
ALGEBRAIC ORIENTED COHOMOLOGY THEORIES

ALEXANDER MERKURJEV

Abstract. For every smooth projective variety over a field F we define
its fundamental polynomial in Z[b] = Z[b1, b2, . . . ] and prove that the fun-
damental polynomials generate the Lazard ring Laz ⊂ Z[b]. Using descrip-
tion of invariant prime ideals in Laz, due to Landweber, we assign to every
smooth projective variety X the numbers np(X) for every prime integer p.
Inequality np(Y ) > np(X) for some prime p is an obstruction for existence
of a morphism Y → X over F .

1. Introduction

Let Sm(F ) be the category of smooth quasi-projective varieties over a field
F . M. Levine and F. Morel have defined in [7] an oriented cohomology theory
over F as a contravariant functor A∗ from the category Sm(F ) to the category
of graded commutative rings satisfying certain properties (see Section 2). Ex-
amples of the oriented cohomology theories are K∗ given by the Grothendieck
rings of varieties in Sm(F ) (Example 2.3) and H∗ given by the Chow rings
(Example 2.2).

It is proved in [7] that if charF = 0 (resolution of singularities is used) then
there exists a universal oriented algebraic cobordism cohomology theory Ω∗.
For every oriented cohomology theory A∗ there is unique morphism of coho-
mology theories Ω∗ → A∗ commuting with the push-forward homomorphisms.
For a varietyX ∈ Sm(F ) the group Ω∗(X) is generated by the classes [f ] corre-
sponding to projective morphisms f : Y → X in Sm(F ). The homomorphism
Ω∗(X) → A∗(X) takes the class [f ] to fA(1Y ), where fA is the push-forward
homomorphism in A∗. Thus, the image of the morphism Ω∗(X) → A∗(X),
which we denote by A∗

c(X), can be defined just in terms of the theory A: the
group A∗

c(X) is generated by the elements fA(1Y ) for all projective morphisms
f : Y → X in Sm(F ).

To every oriented cohomology theory A one has associated a commutative
formal group law ΦA over the coefficient ring A∗(pt). The formal group law
ΦΩ is the universal one and the coefficient ring Ω∗(pt) is the Lazard ring.

In the present paper we consider oriented cohomology theories on Sm(F ) for
arbitrary fields F and don’t refer to the problem of resolution of singularities
and existence of the cobordism theory. The idea is to consider “large” oriented
cohomology theories A∗ such that the natural homomorphism Ω∗(X) → A∗(X)
is injective at least for X = pt and work inside A∗ instead of Ω∗.
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2 A. MERKURJEV

How to construct “large” cohomology theories? In Section 4 we consider an
operation (we call it tilde operation), which assigns to every oriented cohomol-

ogy theory A∗ another theory Ã∗ defined by

Ã∗(X) = A∗(X)⊗ Z[b] = A∗(X)[b],

where Z[b] = Z[b1, b2, . . . ] is the polynomial ring in infinitely many variables.

We define the push-forward homomorphisms in Ã∗ in such a way that the

inverse Todd genus of the natural embedding A∗ ↪→ Ã∗ is the universal one

(with the coefficients bi). We prove that the two theories H̃∗ and K̃∗ are large

enough so that the coefficient rings H̃∗
c (pt) and K̃∗

c (pt) are both isomorphic to
the Lazard ring. In Sections 6 and 7 we follow closely the method of [11].

For every projective variety X ∈ Sm(F ) we define the fundamental polyno-
mial FH

X ∈ Z[b] and prove that for every field F the fundamental polynomials
of all projective X ∈ Sm(F ) generate the same ring - the Lazard ring Laz con-
sidered as a subring of Z[b]. The fundamental polynomials FH

X do not change
under field extensions (and therefore can computed over an algebraic closure of
F ); nevertheless, they keep track of an arithmetic information on X. Namely,
all the coefficients of FH

X are divisible by the greatest common divisor of the
degrees [F (x) : F ] of all closed points of X. For example, existence of division
algebras of a given dimension over an extension of F explains the fact that the
fundamental polynomial of the projective space Pn

F is divisible by n+1 in Z[b]
(Example 3.8), the well known fact in topology (see [10, Ch. VII]).

In Section 9 we prove that the characteristic classes of vector bundles over
X ∈ Sm(F ) take values in the subgroup A∗

c(X) ⊂ A∗(X). We use this re-
sult in Section 10 where we study the Landweber-Novikov operations on Laz.
In Section 11 we introduce ideals I(X) ⊂ Laz for every projective variety
X ∈ Sm(F ), consisting of the fundamental polynomials of all projective va-
rieties Y ∈ Sm(F ) such that there is a morphism Y → X over F . We
prove that the ideal I(X) is invariant under the Landweber-Novikov opera-
tions and so are all the associated prime ideals. Invariant prime ideas were
described by Landweber in [5]. Based on this description one can associate
to every projective variety X ∈ Sm(F ) and every prime integer p an integer
np(X) ∈ {0, 1, . . . ,∞}. Inequality np(Y ) > np(X) for some prime p is an
obstruction for existence of a morphism Y → X over F .

Although the paper is purely algebraic, the most of the constructions are
borrowed from topology. The class [−TX ] ∈ K0(X) of the tangent bundle
TX over X is a replacement for the stable normal bundle of X. The tilde
operation is analogous to the smash product with the Thom spectrum MU .
The embedding of the Lazard ring into Z[b] is the Hurewicz homomorphism
π∗(MU) → H∗(MU). The Landweber-Novikov operations are induced by
those on the spectrum MU .
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2. Definition of an oriented cohomology theory

Let F be a field, and let Sm(F ) be the category of smooth quasi-projective
varieties over F . Let A∗ be a functor from Sm(F )op to the category GrRings
of Z-graded commutative rings. For a morphism f : Y → X in Sm(F ) the
(pull-back) ring homomorphism A∗(f) is denoted by fA.

An oriented cohomology theory over F (see [7]) is a functor

A∗ : Sm(F )op → GrRings

together with a graded (push-forward) group homomorphism

fA : A∗(Y ) → A∗+d(X)

for every projective morphism f : Y → X in Sm(F ) of pure codimension d,
satisfying the following:

(i) (Additivity) Let Z = X
⨿

Y where X,Y ∈ Sm(F ), and let i : X ↪→ Z,
j : Y ↪→ Z be the closed embeddings. Then the homomorphism

iA + jA : A∗(X)⊕ A∗(Y ) → A∗(Z)

is an isomorphism.

(ii) For a pair of projective morphisms f : Y → X and g : Z → Y , one has
(f ◦ g)A = fA ◦ gA.
(iii) Let E → X be a vector bundle over X ∈ Sm(F ) of rank r, and let
P(E) → X be the associated projective bundle. Then A∗(P(E)

)
is a free

A∗(X)-module with basis 1, ξ, ξ2, . . . , ξr−1, where ξ = sAsA(1P(E)), and s is the
zero section of the tautological line bundle over P(E).

(iv) (Transverse property) Let

Y ′ f ′
−−−→ X ′

h

y yg

Y
f−−−→ X

(2.1)

be a transverse Cartesian square in Sm(F ) with f a projective morphism, i.e.
the sequence of tangent bundles over Y ′

0 → TY ′
df ′⊕dh−−−−→ f

′∗TX′ ⊕ h∗TY
dg−df−−−→ (fh)∗TX → 0

is exact. Then f ′
A ◦ hA = gA ◦ fA.

(v) (Homotopy invariance) Let p : V → X be an affine bundle (a torsor for a
vector bundle over X). Then pA : A∗(X) → A∗(V ) is an isomorphism.

(vi) (Projection formula) Let f : Y → X be a projective morphism in Sm(F ).
Then for every a ∈ A∗(X) and b ∈ A∗(Y ), fA

(
b · fA(a)

)
= fA(b) · a.

