
ESSENTIAL p-DIMENSION OF PGL(p2)

ALEXANDER S. MERKURJEV

Abstract. Let p be a prime integer and F a field of characteristic different
from p. We prove that the essential p-dimension of the group PGLF (p

2)
is equal to p2 + 1. This integer measures complexity of the class of central
simple algebras of degree p2 over field extensions of F .

1. Introduction

Informally, the essential dimension of an “algebraic structure” over a field
F is the smallest number of parameters required to define this structure over
a field extension of F (see [1] or [10]). Thus, the essential dimension measures
complexity of the structure.

Let p be a prime integer. Essential p-dimension of an “algebraic structure”
measures complexity of the structure modulo the “effects of degree prime to
p” (see [11]). In practice, the essential p-dimension is easier to compute than
the essential dimension.

The formal definition of the essential (p-)dimension is as follows. Let p
denote either a prime integer or 0. An integer k is said to be prime to p if k
is prime to p when p > 0 and k = 1 when p = 0. Let F be a field. Consider
the category Fields/F of field extensions of F and field homomorphisms over
F . Let F : Fields/F → Sets be a functor (an “algebraic structure”) and
K,E ∈ Fields/F . An element α ∈ F(E) is said to be p-defined over K (and K
is called a field of p-definition of α) if there exist a finite field extension E ′/E
of degree prime to p (so E ′ = E if p = 0), a field homomorphism K → E ′

over F and an element β ∈ F(K) such that the image of α under the map
F(E) → F(E ′) coincides with the image of β under the map F(K) → F(E ′).
The essential p-dimension of α, denoted edF

p (α), is the least transcendence
degree tr. degF (K) over all fields of p-definition K of α. The essential p-
dimension of the functor F is

edp(F) = sup{edF
p (α)},

where the supremum is taken over fields E ∈ Fields/F and all α ∈ F(E).
We write ed(F) for ed0(F) and simply call ed(F) the essential dimension

of F . Clearly, ed(F) ≥ edp(F) for all p.
Let G be an algebraic group over F . The essential p-dimension of G is

the essential p-dimension of the functor FG : Fields/F → Sets taking a field
E to the set of isomorphism classes of all G-torsors (principal homogeneous
G-spaces) over Spec(E).
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If G = PGLn over F , the functor FG is isomorphic to the functor taking a
field E to the set of isomorphism classes of central simple E-algebras of degree
n. Let p be a prime integer and let pr be the highest power of p dividing
n. Then edp

(
PGLF (n)

)
= edp

(
PGLF (p

r)
)
[11, Lemma 8.5.5]. Every central

simple E-algebra of degree p is cyclic over a finite field extension of degree
prime to p, hence edp

(
PGLF (p)

)
= 2 [11, Lemma 8.5.7] as we just need two

parameters to define a cyclic algebra. It is shown in [8, Cor. 3.10] and [11,
Th. 8.6] that 4 ≤ edp

(
PGLF (p

2)
)
≤ p2 + 1.

We prove the following:

Theorem 1.1. Let p be a prime integer and F a field of characteristic different
from p. Then

edp

(
PGLF (p

2)
)
= p2 + 1.

Corollary 1.2. (Rost) If F is a field of characteristic different from 2, then
ed
(
PGLF (4)

)
= ed2

(
PGLF (4)

)
= 5.

Proof. By Theorem 1.1, we have ed
(
PGLF (4)

)
≥ ed2

(
PGLF (4)

)
= 5. On

the other hand, ed
(
PGLF (4)

)
≤ 5 by [8]. �

We use the following notation:
X (F ) is the character group of the absolute Galois group Gal(Fsep/F ) of a

field F .
Br(F ) is the Brauer group of F . For a field extension L/F , we write Br(L/F )

for the relative Brauer group Ker
(
Br(F ) → Br(L)

)
.

Gm denotes the multiplicative group SpecF [t, t−1] over F .
For a finite separable field extension L/F , we write RL/F for the corestriction

operation (see [7, §20.5]). In particular, RL/F (Gm,L) is the multiplicative group

of L considered as an algebraic group (torus) over F . We write R
(1)
L/F (Gm,L)

for the torus of norm 1 elements in L.
If A is a central simple algebra over F , then SB(A) denotes the Severi-Brauer

variety of A of reduced rank 1 right ideals in A [7, §1.C].
If p is a prime integer and B is a torsion abelian group, we write B{p} for

the p-primary component of B.
In the present paper, the word “scheme” over a field F means a separated

scheme of finite type over F and a “variety” over F is an integral scheme
over F . If X is a scheme over F and E/F is a field extension, then X(E) =
MorF (Spec(E), X) is the set of points of X over E. We write XE for the
scheme X ×F Spec(E) over E.

2. Algebraic tori

2.1. R-trivial homomorphisms of algebraic tori. Let T be an algebraic
torus over a field F . As usual, we write T ∗ for the character group of T over a
separable closure Fsep of F . The group T ∗ is a Γ-lattice, where Γ = Gal(Fsep/F )
is the absolute Galois group of F .
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A torus P is quasi-trivial if P ∗ is a permutation lattice, i.e., there is a Γ-
invariant Z-basis of P ∗.

Let E/F be a field extension. Recall that the group of R-equivalence classes
T (E)/R is the factor group of T (E) modulo the subgroup RT (E) of all el-
ements that are R-equivalent to 1 (see [2, §5] and [14, Ch. 6]). If P is a
quasi-trivial torus, then P (E)/R = 1.

Example 2.1. [2, Prop. 15] Let L/F be a finite Galois field extension and

T = R
(1)
L/F (Gm,L) the torus of norm 1 elements in L. Then the subgroup RT (F )

is generated by elements of the form σ(u)/u over all σ ∈ Gal(L/F ) and u ∈ L×.

Proposition 2.2. Let f : T0 → T1 be a homomorphism of algebraic tori over
F . Let 1 → S1 → P1 → T1 → 1 be an exact sequence with P1 a quasi-trivial
torus such that for any field extension E/F , the image of P1(E) → T1(E)
coincides with RT1(E) (for example, a flasque resolution of T1 satisfies this
property by [2, Th. 2]). Then the following conditions are equivalent:

(1) For any field extension E/F , the homomorphism T0(E)/R → T1(E)/R
induced by f is trivial.

(2) The image of the generic point of T0 in T1

(
F (T0)

)
/R is trivial.

(3) There exists a commutative diagram of homomorphisms of algebraic
tori

1 −−−→ P0 −−−→ M0 −−−→ T0 −−−→ 1y y f

y
1 −−−→ S1 −−−→ P1 −−−→ T1 −−−→ 1.

with exact rows and a quasi-trivial torus P0.

Proof. (1) ⇒ (2) is trivial.

(2) ⇒ (3): By assumption, there is a point x ∈ P1

(
F (T0)

)
such that the

image of x in T1

(
F (T0)

)
coincides with the f -image of the generic point of T0.

The point x yields a rational morphism g : T0 99K P1 such that the composition
T0 99K P1 → T1 coincides with f . Let U ⊂ T0 be the domain of definition of g.
The Γ-lattice of characters T ∗

0 is identified with the factor group Fsep[T0]
×/F×

sep,
moreover, T ∗

0 is a sublattice in Λ := Fsep[U ]×/F×
sep and the factor lattice Λ/T ∗

0 is
a permutation lattice (see the proof of [2, Prop. 5]). Let M0 and P0 be the tori
with the character lattices Λ and Λ/T ∗

0 respectively. The morphism U → P1

yields a homomorphism of Γ-lattices P ∗
1 → Λ and therefore, a homomorphism

M0 → P1 of tori. By construction, the compositions M0 → P1 → T1 coincides
with the composition M0 → T0 → T1.

