ALGEBRAIC ORIENTED COHOMOLOGY THEORIES
ALEXANDER MERKURJEV

ABSTRACT. For every smooth projective variety over a field F' we define
its fundamental polynomial in Z[b] = Z[by, b, ...] and prove that the fun-
damental polynomials generate the Lazard ring Laz C Z[b]. Using descrip-
tion of invariant prime ideals in Laz, due to Landweber, we assign to every
smooth projective variety X the numbers n,(X) for every prime integer p.
Inequality n,(Y") > n,(X) for some prime p is an obstruction for existence
of a morphism Y — X over F.

1. INTRODUCTION

Let Sm(F') be the category of smooth quasi-projective varieties over a field
F. M. Levine and F. Morel have defined in [7] an oriented cohomology theory
over F' as a contravariant functor A* from the category Sm(F') to the category
of graded commutative rings satisfying certain properties (see Section 2). Ex-
amples of the oriented cohomology theories are K* given by the Grothendieck
rings of varieties in Sm(F') (Example 2.3) and H* given by the Chow rings
(Example 2.2).

It is proved in [7] that if char F' = 0 (resolution of singularities is used) then
there exists a universal oriented algebraic cobordism cohomology theory 2*.
For every oriented cohomology theory A* there is unique morphism of coho-
mology theories * — A* commuting with the push-forward homomorphisms.
For a variety X € Sm(F') the group Q2*(X) is generated by the classes [f] corre-
sponding to projective morphisms f : Y — X in Sm(F'). The homomorphism
Q*(X) - A*(X) takes the class [f] to fa(ly), where f, is the push-forward
homomorphism in A*. Thus, the image of the morphism Q*(X) — A*(X),
which we denote by A%(X), can be defined just in terms of the theory A: the
group A*(X) is generated by the elements f4(1y) for all projective morphisms
f:Y = X in Sm(F).

To every oriented cohomology theory A one has associated a commutative
formal group law ®# over the coefficient ring A*(pt). The formal group law
% is the universal one and the coefficient ring Q*(pt) is the Lazard ring.

In the present paper we consider oriented cohomology theories on Sm(F’) for
arbitrary fields F' and don’t refer to the problem of resolution of singularities
and existence of the cobordism theory. The idea is to consider “large” oriented
cohomology theories A* such that the natural homomorphism Q*(X) — A*(X)
is injective at least for X = pt and work inside A* instead of Q*.
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How to construct “large” cohomology theories? In Section 4 we consider an
operation (we call it tilde operation), which assigns to every oriented cohomol-

ogy theory A* another theory A* defined by
A*(X) = A*(X) @ Z[b] = A*(X)[b],

where Z[b] = Z[by, b, .. .| is the polynomial ring in infinitely many variables.
We define the push-forward homomorphisms in A in such a way that the
inverse Todd genus of the natural embedding A* < A* is the universal one
(with the coefficients b;). We prove that the two theories H* and K* are large
enough so that the coefficient rings H*(pt) and K7 (pt) are both isomorphic to
the Lazard ring. In Sections 6 and 7 we follow closely the method of [11].

For every projective variety X € Sm(F') we define the fundamental polyno-
mial F£ € Z[b] and prove that for every field F' the fundamental polynomials
of all projective X € Sm(F’) generate the same ring - the Lazard ring Laz con-
sidered as a subring of Z[b]. The fundamental polynomials F£ do not change
under field extensions (and therefore can computed over an algebraic closure of
F'); nevertheless, they keep track of an arithmetic information on X. Namely,
all the coefficients of F4 are divisible by the greatest common divisor of the
degrees [F'(z) : F] of all closed points of X. For example, existence of division
algebras of a given dimension over an extension of F' explains the fact that the
fundamental polynomial of the projective space P% is divisible by n+1 in Z[b]
(Example 3.8), the well known fact in topology (see [10, Ch. VII]).

In Section 9 we prove that the characteristic classes of vector bundles over
X € Sm(F) take values in the subgroup A%(X) C A*(X). We use this re-
sult in Section 10 where we study the Landweber-Novikov operations on Laz.
In Section 11 we introduce ideals I(X) C Laz for every projective variety
X € Sm(F), consisting of the fundamental polynomials of all projective va-
rieties Y € Sm(F) such that there is a morphism Y — X over F. We
prove that the ideal I(X) is invariant under the Landweber-Novikov opera-
tions and so are all the associated prime ideals. Invariant prime ideas were
described by Landweber in [5]. Based on this description one can associate
to every projective variety X € Sm(F') and every prime integer p an integer
ny,(X) € {0,1,...,00}. Inequality n,(Y) > n,(X) for some prime p is an
obstruction for existence of a morphism Y — X over F.

Although the paper is purely algebraic, the most of the constructions are
borrowed from topology. The class [-Tx] € Ky(X) of the tangent bundle
Tx over X is a replacement for the stable normal bundle of X. The tilde
operation is analogous to the smash product with the Thom spectrum MU.
The embedding of the Lazard ring into Z[b] is the Hurewicz homomorphism
m(MU) — H.(MU). The Landweber-Novikov operations are induced by
those on the spectrum MU.
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2. DEFINITION OF AN ORIENTED COHOMOLOGY THEORY

Let F be a field, and let Sm(F’) be the category of smooth quasi-projective
varieties over F'. Let A* be a functor from Sm(F) to the category GrRings
of Z-graded commutative rings. For a morphism f : Y — X in Sm(F) the
(pull-back) ring homomorphism A*(f) is denoted by f4.

An oriented cohomology theory over F' (see [7]) is a functor

A*: Sm(F)” — GrRings
together with a graded (push-forward) group homomorphism
fa: AY(Y) = A*H(X)
for every projective morphism f : Y — X in Sm(F') of pure codimension d,
satisfying the following:

(i) (Additivity) Let Z = X [[Y where X,Y € Sm(F), and let i : X — Z,
J:Y — Z be the closed embeddings. Then the homomorphism
iantja: AN(X)® ANY) —» A" (Z)

is an isomorphism.

(ii) For a pair of projective morphisms f : Y — X and g : Z — Y, one has
(feg)a=faoga

(iii) Let £ — X be a vector bundle over X € Sm(F) of rank r, and let
P(E) — X be the associated projective bundle. Then A*(P(E)) is a free

A*(X)-module with basis 1,&,£2,...,£" 1, where £ = SASA(]_]}D(E)), and s is the
zero section of the tautological line bundle over P(E).

(iv) (Transverse property) Let

v L x

(2.1) hl lg

y I x

be a transverse Cartesian square in Sm(F') with f a projective morphism, i.e.
the sequence of tangent bundles over Y’

0 — Ty L% T o by Y (PR Ty — 0

is exact. Then f o bt = g4 o fa.

(v) (Homotopy invariance) Let p : V' — X be an affine bundle (a torsor for a
vector bundle over X). Then p? : A*(X) — A*(V) is an isomorphism.