The ring A∗(pt), where pt = Spec(F ), is called the coefficient ring of A∗.
For every X ∈ Sm(F ), A∗(X) is an algebra over A∗(pt).
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Example 2.2. ([7, Ex. 1.2]) The Chow cohomology theory H∗ assigns to every
variety X ∈ Sm(F ) the Chow ring H∗(X) = CH∗(X). The push-forward and
pull-back homomorphisms are defined in [2]. The coefficient ring CH∗(pt) is
equal to Z.

Example 2.3. ([7, Ex. 1.3]) TheK-theory assigns to every varietyX ∈ Sm(F )
the Laurent polynomial ring K∗(X) = K0(X)[t, t−1] graded by deg(t) = −1,
i.e. Ki(X) = K0(X)t−i. If f : Y → X is a projective morphism of pure
codimension d, then for every a ∈ K∗(Y ), fK(at

−i) = f∗(a)t
−i−d, where

f∗ is the push-forward homomorphism in algebraic K-theory. We have also
K∗(pt) = Z[t, t−1].

Lemma 2.4. Let E be an étale F -algebra, X ∈ Sm(F ) and let f : XE =
X×SpecFSpecE → X be the canonical morphism. Then fA(1XE

) = [E : F ]·1X .

Proof. We proceed by induction on [E : F ]. By the additivity property and
projection formula we may assume that E is a field and X = pt. There is a
smooth curve W over F and a morphism g : W → A1

F such that g−1(0) =
SpecE and g−1(1) = SpecK, where K is an étale F -algebra that is not a field
(see [8, Lemma 4.8]). The diagram

SpecE
j−−−→ W

f

y yg

pt
i0−−−→ A1

F

is transverse. Hence,

fA(1) = fAj
A(1) = iA0 gA(1).

Let p : A1
F → pt be the structure morphism. By homotopy invariance, i0 =

(pA)−1, hence fA(1) = (pA)−1gA(1).
Similarly, for the structure morphism h : SpecK → pt, we have hA(1) =

(pA)−1gA(1) = fA(1). By the induction hypothesis, hA(1XE
) = [E : F ] · 1X as

K is not a field, therefore, fA(1XE
) = [E : F ] · 1X . �

Let X ∈ Sm(F ) and let p : X → pt be the structure morphism. If X is
projective of dimension d, we define the fundamental class [X]A of X in the
theory A as the element

[X]A = pA(1X) ∈ A−d(pt).

For example, [pt]A = 1, [X]H = 0 if d > 0 and [X]K = td(X)td, where
td(X) = p∗([OX ]) ∈ Z is the Todd number of X [2, Example 15.2.13].

Proposition 2.5. Let X and Y be projective varieties in Sm(F ). Then
[X × Y ]A = [X]A · [Y ]A.
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Proof. Consider Cartesian transverse square

X × Y
p−−−→ X

q

y ys

Y
r−−−→ pt .

We have

[X × Y ]A = (sp)A(1X×Y )

= (sApAq
A)(1Y )

(
property (iv)

)
= (sAs

ArA)(1Y ) (projection formula)

= sA(1X) · rA(1Y )
= [X]A · [Y ]A.

�

For every smooth variety X we consider the graded subgroup A∗
c(X) in

A∗(X) generated by the elements fA(1Y ) for all projective morphisms f : Y →
X in Sm(F ). Clearly, Ai

c(X) = 0 if i > dim(X). For a projective morphism
g : X → X ′ the push-forward map gA takes A∗

c(X) to A∗
c(X

′).
The subgroup A∗

c(pt) ⊂ A∗(pt) is generated by the fundamental classes [X]A

for all smooth projective varieties X. Proposition 2.5 shows that A∗
c(pt) is a

subring in A∗(pt).

Example 2.6. H∗
c (pt) = H∗(pt) = Z, K∗

c (pt) = Z[t].

3. Chern classes

Let p : L → X be a line bundle over X ∈ Sm(F ). We define the first Chern
class of L in an oriented cohomology theory A∗ over F by

cA1 (L) = sAsA(1X) ∈ A1(X),

where s : X → L is the zero section of p (see [7]). Since p ◦ t = idX for every
section t of p, we have tA = (pA)−1 (property (v)). Hence,

cA1 (L) = (pA)−1sA(1X).

Example 3.1. The first Chern class of a vector bundle E → X in K-theory
is defined by

cK1 (E) =
(
rank(E)− [E∨]

)
t−1 ∈ K0(X)t−1 = K1(X).

Proposition 3.2. Let p : L → X be a line bundle over X ∈ Sm(F ) and let
i : Y ↪→ X be the subscheme of zeros of a section t of p. If Y is a smooth
divisor in X, then iA(1Y ) = cA1 (L) ∈ A1(X).
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Proof. The diagram

Y
i−−−→ X

i

y yt

X
s−−−→ L

where s is the zero section of p, is transverse. Hence,

iA(1Y ) = iAi
A(1X) = tAsA(1X) = (pA)−1sA(1X) = cA1 (L).

�
The standard method by Grothendieck (see [7]) gives Chern classes cAi (E) ∈

Ai(X) for every vector bundle p : E → X of rank r. They satisfy the equation

r∑
i=0

(−1)ipA
(
cAi (E)

)
ξr−i = 0 ∈ Ar

(
P(E)

)
,

where ξ is the first Chern class of the tautological line bundle over P(E).

A partition α = (α1, α2, . . . , αk) is a sequence of integers (possibly empty)
α1 ≥ α2 ≥ · · · ≥ αk > 0. The degree of α is the integer

|α| = α1 + α2 + · · ·+ αk.

The integer k is called the length l(α) of the partition α. Denote by p(d) the
number of all partitions of degree d.

We consider the polynomial ring Z[b1, b2, . . . ] = Z[b] in infinitely many
variables b1, b2, . . . as a graded ring with deg bi = i. For every partition α set

bα = bα1bα2 . . . bαk
.

The monomials bα form a basis of the polynomial ring over Z, and more pre-
cisely, the bα with |α| = d form a basis of the d-graded component Z[b]d. Thus,
Z[b]d is a free abelian group of rank p(d).

Let Z[c1, c2, . . . ] = Z[c] be another polynomial ring with similar grading
deg ci = i. The elements of Z[c] are called the characteristic classes and the
cn - the Chern classes.

For every partition α we define the “smallest” symmetric polynomial

Pα(x1, x2, . . . ) =
∑

(i1,i2,...,ik)

xα1
i1
xα2
i2

. . . xαk
ik

= Qα(σ1, σ2, . . . ),

containing the monomial xα1
1 xα2

2 . . . xαk
k , where the σi are the standard sym-

metric functions, and set

cα = Qα(c1, c2, . . . ).

For example, cn = c(1,1,...,1) (n units). The characteristic classes cα with |α| = d
form a basis of Z[c]d.

Let A∗ be an oriented cohomology theory over a field F . For every element
(characteristic class) c ∈ Z[c] and every vector bundle E over a variety X ∈



ORIENTED COHOMOLOGY THEORIES 7

Sm(F ) there is a well defined class cA(E) ∈ A∗(X). In particular, for every
partition α there are generalized Chern classes

cAα (E) ∈ A|α|(X).

We define the characteristic polynomial of E in the theory A∗ by the formula

PA(E) =
∑
α

cAα (E)bα ∈ A∗(X)[b].

Example 3.3. If L is a line bundle, then PA(L) =
∑

i≥0 c
A
1 (L)

ibi.

Assume that a vector bundle E → X has a filtration with line factors
L1, L2, . . . , Lr. Then it follows from definition of the generalized Chern classes
that

PA(E) = PA(L1) ·PA(L2) · . . . ·PA(Lr).

Hence, by the splitting principle, for an exact sequence of vector bundles
0 → E ′ → E → E ′′ → 0 over X,

PA(E) = PA(E ′) ·PA(E ′′).(3.4)

The value of the i-th Chern class ci(E) is nilpotent for i > 0 (see [7]), hence
for every α ̸= ∅, the class cAα (E) is also nilpotent. The constant term of the
polynomial PA(E) is equal to 1, so that the polynomial PA(E) is invertible
in the polynomial ring A∗(X)[b]. Thus, there is well defined group homomor-
phism

PA : K0(X) → A∗(X)[b]×, [E] 7→ PA(E).