(3) ⇒ (1): Let E/F be a field extension. The composition M0(E)/R →
T0(E)/R → T1(E)/R is trivial as it factors through the trivial group P1(E)/R.
The first homomorphism in the composition is surjective since P0 is a quasi-
trivial torus. Hence the homomorphism T0(E)/R → T1(E)/R is trivial. �

We say that a homomorphism of algebraic tori f : T0 → T1 is R-trivial if f
satisfies the equivalent conditions of Proposition 2.2.
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Example 2.3. Let p be a prime integer and let (K1/F, σ) and (K ′/F, τ) be
cyclic field extensions of degree pk (k ≥ 1) and p respectively, L1 = K1 ⊗F K ′

and G1 = Gal(L1/F ). We assume that L1 is a field.
Let K0 ⊂ K1 be the subfield of degree p over F and set L0 = K0⊗F K ′. We

write G0 for the Galois group of L0/F .

Let T0 = R
(1)
L0/F

(Gm,L0) and T1 = R
(1)
L1/F

(Gm,L1) be the norm 1 tori for the

extensions L0/F and L1/F respectively. Then T0 is a subtorus in T1. We claim
that the inclusion homomorphism f : T0 → T1 is not R-trivial.

For i = 0, 1, there is an exact sequence of Gi-modules

(1) 0 → Z → Z[Gi] → T ∗
i → 0.

If M is a G1-lattice and X a G1-module, we write Êxt
i

G1
(M,X) for the Tate

cohomology group Ĥ i(G1,M
∗ ⊗Z X). It follows from (1) that

Êxt
0

G1
(T ∗

1 , T
∗
0 ) ≃ Ĥ−1(G1, T

∗
0 ) = Ĥ−1(G0, T

∗
0 ) ≃ Ĥ0(G0,Z) ≃ Z/p2Z.

Moreover, the class of the map f ∗ : T ∗
1 → T ∗

0 corresponds to 1+p2Z, so f ∗ has

order p2 in Êxt
0

G1
(T ∗

1 , T
∗
0 ).

Let P1 be the product of two copies of the torus RL1/F (Gm,L1) and α : P1 →
T1 the homomorphism taking (u, v) to σ(u)τ(v)/uv. For a field extension E/F ,
the image of P1(E) in T1(E) coincides with RT1(E) (see Example 2.1). Set
S1 := Ker(α), so we have an exact sequence of tori

0 → S1 → P1 → T1 → 0.

Suppose the homomorphism f : T0 → T1 is R-trivial. By Proposition 2.2,
there is a diagram

1 −−−→ P0 −−−→ M0 −−−→ T0 −−−→ 1y y f

y
1 −−−→ S1 −−−→ P1 −−−→ T1 −−−→ 1.

with exact rows and a quasi-trivial torus P0. As P ∗
1 is a free G1-module, the

right vertical map in the commutative diagram

Êxt
0

G1
(T ∗

0 , T
∗
0 ) −−−→ Êxt

0

G1
(T ∗

1 , T
∗
0 )y y

Êxt
1

G1
(P ∗

0 , T
∗
0 ) −−−→ Êxt

1

G1
(S∗

1 , T
∗
0 )

is an isomorphism. It follows that the image of the identity of T ∗
0 in Êxt

1

G1
(S∗

1 , T
∗
0 )

has order p2. We get a contradiction by showing that the group Êxt
1

G1
(P ∗

0 , T
∗
0 )

has exponent p. The G1-lattice P ∗
0 is a direct sum of lattices of the form

Z[G1/H1], where H1 is a subgroup of G1. Let H0 be the image of H1 under
the surjection G1 → G0. We have

Êxt
1

G1

(
Z[G1/H1], T

∗
0

)
= Êxt

1

H1
(Z, T ∗

0 ) = H1(H1, T
∗
0 ) = H1(H0, T

∗
0 ) = H2(H0,Z).
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The latter group is isomorphic to the character group of H0 that is of exponent
p as so is H0.

2.2. Characters, cyclic algebras and tori. Let F be a field and Γ =
Gal(Fsep/F ) the absolute Galois group of F . The character group X (F ) of
Γ is equal to

Homcont(Γ,Q/Z) = H1(F,Q/Z) ≃ H2(F,Z).

For a character χ ∈ X (F ) set F (χ) = (Fsep)
Ker(χ). Then F (χ)/F is a cyclic field

extension of degree ord(χ). The Galois group Gal
(
F (χ)/F

)
has a canonical

generator σ such that χ(σ̃) = ord(χ)−1 + Z for any lifting σ̃ of σ to Γ.
Let K/F be cyclic field extension. Choose a character χ ∈ X (F ) such that

K = F (χ). The cup-product

X (F )⊗ F× = H2(F,Z)⊗H0(F, F×
sep) → H2(F, F×

sep) = Br(F )

takes χ ⊗ a to the class χ ∪ (a) of a cyclic algebra split by K. In fact, every
element of Br(K/F ) is of the form χ⊗ a for some a ∈ F×.

Let L be an étale F -algebra of dimension n and S = RL/F (Gm,L)/Gm. The
exact sequence

1 → Gm → RL/F (Gm,L) → S → 1

and Hilbert Theorem 90 yield an isomorphism θ : H1(F, S)
∼→ Br(L/F ). Let

α ∈ H1(F, S) and let Sα be the corresponding principal homogeneous space
of S. As S is an open subscheme of the projective space PF (L), the variety
Sα is an open subset of the Severi-Brauer variety SB(A) of a central simple
F -algebra Aα of degree n such that [Aα] = θ(α) in Br(L/F ). Moreover, Sα is
trivial if and only if Aα is split.

Let χ ∈ X (F ) and L = F (χ). Then S ≃ R
(1)
L/F (Gm,L) by Hilbert Theorem 90

and [Aα] = χ∪a for some a ∈ F×. Moreover, the principal homogeneous space
Sα coincides with the fiber Sa of the norm homomorphism RL/F (Gm,L) → Gm

over a.

2.3. Bicyclic algebras and tori. Let χ and η be two characters in X (F ) of
order n and m respectively. Then the fields K = F (χ) and K ′ = F (η) are
cyclic extensions of F of degree n and m respectively. Set L = K⊗F K

′, so L is
a bicyclic extension of F of degree nm. The group G = Gal(K/F )×Gal(K ′/F )
acts naturally on L by automorphisms and G is generated by elements σ and
τ such that Lσ = K ′ and Lτ = K.

Let IG be the augmentation ideal in the group ring Λ := Z[G], i.e., IG =
Ker(ε), where ε : Λ → Z is defined by ε(ρ) = 1 for all ρ ∈ G. We have:

(2) Br(L/F ) = H2(G,L×) = Ext2G(Z, L×) ≃ Ext1G(IG, L
×).

Consider the exact sequences of G-modules

(3) 0 → M → Λ2 f−→ IG → 0,



6 A. MERKURJEV

where f(x, y) = (σ − 1)x+ (τ − 1)y and M = Ker(f) and

(4) 0 → Λ/ZNG
g−→ M

h−→ Z2 → 0,

where NG =
∑

ρ∈G ρ ∈ Λ, g(x + ZNG) =
(
(τ − 1)x, (1 − σ)x

)
and h(x, y) =(

ε(x)/n, ε(y)/m
)
.

Let T be the torus of norm 1 elements for the extension L/F . We have

(5) T (F ) = HomG

(
Λ/ZNG, L

×).
The exact sequences (3) (4), the isomorphisms (2) and (5) and Hilbert The-

orem 90 yield a commutative diagram:

HomG(Z2, L×)

α

''OO
OOO

OOO
OOO

O

h∗

��
HomG(Λ

2, L×)

β
((RR

RRR
RRR

RRR
RRR

R
// HomG(M,L×) //

g∗

��

Br(L/F ) // 0

T (F )

��
0

It follows that the cokernels of α and β are naturally isomorphic. The image
of α : F×2 → Br(L/F ) is the subgroup of decomposable elements Brdec(L/F )
of Br(L/F ) generated by χ ∪ (a) and η ∪ (b) with a, b ∈ F×.