(vi) (Projection formula) Let f : Y — X be a projective morphism in Sm(F).
Then for every a € A*(X) and b € A*(Y), fa(b- fA(a)) = fa(b) - a.

The ring A*(pt), where pt = Spec(F), is called the coefficient ring of A*.
For every X € Sm(F), A*(X) is an algebra over A*(pt).
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Example 2.2. ([7, Ex. 1.2]) The Chow cohomology theory H* assigns to every
variety X € Sm(F) the Chow ring H*(X) = CH*(X). The push-forward and
pull-back homomorphisms are defined in [2]. The coefficient ring CH*(pt) is
equal to Z.

Example 2.3. ([7, Ex. 1.3]) The K-theory assigns to every variety X € Sm(F)
the Laurent polynomial ring K*(X) = Ko(X)[t,t7!] graded by deg(t) = —1,
ie. KY(X) = Ko(X)t7%. If f : Y — X is a projective morphism of pure
codimension d, then for every a € K*(Y), fx(at™) = f.(a)t™"¢ where
f« is the push-forward homomorphism in algebraic K-theory. We have also
K*(pt) = Z[t,t71].

Lemma 2.4. Let E be an étale F-algebra, X € Sm(F) and let f : X =
X Xgpec pOpec E— X be the canonical morphism. Then fa(1x,) = [E : F]-1x.

Proof. We proceed by induction on [E : F]. By the additivity property and
projection formula we may assume that F is a field and X = pt. There is a
smooth curve W over F' and a morphism g : W — Al such that ¢g7'(0) =
Spec E and g~*(1) = Spec K, where K is an étale F-algebra that is not a field
(see [8, Lemma 4.8]). The diagram

Spec K oW
/| !
pt LN AL
is transverse. Hence,

fa(1) = faj? (1) = ifga(1).

Let p : AL — pt be the structure morphism. By homotopy invariance, ig =
(p")7", hence fa(1) = (p*)~'ga(1).

Similarly, for the structure morphism A : Spec K — pt, we have hs(1) =
(p")1ga(1) = fa(1). By the induction hypothesis, ha(lx,) = [E : F] - 1x as
K is not a field, therefore, fa(lx,)=[F: F]-1x. O

Let X € Sm(F) and let p : X — pt be the structure morphism. If X is
projective of dimension d, we define the fundamental class [X]* of X in the
theory A as the element

[X}A = pA(lX) c Aid(pt).

For example, [pt]* = 1, [X]# = 0if d > 0 and [X]¥ = td(X)t?, where
td(X) = p.([Ox]) € Z is the Todd number of X [2, Example 15.2.13].

Proposition 2.5. Let X and Y be projective varieties in Sm(F). Then
(X x V4 = (X4 )4
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Proof. Consider Cartesian transverse square

XxY 2= X
ql l
Y —— pt.
We have

[X x Y4 p)a(lxxy)

= (s
= (sapag™)(1y) (property (iv))
= (s45%74)(1y) (projection formula)
=S (1)() TA(ly)
= [X]*- [Y]*.
U

For every smooth variety X we consider the graded subgroup A%(X) in
A*(X) generated by the elements f4(1y) for all projective morphisms f: Y —
X in Sm(F). Clearly, A%(X) = 0 if ¢ > dim(X). For a projective morphism
g : X — X' the push-forward map g4 takes A%(X) to AL(X').

The subgroup A% (pt) C A*(pt) is generated by the fundamental classes [X]4

for all smooth projective varieties X. Proposition 2.5 shows that A*(pt) is a
subring in A*(pt).

Example 2.6. H}(pt) = H*(pt) = Z, K}(pt) = Z]t].

3. CHERN CLASSES

Let p: L — X be a line bundle over X € Sm(F'). We define the first Chern
class of L in an oriented cohomology theory A* over F' by

cf(L) = SASA(lx) c AY(X),

where s : X — L is the zero section of p (see [7]). Since pot = idx for every
section t of p, we have t4 = (p?)~! (property (v)). Hence,
)-

(L) = (") sallx
Example 3.1. The first Chern class of a vector bundle £ — X in K-theory
is defined by
¢t (E) = (rank(E) — [EY])t7" € Ko(X)t7' = K'(X).

Proposition 3.2. Let p: L — X be a line bundle over X € Sm(F') and let
.Y < X be the subscheme of zeros of a section t of p. If Y is a smooth
dzvzsor in X, thenis(ly) = c¢'(L) € AY(X).
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Proof. The diagram
Y —— X

i| |

X —— L
where s is the zero section of p, is transverse. Hence,
ia(ly) = iai'(1x) = t'sa(1x) = (") 'sa(lx) = ¢ (L).
O
The standard method by Grothendieck (see [7]) gives Chern classes c}(E) €

AY(X) for every vector bundle p : E — X of rank r. They satisfy the equation
> (=D (ME))&T =0 A (P(E)),

i=0
where ¢ is the first Chern class of the tautological line bundle over P(E).

A partition o = (o, e, ..., qq) is a sequence of integers (possibly empty)
a1 > ag > -+ > ap > 0. The degree of « is the integer

|O[|:Oél—|—062+"'+06k.

The integer k is called the length [(«) of the partition a. Denote by p(d) the
number of all partitions of degree d.

We consider the polynomial ring Z[by,bs,...] = Z[b] in infinitely many
variables by, bo, ... as a graded ring with degb; = . For every partition « set

bo = baboy - - - bay

The monomials b, form a basis of the polynomial ring over Z, and more pre-
cisely, the b, with |a| = d form a basis of the d-graded component Z[b],. Thus,
Z[bl, is a free abelian group of rank p(d).

Let Zlcy,ca,...] = Z|c] be another polynomial ring with similar grading
degc; = i. The elements of Z[c| are called the characteristic classes and the
¢, - the Chern classes.

For every partition o we define the “smallest” symmetric polynomial

P.(x1,29,...) = Z vty gt = Qulor, 09, ),
(i1yi2,00msik)

containing the monomial z*z5?...x3*, where the o; are the standard sym-

metric functions, and set

Ca = Qa(017027 .- )

For example, ¢, = ¢q1,...1y (n units). The characteristic classes ¢, with |a| = d
form a basis of Zc|.

Let A* be an oriented cohomology theory over a field F'. For every element
(characteristic class) ¢ € Z[c] and every vector bundle E over a variety X €
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Sm(F) there is a well defined class ¢*(E) € A*(X). In particular, for every
partition « there are generalized Chern classes

A(E) e All(X).
We define the characteristic polynomial of E in the theory A* by the formula
PY(E) =)} (E)by € A*(X)[b].

Example 3.3. If L is a line bundle, then P*(L) = > iso €t (L)'b;.