For a variety X ∈ Sm(F ) we define the characteristic polynomial of X in
the theory A∗:

PA
X = PA(TX)

−1 = PA(−TX) ∈ A∗(X)[b],

where TX is the tangent bundle of X.
Assume that X is projective. Let p : X → pt be the structure morphism.

The polynomial

FA
X = pAPA

X =
∑
α

pAcα(−TX)bα ∈ A∗(pt)[b]

is called the the fundamental polynomial of X in the theory A∗. The coeffi-
cients of the polynomial FA

X , the elements pAcα(−TX) ∈ A∗(pt), are called the
characteristic numbers of X in the theory A∗. Clearly, the fundamental class
[X]A is the constant term of the fundamental polynomial FA

X .

Example 3.5. Let X ∈ Sm(F ) be a variety of dimension d. Then the poly-
nomial FH

X ∈ Z[b] is either zero or homogeneous of degree d. The class of
the tangent bundle of the projective space Pd

F is equal to [Lcan]
d+1 − 1, where

Lcan is the canonical bundle over Pd
F . Since c

H
1 (Lcan)

d is the class of a rational
point, the polynomial FH

Pd is equal to the degree d part of the power series
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(1+ b1 + b2 + . . . )−d−1. In particular, the bd-coefficient of FH
Pd equals −(d+1).

For example,

FH
P1 = −2b1,

FH
P2 = −3b2 + 6b21.

Example 3.6. Note that for every vector bundle E over a varietyX ∈ Sm(F ),

cKα (E) ∈ K0(X)(|α|) t−|α|,

where K0(X)(i) is the i-th term of the topological filtration of K0(X). There-
fore, cKα (E) = 0 if |α| > d = dimX (cf. Corollary 9.10). Hence, FK

X ∈ Z[t,b]
is a homogeneous polynomial (with t of degree 1).The td-coefficient of FK

X is
the Todd number of X. For example,

FK
P1 = t− 2b1,

FK
P2 = t2 − 3tb1 − 3b2 + 6b21.

We will prove (Proposition 6.2) that FK
X |t=0 = FH

X for every X ∈ Sm(F ).

Thus, every projective varietyX ∈ Sm(F ) has the class FH
X in Z[b]. Clearly,

the class does not change under field extensions: for every field extension E/F
the varieties X and XE = X ×SpecF SpecE have the same class in Z[b].
Hence, if X and Y are twisted forms of each other (if they are isomorphic over
a separable closure of F ), then FH

X = FH
Y .

For a variety X ∈ Sm(F ) denote by nX the gcd of deg(x) = [F (x) : F ] over
all closed points x ∈ X. By the very definition, for a projective variety X,
all the coefficients of FH

X (the characteristic numbers) are divisible by nX . We
have proved

Proposition 3.7. (1) For every projective variety X ∈ Sm(F ), the polynomial
FH

X is divisible by nY for every twisted form Y of XE over a field extension
E/F .
(2) Let n be the gcd of all the coefficients of FH

X for a projective variety X ∈
Sm(F ). Then X has a zero-cycle of degree n.

Example 3.8. For every d ∈ N and a field F there is a field extension E/F and
a division algebra A over E of dimension (d+1)2. Let Y be the Severi-Brauer
variety over E corresponding to A (see [4]). The variety Y is a twisted form of
the projective space Pd

F . Since nY = d + 1, the Proposition 3.7 explains why
the characteristic polynomial of the projective space Pd

F in Z[b] is divisible by
d+ 1.

4. Tilde operation

Let A∗ be an oriented cohomology theory over F . We associate to A∗ a new

cohomology theory Ã∗ defined by

Ã∗(X) = A∗(X)⊗ Z[b] = A∗(X)[b].
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The structure of a graded ring on Ã∗(X) is given by the one of the graded
ring A∗(X) and by assigning degree −|α| to every bα. In particular, for every

X ∈ Sm(F ), PA
X ∈ Ã0(X) and, if X is projective, FA

X ∈ Ã−d(pt), where
d = dim(X).

The pull-back homomorphism f Ã : Ã∗(X) → Ã∗(Y ) associated to a mor-
phism f : Y → X is equal to fA⊗ idZ[b]. The push-forward map fÃ associated
to a projective morphism f : Y → X is defined by

fÃ(a) = fA(a ·PA
Y ) · (PA

X)
−1 = fA

(
a ·PA

Y ·fA(PA
X)

−1
)
.(4.1)

If f is a closed embedding, then [f ∗TX ]−[TY ] is equal to the class of the normal
bundle NYX of Y in X. Hence PA

Y ·fA(PA
X)

−1 = PA(NYX) and

fÃ(a) = fA
(
a ·PA(NYX)

)
.

Lemma 4.2. Let p : L → X be a line bundle. Then

cÃ1 (L) = cA1 (L) ·PA(L) =
∑
i≥0

cA1 (L)
i+1bi ∈ A∗(X)[b].

Proof. Let s : X → L be the zero section. The normal bundle of s is equal to
L. Hence,

cÃ1 (L) = sÃsÃ(1X)

= sAsA
(
PA(L)

)
(projection formula)

= sA
(
sA(1) · pA PA(L)

)
= cA1 (L) ·PA(L).

�

Proposition 4.3. The functor Ã∗ is an oriented cohomology theory.

Proof. We need to check properties (i)-(vi) in the definition of an oriented
cohomology theory.
(i) Let Z = X

⨿
Y where X, Y ∈ Sm(F ), and let i : X ↪→ Z, j : Y ↪→ Z be

the closed embeddings. The normal bundles NXZ and NYZ are trivial, hence
iÃ = iA ⊗ idZ[b], jÃ = jA ⊗ idZ[b] and obviously iÃ + jÃ is an isomorphism.

(ii) Let f : Y → X and g : Z → Y be two projective morphisms. Then for
any a ∈ A∗(Z),

(fÃ ◦ gÃ)(a) = fÃ
(
gA(aP

A
Z) · (PA

Y )
−1
)

= fA
(
gA(aP

A
Z) · (PA

Y )
−1 ·PA

Y )
)
· (PA

X)
−1

= (fA ◦ gA)(aPA
Z) · (PA

X)
−1

= (f ◦ g)Ã(a).
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(iii) Let E be a vector bundle of rank r over X and L the tautological line
bundle over P(E). By Lemma 4.2,

ξ̃ = cÃ1 (L) =
∑
i≥0

ξi+1bi,

where ξ = cA1 (L). Since

ξr − c1(E)ξr−1 + · · ·+ (−1)rcr(E) = 0

(see [7]) and the classes ci(E) are nilpotent, the higher powers ξs, s ≥ r, are
trivial modulo the nilradical of A∗(X). Therefore, the matrix expressing the

powers of ξ̃ in terms of powers of ξ is upper triangular modulo the nilradical

of Ã∗(X) and hence is invertible. Thus, the powers 1, ξ̃, . . . , ξ̃r−1 form a basis

of Ã∗(P(E)
)
over Ã∗(X).

(iv) Consider a transverse Cartesian square (2.1). We have

PA
Y ′ ·f

′A(PA
X′)−1 = hAPA

Y ·hAfA(PA
X)

−1

and therefore, for every a ∈ A∗(Y ),

(f ′
Ã
◦ hÃ)(a) = f ′

A

(
hA(a) ·PA

Y ′ ·f
′A(PA

X′)−1
)

= f ′
A

(
hA(a) · hA PA

Y ·hAfA(PA
X)

−1
)

= f ′
Ah

A
(
a ·PA

Y ·fA(PA
X)

−1
)

= gAfA
(
a ·PA

Y ·fA(PA
X)

−1
)

= gA
(
fA(a ·PA

Y ) · (PA
X)

−1
)

= (gÃ ◦ fÃ)(a).
(v) Obvious.