The cokernel of β : L×2 → T (F ) is the group of R-equivalence classes
T (F )/R (see Example 2.1). We have proved:

Proposition 2.4. Let L/F is a bicyclic extension and T = R
(1)
L/F (Gm,L). Then

there is a natural isomorphism

T (F )/R ≃ Br(L/F )/Brdec(L/F ).

Example 2.5. The torus T = R
(1)
L/F (Gm,L) is not rational if L/F is a bicyclic

field extension of degree p2 by [14, §4.8]. Moreover, T is not R-trivial generi-
cally, i.e., there is a field extension E/F such that T (E)/R ̸= 1. It fact, the
image of the generic point of T in T

(
F (T )

)
/R is not trivial, i.e., the identity

map of T is not R-tivial (see Example 2.3).

3. Degree of points of the norm 1 torus for a bicyclic field
extension

3.1. Chow groups and push-forward homomorphism. LetX be a scheme
over a field F . We write Z(X) for the group of algebraic cycles on X, i.e., the
free abelian group generated by points of X. We write CH(X) for the factor
group of Z(X) by the subgroup of cycles rationally equivalent to 0 (see [3,
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§1.3]). The groups Z(X) and CH(X) are graded by the dimension of points.
If x ∈ X is a point of dimension i, [x] denotes the class of x in CHi(X).

If X is a variety of dimension d, then the group CHd(X) is infinite cyclic
generated by the class of the generic point of X.

Let f : X → Y be a morphism of schemes over F . The push-forward
homomorphism f∗ : Z(X) → Z(Y ) is a graded homomorphism defined by

f∗(x) =

{
[F (x) : F (y)] · y, if [F (x) : F (y)] is finite;
0, otherwise,

where x ∈ X and y = f(x). If f is a proper morphism, then f∗ factors
through the rational equivalence, defining the push-forward homomorphism
CH(X) → CH(Y ) still denoted by f∗ (see [3, §1.4]).

3.2. Degree of a point. Let X be a scheme over a field F , a ∈ X(E) a
point over a field extension E/F and {x} the image of a : Spec(E) → X.
The dimension of a is the integer dim(a) := dim(x). If f : X → Y is a
morphism of varieties over F and a ∈ X(E) for a field extension E/F , we
have dim(a) ≥ dim

(
f(a)

)
. If d = dim(a), we define the class [a] of a in

CHd(X) as follows:

[a] :=

{
[E : F (x)] · [x], if [E : F (x)] is finite;
0, otherwise.

In addition, if X is a variety, the degree of a is the integer deg(a) satisfying
[a] = deg(a) · [x] if dim(a) = dim(X) and x is the generic point of X, and
deg(a) = 0 otherwise.

If E ′/E is a field extension and a ∈ X(E), we write aE′ for the image of a
in X(E ′). If E ′/E is finite, we have deg(aE′) = [E ′ : E] · deg(a).

If E = F (X) is the function field of X and a ∈ X(E) is the generic point,
then deg(a) = 1.

Proposition 3.1. Let f : X → Y be a proper morphism of varieties over F
and let a ∈ X(E) be a point over a field extension E/F . Then [f(a)] = f∗([a])
in CH(Y ).

Proof. Let {x} be the image of a in X and y = f(x). If one of the field
extensions E/F (x) and F (x)/F (y) is infinite, then [f(a)] = 0 and f∗([a]) = 0.
We may assume that E is a finite extension of F (y). Then

[f(a)] = [E : F (y)] · [y]
= [E : F (x)]

(
[F (x) : F (y)] · [y]

)
= [E : F (x)] · f∗([x])
= f∗([a]). �

If Z is a scheme over F , we write n(Z) for the gcd[F (z) : F ] over all closed
points z ∈ Z.
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Example 3.2. Let T be an algebraic torus over F . We write i(T ) for the
greatest common divisor of the integers [E : F ] over all finite field extensions
E/F such that T is isotropic over E. If X is a smooth complete geometrically
irreducible variety containing T as an open set, then n(X \ T ) = i(T ) by [2,
Lemme 12] (see also [9, Lemma 5.1]).

We shall need a variant of a push-forward homomorphism for morphisms
that are not proper.

Proposition 3.3. Let X be a complete variety over F , U ⊂ X an open subva-
riety, Z = X \ U and f : U → Y a morphism over F , where Y is a variety of
dimension d over F . If n = n(ZF (Y )), then the push-forward homomorphism
on cycles f∗ : Z(U) → Z(Y ), composed with the projection Z(Y ) → Zd(Y ) = Z,
gives rise to a well defined homomorphism

f⋆ : CH(U) → Z/nZ.
Moreover, for any point a ∈ U(E) over a field extension E/F , one has f⋆([a]) =
deg

(
f(a)

)
modulo n.

Proof. We define the map f⋆ to be trivial on all homogeneous components
CHi(U) except i = d, so we just need to define f⋆ on CHd(U).

We claim that the image of the push-forward homomorphism

s∗ : CHd(Z × Y ) → CHd(Y ) = Z
for the projection s : Z × Y → Y is contained in nZ. Let u ∈ Z × Y be a
point of dimension d. If s(u) is not the generic point of Y , then s∗([u]) = 0.
Otherwise, u is a closed point in ZF (Y ) ⊂ Z ×Y and s∗([u]) coincides with the
degree of this closed point and hence is divisible by n. The claim is proven.

The map s∗ factors as s∗ = q∗ ◦ i∗, where i : Z × Y → X × Y is the closed
embedding and q : X × Y → Y is the projection. By localization [3, §1.8],
CHd(U × Y ) is canonically isomorphic to the cokernel of i∗. By the claim, q∗
gives rise to a homomorphism CHd(U × Y ) → Z/nZ. Composing it with the
push-forward homomorphism for the closed embedding (1U , f) : U → U × Y ,
we get the required homomorphism f⋆ : CHd(U) → Z/nZ. The last equality
in the statement follows from Proposition 3.1 applied to q. �
Example 3.4. Let T be an algebraic torus over F and n = i(T ) (see Example
3.2). Then the structure morphism T → Spec(F ) gives rise to a homomor-
phism CH0(T ) → Z/nZ that takes the class of a closed point t ∈ T to [F (t) : F ]
modulo n.

3.3. Chow groups of tori and Severi-Brauer varieties. Let p be a prime
integer and let Z be the product of r copies of the projective space PF (W ),
where W is a vector space of dimension n > 0 over F . Then

CH(Z) = Z[h] := Z[h1, h2, . . . , hr],

with hn
i = 0 for all i, where hi is pull-back on Z of the class of a hyperplane

on the ith factor of Z. Moreover, Z[h] is the factor ring of the polynomial ring
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on the variables t1, t2, . . . , tr by the ideal generated by tn1 , t
n
2 , . . . , t

n
r . Note that

the homogeneous ith component Z[h]i is trivial if i > r(n−1) and Z[h]r(n−1) =
Zhn−1, where h := h1h2 · · ·hp.

Let K/F be a Galois field extension with a cyclic Galois group H of prime
order p and let σ be a generator of H. Let V be a vector space of dimension
n > 0 over K. Consider the variety X = RK/F

(
PK(V )

)
over F . Then XK is

the product of p copies of PK(V ). The group H acts on the product by cyclic
permutation of the factors. We have the graded ring homomorphism

CH(X) → CH(XK) = Z[h],
where h = (h1, h2, . . . , hp).