Assume that a vector bundle £ — X has a filtration with line factors
Ly, Lo, ..., L, Then it follows from definition of the generalized Chern classes
that

PA(E) = PA(Ly) - PA(Ly) - ... - PA(L,).

Hence, by the splitting principle, for an exact sequence of vector bundles
0—>F —E— E"—0over X,

(3.4) PA(E) = PA(E) - PA(E").

The value of the i-th Chern class ¢;(F) is nilpotent for i > 0 (see [7]), hence
for every o # 0, the class ¢2(E) is also nilpotent. The constant term of the
polynomial P*(E) is equal to 1, so that the polynomial P#(E) is invertible
in the polynomial ring A*(X)[b]. Thus, there is well defined group homomor-
phism

P4 Ko(X) — A*(X)[b]*, [E]~ PA(E).

For a variety X € Sm(F') we define the characteristic polynomial of X in
the theory A*:

Py = PHTx)™! = PA(~Tx) € A*(X)[b],

where T'x is the tangent bundle of X.
Assume that X is projective. Let p : X — pt be the structure morphism.
The polynomial

Fd = paPd = 3 paca(-Ty)by € A(pH)[B)

is called the the fundamental polynomial of X in the theory A*. The coeffi-
cients of the polynomial F4, the elements paco(—Tx) € A*(pt), are called the
characteristic numbers of X in the theory A*. Clearly, the fundamental class
[X]4 is the constant term of the fundamental polynomial F%.

Example 3.5. Let X € Sm(F) be a variety of dimension d. Then the poly-
nomial F¥ € Z[b] is either zero or homogeneous of degree d. The class of
the tangent bundle of the projective space P% is equal to [Legn|*™ — 1, where
Lean is the canonical bundle over P4. Since ¢ (L., )¢ is the class of a rational
point, the polynomial Fﬁi{l is equal to the degree d part of the power series
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(14by +by+...)"%" 1. In particular, the bs-coefficient of F£, equals —(d + 1).
For example,

Fl = —2b,,
Fih = —3by + 607
Example 3.6. Note that for every vector bundle F over a variety X € Sm(F),
ch () € Ko(X)(eD ¢,

where Ko(X)® is the i-th term of the topological filtration of Ky(X). There-
fore, ¢X(F) = 0 if |a| > d = dim X (cf. Corollary 9.10). Hence, F% € Z[t,b]
is a homogeneous polynomial (with ¢ of degree 1).The t?-coefficient of F% is

the Todd number of X. For example,
Fi =t — 20y,
Fi = t* — 3th, — 3by + 612
We will prove (Proposition 6.2) that F% |,_o = F¥ for every X € Sm(F).

Thus, every projective variety X € Sm(F) has the class F¥ in Z[b]. Clearly,
the class does not change under field extensions: for every field extension E/F
the varieties X and Xp = X Xgpecr Spec E have the same class in Z[b].
Hence, if X and Y are twisted forms of each other (if they are isomorphic over
a separable closure of F), then F¥ = Fi.

For a variety X € Sm(F') denote by nx the ged of deg(z) = [F(z) : F] over
all closed points x € X. By the very definition, for a projective variety X,
all the coefficients of F4 (the characteristic numbers) are divisible by nx. We
have proved

Proposition 3.7. (1) For every projective variety X € Sm(F), the polynomial
Fi is divisible by ny for every twisted form' Y of Xg over a field extension
E/JF.

(2) Let n be the ged of all the coefficients of Fi for a projective variety X €
Sm(F). Then X has a zero-cycle of degree n.

Example 3.8. For every d € N and a field F' there is a field extension F/F and
a division algebra A over E of dimension (d + 1)?. Let Y be the Severi-Brauer
variety over E corresponding to A (see [4]). The variety Y is a twisted form of
the projective space P%. Since ny = d + 1, the Proposition 3.7 explains why
the characteristic polynomial of the projective space P4 in Z[b] is divisible by
d+1.

4. TILDE OPERATION

Let A* be an oriented cohomology theory over F. We associate to A* a new
cohomology theory A* defined by

A*(X) = A*(X) @ Z[b] = A*(X)[b)].
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The structure of a graded ring on Av*(X ) is given by the one of the graded
ring A*(X) and by assigning degree —|a| to every b,. In particular, for every
X € Sm(F), P4 € A°X) and, if X is projective, F4 € A~9(pt), where
d = dim(X).

The pull-back homomorphism f4 : A*(X) — A*(Y) associated to a mor-
phism f: Y — X is equal to f4® idzp. The push-forward map f7 associated
to a projective morphism f : Y — X is defined by

(41)  fila) = fala-PP)- (PR) " = fa(a-Py-fA(PX)).

If f is a closed embedding, then [f*Tx|— [Ty ]| is equal to the class of the normal
bundle Ny X of Y in X. Hence P4 - f4(P4)~! = PA(Ny X) and

fia) = fa(a- PNy X)).
Lemma 4.2. Let p: L — X be a line bundle. Then
(L) = (L) - PAUL) =Y (L) b € A*(X)[b].
i>0

Proof. Let s : X — L be the zero section. The normal bundle of s is equal to
L. Hence,

(L) = s%s5(1x)

= s%s4(P*(L)) (projection formula)
= s (sa(1) - p* PA(L))
= (L) - PA(L).

Proposition 4.3. The functor A* is an oriented cohomology theory.

Proof. We need to check properties (i)-(vi) in the definition of an oriented
cohomology theory.

(i) Let Z = X[]Y where X,Y € Sm(F), andlet i : X — Z, j: Y — Z be
the closed embeddings. The normal bundles NxZ and Ny Z are trivial, hence
i7 =14 ®idgp), j5 = ja ®idgp and obviously 77 + j 7 is an isomorphism.

(ii) Let f: Y — X and g : Z — Y be two projective morphisms. Then for
any a € A*(Z),
(fio97)(a) = fx(9a(aPy) - (P3)7)
= fal9a(aPy) - (P7)""-Py)) - (Px) ™
= (faoga)(aPy) - (PY)™
= (fog)la).
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(iii) Let E be a vector bundle of rank r over X and L the tautological line
bundle over P(F). By Lemma 4.2,

C=cl(L) = &,
>0
where ¢ = ¢}(L). Since
& —a(B) "+ o+ (=1) e (B) =0

(see [7]) and the classes ¢;(F) are nilpotent, the higher powers £°, s > r, are
trivial modulo the nilradical of A*(X). Therefore, the matrix expressing the

powers of f in terms of powers of { is upper triangular modulo the nilradical
of A*( ) and hence is invertible. Thus, the powers 1 f , 5" ! form a basis
of A* (P(E)) over A*(X).
(iv) Consider a transverse Cartesian square (2.1). We have
P fAPL) T = h PR AP
and therefore, for every a € A*(Y),
(fgoh™)(a) = fiu(h'(a) - Py, f A (PR)”
= Fu(ha) B PR
—fAhA(a Pé fA PA 1)
= ¢"fa(a- P} fA P
=g*(fala-P3)- (PX)™)
= (9" o f3)(a).