(vi) Let f : Y → X be a projective morphism in Sm(F ), a ∈ A∗(X) and
b ∈ A∗(Y ). We have

fÃ
(
b · f Ã(a)

)
= fA(b · fA(a) ·PA

Y ) ·
(
PA

X

)−1
(projection formula)

= fA(b ·PA
Y ) · a ·

(
PA

X

)−1

= fÃ
(
b) · a

�
Remark 4.4. The correspondence E 7→ PA(E) is given by the characteristic
class PA =

∑
α cαbα over Z[b]. In view of [9], PA is the inverse Todd genus

of the natural embedding of A∗ into Ã∗ and the formula (4.1) is the Riemann-
Roch theorem for this embedding.

Note that ifX ∈ Sm(F ) is projective, the fundamental class [X]Ã ∈ Ã(pt) =
A(pt)[b] coincides with the fundamental polynomial FA

X . In particular, by
Proposition 2.5, FA

X×Y = FA
X ·FA

Y for all X, Y ∈ Sm(F ).
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5. Formal group law of a theory

Let A∗ be an oriented cohomology theory over F . By [7], there is unique
commutative formal group law

ΦA =
∑
i,j≥0

aAijx
iyj = x+ y +

∑
i,j≥1

aAijx
iyj,

over the coefficient ring A∗(pt) with aAij ∈ A1−i−j(pt), such that for every two
line bundles L and L′ over a variety X ∈ Sm(F ),

c1(L⊗ L′) = c1(L) + c1(L
′) +

∑
i,j≥1

aAijc1(L)
ic1(L

′)j ∈ A1(X).

Example 5.1. Since cH1 (L⊗L′) = cH1 (L) + cH1 (L
′) for two line bundles L and

L′ [2, Prop. 2.5(e)], ΦH(x, y) = x + y is the additive group law. It follows
from the description of the first Chern class in K-theory (Example 3.1) that
ΦK(x, y) = x+ y − xyt (called the multiplicative group law).

In the rest of the section we prove that the coefficients of the group law ΦA

belong to the subring A∗
c(pt) ⊂ A∗(pt).

Lemma 5.2. Let Lcan be the canonical line bundle over the projective space
Pn
F over F . Then pA

(
cA1 (Lcan)

i
)
= [Pn−i

F ]A for every i ≥ 0.

Proof. Induction on n. Let p : Pn
F → pt the structure morphism, j : Pn−1

F ↪→
Pn
F an embedding, q = p ◦ j, ξ = cA1 (Lcan). Then jA(ξ) = cA1 (L

′
can), where

L′
can = j∗(Lcan) is the canonical vector bundle over Pn−1

F . Proposition 3.2
gives ξ = jA(1Pn−1), hence, by the induction hypothesis,

pA(ξ
i) = pA

(
jA(1) · ξi−1

)
= pAjA

(
jA(ξ)i−1

)
= qA

(
cA1 (L

′
can)

i−1
)
= [Pn−i

F ]A.

�

Lemma 5.3. (cf. [1, Prop. II.10.6]) Let V be a smooth hypersurface in Pn
F×Pm

F

of type (1, 1) for some n and m. Then

[V ]A =
n∑

i=0

m∑
j=0

aAij [Pn−i
F ]A · [Pm−j

F ]A ∈ A1−n−m(pt).

Proof. Let i : V ↪→ Pn
F × Pm

F be the embedding of V as a divisor. The corre-
sponding line bundle is the tensor product q∗1L1 ⊗ q∗2L2, where L1 and L2 are
canonical line bundles on Pn

F and Pm
F respectively, q1 and q2 are projections of

Pn
F × Pm

F onto Pn
F and Pm

F . Hence, by Proposition 3.2,

iA(1V ) = cA1 (q
∗
1L1 ⊗ q∗2L2) = ΦA(ξ, η) =

∑
i,j≥0

aAij ξ
iηj,

where ξ = qA1 c
A
1 (L1), η = qA2 c

A
1 (L2).
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Let p : Pn
F × Pm

F → pt, h1 : Pn
F → pt and h2 : Pm

F → pt be the structure
morphisms. Then

pA(ξ
iηj
)
= h1Aq1A

(
qA1 c

A
1 (L1)

i · qA2 c1(L2)
j
)

(projection formula)

= h1A

(
cA1 (L1)

i · q1AqA2 c1(L2)
j
)

(transverse property)

= h1A

(
cA1 (L1)

i · hA
1 h2Ac1(L2)

j
)

(projection formula)

= h1A

(
cA1 (L1)

i
)
· h2A

(
cA1 (L2)

j
)

(Lemma 5.2)

= [Pn−i
F ]A · [Pm−j

F ]A,

and therefore,

[V ]A = pA
(
iA(1V )

)
= pA

(∑
i,j≥0

aAij ξ
iηj
)
=

n∑
i=0

m∑
j=0

aAij [Pn−i
F ]A · [Pm−j

F ]A.

�
Corollary 5.4. aAnm ∈ A1−n−m

c (pt) for every n and m.

Proof. Note first that for every n and m there is a smooth hypersurface V in
Pn
F × Pm

F of type (1, 1). We can take V given by the equation
∑k

i=0 SiTi = 0,
where Si and Ti are the homogeneous coordinates in Pn

F and Pm
F respectively

and k = min (n,m). We prove the statement by induction on n + m. By
Lemma 5.3 and induction hypothesis, anm − [V ]A ∈ A1−n−m

c (pt), whence the
result. �
Corollary 5.5. Let i(t) =

∑
k≥1 b

A
k t

k be the additive inverse power series of

ΦA, that is ΦA

(
t, i(t)

)
= 0. Then bAk ∈ A1−k

c (pt) for every k ≥ 1.

6. K-theory versus Chow theory

A relation between K-theory and (rational) Chow-theory is given by the
Chern character

chX : K∗(X) → H∗(X)⊗Q
for every X ∈ Sm(F ). It is the ring homomorphism defined by

ch([E]t−k) = ch([E]) = rank(E) +
∞∑
i=1

1

i!
cH(i)(E)

for a vector bundle E → X [2, Ch. 15]. In particular, the homomorphism

chpt : K
∗(pt) = Z[t, t−1] → Q = H∗(pt)⊗Q

is the evaluation at t = 1.
For a projective morphism f : X → Y , by the classical Riemann-Roch

formula [2, Th. 15.2], for every a ∈ K∗(X):

fH
(
chX(a) · td(TX)

)
= chY

(
fK(a)

)
· td(TY ),

where td ∈ Q[c] is the (rational) Todd characteristic class.
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Let X ∈ Sm(F ) be a projective variety of dimension d and p : X → pt
the structure morphism. Applying the Riemann-Roch formula for p and a =
cKα (−TX), we get

(chX

(
cKα (−TX)

)
· td(TX)

)
= chpt

(
pK
(
cKα (−TX)

))
= pKc

K
α (−TX)|t=1,(6.1)

where deg = pH is the degree homomorphism.

Proposition 6.2. (1) For every projective X ∈ Sm(F ), FK
X |t=0 = FH

X .
(2) The evaluation homomorphism Z[t,b] → Z[b] at t = 0 induces ring iso-

morphism between K̃c(pt) and H̃c(pt). In particular, for every d, the degree d

components K̃c(pt)d and H̃c(pt)d are free abelian groups of rank at most p(d).

Proof. (1) Let d = dimX. For every partition α,

pKc
K
α (−TX) ∈ K |α|−d(X) = K0(X)td−|α|.

a) If |α| > d, then cKα (−TX) and cHα (−TX) are both zero (Examples 3.5 and
3.6).
b) If |α| < d, then pKc

K
α (−TX)|t=0 = 0 = deg cHα (−TX).

c) Assume that |α| = d. We have

ch(cKα ) · td−1 = cHα + characteristic class of degree > d.

Hence, by (6.1),

pKc
K
α (−TX)|t=0 = pKc

K
α (−TX) = pKc

K
α (−TX)|t=1 = deg cHα (−TX).