The group H acts on Z[h] permuting cyclically the hi’s. Hence the image
of the map CH(X) → Z[h] is contained in the subring Z[h]H of H-invariant
elements, so we have the graded ring homomorphism

CH(X) → Z[h]H

(which is in fact an isomorphism). The image of an element α ∈ CH(X)
in Z[h]H is denoted by ᾱ. For example, if α is the class of the subscheme
RK/F

(
PK(W )

)
of X, where W is a K-subspace of V of codimension i =

0, 1, . . . , n− 1, then ᾱ = hi.
Consider the trace homomorphism

tr : Z[h] → Z[h]H

defined by tr(x) =
∑p−1

i=0 σ
i(x). We write I for the image of tr. Clearly, I is a

graded ideal in Z[h]H . Note that

(6)
(
Z[h]H

)
j
=

{
Ij, if p does not divide j;
Zhi + Ij, if j = pi.

It follows that Z[h]H is generated by I and hi, i = 0, 1, . . . , n − 1 as an
abelian group. Moreover, phj ∈ I for all j and Ip(n−1) = pZhn−1.

LetA be a central simple algebra overK of degree n and let Y = RK/F

(
SB(A)

)
,

where SB(A) is the Severi-Brauer variety of A over K. The function field E
of Y splits A and is linearly disjoint with K/F . Therefore, YE ≃ XE and we
have the ring homomorphism

CH(Y ) → CH(YE) ≃ CH(XE) → Z[h]H .
The image of an element α ∈ CH(Y ) in Z[h]H is denoted by ᾱ.

Proposition 3.5. Let K/F be a cyclic field extension of a prime degree p, let
A be a nonsplit central simple K-algebra of degree p and Y = RK/F

(
SB(A)

)
.

Then the image of the map CH(Y ) → Z[h]H is contained in Z+ I.

Proof. Consider a more general situation: A is a central simple K-algebra of
index p and degree n. Let α ∈ CH(Y ). We shall prove in the cases 1 and
2 below that ᾱ ∈ Z + I. By (6), we may assume that α ∈ CHpi(Y ) for
i = 1, 2, . . . , n − 1. Let a ∈ Z be such that ᾱ ≡ ahi modulo I. It suffices to
prove that a is divisible by p.
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Case 1: i = n − 1. We have ᾱ = bhn−1 for some b ≡ a modulo p as
Ip(n−1) = pZhn−1. Since hn−1 is the class of a rational point of Y over a
splitting field and the degree of every closed point of Y is divisible by p, we
have b ∈ pZ. Therefore, a ∈ pZ.

Case 2: i divides n − 1. Write n − 1 = ij. We have αj ∈ CHp(n−1)(Y ) and
αj ≡ ajhn−1 modulo I. By Case 1, aj and hence a is divisible by p.

Now assume that A is a central division K-algebra of degree p and α ∈
CHpi(Y ) with i = 1, 2, . . . , p−1. We shall prove that ᾱ ∈ I. Write ik+pm = 1
for some integers k and m > 0. The Severi-Brauer variety SB(Mm(A)) can be
identified with the variety of the reduced rank 1 right A-submodules in the free
right A-module Am. The projection to last component A of Am gives rise to a
rational morphism SB(Mm(A)) → SB(A) that is defined on the complement U
of the variety SB(Mm−1(A)) embedded into SB(Mm(A)) as a closed subvariety
via the inclusion Am−1 → Am, (a1, . . . , am−1) 7→ (a1, . . . , am−1, 0). Moreover,
the projection U → SB(A) is a vector bundle.

Let Y ′ = RK/F

(
SB(Mm(A))

)
and U ′ = RK/F (U). Then U ′ is an open

subscheme of Y ′ and the natural morphism U ′ → Y is a vector bundle. Hence
we have a surjective homomorphism

CH(Y ′) → CH(U ′) ≃ CH(Y ).

Moreover, the diagram

CH(Y ′) −−−→ CH(Y )y y
Z[h′]H −−−→ Z[h]H

,

where the bottom map takes a monomial h′α to hα if αi < p for all i and to 0
otherwise, is commutative. Lift α to an element α′ ∈ CHpi(Y ′). As i divides
pm − 1, by Case 2 applied to the algebra Mm(A), we have ᾱ′ ∈ I ′. Since the
bottom map in the diagram takes I ′ to I, we have ᾱ ∈ I. �

Let K ′/F be a cyclic field extension of degree p and

S =
(
R

(1)
K′/F (Gm,K′)

)r ≃ (
RK′/F (Gm,K′)/Gm

)r
for some r > 0. We view the variety of the group S as an open subset of
Z := PF (K

′)r. Hence the restriction gives a surjective ring homomorphism

(Z/pZ)[h] = Ch(Z) → Ch(S),

where h = (h1, h2, . . . , hr), h
p
i = 0 for all i, and we write Ch for the Chow

groups modulo p. We shall also write h̃i for the image of hi in Ch1(S). The class

in Chr(p−1)(S) of a rational point of S is equal to h̃p−1, where h̃ = h̃1h̃2 · · · h̃r ∈
Chp(S). As i(S) = p, we have h̃p−1 ̸= 0 by Example 3.4.

Proposition 3.6. The map (Z/pZ)[h] → Ch(S) is a ring isomorphism.
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Proof. Suppose that f(h̃1, h̃2, . . . , h̃r) = 0 for a nonzero homogeneous polyno-
mial f over Z/pZ. Suppose that a monomial hα1

1 · · ·hαr
r enters f with a nonzero

coefficient. Multiplying the equality by h̃β1

1 · · · h̃βr
r with βi = p− 1−αi, we get

h̃p−1 = 0, a contradiction. �
For an element α in Ch(S) we shall write ᾱ for the corresponding element

in (Z/pZ)[h].
Consider the homomorphism f : S × S → S defined by f(x, y) = xy−1.

Recall that as i(S) = p, by Example 3.2 and Proposition 3.3, we have the
homomorphism

(7) f⋆ : CHr(p−1)(S × S) → Z/pZ.

Lemma 3.7. For any α ∈ Chi(S) and β ∈ Chj(S) with i + j = r(p − 1), we
have

ᾱ · β̄ = f⋆(α× β)hp−1

in (Z/pZ)[h].

Proof. It suffices to consider the case when α and β are monomials in h̃i. As
both sides of the equality commute with products, we may assume that r = 1,
i.e., S = RK′/F (Gm,K′)/Gm, and α = h̃i, β = h̃j. The cycles α and β are
represented by P(U) ∩ S and P(W ) ∩ S, where U and W are F -subspaces of
K ′ of codimension i and j respectively. The fiber of the restriction

f ′ :
(
P(U) ∩ S

)
×

(
P(W ) ∩ S

)
→ S

of f over a point s of S is isomorphic to P(U ∩ sW ) ∩ S. The vector space
U ∩sW is one-dimensional for a generic s, hence f ′ is a birational isomorphism
and f⋆(α× β) = 1 + pZ. On the other hand, ᾱ · β̄ = hi · hj = hp−1. �

Let L/F be a bicyclic field extension of degree p2 and T = R
(1)
L/F (Gm,L).

Choose a subfield K of L of degree p over F and let t ∈ K× be an element

with NK/F (t) = 1, i.e., t is an F -point of the torus R
(1)
K/F (Gm,K). Write St

for the fiber of the norm homomorphism T → R
(1)
K/F (Gm) over t. The variety

St is a principal homogeneous space of the torus S = RK/F

(
R

(1)
L/K(Gm,L)

)
≃

RK/F

(
RL/K(Gm,L)/Gm,K

)
.