)

P

(v) Obvious.

(vi) Let f : Y — X be a projective morphism in Sm(F'), a € A*(X) and
be A*(Y). We have

fx(b- fg(a)) = fa(b- fAa)-PP) - (P_ﬁ‘()_1 (projection formula)
= fa(b-P{)-a- (PF)
= fz(b)-a

U

Remark 4.4. The correspondence E — P4(E) is given by the characteristic
class P4 = 3" cab, over Z[b]. In view of [9], P* is the inverse Todd genus
of the natural embedding of A* into A* and the formula (4.1) is the Riemann-
Roch theorem for this embedding.

Note that if X € Sm(F) is projective, the fundamental class [X]g € A(pt) =
A(pt)[b] coincides with the fundamental polynomial F4%. In particular, by
Proposition 2.5, F§,, = F4 - Fi for all X,Y € Sm(F).
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5. FORMAL GROUP LAW OF A THEORY

Let A* be an oriented cohomology theory over F. By [7], there is unique
commutative formal group law

CI)A: mzy _I+y+zazgxya
4,7>0 3,j>1

over the coefficient ring A*(pt) with a;; € A'~""7(pt), such that for every two
line bundles L and L’ over a variety X € Sm(F),

a(L®L)=ca(l)+al)+ ) aja(l)a(ly e ANX).

4,7>1

Example 5.1. Since ¢ (L ® L') = (L) + ¢ (L') for two line bundles L and
L' [2, Prop. 2.5(e)], ®"(z,y) = = + y is the additive group law. It follows
from the description of the first Chern class in K-theory (Example 3.1) that
OK(z,y) = v +y — 2yt (called the multiplicative group law).

In the rest of the section we prove that the coefficients of the group law &4
belong to the subring A%(pt) C A*(pt).

Lemma 5.2. Let L., be the canom’cal line bundle over the projective space
P over F. Then pa(cit(Lean)') = [PE']? for every i > 0.

Proof. Induction on n. Let p : P% — pt the structure morphism joPEt s
P% an embedding, ¢ = po j, & = ¢{'(Lean). Then jA(€) = (L., Where

can

L’Can §*(Lean) is the canonical vector bundle over P%'. Proposition 3.2

gives & = ja(lpn-1), hence, by the induction hypothesis,
pa(€) = pa(a(1) - €71) = paja(HO™) = qa(c (Lian)™ ) = PR
O

Lemma 5.3. (cf. [1, Prop. 11.10.6]) Let V' be a smooth hypersurface in Pk xPH
of type (1,1) for some n and m. Then

ZZ% P4 PR )4 € A (pt).

=0 75=0

Proof. Let i : V — P} x P be the embedding of V' as a divisor. The corre-
sponding line bundle is the tensor product ¢jL; ® ¢3 Lo, where Ly and Lo are
canonical line bundles on P} and P} respectively, ¢; and ¢, are projections of
P x P onto P} and P, Hence, by Proposition 3.2,

ia(lv) = Mg L ® g3 Lo) = (&, m) = D ajy &7,

4,720

where £ = ¢ (L1), n = ¢3'ci(L2).
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Let p : Pi x P2 — pt, hy : P — pt and hy : P — pt be the structure
morphisms. Then

pa(€n’) = hiaga(qie! -gyci(Le)?)  (projection formula)
= hia (C‘lA(Ll)Z q1agyci(L2)’)  (transverse property)
= h1a (Cf(Ll)Z hithoacy(Ly) ') (projection formula)
= hia(c(L1)") - hoa(ci'(L2)’)  (Lemma 5.2)
= P31 - PR )4,
and therefore,
V" = pa(ia(lv)) = pa(d_ aj &) > ap PR PR
1,720 i=0 j=0

Corollary 5.4. a2 € Al=""™(pt) for every n and m.

Proof. Note first that for every n and m there is a smooth hypersurface V' in
P7% x PR of type (1,1). We can take V' given by the equation Z?:o S;T; = 0,
where S; and 7; are the homogeneous coordinates in P} and P respectively
and k£ = min (n,m). We prove the statement by induction on n + m. By
Lemma 5.3 and induction hypothesis, a,,, — [V]* € AL~ (pt), whence the
result. 0

Corollary 5.5. Let i(t) = >, biit" be the additive inverse power series of
A, that is ©4(t,i(t)) = 0. Then bjt € AL*(pt) for every k > 1.
6. K-THEORY VERSUS CHOW THEORY

A relation between K-theory and (rational) Chow-theory is given by the
Chern character
chy : K*(X) — H(X)®Q

for every X € Sm(F). It is the ring homomorphism defined by
_ — 1
ch([E]t™) = ch([E]) = rank(E) + Z o (B

for a vector bundle E — X [2, Ch. 15]. In particular, the homomorphism
chy : K*(pt) = Z[t,t7'] = Q= H*(pt) ® Q

is the evaluation at ¢ = 1.
For a projective morphism f : X — Y, by the classical Riemann-Roch
formula [2, Th. 15.2], for every a € K*(X):

fH (Chx(a) . td(Tx)) = Chy (fK(CZ)) . td(Ty),
where td € Q[c] is the (rational) Todd characteristic class.
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Let X € Sm(F) be a projective variety of dimension d and p : X — pt
the structure morphism. Applying the Riemann-Roch formula for p and a =
cE(=Tx), we get
(61) (Chx( ( Tx)) td(Tx)) = Chpt(pK( ( Tx))) = PKC, ( TX)|t 1,
where deg = py is the degree homomorphism.

Proposition 6.2. (1) For every projective X € Sm(F), FX |_, = F4.

(2) The evaluation homomorphism Z[t,b] — Z[b] at t = 0 induces ring iso-
morphism between K.(pt) and H.(pt). In particular, for every d, the degree d
components K.(pt)q and H.(pt)q are free abelian groups of rank at most p(d).

Proof. (1) Let d = dim X. For every partition a,
prch (=Tx) € KI*4(X) = Ko(X)td 1.

a) If |a] > d, then ¢&(—Tx) and ¢ (—Ty) are both zero (Examples 3.5 and
3.6).

b) If |a| < d, then prcX (=Tx)|i—o = 0 = deg 2 (—Tx).

c¢) Assume that |a| = d. We have

ch(cX)-td™ = ¢ + characteristic class of degree > d.
Hence, by (6.1),
prcE (=Tx)|imo = prck (=Tx) = prck (=Tx)|=1 = deg ¢ (—Tx).