(2) By the first statement, the evaluation at t = 0 takes K̃c(pt) onto H̃c(pt).
We need to prove injectivity of the evaluation. Let X1, . . . , Xs ∈ Sm(F ) be
projective varieties of the same dimension and m1, . . . ,ms ∈ Z such that

s∑
i=1

mi F
K
Xi

|t=0 =
s∑

i=1

mi F
H
Xi

= 0.

Equivalently,
s∑

i=1

mi deg c
H(−TXi

) = 0(6.3)

for every generalized Chern class c = cα. Since cα generate Q[c], the formula
(6.3) holds for every characteristic class c ∈ Q[c]. Taking c = ch(cα) · td−1 and
applying formula (6.1) for every Xi, we get

s∑
i=1

mip
(i)
K cKα (−TXi

)|t=1 = 0

for every α, where p(i) : Xi → pt is the structure morphism. But the sum∑s
i=1mip

(i)
K cKα (−TXi

) is a monomial in t and hence it is zero for every α. It

follows that
∑s

i=1mi F
K
Xi

= 0.

The group H̃c(pt)d is a subgroup of the free group Z[b]d of rank p(d), whence
the last statement of the Proposition. �
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7. Hypersurfaces V (n1, n2, . . . , nk)

Let P be the product of projective spaces Pn1
F × Pn2

F × · · · × Pnk
F . We write

Li for the pull-back on P of the canonical vector bundle over Pni
F and by L the

tensor product of the Li. Let

V = V (n1, n2, . . . , nk) ⊂ P
be the scheme of zeros of a section of L. Assume that V is smooth. Let
i : V ↪→ P be the embedding. For an oriented cohomology theory A∗ over F ,
by Proposition 3.2,

iÃ(1V ) = cÃ1 (L) = cA1 (L) ·PA(L).

Denote by q : P → pt the structure morphism. Then

FA
V = [V ]Ã = qÃiÃ(1V ) = qÃ

(
cA1 (L) ·PA(L)

)
= qA

(
cA1 (L) ·PA(L) ·PA

P
)
.

The class in K0(P) of the tangent bundle of P equals
∑

[Li]
ni+1− k1. We have

then

PA
P =

k∏
i=1

PA(Li)
−ni−1.

Thus,

FA
V = qA

(
cA1 (L) ·PA(L) ·

k∏
i=1

PA(Li)
−ni−1

)
.

Set ξi = cA1 (Li), ξ = cA1 (L). Therefore,

FA
V = qA

((∑
j≥0

ξj+1bj
)
·

k∏
i=1

(∑
j≥0

ξji bj
)−ni−1

)
.(7.1)

Note that

ξ = ΨA(ξ1, ξ2, . . . , ξk),

where ΨA is the iterated group law of A.
Assume that A∗ = H∗, so that ξ =

∑
ξi. We would like to compute the

α-characteristic number of V for α = (n − 1), where n =
∑

ni, that is the
coefficient of bn−1 in FH

V . Assume that ni > 1 for at least two values of i, so
that n−1 ≥ ni+1 for all i. Since ξni+1

i = 0, we can ignore the second multiple
in (7.1). Hence

deg cH(n−1)(−TV ) = qA(ξ
n) =

n!

n1!n2! . . . nk!
qA(ξ

n1
1 . . . ξnk

k ) =
n!

n1!n2! . . . nk!
.

We have proved

Proposition 7.2. (cf. [10, Lemma VII.6.8], [11]) Let V = V (n1, n2, . . . , nk)
be a smooth hypersurface, n =

∑
ni. If ni > 1 for at least two values of i, then

deg cH(n−1)(V ) =
n!

n1!n2! . . . nk!
.
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Now consider K-theory A∗ = K∗. Let p be a prime integer. Assume that
for some s, ni = ps−1 for every i and k = p, so that n = ps. We have

ξ = Φ(ξ1, ξ2, . . . , ξp) = v1 − v2t+ · · ·+ (−1)pvpt
p−1,

where vj are the standard symmetric functions on the ξi. Note that the r.h.s.
of (7.1) is a polynomial in the bi with the coefficients of the form qK

(
P (v)

)
,

where P is a polynomial over Z.

Lemma 7.3. Let v be a monomial vα1
1 . . . v

αp
p . If αi > 0 for some i =

1, 2, . . . , p− 1, then qK(v) is divisible by p.

Proof. Assume αi > 0, so that v = viu, where u = v−1
i v is a monomial. For

every permutation σ ∈ Sp let ξσ = ξσ(1)ξσ(2) . . . ξσ(i). Then v =
∑

σ∈Sp/H
ξσu,

where H = Si × Sp−i is the stabilizer of ξ1 . . . ξi and hence qK(v) is divisible
by p since qK(ξσu) = qK(ξτu) for every σ, τ ∈ Sp and the number

(
p
i

)
of terms

in the sum is divisible by p. �

Thus, we can delete all monomials in the vi’s containing vi for i = 1, 2, . . . ,
p− 1 and rewrite (7.1) modulo p:

FK
V ≡ qK

((∑
j≥0

[(−1)pvpt
p−1]j+1bj

)
·

p∏
i=1

(∑
j≥0

ξji bj
)−ps−1−1

)
(mod p).(7.4)

Recall that FK
V is a homogeneous polynomial in Z[t,b] of degree dim(V ) =

ps − 1.

Proposition 7.5. (cf. [11, Lemma, p.121]) Let V = V (ps−1, ps−1, . . . , ps−1) (p
terms) be a smooth hypersurface, α = (ps−1 − 1, ps−1 − 1, . . . , ps−1 − 1). Then
the bα-coefficient of FK

V is not divisible by p. If deg β ≥ ps−p and bβ-coefficient
of FK

V is not divisible by p, then deg β = ps − p and β is a refinement of α.

Proof. A typical monomial of the r.h.s. of (7.4) is of the form

t(p−1)(j+1)bjbα1 . . . bαp = t(p−1)(j+1)bβ

for partitions α1, . . . , αp. Note that since vpξ
ps−1

i = 0 we may assume that
|αi| ≤ ps−1 − 1 for all i. We have |β| = ps − 1 − (p − 1)(j + 1) ≤ ps − p and
equality holds iff j = 0. Hence, if deg β ≥ ps − p and the bβ-coefficient of FK

V

is not divisible by p, then deg β = ps − p and j = 0. Therefore, |αi| = ps−1 − 1
for all i and β is a refinement of α.

It follows from (7.4) that modulo p, the bα-coefficient of FK
V is equal to

(−1)ptp−1qK(v
ps−1

p ) = (−1)ptp−1 and hence it is not trivial. �

Define the following partial ordering on the set of all partitions. We write
α ≤ β if |α| < |β| or |α| = |β| and l(α) ≥ l(β). We consider largest monomials
of polynomials in the b′i s with respect to this ordering.

We will use the following variant of Bertini theorem [3, Th.II.8.18]:
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Theorem 7.6. Let X be a smooth variety over an infinite field, L a very ample
line bundle over X. Then there is a section of L with smooth subscheme of
zeros.

Lemma 7.7. (cf. [11, Proposition, p.125]) Let F be an infinite field. Then
for every prime integer p and every integer d ≥ 1 there exists a projective
variety Mp

d ∈ Sm(F ) of dimension d such that the polynomial FK
Mp

d
has largest

monomial bd modulo p if d ̸= ps − 1 for any s or tp−1(bps−1−1)
p if d = ps − 1

for some s > 0.

Proof. Assume first that d + 1 is not divisible by p and set Mp
d = Pd

F . By
Proposition 6.2, the bd-coefficients of FK

Mp
d
and FH

Mp
d
coincide. By Example 3.5,

this coefficient is equal to −(d+ 1) and it is not divisible by p.
Assume now that d+ 1 is divisible by p but d+ 1 ̸= ps for any s. We write

d + 1 = pr(pu + v) with r > 0 and 0 < v < p. If u = 0, v > 1, we set
Mp

d = V
(
pr, pr(v − 1)

)
. By Proposition 7.2, the bd-coefficient of FH

Mp
d
is equal

to
(
prv
pr

)
and hence it is not divisible by p.

