨x, a⟩.

Lemma 5.3. Let b ∈ NL/F (L
×). Then f

(
b⊗ (1− b)

)
= 0.

Proof. If b = c2 for some c ∈ F× then

f
(
b⊗ (1− b)

)
= ⟨c, 1− c2⟩ = ⟨c, 1− c⟩+ ⟨c, 1 + c⟩ = ⟨−1, 1 + c⟩ = 0

since −1 = zσ(z)−1 for some z ∈ L×.
Now assume that b is not a square in F . Set

F ′ = F [t]/(t2 − b), L′ = L[t]/(t2 − b).

Note that L′ is either a field or product of two copies of the field F ′. Let u ∈ F ′

be the class of t, so that u2 = b. Choose x ∈ L× with NL/F (x) = b. Note that

NL′/F ′(x
u
) = b

u2 = 1 and NL′/L(1− u) = 1− b.
The automorphism σ extends to an automorphism of L′ over F ′. By the

classical Hilbert theorem 90 applied to the extension L′/F ′, there is v ∈ L′×

such that vσ(v)−1 = x
u
. We have

f(b, 1−b) = ⟨x, 1−b⟩ = ⟨x,NL′/L(1−u)⟩ = NL′/L⟨x, 1−u⟩ = NL′/L⟨
x

u
, 1−u⟩ =

NL′/L⟨vσ(v)−1, 1− u⟩ = (1− σ)NL′/L⟨v, 1− u⟩ = 0.

�

Theorem 5.4. (Hilbert theorem 90 for K2, [6, Th. 14.1]) Let L/F be a Galois
quadratic extension and let σ be the generator of Gal(L/F ). Then the sequence

K2L
1−σ−−→ K2L

NL/F−−−→ K2F

is exact.

Proof. Let u ∈ K2L be an element such that NL/F (u) = 0. Since the group
K2L is generated by symbols of the form {x, a} with x ∈ L× and a ∈ F× [3,
Ch.IX, 2.5] we can write

u =
m∑
j=1

{xj, aj}

for some xj ∈ L× and aj ∈ F×, and

NL/F (u) =
m∑
j=1

{NL/F (xj), aj} = 0.
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Hence by definition of K2F , we have in F× ⊗ F×:

(9)
m∑
j=1

NL/F (xj)⊗ aj =
n∑

i=1

±
(
bi ⊗ (1− bi)

)
for some bi ∈ F×. Clearly, the equality (9) holds in H ⊗ F× for some finitely
generated subgroup H ⊂ F× containing all NL/F (xj) and bi.

By Corollary 5.2, there is a field extension F ′/F such that the natural homo-
morphism V (F ) → V (F ′) is injective and H ⊂ NL′/F ′(L′×) where L′ = LF ′.

The equality (9) then holds in NL′/F ′(L′×)⊗ F ′×. Now we apply the map fF ′

to both sides of (9). By Lemma 5.3, the class of uL′ in V (F ′) is equal to

m∑
j=1

⟨xj, aj⟩ = fF ′
( m∑
j=1

NL/F (xj)⊗ aj
)
=

n∑
i=1

±fF ′
(
bi ⊗ (1− bi)

)
= 0,

i.e., uL′ ∈ (1 − σ)K2L
′. Since the map V (F ) → V (F ′) is injective, we get

u ∈ (1− σ)K2L. �

Theorem 5.5. [6, Th. 14.2] Let u ∈ K2F be an element such that 2u = 0.
Then u = {−1, a} for some a ∈ F×. In particular, u = 0 if char(F ) = 2.

Proof. Let G = {1, σ}. Consider a G-action on the field L = F ((t)) of Laurent
power series defined by

σ(t) =

{
−t, if charF ̸= 2;
t

1+t
, if charF = 2.

We get a quadratic Galois extension L/E, where E = LG.
Consider the diagram

K2L
1−σ−−−→ K2L

∂

y ys

F× {−1}−−−→ K2F,

where ∂ is the residue homomorphism of the canonical descrete valuation of L,
s = st is the specialization homomorphism of the parameter t and the bottom
homomorphism is the multiplication by {−1}. We claim that the diagram is
commutative. The group K2L is generated by elements of the form {f, g} and
{t, g} for all power series f and g in F [[t]] with nonzero constant term. If
charF ̸= 2, we have

s ◦ (1− σ){f, g} = s({f, g} − {σf, σg})
= {f(0), g(0)} − {(σf)(0), (σg)(0)}
= 0 = {−1} · ∂{f, g},
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s ◦ (1− σ){t, g} = s({−t, g} − {t, σg})
= {−1, g(0)}
= {−1} · ∂{t, g}.

In the case charF = 2 we obviously have s(u) = s(σu) for every u ∈ K2L,
hence s ◦ (1− σ) = 0.