(2) By the first statement, the evaluation at ¢ = 0 takes K.(pt) onto H.(pt).
We need to prove injectivity of the evaluation. Let Xi,..., X € Sm(F) be
projective varieties of the same dimension and my, ..., mg € Z such that

s s
E : K E H

m; FXi |t:0 == m; FXi = 0.
i=1 =1

Equivalently,
(6.3) Z m;degc? (—Tx,) =0
i=1

for every generalized Chern class ¢ = ¢,. Since ¢, generate Qlc|, the formula
(6.3) holds for every characteristic class ¢ € Q[c|. Taking ¢ = ch(c,)-td™! and
applying formula (6.1) for every X;, we get

Zmsz Co (=Tx,)|e=1 =0

for every «, where p : X; — pt is the structure morphism. But the sum
> mng() ¢ (—Ty,) is a monomial in ¢ and hence it is zero for every a. It
follows that >7_ m; FX, = 0.

The group f]c(pt)d is a subgroup of the free group Z[b], of rank p(d), whence
the last statement of the Proposition. O
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7. HYPERSURFACES V' (ny,ng, ..., ng)

Let P be the product of projective spaces P x Pp? x - -+ x P, We write
L; for the pull-back on P of the canonical vector bundle over P} and by L the
tensor product of the L;. Let

V=V(ny,ng,...,ng) CP

be the scheme of zeros of a section of L. Assume that V' is smooth. Let
i : V — P be the embedding. For an oriented cohomology theory A* over F|
by Proposition 3.2,

i(ly) = e(L) = (L) - PA(D).
Denote by ¢ : P — pt the structure morphism. Then
Fy = [V]* = qzi5(lv) = q5(c (L) - PAL)) = qa(ci (L) - PA(L) - P3).

The class in Ky(P) of the tangent bundle of P equals > [L;]"™ — k1. We have
then

k
Pf? — H PA(Li>_ni_1.
i=1

Thus,
k

Fy = qa(ei'(L) - PA(L) - [ PA(L) ™).

Set & = cM(Ly), € = ¢i*(L). Therefore,

(7.1) Fi = qa <(Z 7)) - ﬁ(z gbj)_ﬂi_l) |

>0 i=1 j>0
Note that
é = \I]A(£1’ 527 s 7516)7
where W4 is the iterated group law of A.
Assume that A* = H* so that £ = > &. We would like to compute the
a-characteristic number of V' for @ = (n — 1), where n = > n;, that is the
coefficient of b,,_; in Fl‘f . Assume that n; > 1 for at least two values of i, so

that n—1 > n; +1 for all 7. Since f{”“ = 0, we can ignore the second multiple
in (7.1). Hence

n! , n!
..nk!QA( UGt =

degcll 1y (=Tv) = qa(€") =
We have proved

Proposition 7.2. (cf. [10, Lemma VIL.6.8], [11]) Let V = V(ny,no,...,ng)
be a smooth hypersurface, n = n;. If n; > 1 for at least two values of i, then

nqlng! . nilng! ... ng!’

|
o v
deg ¢,y (V) = nalngl. . ongl
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Now consider K-theory A* = K*. Let p be a prime integer. Assume that
for some s, n; = p*~! for every i and k = p, so that n = p*. We have

5 = (I)(€17£2a s 7610) =1 — U2t + -+ (_1)pvptp_17

where v; are the standard symmetric functions on the &;. Note that the r.h.s.
of (7.1) is a polynomial in the b; with the coefficients of the form g (P(v)),
where P is a polynomial over Z.

Lemma 7.3. Let v be a monomial v{*...v,". If oy > 0 for some i =
1,2,...,p—1, then qx(v) is divisible by p.

Proof. Assume «; > 0, so that v = vu, where u = v; 'v is a monomial. For
every permutation o € Sy let &, = &,1)60(2) - - - &o(s). Then v = Zaesp/H &,
where H = S; x S,_; is the stabilizer of & ... and hence gx(v) is divisible
by p since gk (&,u) = qi(&ru) for every o, 7 € S, and the number (’Z’) of terms
in the sum is divisible by p. U

Thus, we can delete all monomials in the v;’s containing v; for i = 1,2, ...,
p — 1 and rewrite (7.1) modulo p:

(74) Ff = qi ((Z[(—npvpt“]j“bj) 2103 fzbj)‘p“‘1> (mod p).

520 =1 j>0

Recall that F{ is a homogeneous polynomial in Z[t, b] of degree dim(V) =
p’—1.

Proposition 7.5. (cf. [11, Lemma, p.121]) Let V =V (p* L, p*~ 1 ... p*™ 1) (p
terms) be a smooth hypersurface, « = (p*~* — 1,p*1 —1,...,p*"t —1). Then
the b, -coefficient ofF{,{ is not divisible by p. If deg B > p*—p and bg-coefficient
of F¥ is not divisible by p, then deg B = p* —p and B is a refinement of a.

Proof. A typical monomial of the r.h.s. of (7.4) is of the form

t(P_l)(j+1)bjbal - t(p_l)(j+l)b5

for partitions o',... a?. Note that since v,&’ =0 we may assume that

o' < p*~t—1for all i. We have || =p*—1—(p—1)(j+1) <p°—p and
equality holds iff j = 0. Hence, if deg 8 > p® — p and the bg-coefficient of F‘I/(
is not divisible by p, then deg 8 = p* — p and j = 0. Therefore, |a‘| = p*~! —1
for all + and f is a refinement of a.

It follows from (7.4) that modulo p, the b,-coefficient of F{ is equal to
(—1)ptp*1qK(v£kl) = (—1)Pt*~! and hence it is not trivial. O

Define the following partial ordering on the set of all partitions. We write
a < pif |a] < |f] or |a] = |8] and () > I(B). We consider largest monomials
of polynomials in the b s with respect to this ordering.

We will use the following variant of Bertini theorem [3, Th.II.8.18]:
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Theorem 7.6. Let X be a smooth variety over an infinite field, L a very ample
line bundle over X. Then there is a section of L with smooth subscheme of
2eros.

Lemma 7.7. (cf. [11, Proposition, p.125]) Let F' be an infinite field. Then
for every prime integer p and every integer d > 1 there exists a projective
variety MY € Sm(F') of dimension d such that the polynomial FJ\K4§ has largest
monomial by modulo p if d # p* — 1 for any s or P~ (bys-1_1)P if d = p* — 1
for some s > 0.

Proof. Assume first that d + 1 is not divisible by p and set M} = P%. By
Proposition 6.2, the bs-coefficients of F]\K@ and Fﬁg coincide. By Example 3.5,
this coefficient is equal to —(d + 1) and it is not divisible by p.

Assume now that d + 1 is divisible by p but d + 1 # p® for any s. We write
d+1=p(pu+v) withr >0and 0 < v < p. Ifu=0,v>1 we set
M = V(pr,p’"(v — 1)) By Proposition 7.2, the bg-coefficient of FAH45 is equal
to (p;r”) and hence it is not divisible by p.