The variety St is canonically isomorphic to an open subscheme of the variety
Y := RK/F

(
SB(At)

)
for a central simple K-algebra At of degree p (see Section

2.2). Over the function field E of SB(At) overK, the varieties St and S become

isomorphic to the torus
(
R

(1)
LE/E(Gm,LE)

)p
, where LE = L ⊗K E, so we can

apply the constructions considered above to the torus SE over E. In particular,
we have the element ᾱ ∈ (Z/pZ)[h] well defined for any cycle α on St and S.

Consider the morphism

f : St × S → St, f(x, y) = xy−1.

We have defined the homomorphism (see (7)):

f⋆ : CHp(p−1)(St × S) → CHp(p−1)

(
(St)E × SE

)
→ Z/pZ.
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Proposition 3.8. Suppose that the principal homogeneous space St is not
trivial. Then f⋆(α× h̃j) = 0 for any α ∈ Chp(p−j−1)(St) and j = 0, 1, . . . , p−2.

Proof. As St is not trivial, the algebra At is not split. We can lift α to a cycle
β in Ch(Y ). By Proposition 3.5, β̄ belongs to the image Ĩ of the ideal I in
(Z/pZ)[h]H . It follows that ᾱ · hj = β̄ · hj ∈ Ĩp(p−1) = 0. Lemma 3.7 (applied

to the field extension E of F and r = p) shows that f⋆(α× h̃j) = 0. �

3.4. A key proposition. Let p be a prime integer, L/F a bicyclic field ex-
tension of degree p2, G = Gal(L/F ), σ and τ generators of G. Consider the

tori T = R
(1)
L/F (Gm,L) of norm 1 elements in L/F and P = RL/F (Gm,L)/Gm,

both of dimension d := p2−1. The torus T (respectively, P ) becomes isotropic
over a field extension E/F if and only if E ⊗F L is not a field. It follows that
i(T ) = i(P ) = i(T × P ) = p.

Consider the morphisms f and g from T ×P to T defined by f(t, v) = t and
g(t, v) = tσ(v)/v. By Proposition 3.3 and Example 3.2, f and g give rise to a
well defined homomorphisms f⋆ and g⋆ from CHd(T × P ) to Z/pZ.

Proposition 3.9. The maps f⋆ and g⋆ coincide.

Proof. The torus P is an open subscheme in the projective space PF (L), hence
the ring CH(P ) is generated by the restriction to P of the class e of a hy-
perplane in PF (L). Moreover, by the Projective Bundle Theorem [3, Th.
3.3], CHd(T × P ) coincides with the sum of subgroups CHi(T ) × ei over all
i = 0, 1, . . . , d.

Let β ∈ CHi(T ). It suffices to show that f⋆(β × ei) = g⋆(β × ei) for any
i = 0, 1, . . . , d. If i = d, the class ei is represented by the identity point 1 of
P . The equality follows from the fact that f and g coincide on T × {1}.

Now assume that i < d. In this case f⋆(β × ei) = 0 and we need to show
that g⋆(β × ei) = 0.

Let K be the subfield of σ-invariant elements in L of degree p over F . We
have pk + 1 ≤ p2 − i ≤ p(k + 1) for some integer k = 0, . . . , p− 1. Consider a
K-linear subspace W of L of K-dimension k such that K ∩W = 0. Let V be
an F -subspace of L of dimension p2 − i over F such that

F ⊕W ⊂ V ⊂ K ⊕W.

The class of P ∩ P(V ) in CHi(P ) is equal to ei.

The torus S := RK/F

(
R

(1)
L/K(Gm,L)

)
is the kernel of the norm homomorphism

T → T1 := R
(1)
K/F (Gm,K), so we have an exact sequence

(8) 1 → S → T → T1 → 1.

By Hilbert Theorem 90, S ≃ RK/F

(
RL/K(Gm,L)/Gm,K

)
. We view S as an

open subscheme of RK/F

(
PK(L)

)
. The map g factors as follows:

T × P
1T×l−−−→ T × S

r−→ T,
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where l : P → S is defined by l(v) = v/σ(v) and r(t, s) = ts−1. The image of
P ∩ PF (K ⊕ W ) under l is the variety S ∩ RK/F

(
PK(K ⊕W )

)
of dimension

pk in S ≃ RK/F

(
RL/K(Gm,L)/Gm,K

)
. Hence, if p2− i > pk+1, then dim

(
P ∩

P(V )
)
> pk, but dimension of the image of P ∩P(V ) under l is at most pk, so

P ∩ P(V ) loses dimension under l, therefore, g⋆(β × ei) = 0.
It remains to consider the case p2 − i = pk + 1, k = 1, . . . , p − 1, i.e.,

V = F ⊕W . Since the map P ∩ P(V ) → RK/F

(
PK(K ⊕W )

)
given by l is a

birational isomorphism, and the class of RK/F

(
PK(K⊕W )

)
in CH(S) is equal

to hp−k−1, where h ∈ CHp(S) is the class given by a K-hyperplane in L, it
suffices to show that r⋆(β × hp−k−1) = 0.

Let St be the fiber of the norm homomorphism T → T1 over the generic
point t of T1, so St is a principal homogeneous space of S over the function
field F (T1). Denote by

r′ : St × S → St

the morphism given by r′(x, s) = xs−1. Thus we have a commutative diagram

St × S
r′−−−→ St

q

y ym

T × S
r−−−→ T

where m is the canonical morphism and q = m× 1S. It follows that r⋆ factors
as the composition

CHd(T × S)
q∗−→ CHp(p−1)(St × S)

r′⋆−→ Z/pZ.

Thus, it suffices to show that r′⋆(α × hp−k−1) = 0 for any α ∈ CHpk(St). This
follows from Proposition 3.8 applied to the torus S over the field F (T1) (with
j = p−k−1) if we show that St is a nontrivial principal homogeneous space of
S. Suppose that St has a point over F (T1). It follows that the exact sequence
(8) splits rationally, i.e., the torus T is birationally isomorphic to the product
S×T1 and hence is a rational variety. But T is not rational (see Example 2.5),
a contradiction. �

3.5. Invariance of the degree under R-equivalence.

Theorem 3.10. Let p be a prime integer, L/F a bicyclic field extension of

degree p2 and T = R
(1)
L/F (Gm,L). Let M/F be a field extension and let t and t′

be R-equivalent points in T (M). Then deg(t) ≡ deg(t′) modulo p.

Proof. We have t′ = t · σ(u)u−1 · τ(v)v−1 for some u, v ∈ (LM)× (see Example
2.1). Let t′′ = t · σ(u)u−1. It suffices to prove that deg(t) = deg(t′′) and
deg(t′) = deg(t′′) in Z/pZ. We shall prove the first equality (the second being
similar). So replacing t′ by t′′ we may assume that t′ = t · σ(u)u−1.

Consider the point w = (t, u) in (T × P )(M) and two morphisms f and g
from T × P to T as in Section 3.4. We have f(w) = t and g(w) = t′. By
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Propositions 3.3 and 3.9, we have in Z/pZ:
deg(t) = deg f(w) = f⋆([w]) = g⋆([w]) = deg g(w) = deg(t′). �

4. Essential p-dimension of PGL(p2)

Let F be a field and p a prime integer different from char(F ).

4.1. Central simple algebras and discrete valuations. Let v be a discrete

valuation on a field extension E over F , N the residue field, Ê the completion
of E. Then N is a field extension of F . Let χ ∈ X (F ). Then F (χ)/F
is a cyclic field extension of degree ord(χ) with the choice of a generator of
Gal

(
F (χ)/F

)
. The group X (N) is identified with the character group of the

maximal unramified field extension of Ê. For a character χ ∈ X (N), we write

χ̂ for the corresponding character in X (Ê).
There is an exact sequence of p-groups [4, Prop. 7.7]:

(9) 0 → Br(N){p} i−→ Br(Ê){p} ∂−→ X (N){p} → 0.