If u > 0, let Mp
d = V (prv, pr+1u) and again by Proposition 7.2, the bd-

coefficient of FH
Mp

d
is equal to

(
pr(pu+v)

prv

)
and it is not divisible by p.

If d + 1 = ps for some s, let Mp
d = V (ps−1, ps−1, . . . , ps−1) (p terms) be a

smooth hypersurface. It exists by Theorem 7.6. Then by Proposition 7.5, the
bα-coefficient of FK

Mp
d
is zero modulo p if |α| ≥ ps − p unless |α| = ps − p and

α refines (ps−1 − 1, . . . , ps−1 − 1). �

Corollary 7.8. (cf. [11, Corollary, p.126]) For a partition α let Mp
α = Mp

α1
×

· · · × Mp
αr
. Then for every integer d ≥ 0, the polynomials FK

Mp
α
(mod p) in

(Z/pZ)[t,b] with |α| = d are linearly independent.

Proposition 7.9. Let F be an infinite field. Then the ring K̃c(pt) ⊗ Z/pZ
(resp. H̃c(pt) ⊗ Z/pZ) is a polynomial ring over Z/pZ in the variables FK

Mp
d

(resp. FH
Mp

d
) (mod p), d ≥ 1.

Proof. By Corollary 7.8, Z/pZ-dimension of the image of K̃c(pt)d in (Z/pZ)[t,b]
for every prime integer p is at least p(d). On the other hand, the rank of K̃c(pt)d
is at most p(d) by Proposition 6.2. Hence the classes FK

Mp
α
(mod p) form a ba-

sis of K̃c(pt) ⊗ Z/pZ over Z/pZ. The statements about H̃c(pt) follow from
Proposition 6.2. �

Let J be the ideal in K̃c(pt) ⊗ Z/pZ generated by FK
X for all projective

X ∈ Sm(F ) of positive dimension. If the field F is infinite, by Proposition
7.9, for every projective X ∈ Sm(F ) of dimension d,

FK
X ≡ λFK

Mp
d
(mod J2)(7.10)
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for a uniquely determined λ ∈ Z/pZ. Recall that the bd-coefficients of FK
X and

FH
X coincide and are equal to deg cH(d)(−TX). Note that the bd-coefficient of

every element of J2 is trivial for every d.

Proposition 7.11. For a projective variety X ∈ Sm(F ) of dimension d =
ps − 1, the characteristic number deg cH(d)(−TX) is divisible by p.

Proof. The characteristic numbers do not change under field extensions, hence
we may assume that the field F is infinite. The statement follows from (7.10)
since by Lemma 7.7, deg cH(d)(−TMp

d
) is divisible by p. �

Lemma 7.12. Let S a set of smooth projective varieties over F . Assume
that for every prime integer p and every d ≥ 1 there is X ∈ S such that
deg cH(d)(−TX) is not divisible by p if d ̸= ps − 1 for any s and deg cH(d)(−TX)

is not divisible by p2 if d = ps − 1 for some s > 0. Then the ring K̃c(pt) is
generated by the FK

X , X ∈ S.

Proof. We may assume that F is infinite. Let p be a prime integer. For
every d ≥ 1, there is X ∈ S such that λ in (7.10) is not zero modulo p.

Hence the polynomials FK
X generate K̃c(pt) modulo p for every p, whence the

statement. �

Proposition 7.13. The subring K̃c(pt) ⊂ Z[t,b] is generated by the classes
of projective spaces Pn

F and smooth hypersurfaces V (n,m).

Proof. Let S be the set of all projective spaces Pn
F and smooth hypersurfaces

V (n,m). Let p be a prime integer and d ≥ 1. If d ̸= ps − 1 for any s, the
proof of Lemma 7.7 shows the there is X ∈ S such that deg cH(d)(−TX) is not
divisible by p.

Assume that d = ps − 1 for some s. If s > 1, then by Proposition 7.2,

deg cH(ps−1)(Vps−1,ps−ps−1) =

(
ps

ps−1

)
is not divisible by p2. If s = 1, by Example 3.5,

deg cH(p−1)(Pp−1) = −p.

By Lemma 7.12, the set S generates K̃c(pt). �

Propositions 6.2 and 7.13 imply

Corollary 7.14. The subring H̃c(pt) ⊂ Z[b] is generated by the fundamental
polynomials of projective spaces Pn

F and smooth hypersurfaces V (n,m).

Remark 7.15. It follows from Corollary 7.14 and Proposition 6.2 that the

groups H̃c(pt) and K̃c(pt) do not depend on the base field. In Theorem 8.2 we

will identify H̃c(pt) with the Lazard subring of Z[b].
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Proposition 7.16. (1) The degree d component K̃c(pt)d is a direct summand
of Z[t,b]d of rank p(d).

(2) The degree d component H̃c(pt)d ⊂ Z[b]d is a free subgroup of (maximal)
rank p(d).

Proof. In view of Remark 7.15 we may assume that the field F is infinite. It fol-
lows from the proof of Proposition 7.9 that the monomials FK

Mp
α
are linearly in-

dependent in (Z/pZ)[t,b] and therefore the map K̃c(pt)d⊗Z/p → (Z/pZ)[t,b]
is injective for every prime p. Hence, K̃c(pt)d is a direct summand of Z[t,b]d.
The statements about H̃c(pt) follow from Proposition 6.2. �

Remark 7.17. The first statement of the Proposition is an algebraic analog
of the Hattori-Stong Theorem [11, Theorem, p.129].

8. Lazard ring

Let Laz be the Lazard ring, the coefficient ring of the universal (one-dimensional,
commutative) group law [10, Prop. VII.5.3]. For a commutative ring R, the
set of R-points

Spec(Laz)(R) = Mor
(
Spec(R), Spec(Laz)

)
= Homrings(Laz, R)

is identified with the set of all formal group laws over R.
Let G denote the scheme SpecZ[b]. For a commutative ring R the set of

R-points G(R) = Homrings(Z[b], R) can be identified with the set of sequences
(r1, r2, . . . ) of elements of R (ri is the image of the bi) and therefore with the
set of power series

t+ r1t
2 + r2t

3 + · · · ∈ R[[t]].

The composition of power series makes G a group scheme over Z.
The group Spec(Z[b])(R) acts on Spec(Laz)(R) by conjugation

(fΦ)(x, y) = f
(
Φ(f−1(x), f−1(y))

)
.

Thus, the group scheme G acts on the scheme Spec(Laz). We write

log t = t+m1t
2 +m2t

3 + · · · ∈ Z[b][[t]]

for the formal inverse of

exp t = t+ b1t
2 + b2t

3 + · · · ∈ Z[b][[t]].

It is known that md = FH
Pd /(d+ 1) [10, VII, Cor. 6.12 ].

Lemma 8.1. For every oriented cohomology theory A∗,

ΦÃ(x, y) = expΦA(log x, log y).

Proof. For a line bundle L,

cÃ1 (L) = exp cA1 (L), cA1 (L) = log cÃ1 (L).
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Hence for a pair of line bundles L and L′,

cÃ1 (L⊗ L′) = exp cA1 (L⊗ L′)

= expΦA
(
cA1 (L), c

A
1 (L

′)
)

= expΦA
(
log cÃ1 (L), log c

Ã
1 (L

′)
)
.

�
By Lemma 8.1, the group law

Φ = exp(log x+ log y) = x+ y +
∑
i,j≥1

aij x
iyj

over Z[b] coincides with ΦH̃ . It defines a ring homomorphism Laz → Z[b]
which is, in fact, injective [10, VII,§5]. We will identify Laz with its image in
Z[b]. The ring Laz is generated by the coefficients aij and Φ is the universal
group law over Laz.

Theorem 8.2. The subgroup of Z[b] generated by the fundamental polynomials
FH

X for all X ∈ Sm(F ), coincides with Laz ⊂ Z[b].

Proof. The differential form

d log(x) = (1 + 2m1x+ 3m2x
2 + . . . ) dx = (1 + FH

P1 x+ FH
P2 x2 + . . . ) dx

can be computed out of the formal group law by the formula [10, Prop. VII.5.7]

d log(x) =
dx

Φy(x, 0)
.