If u> 0, let M} = V(p"v,p"'u) and again by Proposition 7.2, the by-

P’ (put ”)) and it is not divisible by p.

coefficient of Fﬁg is equal to ( )

If d+1 = p* for some s, let MY = V(p*,p*,....,p* 1) (p terms) be a
smooth hypersurface. It exists by Theorem 7.6. Then by Proposition 7.5, the
b,-coefficient of F]ﬁg is zero modulo p if |a| > p* — p unless |a| = p* — p and

«a refines (p*~t —1,...,p° 1 —1). O

Corollary 7.8. (cf. [11, Corollary, p.126]) For a partition o let MP = MP x
- X ME . Then for every integer d > 0, the polynomaials Fﬁg (mod p) in
(Z/pZ)[t,b] with |«| = d are linearly independent.

Proposition 7.9. Let F' be an infinite field. Then the ring I?c(pt) ® Z/pZ
(resp. H.(pt) ® Z/pZ) is a polynomial ring over Z/pZ in the variables Fﬁg
(resp. FJ\H/Ig) (mod p), d > 1.

Proof. By Corollary 7.8, Z/pZ-dimension of the image of K, (pt) in (Z/pZ)[t, b]
for every prime integer p is at least p(d). On the other hand, the rank of K.(pt)4
is at most p(d) by Proposition 6.2. Hence the classes Fﬁg (mod p) form a ba-

sis of K.(pt) ® Z/pZ over Z/pZ. The statements about H,(pt) follow from
Proposition 6.2. U

Let J be the ideal in K,(pt) ® Z/pZ generated by FX for all projective
X € Sm(F) of positive dimension. If the field F' is infinite, by Proposition
7.9, for every projective X € Sm(F) of dimension d,

(7.10) FY = AFy (mod J?)
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for a uniquely determined A € Z/pZ. Recall that the by-coefficients of F5 and
F¥ coincide and are equal to deg c@)(—TX). Note that the by-coeflicient of

every element of J? is trivial for every d.

Proposition 7.11. For a projective variety X € Sm(F) of dimension d =
p® — 1, the characteristic number deg cgl)(—TX) is divisible by p.

Proof. The characteristic numbers do not change under field extensions, hence
we may assume that the field F is infinite. The statement follows from (7.10)
since by Lemma 7.7, deg cg)(—TMg) is divisible by p. O

Lemma 7.12. Let S a set of smooth projective varieties over F. Assume
that for every prime integer p and every d > 1 there is X € S such that
deg c{fl)(—TX) is not divisible by p if d # p* — 1 for any s and deg c@)(—TX)
is not divisible by p? if d = p* — 1 for some s > 0. Then the ring l?c(pt) is
generated by the F%, X € S.

Proof. We may assume that F' is infinite. Let p be a prime integer. For
every d > 1, there is X € S such that A in (7.10) is not zero modulo p.

Hence the polynomials F§ generate [?c(pt) modulo p for every p, whence the
statement. 0

Proposition 7.13. The subring I?C(pt) C Zlt,b] is generated by the classes
of projective spaces P and smooth hypersurfaces V(n,m).

Proof. Let S be the set of all projective spaces P and smooth hypersurfaces
V(n,m). Let p be a prime integer and d > 1. If d # p* — 1 for any s, the
proof of Lemma 7.7 shows the there is X € S such that deg cg)(—TX) is not
divisible by p.

Assume that d = p® — 1 for some s. If s > 1, then by Proposition 7.2,

ps
degcgs_l)(%sfl,ps_psfl) = (psl)
is not divisible by p2. If s = 1, by Example 3.5,
deg cgjfl)(]P’p’l) = —p.

By Lemma 7.12; the set S generates K.(pt). O
Propositions 6.2 and 7.13 imply

Corollary 7.14. The subring ﬁc(pt) C Z[b] is generated by the fundamental
polynomials of projective spaces P and smooth hypersurfaces V(n,m).

Remark 7.15. It follows from Corollary 7.14 and Proposition 6.2 that the
groups H.(pt) and K (pt) do not depend on the base field. In Theorem 8.2 we

will identify H.(pt) with the Lazard subring of Z[b].
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Proposition 7.16. (1) The degree d component K,(pt)q is a direct summand
of Z[t,blq of rank p(d).

(2) The degree d component H,.(pt)q C Z[bly is a free subgroup of (mazimal)
rank p(d).

Proof. In view of Remark 7.15 we may assume that the field F' is infinite. It fol-
lows from the proof of Proposition 7.9 that the monomials Fﬁg are linearly in-

dependent in (Z/pZ)[t, b] and therefore the map K.(pt)q®Z/p — (Z/pZ)[t, b]
is injective for every prime p. Hence, K.(pt), is a direct summand of Z[t, b],.
The statements about H.(pt) follow from Proposition 6.2. O

Remark 7.17. The first statement of the Proposition is an algebraic analog
of the Hattori-Stong Theorem [11, Theorem, p.129].

8. LAZARD RING

Let Laz be the Lazard ring, the coefficient ring of the universal (one-dimensional,
commutative) group law [10, Prop. VIL.5.3]. For a commutative ring R, the
set of R-points

Spec(Laz)(R) = Mor (Spec(R), Spec(Laz)) = Hom,gs(Laz, R)

is identified with the set of all formal group laws over R.

Let G denote the scheme SpecZ[b]. For a commutative ring R the set of
R-points G(R) = Hom,,,45(Z[b], R) can be identified with the set of sequences
(r1,79,...) of elements of R (r; is the image of the b;) and therefore with the
set of power series

t+ it 4 rot® + - € R[[t]).

The composition of power series makes G' a group scheme over Z.
The group Spec(Z[b])(R) acts on Spec(Laz)(R) by conjugation

(P@)(w,y) = F(O(f(2), f ().

Thus, the group scheme G acts on the scheme Spec(Laz). We write

logt =t + myt* + myt® + - € Z[b][[t]]
for the formal inverse of

expt =t + byt* + byt + - - € Z[b][[t]].
It is known that my = Fi, /(d + 1) [10, VII, Cor. 6.12 ].
Lemma 8.1. For every oriented cohomology theory A*,

@g(x, y) = exp ®*(log z,log y).

Proof. For a line bundle L,

ML) =expei(L), (L) =logef(L).
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Hence for a pair of line bundles L and L/,
c{T(L @L)=expc(L® L)
= exp &% (cf'(L), ¢ (L))
= exp ®* (log c‘li(L), log c’lq([/)) :

By Lemma 8.1, the group law
® =exp(logz +logy) =x+y+ Z aij o'y’
i,j>1
over Z[b] coincides with ®f . Tt defines a ring homomorphism Laz — Z[b]
which is, in fact, injective [10, VII,§5]. We will identify Laz with its image in
Z[b]. The ring Laz is generated by the coefficients a;; and @ is the universal
group law over Laz.