The first map preserves indices of algebras. For a central simple algebra C over

N with C ∈ Br(N){p} let Ĉ be a central simple algebra over Ê of the same
degree representing the image of [C] under i. For example, if [C] = χ∪ (ū) for

some χ ∈ X (N){p} and a unit u ∈ Ê, then [Ĉ] = χ̂ ∪ (u).

The choice of a prime element π in Ê provides with a splitting of the sequence
(9) by sending a character χ to the class of the cyclic algebra χ̂ ∪ (π). Thus

for every central simple algebra A over Ê we can write

[A] = [Ĉ] +
(
χ̂ ∪ (π)

)
in Br(Ê) for unique [C] ∈ Br(N){p} and χ = ∂

(
[A]

)
. Moreover (see [5, Th.

5.15(a)] or [13, Prop. 2.4]),

(10) ind(A) = ord(χ) · ind(CN(χ)).

Let E ′/E be a finite field extension and v′ a discrete valuation on E ′ ex-
tending v with residue field N ′. Then for any [A] ∈ Br(E){p} one has

(11) ∂v′
(
[A]E′

)
= e · ∂v([A])N ′ ,

where e is the ramification index of E ′/E [4, Prop. 8.2].

4.2. The functors F1 and F2. We define the functors F1 and F2 from the
category Fields/F of field extensions of F to the category Sets as follows. Let
E/F be a field extension. Then F1(E) is the set of isomorphism classes of
central simple E-algebras of degree p2. Thus, edp(F1) = edp

(
PGLF (p

2)
)
.

Let S2(E) be the class of pairs (B,K), where B is a central simple algebra
of degree p2 over E and K is a cyclic étale E-algebra of degree p such that
ind(BK) ≤ p. We say that the pairs (B1, K1) and (B2, K2) are equivalent if
K1 ≃ K2 over E and [B1]− [B2] ∈ Br(K1/E) = Br(K2/E). Let F2(E) be the
set of equivalence classes in S2(E). We write [B,K] for the class in F2(E) of
a pair (B,K).
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We say that the class [B,K] is decomposable if [B,K] = [B′, K] with B′ a
split algebra.

Let (B,K) ∈ S2(E) with K a field and let χ ∈ X (E) be a character (of
order p) such that K = E(χ) (see Section 2.2). As ind(BK) ≤ p, there is a
central simple algebra C over the function field E(y) (y is a variable) of degree
p2 such that

(12) [C] = [BE(y)] +
(
χE(y) ∪ (y)

)
in Br

(
E(y)

)
. We have [C] ∈ F1

(
E(y)

)
and ∂

(
[C]

)
= χ, where ∂ is taken with

respect to the discrete valuation v on E(y) associated to y (see Section 4.1).
Consider the following condition (∗) on the pair (B,K) in S2(E) and the

character χ:

For any finite field extension N/E of degree prime to p, the class [B,K]N is
not decomposable and the class of the algebra BN in Br(N) cannot be written
in the form [BN ] = ρ ∪ (s) for some s ∈ N× and a character ρ ∈ X (N) of
order p2 such that p · ρ is a multiple of χN .

Proposition 4.1. Let χ ∈ X (E) be a character of prime order p, K = E(χ),
B a central simple algebra of degree p2 over E such that (B,K) ∈ S2(E) and
(B,K) together with χ satisfy the condition (∗). Then

edF1
p ([C]) ≥ edF2

p ([B,K]) + 1

for the algebra C defined by (12).

Proof. Let M/E(y) be a finite field extension of degree prime to p, M0 ⊂ M a
subfield over F and [C0] ∈ F1(M0) such that

(13) [C0]M = [C]M

in F1(M) and edF1
p ([C]) = tr. degF (M0). We extend the discrete valuation v

on E(y) to a discrete valuation v′ on M with ramification index e′ and inertia
degree prime to p (see [6, Lemma 1.1]). Thus, the residue field N of v′ is a
finite extension of E of degree prime to p. Let v0 be the restriction of v′ to
M0 and N0 its residue field. As [N : E] is not divisible by p, it follows from
(11) that ∂([C]M) = e′ · χN ̸= 0. Hence the algebra CM is ramified, i.e., the
class of CM does not belong to the image of the map Br(O) → Br(M), where
O is the valuation ring of v′. It follows that C0 is also ramified, therefore v0 is
nontrivial and hence v0 is a discrete valuation.

Let χ0 = ∂
(
[C0]

)
∈ X (N0){p} and K0 = N0(χ0). Choose a prime element

π0 in M0 and write

(14) [C0]M̂0
= [B̂0] +

(
χ̂0 ∪ (π0)

)
in Br(M̂0), where B0 is a central simple algebra over N0 (see Section 4.1). By
(10),

(15) ind(C0) = ord(χ0) · ind(B0)K0 .
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Let e be the ramification index of M/M0 and let π be a prime element in
M . Write π0 = uπe and y = vπe′ with u and v units in M .

It follows from (13) and (11) that

(16) e′ · χN = ∂
(
[C]M

)
= ∂

(
[C0]M

)
= e · ∂

(
[C0]

)
N
= e · (χ0)N .

Recall that e′ is relatively prime to p. It follows that χN is a multiple of
(χ0)N . In particular, ord(χ0) is divisible by p.

It follows from (13),(14) and (16) that

(17) [(̂B0)N ] +
(
(̂χ0)N ∪ (u)

)
= [B̂N ] +

(
χ̂N ∪ (v)

)
in Br(M̂), hence

(18) [(B0)N ] +
(
(χ0)N ∪ (ū)

)
= [BN ] +

(
χN ∪ (v̄)

)
in Br(N).

Since ind(C0) ≤ p2, it follows from (10) and (15) that ord(χ0) divides p
2.

Case 1: ord(χ0) = p2. By (15), ind(B0)K0 = 1, i.e., B0 is split overK0, hence
[B0] = χ0∪(s0) for some s0 ∈ N×

0 . It follows from (18) that [BN ] = (χ0)N ∪(s)
for some s ∈ N×. If ord(χ0)N = p, then (χ0)N is a multiple of χN and
hence [B,K]N is decomposable. If ord(χ0)N = p2, the character p · (χ0)N is a
multiple of χN . In both cases, (B,K) and χ do not satisfy the condition (∗),
a contradiction.

Case 2: ord(χ0) = p. Then the characters χN and (χ0)N generate the same
subgroup in X (N). It follows that

(19) K0 ⊗N0 N ≃ N
(
(χ0)N

)
= N(χN) ≃ K ⊗E N.

By (15), we have ind(B0)K0 ≤ p. Therefore, we may assume that deg(B0) =
p2 and hence (B0, K0) ∈ S2(N0). It follows from (18) that

[B]N − [B0]N ∈ Br(K ⊗E N/N).

By (19), the pairs (BN , K ⊗E N) and ((B0)N , K0 ⊗N0 N) = (B0, K0)N are
equivalent in S2(N). It follows that the class of [B,K] in F2(E) is p-defined
over N0, therefore,

edF1
p

(
[C]

)
= tr. degF (M0) ≥ tr. degF (N0) + 1 ≥ edF2

p

(
[B,K]

)
+ 1. �

4.3. The functor F3. Let E/F be a field extension and let S3(E) be the class
of pairs (A,L), where A is a csa of degree p2 over E and L is a bicyclic étale
E-algebra of dimension p2 such that L splits A, i.e., [A] ∈ Br(L/E). We say
that the pairs (A1, L1) and (A2, L2) in S3(E) are equivalent if L1 ≃ L2 and
[A1]− [A2] ∈ Brdec(L1/E) = Brdec(L2/E) (see Section 2.3). Let F3(E) be the
set of equivalence classes in S3(E). We write [A,L] for the equivalence class
of (A,L) in F3(E).