Hence, the classes of the projective spaces Pn
F can be expressed in terms of the

aij, so that FH
Pn ∈ Laz. By Lemma 5.3, FH

V (n,m) ∈ Laz for every n and m. It

follows from Corollary 7.14 that H̃c(pt) ⊂ Laz.

Conversely, the inclusion Laz ⊂ H̃c(pt) follows from Corollary 5.4 since Laz
is generated by the coefficients aij. �

Thus, every projective variety X ∈ Sm(F ) has the class FH
X in the Lazard

ring Laz.

9. Values of characteristic classes

In this section we prove that the characteristic classes in an oriented coho-
mology theory A∗ over F take values in A∗

c ⊂ A∗. For X ∈ Sm(F ) let A∗
cl(X)

be the subgroup in A∗
c(X) generated by the elements iA(1Z), where i : Z ↪→ X

is a smooth closed subvariety. We write A∗
norm(X) the subgroup in A∗

c(X) gen-
erated by the subgroups fA

(
A∗

cl(XE)
)
for all finite separable field extensions

E/F , where f : XE → X is the canonical morphism. We have

A∗
cl(X) ⊂ A∗

norm(X) ⊂ A∗
c(X).

Lemma 9.1. Let L be a very ample line bundle over X ∈ Sm(F ). Then
cA1 (L) ∈ A∗

norm(X).
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Proof. If F is infinite, by Bertini theorem 7.6, there exists a section of L with
the smooth subscheme of zeros Z. Let i : Z ↪→ X be the closed embedding.
By Proposition 3.2,

cA1 (L) = iA(1Z) ∈ A∗
cl(X) ⊂ A∗

norm(X).

Assume that F is a finite field. We use the following trick from [8, p. 41]. For a
prime integer p choose an infinite extension E/F such that the degree of every
finite subextension of E/F is a power of p. By Bertini theorem 7.6, applied
to the variety XE, there exists a section of L with the smooth scheme of zeros
Z. The variety Z is defined over a finite subextension K/F of E/F of degree
pk. Let f : XK → X be the natural morphism and i : Z ↪→ XK the closed
embedding. Then by Lemma 2.4, Proposition 3.2 and the projection formula,

pkc1(L) = [K : F ]c1(L) = fA(1)c1(L)

= fA
(
c1(f

∗L)
)
= fAiA(1Z) ∈ fA

(
A∗

cl(X)
)
⊂ A∗

norm(X).

Applying the same argument to another prime integer q, we get

qmc1(L) ∈ A∗
norm(X)

for some m, hence c1(L) ∈ A∗
norm(X). �

Corollary 9.2. Let L be a very ample line bundle over X ∈ Sm(F ). Then
cA1 (L) · A∗

norm(X) ⊂ A∗
norm(X).

Proof. By projection formula it is sufficient to show that cA1 (L) · A∗
cl(X) ⊂

A∗
norm(X). Let i : Z ↪→ X be a smooth closed subvariety. The restriction

L′ = L|Z is very ample over Z. By Lemma 9.1,

cA1 (L) · iA(1Z) = iA
(
iAc1(L)

)
= iA

(
cA1 (L

′)
)
∈ iA

(
A∗

norm(Z)) ⊂ A∗
norm(X).

�

Proposition 9.3. Let L be a line bundle over X ∈ Sm(F ). Then
cA1 (L) · A∗

c(X) ⊂ A∗
c(X).

Proof. Let f : Y → X be a projective morphism with Y ∈ Sm(F ) and let
L′ = f ∗(L). Choose very ample line bundles L1 and L2 over Y such that
L′ = L1 ⊗ L−1

2 . By Lemma 9.1,

cA1 (L1)
i · cA1 (L2)

j ∈ A∗
norm(Y ) ⊂ A∗

c(Y )

for all i and j. Then by Proposition 5.4 and Corollary 5.5,

cA1 (L
′) = ΦA

(
cA1 (L1), ic

A
1 (L2)

)
∈ A∗

c(Y ).

Finally,

cA1 (L) · fA(1Y ) = fA
(
fAcA1 (L)

)
= fA

(
cA1 (L

′)
)
∈ fA

(
A∗

c(Y )
)
⊂ A∗

c(X).

�
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Let E be a vector bundle of rank r > 0 over X. Consider the projection
p : P(E) → X and set

ξ = cA1 (Lcan) ∈ A1
(
P(E)

)
,

where Lcan is the canonical line bundle over P(E).

Lemma 9.4. For every i ≥ 0,

pA(ξ
r−1+i) = cAi (−E) +

∑
j>i

ajd
A
j (E) ∈ A∗(X),

for some aj ∈ A∗
c(pt) and characteristic classes dj of degree j.

Proof. By Jouanolou trick and the splitting principle we may assume that X
is affine and E is a subbundle of a trivial bundle E ′ of rank n with the factor
bundle E ′/E isomorphic to the direct sum of line bundles L1, L2, . . . . Let
l : P(E) → P(E ′) be the closed embedding, q : P(E ′) → X the projection, L′

can

the canonical line bundle over P(E ′),ζ = cA1 (L
′
can) ∈ A1

(
P(E ′)

)
. We can con-

sider l as a composition of closed embeddings of codimension 1 corresponding
to the line bundles q∗Lk ⊗ L′

can. Hence, by Proposition 3.2,

lA(ξ
r−1+i) = lA(1 · lAζr−1+i) = ζr−1+i ·

∏
k

cA1
(
q∗Lk ⊗ L′

can

)
.(9.5)

We can compute cA1
(
q∗Lk ⊗ L′

can

)
using the formal group law ΦA:

cA1
(
q∗Lk ⊗ L′

can)
)
= qAcA1 (Lk) + ζ +

∑
l,m≥1

almq
AcA1 (Lk)

lζm.(9.6)

Applying qA to (9.5) and using (9.6), we get the formula we need, since by
Lemma 5.2, qA(ζ

s) = [Pn−1−s
F ]A ∈ A∗

c(pt), alm ∈ A∗
c(pt) (Lemma 5.4) and

σi(Lj) = cAi (E
′/E) = cAi (−E). �

Lemma 9.7. For every s ≥ 0, pA(ξ
s) · A∗

c(X) ⊂ A∗
c(X).

Proof. Let f : Y → X be a projective morphism in Sm(F ), E ′ = f ∗(E).
Consider the Cartesian transverse square

P(E ′)
g−−−→ P(E)

p′

y yp

Y
f−−−→ X.

We have

pA(ξ
s)·fA(1Y ) = pA

(
ξs·pAfA(1Y )

)
= pA

(
ξs·gAp′A(1Y )

)
= pA

(
ξs·gA(1)

)
∈ A∗

c(X)

since by Proposition 9.3, ξs · gA(1) ∈ A∗
c

(
P(E)

)
.

�
Theorem 9.8. For every vector bundle E over X and every characteristic
class c, cA(E) · A∗

c(X) ⊂ A∗
c(X).



22 A. MERKURJEV

Proof. Since c(E) = c′(−E) for some characteristic class c′, it is sufficient to
prove that cA(−E) · A∗

c(X) ⊂ A∗
c(X) for every c. We may assume that

c = cα1cα2 . . . cαk

for some partition α = (α1, . . . , αk). Let a ∈ A∗
c(X). By Lemma 9.4,

pA(ξ
r−1−α1) · . . . · pA(ξr−1−αk)a = cA(−E)a+

∑
j>i

ajd
A
j (E)a ∈ A∗(X),(9.9)

for some aj ∈ A∗
c(pt) and characteristic classes dj of degree bigger than the

degree of c. By the reverse induction on the degree of c, we have dAj (E)a ∈
A∗

c(X). By Lemma 9.7, the left hand side of (9.9) also belongs to A∗
c(X).