Theorem 8.2. The subgroup of Z[b] generated by the fundamental polynomials
F for all X € Sm(F), coincides with Laz C Z[b].

Proof. The differential form
dlog(z) = (1 +2myx 4+ 3mea® + ... )de = (1 + F o + FL2* + .. ) da
can be computed out of the formal group law by the formula [10, Prop. VIL.5.7]
dx
(I)y (.’L’, 0) ‘
Hence, the classes of the projective spaces P can be expressed in terms of the
a;;, so that F,, € Laz. By Lemma 5.3, F‘I}’(n,m) € Laz for every n and m. It
follows from Corollary 7.14 that H,(pt) C Laz.

dlog(x) =

Conversely, the inclusion Laz C H.(pt) follows from Corollary 5.4 since Laz
is generated by the coefficients a;;. O

Thus, every projective variety X € Sm(F) has the class F¥ in the Lazard
ring Laz.

9. VALUES OF CHARACTERISTIC CLASSES

In this section we prove that the characteristic classes in an oriented coho-
mology theory A* over F take values in A% C A*. For X € Sm(F) let A%(X)
be the subgroup in A%*(X) generated by the elements i4(1z), where i : Z <— X
is a smooth closed subvariety. We write A* . (X) the subgroup in A%(X) gen-

erated by the subgroups fa(A%(Xp)) for all finite separable field extensions
E/F, where f: Xp — X is the canonical morphism. We have

AZZ(X> - AZorm(X) - A:(X>
Lemma 9.1. Let L be a very ample line bundle over X € Sm(F). Then
(L) € Ar,,(X).

norm
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Proof. It F is infinite, by Bertini theorem 7.6, there exists a section of L with
the smooth subscheme of zeros Z. Let ¢ : Z — X be the closed embedding.
By Proposition 3.2,

ci (L) = ia(1z) € AL(X) C Ay (X).

Assume that F' is a finite field. We use the following trick from [8, p. 41]. For a
prime integer p choose an infinite extension £/F such that the degree of every
finite subextension of E/F is a power of p. By Bertini theorem 7.6, applied
to the variety Xz, there exists a section of L with the smooth scheme of zeros
Z. The variety Z is defined over a finite subextension K/F of E/F of degree
p*. Let f : Xg — X be the natural morphism and i : Z < Xk the closed
embedding. Then by Lemma 2.4, Proposition 3.2 and the projection formula,

prei(l) = [K : Flei(L) = fa(l)er(L)
= fa(ci(f L)) = faia(lz) € fa(A5(X)) C A (X).
Applying the same argument to another prime integer ¢, we get

q"er(L) € Ao (X)

norm

for some m, hence ¢;(L) € A% .. (X). O

Corollary 9.2. Let L be a very ample line bundle over X € Sm(F). Then

C{‘(L) ’ A?Lorm(X) - A:Lorm(X)'

Proof. By projection formula it is sufficient to show that cf{(L) - A%(X) C
Ar o (X). Let i : Z — X be a smooth closed subvariety. The restriction

norm

L' = L|y is very ample over Z. By Lemma 9.1,
i (L) ia(lz) = ia(i%e1 (L)) = ia(c (L)) € ia(Apom(Z)) C Asprn(X).
U

Proposition 9.3. Let L be a line bundle over X € Sm(F'). Then
e (L) - AZ(X) € AUX).

Proof. Let f : Y — X be a projective morphism with Y € Sm(F') and let
L' = f*(L). Choose very ample line bundles L; and Ly over Y such that
L' =1L, ®Ly". By Lemma 9.1,

A (L) - ef (Ly) € A,

norm

(Y) c A(Y)
for all 7+ and j. Then by Proposition 5.4 and Corollary 5.5,
e (L) = @4 (c'(Lu), et (L2)) € AL(Y).
Finally,
A (L) - fa(ly) = fa(fAc (L)) = fa(el (L) € fa(AL(Y)) C AXX).
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Let E be a vector bundle of rank » > 0 over X. Consider the projection
p:P(F) — X and set

§= ClA(Lcan) e Al (P(E))’
where L4, is the canonical line bundle over P(E).

Lemma 9.4. For every i > 0,

pa€) = M—E) + 3w} (B) € A°(X),

for some a; € A%(pt) and characteristic classes d; of degree j.

Proof. By Jouanolou trick and the splitting principle we may assume that X
is affine and E is a subbundle of a trivial bundle E’ of rank n with the factor
bundle E’'/E isomorphic to the direct sum of line bundles Ly, Lo,.... Let
[ :P(E) — P(E') be the closed embedding, ¢ : P(E’) — X the projection, L.
the canonical line bundle over P(E'),( = ¢f'(L.,,) € A'(P(E’)). We can con-
sider [ as a composition of closed embeddings of codimension 1 corresponding

to the line bundles ¢*L;, ® L. . Hence, by Proposition 3.2,

can*

(95> ZA(é-r—H—i) _ lA(l . lAgr—H—i) _ Cr—1+z’ . Hcfl (Q*Lk Q L/C(m)'
k

!/

lan) using the formal group law &

We can compute ci! (q*Lk ® L
(96) ¢ (¢"Li ® Liy,)) = ¢ (Li) + ¢+ Y amg™ e (Le) ™
I,m>1

Applying g4 to (9.5) and using (9.6), we get the formula we need, since by
Lemma 5.2, ¢4(¢*) = [P 514 € A%(pt), amn € A%(pt) (Lemma 5.4) and
0i(L;) = ¢/ (E'/E) = /(- E). O

Lemma 9.7. For every s > 0, pa(€°) - AZ(X) C AL(X).

Proof. Let f :' Y — X be a projective morphism in Sm(F), E' = f*(E).
Consider the Cartesian transverse square

P(E") —— P(E)

/| |

y 4 x

We have
pa(€)-fally) = pa(€-p fa(ly)) = pa(€-9a0" (1v)) = pa(€-94(1)) € A(X)

since by Proposition 9.3, £ - ga(1) € A;(P(E)).
U

Theorem 9.8. For every vector bundle E over X and every characteristic
class ¢, cA(E) - AX(X) C AX(X).
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Proof. Since ¢(F) = ¢(—FE) for some characteristic class ¢, it is sufficient to
prove that ¢(—E) - A*(X) C A*(X) for every c. We may assume that

C = CayCay - - - Cay,

for some partition oo = (v, ..., ). Let a € A5(X). By Lemma 9.4,

(9:9) A€ ") - pal€ "M = A(=E)a+ 3 ajd (E)a € A*(X),
>
for some a; € A’(pt) and characteristic classes d; of degree bigger than the
degree of c. By the reverse induction on the degree of ¢, we have d;-‘(E)a €
A%(X). By Lemma 9.7, the left hand side of (9.9) also belongs to A%(X).
Hence, c*(—E)a € A% (X). O

Corollary 9.10. For every smooth X and every vector bundle E over X, the
classes c2A(E) belong to A*(X) for every partition . Moreover, cA(E) = 0 if

la] > dim(X). In particular, if X is projective, the fundamental polynomial
F4 is of degree at most dim(X).