Since NL/F (uL) = 2uE = 0, by Theorem 5.4, u = (1 − σ)v for some v ∈
K2(L). The commutativity of the diagram yields

u = s(uL) = s
(
(1− σ)v

)
= {−1, ∂(v)}.

�

6. Proof of the main theorem

In this section we give a proof of Theorem 2.2.

6.1. Injectivity of hF . From now on we assume that F is a field of charac-
teristic different from 2. Let hF (u+ 2K2F ) = 0 for an element u ∈ K2F . Let
u be a sum of n symbols. By induction on n we prove that u ∈ 2K2F . The
cases n = 1 and n = 2 were considered in [2].

Write u in the form u = {a, b} + v for a, b ∈ F× and an element v ∈ K2F
that is a sum of n−1 symbols. Let C be the conic curve over F corresponding
to the quaternion algebra Q = (a, b)F and set L = F (C). The conic C is given
by the equation

aX2 + bY 2 = abZ2

in the projective coordinates. Set x = X
Z

and y = Y
Z
. Since x2

b
+ y2

a
= 1, we

have

0 =
{x2
b
,
y2

a

}
= 2
{
x,
y2

a

}
− 2{b, y} − {a, b}

and therefore {a, b} = 2r in K2L for r = {x, y2
a
} − {b, y}. Let p ∈ C be the

degree 2 point given by Z = 0. The element r has only one nontrivial residue
at the point p, ∂p(r) = −1.

Since the quaternion algebra (a, b)F is split over L, we have hL(vL+2K2L) =
0. By induction, vL = 2w for some element w ∈ K2L.

Set cx = ∂x(w) for every point x ∈ C. Since

c2x = ∂x(2w) = ∂x(vL) = 1,

we have cx = (−1)nx for nx = 0 or 1. The degree of every point of C is even,
hence ∑

x∈C

nx deg(x) = 2m

for some m ∈ Z. Since every degree zero divisor on C is principal, there is a
function f ∈ L× with the degree zero divisor

∑
nxx−mp. Set

w′ = w + {−1, f}+ kr ∈ K2L
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where k = m+ np. If x ∈ C is a point different from p, we have

∂x(w
′) = ∂x(w) · (−1)nx = 1.

Since also

∂p(w
′) = ∂p(w) · (−1)m · (−1)k = (−1)np+m+k = 1,

we have ∂x(w
′) = 1 for all x ∈ C. By Theorem 4.1, w′ = sL for some s ∈ K2F .

Hence

vL = 2w = 2w′ − 2kr = 2sL − {ak, b}L.
Set v′ = v − 2s + {ak, b} ∈ K2F ; we have v′L = 0. The conic C splits over
the quadratic extension E = F (

√
a). The field extension E(C)/E is purely

transcendental and v′E(C) = 0. Hence v′E = 0 (see Example 2.1) and therefore

2v′ = NE/F (v
′
E) = 0. By Theorem 5.5, v′ = {−1, d} for some d ∈ F×. Hence

modulo 2K2F the element v is the sum of two symbols {ak, b} and {−1, d}.
Thus we are reduced to the case n = 2. �

6.2. Surjectivity of hF . We write k2F for K2F/2K2F .

Proposition 6.1. Let L/F be a quadratic extension. Then the sequence

k2F → k2L
NL/F−−−→ k2F

is exact.

Proof. Let u ∈ K2L such that NL/F (u) = 2v for some v ∈ K2F . Then
NL/F (u − vL) = 2v − 2v = 0 and by Theorem 5.4, u − vL = (1 − σ)w for
some w ∈ K2L. Hence

u = vL + (1− σ)w = (v +NL/F (w))L − 2σw.

�
Let s ∈2 BrF . Suppose first that F has no odd degree extensions. By

induction on the index of s we prove that s ∈ Im(hF ). Let L/F be a quadratic
extension such that ind(uL) < ind(u). By induction, sL = hL(u) for some
u ∈ k2L. We have

hF (NL/F (u)) = NL/F (hL(u)) = NL/F (sL) = 0.

It follows from the injectivity of hF that NL/F (u) = 0 and by Proposition 6.1,
u = vL for some v ∈ k2F . Then

hF (v)L = hL(vL) = hL(u) = sL

hence s − hF (v) is split over L and therefore it is the class of a quaternion
algebra. Thus s − hF (v) = hF (w), where w ∈ k2F is a symbol and s =
hF (v + w) ∈ Im(hF ).

In the general case, by the first part of the proof, there exists an odd degree
extension E/F such that sE = hE(v) for some v ∈ k2E. Then

s = NE/F (sE) = NE/F

(
hE(v)

)
= hF

(
NE/F (v)

)
. �
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