Hence, cA(−E)a ∈ A∗
c(X). �

Corollary 9.10. For every smooth X and every vector bundle E over X, the
classes cAα (E) belong to A∗

c(X) for every partition α. Moreover, cAα (E) = 0 if
|α| > dim(X). In particular, if X is projective, the fundamental polynomial
FA

X is of degree at most dim(X).

Proof. The group Ai
c(X) is trivial if i > dim(X). �

10. Landweber-Novikov operations

Let R be a commutative ring. Assume that the group scheme G = SpecZ[b]
acts on SpecR. The co-morphism of the action we denote by

θR : R → R⊗ Z[b] = R[b].

For every r ∈ R,

θ(r) =
∑
α

sRα (r)⊗ bα

for uniquely determined elements sRα (r) ∈ R. We call the group endomor-
phisms

sRα : R → R

for all partitions α the Landweber-Novikov operations on R.
Now consider the natural action of G on Spec(Laz) (section 8). The corre-

sponding operations sLazα we simply denote by sα.
Let ε : Laz → Z be the restriction of the augmentation map Z[b] → Z.

Lemma 10.1. The composition

Laz
θLaz−−→ Laz⊗Z[b] ε⊗id−−→ Z[b]

coincides with the embedding Laz ↪→ Z[b].

Proof. The homomorphism θLaz corresponds to the group law

exp
(
Φ(log x, log y)

)
on Laz⊗Z[b], where Φ is the universal group law on Laz. The augmentation
of Φ is the additive group law over Z, whence the result. �
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Denote by
µ : Z[b] → Z[b]⊗ Z[b]

the co-multiplication ring homomorphism for the group scheme G. Let A∗ be
an oriented ring cohomology theory over F . Consider the ring homomorphism
of cohomology theories

µ̃ = idA ⊗ µ : Ã∗ → ˜̃
A∗.

Lemma 10.2. For every X ∈ Sm(F ) and a ∈ K0(X),

µ̃
(
PA(a)

)
= PA(a) ·PÃ(a).

(In the r.h.s. the first term is a polynomial in the b′α and the second - in the
b′′α.)

Proof. The co-multiplication µ : Z[b] → Z[b]⊗ Z[b] = Z[b′,b′′] satisfies∑
i≥0

ti+1µ(bi) =
∑
j≥0

(∑
k≥0

tk+1b′k

)j+1

b′′j .

By the splitting principle and multiplicativity property (3.4), we may assume
that a = [L], where L is a line bundle. Hence (with ξ = c1(L)),

µ̃
(
PA(L)

)
=
∑
i≥0

ξiµ(bi)

=
∑
j≥0

(∑
k≥0

ξkb′k

)j+1

ξjb′′j

=
∑
j≥0

PA(L)j+1ξjb′′j

= PA(L) ·
∑
j≥0

cÃ1 (L)
jb′′j

= PA(L) ·PÃ(L).

�
Corollary 10.3. For every projective variety X ∈ Sm(F ),

µ(FA
X) = FÃ

X .

Proof. We apply Lemma 10.2 for a = [−TX ]:

µ(FA
X) = µ(pAPA

X) = pAµ̃(P
A
X) = pA

(
PA

X ·PÃ
X

)
= pÃ

(
PÃ

X

)
= FÃ

X .

�
We can express the Landweber-Novikov operations in terms of characteristic

numbers in H̃. This is an analog of Novikov’s formula [1, Th. I.8.3] with the

cobordism theory replaced by its approximation H̃.
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Proposition 10.4. For every projective variety X ∈ Sm(F ),

sα(F
H
X) = pH̃c

H̃
α (−TX) ∈ Z[b],

where p : X → pt is the structure morphism.

Proof. Consider the following commutative diagram

Laz
θLaz−−−→ Laz⊗Z[b] ε⊗id−−−→ Z[b]

θLaz

y id⊗µ

y µ

y
Laz⊗Z[b] θLaz⊗id−−−−→ Laz⊗Z[b′,b′′]

ε⊗id−−−→ Z[b′,b′′].

By Lemma 10.1 and Corollary 10.3, the composition µ ◦ (ε ⊗ id) ◦ θLaz takes
the class FH

X to

FH̃
X =

∑
α

pH̃c
H̃
α (−TX)b

′′
α.

By Lemma 10.1, another composition (ε⊗ id) ◦ (θLaz ⊗ id) ◦ θLaz takes FH
X to∑

α

sα(F
H
X)b

′′
α.

�

11. Invariant ideals

Let R be a commutative ring. Assume that the group scheme G = SpecZ[b]
acts on SpecR. An ideal I ⊂ R is called invariant if sRα (I) ⊂ I for every α.

Let p be a prime integer. The ideal pZ[b] in Z[b] is obviously prime and in-
variant with respect to the action of G on itself by left translations. Therefore,
the intersection I(p) = Laz∩pZ[b] ⊂ Laz is a prime invariant ideal in Laz.

Let n = 0, 1, 2, . . . ,∞. We write I(p, n) for the ideal in I(p) generated by all
a ∈ I(p) of degree ≤ pn − 1. For example, I(p, 0) = pLaz and I(p,∞) = I(p).

Thus, for every prime p we have a chain of prime invariant ideals in Laz:

pLaz = I(p, 0) ⊂ I(p, 1) ⊂ · · · ⊂ I(p, n) ⊂ · · · ⊂ I(p,∞) = I(p).

It is known (see [10, Prop. VII.4.21] and [5, Th. 2.7]) that every ideal I(p, n)
is prime and invariant and the only nonzero prime invariant ideals in Laz are
I(p, n) for all prime p and n ≥ 0.

Let X be a projective smooth variety over a field F . The set

I(X) = {FH
Y ∈ Laz for all Y ∈ Sm(F ) such that MorF (Y,X) ̸= ∅}

is a graded ideal in Laz. Let q : X → pt be a structure morphism. For every
projective morphism f : Y → X,

qH̃fH̃(1Y ) = (qf)H̃(1Y ) = FH
Y .

Hence
I(X) = qH̃H̃c(X).

Recall that nX is the gcd of deg(x) over all closed points x of a variety X.
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Example 11.1. I(X)0 = nXZ. If X(F ) ̸= ∅, I(X) = Laz.

Theorem 11.2. For a projective variety X ∈ Sm(F ) over a field F , the ideal
I(X) ⊂ Laz is invariant.

Proof. Let f : Y → X be a morphism, q : X → pt the structure morphism.
By Proposition 10.4 and Corollary 9.10,

sα(F
H
Y ) = qH̃fH̃

(
cH̃(−TY )

)
∈ qH̃

(
H̃c(X)

)
= I(X).

�

Let P be a minimal prime ideal in Laz containing I(X). By [6, Th. 3.1], P is
invariant and hence P = I(p, n) for some prime integer p and n = 0, 1, . . . ,∞.
Clearly, P is the only minimal prime ideal containing I(X) and p. We set
np(X) = n. If for a prime integer p there is no invariant prime ideal containing
I(X) and p, we set np(X) = ∞. Thus, for every projective variety X we have
the numbers np(X) assigned for each prime integer p.

Proposition 11.3. Let X ∈ Sm(F ) be a projective variety, p a prime integer.
Then the following conditions are equivalent:

(1) p | nX ;
(2) There exists an invariant prime ideal of Laz containing I(X) and p.

Proof. If I
(
p, np(X)

)
is the minimal prime ideal, then I(X)0 ⊂ pZ, i.e. p | nX .

Conversely, let p | nX and let I(pi, ni) be all minimal prime ideals containing
I(X). Since I(pi, ni) ∩ Z = piZ and I(X) ∩ Z = nXZ, the intersection of all
the piZ coincides with the radical of nXZ, hence p = pi for some i. �
Proposition 11.4. Let X and Y be projective smooth varieties such that
Mor(Y,X) ̸= ∅. Then np(Y ) ≤ np(X) for every prime p.

Proof. We have I(Y ) ⊂ I(X) ⊂ I
(
p, np(X)

)
. The minimal prime ideal be-

tween I(Y ) and I
(
p, np(X)

)
is equal I

(
p, np(Y )

)
, hence np(Y ) ≤ np(X). �
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