Proof. The group A'(X) is trivial if 4 > dim(X). O

10. LANDWEBER-NOVIKOV OPERATIONS

Let R be a commutative ring. Assume that the group scheme G = Spec Z[b]
acts on Spec R. The co-morphism of the action we denote by

0r: R — R® Z[b] = R[b].
For every r € R,

O(r) = Z sH(r) @ by

for uniquely determined elements s’(r) € R. We call the group endomor-
phisms
s R—R
for all partitions a the Landweber-Novikov operations on R.
Now consider the natural action of G on Spec(Laz) (section 8). The corre-

sponding operations s we simply denote by s,.

Let € : Laz — Z be the restriction of the augmentation map Z[b| — Z.
Lemma 10.1. The composition
Laz 2% Laz ®7Z[b] 2% Z[b]
coincides with the embedding Laz — Z[b].
Proof. The homomorphism 6y, corresponds to the group law

exp (<I>(log x, log y))

on Laz ®Z[b], where ® is the universal group law on Laz. The augmentation
of ® is the additive group law over Z, whence the result. U



ORIENTED COHOMOLOGY THEORIES 23
Denote by
w: Z[b] — Z[b] @ Z|b]
the co-multiplication ring homomorphism for the group scheme G. Let A* be
an oriented ring cohomology theory over F'. Consider the ring homomorphism
of cohomology theories
Lemma 10.2. For every X € Sm(F) and a € Ky(X),
fi(PA(a)) = P*(a) - PA(a).

(In the r.h.s. the first term is a polynomial in the b, and the second - in the
b// )
Proof. The co-multiplication p : Z[b] — Z[b] ® Z[b] = Z[b’, b"] satisfies

J+1
Z ti+1/L(bi> _ Z <Z tk+1b;€) b;/

>0 7>0 \k>0

By the splitting principle and multiplicativity property (3.4), we may assume
that a = [L], where L is a line bundle. Hence (with & = ¢1(L)),

A(PAL)) = & u(b)

>0

j+1
=2 (Z f’%> &)
Jj=0 \k>0
= PAHLYTE
J=0
=PAL)- ) (LYY
Jj=0

— PA(L) - PA(L).

O
Corollary 10.3. For every projective variety X € Sm(F),
uEFy) =Fy.
Proof. We apply Lemma 10.2 for a = [—-Tx]|:
WE) = upaPy) = pafi(Py) = pa(Py -Px) = pz(Px) = Fx.
U

We can express the Landweber-Novikov operations in terms of characteristic
numbers in H. This is an analog of Novikov’s formula [1, Th. 1.8.3] with the
cobordism theory replaced by its approximation H.
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Proposition 10.4. For every projective variety X € Sm(F),
sa(FY) = pgch ( Tx) € Z[b],
where p : X — pt s the structure morphism.

Proof. Consider the following commutative diagram

Laz  —,  Laz®Zb] —24%  7Z[b]

6Laz J{ 1d®lu‘J/ MJ/

Laz ®Z[b] 2% Laz@Z[b,b"] <29 7z[b', b"].

By Lemma 10.1 and Corollary 10.3, the composition p o (¢ ® id) o 0,, takes
the class F4 to

F§ = ZpHc —Tx)bl.

By Lemma 10.1, another composition (¢ ® id) o (01, ® id) o p,, takes Fg to

> sa(F).

11. INVARIANT IDEALS

Let R be a commutative ring. Assume that the group scheme G' = Spec Z|b|
acts on Spec R. An ideal I C R is called invariant if s%(I) C I for every a.
Let p be a prime integer. The ideal pZ[b] in Z[b] is obviously prime and in-
variant with respect to the action of G on itself by left translations. Therefore,
the intersection I(p) = LazNpZ[b] C Laz is a prime invariant ideal in Laz.
Let n =0,1,2,...,00. We write I(p,n) for the ideal in I(p) generated by all
a € I(p) of degree < p™ — 1. For example, I(p,0) = pLaz and I(p, 00) = I(p).
Thus, for every prime p we have a chain of prime invariant ideals in Laz:

pLaz = I(p,0) C I(p,1) C---C I(p,n) C--- C I(p,o0)=1(p).

It is known (see [10, Prop. VII.4.21] and [5, Th. 2.7]) that every ideal I(p, n)
is prime and invariant and the only nonzero prime invariant ideals in Laz are
I(p,n) for all prime p and n > 0.

Let X be a projective smooth variety over a field F'. The set

I[(X) = {F{ € Laz for all Y € Sm(F) such that Mory(Y, X) # 0}

is a graded ideal in Laz. Let ¢ : X — pt be a structure morphism. For every
projective morphism f:Y — X,
4fa(ly) = () z(1y) = F§
Hence B
[(X) = qgH(X).
Recall that ny is the ged of deg(x) over all closed points z of a variety X.
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Example 11.1. [(X)y =nxZ. If X(F) # 0, I(X) = Laz.

Theorem 11.2. For a projective variety X € Sm(F') over a field F, the ideal
I(X) C Laz is invariant.

Proof. Let f :Y — X be a morphism, g : X — pt the structure morphism.
By Proposition 10.4 and Corollary 9.10,

sa(FID) = q5 15 (T (=Tv)) € g (H(X)) = I(X).

O
Let P be a minimal prime ideal in Laz containing I(X). By [6, Th. 3.1], P is
invariant and hence P = I(p,n) for some prime integer p and n =0, 1,.. ., oc.

Clearly, P is the only minimal prime ideal containing I(X) and p. We set
n,(X) = n. If for a prime integer p there is no invariant prime ideal containing
I(X) and p, we set n,(X) = oco. Thus, for every projective variety X we have
the numbers n,(X) assigned for each prime integer p.

Proposition 11.3. Let X € Sm(F) be a projective variety, p a prime integer.
Then the following conditions are equivalent:

(2) There exists an invariant prime ideal of Laz containing 1(X) and p.

Proof. 1f I(p,n,(X)) is the minimal prime ideal, then I(X)o C pZ, i.e. p | nx.
Conversely, let p | nx and let I(p;,n;) be all minimal prime ideals containing
I(X). Since I(p;,n;) NZ = p;Z and 1(X) NZ = nxZ, the intersection of all
the p;Z coincides with the radical of nxZ, hence p = p; for some 1. [l

Proposition 11.4. Let X and Y be projective smooth wvarieties such that
Mor(Y, X) # 0. Then n,(Y) < n,(X) for every prime p.

Proof. We have I(Y) C I(X) C I(p,n,(X)). The minimal prime ideal be-
tween 1(Y) and I(p,n,(X)) is equal I(p,n,(Y)), hence n,(Y) < n,(X). O
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