Let L be a bicyclic étale E-algebra of dimension p2. We view the factor
group Br(L/E)/Brdec(L/E) as a subset of F3(E) identifying the class of an
algebra A with [A,L].



ESSENTIAL p-DIMENSION OF PGL(p2) 17

We say that a class [A,L] is decomposable if [A,L] = [A′, L] with A′ a split
algebra.

Let (A,L) ∈ S3(E). Choose characters χ and η in X (E) such that L =
E(χ, η) := E(χ)E(η). Let K = E(χ) and K ′ = E(η). As ind(AK) ≤ p, there
is a central simple algebra B over the function field E(x) (x is a variable) of
degree p2 such that

(20) [B] = [AE(x)] +
(
ηE(x) ∪ (x)

)
in Br

(
E(x)

)
. We have

(
B,K(x)

)
∈ S2

(
E(x)

)
and ∂

(
[B]

)
= η, where ∂ is

taken with respect to the discrete valuation v on E(x) associated to x.
Consider the following condition (∗∗) on the pair (A,L) in S3(E) and the

characters χ and η:

For any finite field extension N/E of degree prime to p, the class [A,L]N is
not decomposable and the class of the algebra AN in Br(N) cannot be written
in the form [AN ] =

(
ρ ∪ (s)

)
+

(
ε ∪ (t)

)
for some s, t ∈ N× and characters

ε ∈ X (N) of order p and ρ ∈ X (N) of order p2 such that ⟨p · ρ, ε⟩ = ⟨χN , ηN⟩.

Proposition 4.2. Let χ, η ∈ X (E) be linearly independent characters of prime
order p, K = E(χ), L = E(χ, η), A a central simple algebra of degree p2 over
E such that (A,L) ∈ S3(E) and (A,L) with with the characters χ and η satisfy
the condition (∗∗). Then

edF2
p

(
[B,K(x)]

)
≥ edF3

p

(
[A,L]

)
+ 1

for the algebra B defined by (20).

Proof. Let M/E(x) be a finite field extension of degree prime to p, M0 ⊂ M a
subfield over F and [B0, R0] ∈ F2(M0) such that

[B0, R0]M = [B,K(x)]M

in F2(M) and edF2
p

(
[B,K(x)]

)
= tr. degF (M0). This equality means that

(21) R := K(x)⊗E(x) M ≃ R0 ⊗M0 M and

(22) [B]M = [B0]M +
(
χM ∪ (f)

)
for some f ∈ M×.

We extend the discrete valuation v on E(x) to a discrete valuation v′ on M
with ramification index e′ and inertia degree prime to p (see [6, Lemma 1.1]).
Thus, the residue field N of v′ is a finite extension of E of degree prime to
p. Let v0 be the restriction of v′ to M0 and N0 its residue field. As [N : E]
is not divisible by p, it follows from (11) that ∂([B]M) = e′ · χN ̸= 0. Hence
the algebra BM is ramified. It follows that B0 is also ramified, therefore v0 is
nontrivial and hence v0 is a discrete valuation.

As R = KM , the valuation v′ on M extends uniquely to a discrete valuation
on R and R/M is unramified.
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Let η0 = ∂([B0]) ∈ X (N0){p} and K ′
0 = N0(η0). Choose a prime element π0

in M0 and write

(23) [B0]M̂0
= [Â0] +

(
η̂0 ∪ (π0)

)
in Br(M̂0), where A0 is a central simple algebra over N0. By (10),

(24) ind(B0) = ord(η0) · ind(A0)K′
0
.

Let e be the ramification index of M/M0 and let π be a prime in M . Write
π0 = uπe, x = vπe′ and f = wπk with u, v and w units in M .

It follows from (22) and (11) that

(25) e′ · ηN = ∂([B]M) = e · ∂([B0])N + ∂
(
χM ∪ (f)

)
= e · (η0)N + k · χN .

Note that the characters χN and ηN are linearly independent in X (N) since
[N : E] is not divisible by p.

As e′ is relatively prime to p, ηN belongs to the subgroup of X (N) generated
by (η0)N and χN , and η0 ̸= 0 since χN and ηN are linearly independent. In
particular, p divides ord(η0).

It follows from (22), (23) and (25) that

(26) [(̂A0)N ] +
(
(̂η0)N ∪ (u)

)
+
(
χ̂M ∪ (w)

)
= [ÂN ] +

(
η̂N ∪ (v)

)
in Br(M̂), hence

(27) [(A0)N ] +
(
(η0)N ∪ (ū)

)
+
(
χN ∪ (w̄)

)
= [AN ] +

(
ηN ∪ (v̄)

)
in Br(N).

Since ind(B0) ≤ p2, it follows from (24) that ord(η0) ≤ p2.

Case 1: ord(η0) = p2. By (24), A0 is split over N0(η0), hence [A0] = η0∪ (s0)
for some s0 ∈ N×

0 . It follows from (27) that [AN ] =
(
(η0)N ∪ (s)

)
+
(
χN ∪ (t)

)
for some s, t ∈ N×. If ord(η0)N = p, by (25), (η0)N is contained in ⟨χN , ηN⟩
and hence [A,L]N is decomposable. If ord(η0)N = p2, then again by (25),
⟨p · (η0)N , χN⟩ = ⟨χN , ηN⟩. In both cases, (A,L) with the characters χ and η
do not satisfy the condition (∗∗), a contradiction.

Case 2: ord(η0) = p. It follows from (25) that (e, p) = 1 and η0 belongs to
the subgroup generated by χ and η. Hence, by (21), the cyclic extension R0/M0

is unramified. Thus, there exists a character χ0 ∈ X (N0) with R̂0 = M̂0(χ̂0)
and (χ0)N = χN .

It follows from (25) that

⟨(χ0)N , (η0)N⟩ = ⟨χN , ηN⟩

in X (N). Let L0 = N0(χ0, η0). Then

(28) L0 ⊗N0 N = N
(
(χ0)N , (η0)N

)
= N(χN , ηN) = L⊗E N

is a bicyclic field extension of degree p2, hence so is the extension L0/N0. In
particular, χ0 and η0 generate a subgroup of order p2 in X (N0).
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Let K0 = N0(χ0). It follows from (23) that

[B0]R̂0
= [(̂A0)K0

] +
(
(̂η0)K0

∪ (π0)
)
.

As (B0, R0) ∈ S2(M0), we have ind(B0)R0 ≤ p. Since the character (η0)K0
is

nontrivial, it follows from (10) that A0 is split by K0((η0)K0
) = L0. We may

then assume that deg(A0) = p2 and hence (A0, L0) ∈ S3(N0).
It follows from (27) that [AN ] − [(A0)N ] ∈ Brdec(L ⊗E N/N). By (28),

the pairs (AN , L⊗E N) and
(
(A0)N , L0 ⊗N0 N

)
= (A0, L0)N are equivalent in

S3(N). Then the class [A,L] in F3(E) is p-defined over N0, therefore,

edF2
p ([B,K(x)]) = tr. degF (M0) ≥ tr. degF (N0) + 1 ≥ edF3

p ([A,L]) + 1. �
Let E be a field extension of F and L/E a bicyclic field extension of degree

p2. Write T for the torus over E of norm 1 elements for the field extension
L/E. Let t ∈ T

(
E(T )

)
be the generic point and let [A,L(T )] be the corre-

sponding element in F3

(
E(T )

)
via the isomorphism between T

(
E(T )

)
/R and

Br(L(T )/E(T ))/Brdec(L(T )/E(T )) in Proposition 2.4.

Proposition 4.3. edF3
p

(
[A,L(T )]

)
≥ p2 − 1.

Proof. Let M/E(T ) be a field extension of degree prime to p, M0 ⊂ M a
subfield over F and [A0, L0] ∈ F3(M0) such that [A0, L0]M = [A,L(T )]M .
We need to prove that tr. degF (M0) ≥ p2 − 1. Set LM = L ⊗E M . As
L0 ⊗M0 M ≃ LM , we may assume that L0 ⊂ LM .

Let T0 be the torus over M0 of norm 1 elements for the extension L0/M0.
We have (T0)M ≃ TM . Consider the commutative diagram

T0(M0)/R −−−→ T (M)/Ry y
F3(M0) −−−→ F3(M)

where the vertical injective maps are given by the isomorphisms in Propo-
sition 2.4. The pair [A0, L0] belongs to the image of the left vertical map
in the diagram. Hence there exists an element t0 ∈ T0(M0) such that (t0)M
in T0(M) = T (M) is R-equivalent to tM . We have deg(t) = 1, therefore,
deg(tM) is not divisible by p as [M : E(T )] is prime to p. By Theorem 3.10,
deg((t0)M) ≡ deg(tM) modulo p, hence deg((t0)M) ̸= 0. It follows that (t0)M ,
viewed as a morphism Spec(M) → T is dominant. Therefore, there is a field
homomorphism E(T ) → M over E taking t to (t0)M . The elements ρ(t) over all
ρ ∈ G := Gal(L/E) generate the field L(T ) over L. Hence the elements ρ(t0)M
generate a subfield in LM over L of the transcendence degree dim(T ) = p2−1.
As t0 ∈ L0 and L0 is normal over M0 and hence is G-invariant, the elements
ρ(t0) generate a subfield in L0 over F of the transcendence degree p2 − 1. It
follows that tr. degF (L0) ≥ p2 − 1, hence tr. degF (M0) ≥ p2 − 1. �
Remark 4.4. Let L be a bicyclic field extension of degree p2 of a field F of

arbitrary characteristic and let T = R
(1)
L/F (Gm,L). A similar argument as the
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one in the proof of Proposition 4.3 shows that edp(T/R) = p2 − 1, where T/R
is the functor taking a field E to T (E)/R.

4.4. The main theorem.

Theorem 4.5. Let p be a prime integer and F a field of characteristic different
from p. Then

edp

(
PGLF (p

2)
)
= p2 + 1.

Proof. Recall that edp

(
PGLF (p

2)
)
= edp(F1). First we prove the inequality

edp(F1) ≥ p2 + 1. We may replace F by any field extension. In particular,
we may assume that there are linearly independent characters χ, η ∈ X (F ) of
order p, hence L := F (χ, η)/F is a bicyclic field extension of degree p2. Set
K = F (χ) and K ′ = F (η). Let T be the norm 1 torus for the extension L/F
and set E := F (T ). Let [A,LE] be the element of F3(E) corresponding to the
generic point t ∈ T (E) via the isomorphism in Proposition 2.4. Consider the
pair

(
B,KE(x)

)
∈ S2(E(x)) with [B] = [AE(x)]+

(
ηE(x)∪(x)

)
in Br(E(x)) and

the algebra C of degree p2 over E(x, y) with [C] = [BE(x,y)] +
(
χE(x,y) ∪ (y)

)
in

Br
(
E(x, y)

)
.

We claim that the pair (A,LE) in S3(E) and the characters χE and ηE
satisfy the condition (∗∗). Indeed, as t ̸= 1 in T (E)/R (see Section 2.3) we have
tN ̸= 1 since [N : E] is prime to p and hence [A,LE]N is not decomposable.
Now suppose that [AN ] =

(
ρ ∪ (s)

)
+

(
ε ∪ (t)

)
for a field extension N/E of

degree prime to p, elements s, t ∈ N× and characters ε ∈ X (N) of order p and
ρ ∈ X (N) of order p2 such that ⟨p·ρ, ε⟩ = ⟨χN , ηN⟩. Let T1 be the norm 1 torus
for the field extension L1 = N(ρ, ε) over N . By Example 2.3, the inclusion
homomorphism T → T1 is not R-trivial, i.e, the image of t in T1(E)/R is
not trivial. It follows that the image of t in T1(N)/R is also non-trivial. By
Proposition 2.4, [AN ] does not belong to the kernel of the homomorphism
Br(LN/N)/Brdec(LN/N) → Br(L1/N)/Brdec(L1/N), a contradiction. The
claim is proved.

We claim that the pair
(
B,KE(x)

)
in S2

(
E(x)

)
and the character χE(x)

satisfy the condition (∗). The same argument as in the previous claim applied
to the field E(x) shows that

(
AE(x), LE(x)

)
in S3(E(x)) and the characters

χE(x) and ηE(x) satisfy the condition (∗∗). LetN/E(x) be a finite field extension

of degree prime to p. As [AE(x)] = [B] −
(
ηE(x) ∪ (x)

)
, the class [B,KE(x)]N

is not decomposable. Suppose that [BN ] = ρ ∪ (s) for some s ∈ N× and
a character ρ ∈ X (N) of order p2 such that p · ρ is a multiple of χN . Then
[AN ] =

(
ρ∪(s)

)
−
(
ηN∪(x)

)
and we have ⟨p·ρ, ηN⟩ = ⟨χN , ηN⟩, a contradiction

proving the claim.
By Propositions 4.1, 4.2 and 4.3,

edp

(
PGLF (p

2)
)
= edp(F1) ≥ edF1

p ([C]) ≥ edF2
p ([B,KE(x)]) + 1 ≥

edF3
p

(
[A,LE]

)
+ 2 ≥ (p2 − 1) + 2 = p2 + 1.

We shall show that edp(F) ≤ p2+1. As mentioned in the introduction, this
was shown in [8, Cor. 3.10(a)]. For completeness, we give the argument here.
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Let F ′
1(E) be the set of isomorphism classes of central simple E-algebras of

degree p2 that are crossed products with the group Z/pZ ⊕ Z/pZ. So F ′
1 is

a subfunctor of F1. By [12, Th. 1.2], for every [A] ∈ F1(E) there is a finite
field extension E ′/E of degree prime to p such that [AE′ ] ∈ F ′

1(E
′). Hence the

inclusion of F ′
1 into F1 is p-surjective. It follows that edp(F1) ≤ edp(F ′

1) [10,
Prop. 1.3]. So it suffices to show that ed(F ′

1) ≤ p2 + 1.
Let E/F be a field extension and [A] ∈ F ′

1(E). Then [A] ∈ Br(L/E) for a
bicyclic field extension L/F of degree p2 with Galois group G generated by σ
and τ . The exact sequence (3) yields an epimorphism

HomG(M,L×) → Br(L/E).

Choose a G-homomorphism φ : M → L× corresponding to [A] in Br(L/E).
Since rank(M) = p2 + 1, the image of φ is contained in L×

0 , where L0 is a G-
invariant subfield of L with tr. degF (L0) ≤ p2 + 1. Note that G acts faithfully
on M . Modifying φ by an element in the image of the map HomG(Λ

2, L×) →
HomG(M,L×), we may assume that G acts faithfully on the image of φ and
hence on L0. Thus L0 is a Galois extension of E0 := (L0)

G with Galois group
G and φ defines a central simple E0-algebra A0 with [A0] ∈ Br(L0/E0) such
that A0 ⊗F0 E ≃ A. Thus, A is defined over E0, hence

edF ′
1([A]) ≤ tr. degF (E0) = tr. degF (L0) ≤ p2 + 1. �
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