ALGEBRAIC ORIENTED COHOMOLOGY THEORIES

ALEXANDER MERKURJEV

ABSTRACT. For every smooth projective variety over a field F we define its fundamental polynomial in $\mathbb{Z}[\mathbf{b}] = \mathbb{Z}[b_1, b_2, \dots]$ and prove that the fundamental polynomials generate the Lazard ring Laz $\subset \mathbb{Z}[\mathbf{b}]$. Using description of invariant prime ideals in Laz, due to Landweber, we assign to every smooth projective variety X the numbers $n_p(X)$ for every prime integer p. Inequality $n_p(Y) > n_p(X)$ for some prime p is an obstruction for existence of a morphism $Y \to X$ over F.

1. Introduction

Let $\mathbf{Sm}(F)$ be the category of smooth quasi-projective varieties over a field F. M. Levine and F. Morel have defined in [7] an oriented cohomology theory over F as a contravariant functor A^* from the category $\mathbf{Sm}(F)$ to the category of graded commutative rings satisfying certain properties (see Section 2). Examples of the oriented cohomology theories are K^* given by the Grothendieck rings of varieties in $\mathbf{Sm}(F)$ (Example 2.3) and H^* given by the Chow rings (Example 2.2).

It is proved in [7] that if char F = 0 (resolution of singularities is used) then there exists a universal oriented algebraic cobordism cohomology theory Ω^* . For every oriented cohomology theory A^* there is unique morphism of cohomology theories $\Omega^* \to A^*$ commuting with the push-forward homomorphisms. For a variety $X \in \mathbf{Sm}(F)$ the group $\Omega^*(X)$ is generated by the classes [f] corresponding to projective morphisms $f: Y \to X$ in $\mathbf{Sm}(F)$. The homomorphism $\Omega^*(X) \to A^*(X)$ takes the class [f] to $f_A(1_Y)$, where f_A is the push-forward homomorphism in A^* . Thus, the image of the morphism $\Omega^*(X) \to A^*(X)$, which we denote by $A_c^*(X)$, can be defined just in terms of the theory A: the group $A_c^*(X)$ is generated by the elements $f_A(1_Y)$ for all projective morphisms $f: Y \to X$ in $\mathbf{Sm}(F)$.

To every oriented cohomology theory A one has associated a commutative formal group law Φ^A over the *coefficient ring* $A^*(pt)$. The formal group law Φ^{Ω} is the universal one and the coefficient ring $\Omega^*(pt)$ is the Lazard ring.

In the present paper we consider oriented cohomology theories on $\mathbf{Sm}(F)$ for arbitrary fields F and don't refer to the problem of resolution of singularities and existence of the cobordism theory. The idea is to consider "large" oriented cohomology theories A^* such that the natural homomorphism $\Omega^*(X) \to A^*(X)$ is injective at least for $X = \mathrm{pt}$ and work inside A^* instead of Ω^* .

Date: December, 2001.

Partially supported by the N.S.F.

How to construct "large" cohomology theories? In Section 4 we consider an operation (we call it *tilde operation*), which assigns to every oriented cohomology theory A^* another theory \tilde{A}^* defined by

$$\widetilde{A}^*(X) = A^*(X) \otimes \mathbb{Z}[\mathbf{b}] = A^*(X)[\mathbf{b}],$$

where $\mathbb{Z}[\mathbf{b}] = \mathbb{Z}[b_1, b_2, \dots]$ is the polynomial ring in infinitely many variables. We define the push-forward homomorphisms in \widetilde{A}^* in such a way that the inverse Todd genus of the natural embedding $A^* \hookrightarrow \widetilde{A}^*$ is the universal one (with the coefficients b_i). We prove that the two theories \widetilde{H}^* and \widetilde{K}^* are large enough so that the coefficient rings $\widetilde{H}_c^*(\mathrm{pt})$ and $\widetilde{K}_c^*(\mathrm{pt})$ are both isomorphic to the Lazard ring. In Sections 6 and 7 we follow closely the method of [11].

For every projective variety $X \in \mathbf{Sm}(F)$ we define the fundamental polynomial $\mathbf{F}_X^H \in \mathbb{Z}[\mathbf{b}]$ and prove that for every field F the fundamental polynomials of all projective $X \in \mathbf{Sm}(F)$ generate the same ring - the Lazard ring Laz considered as a subring of $\mathbb{Z}[\mathbf{b}]$. The fundamental polynomials \mathbf{F}_X^H do not change under field extensions (and therefore can computed over an algebraic closure of F); nevertheless, they keep track of an arithmetic information on X. Namely, all the coefficients of \mathbf{F}_X^H are divisible by the greatest common divisor of the degrees [F(x):F] of all closed points of X. For example, existence of division algebras of a given dimension over an extension of F explains the fact that the fundamental polynomial of the projective space \mathbb{P}_F^n is divisible by n+1 in $\mathbb{Z}[\mathbf{b}]$ (Example 3.8), the well known fact in topology (see [10, Ch. VII]).

In Section 9 we prove that the characteristic classes of vector bundles over $X \in \mathbf{Sm}(F)$ take values in the subgroup $A_c^*(X) \subset A^*(X)$. We use this result in Section 10 where we study the Landweber-Novikov operations on Laz. In Section 11 we introduce ideals $I(X) \subset \text{Laz}$ for every projective variety $X \in \mathbf{Sm}(F)$, consisting of the fundamental polynomials of all projective varieties $Y \in \mathbf{Sm}(F)$ such that there is a morphism $Y \to X$ over F. We prove that the ideal I(X) is invariant under the Landweber-Novikov operations and so are all the associated prime ideals. Invariant prime ideas were described by Landweber in [5]. Based on this description one can associate to every projective variety $X \in \mathbf{Sm}(F)$ and every prime integer p an integer $n_p(X) \in \{0, 1, \ldots, \infty\}$. Inequality $n_p(Y) > n_p(X)$ for some prime p is an obstruction for existence of a morphism $Y \to X$ over F.

Although the paper is purely algebraic, the most of the constructions are borrowed from topology. The class $[-T_X] \in K_0(X)$ of the tangent bundle T_X over X is a replacement for the stable normal bundle of X. The tilde operation is analogous to the smash product with the Thom spectrum MU. The embedding of the Lazard ring into $\mathbb{Z}[\mathbf{b}]$ is the Hurewicz homomorphism $\pi_*(MU) \to H_*(MU)$. The Landweber-Novikov operations are induced by those on the spectrum MU.

2. Definition of an oriented cohomology theory

Let F be a field, and let $\mathbf{Sm}(F)$ be the category of smooth quasi-projective varieties over F. Let A^* be a functor from $\mathbf{Sm}(F)^{op}$ to the category $\mathbf{GrRings}$ of \mathbb{Z} -graded commutative rings. For a morphism $f: Y \to X$ in $\mathbf{Sm}(F)$ the (pull-back) ring homomorphism $A^*(f)$ is denoted by f^A .

An oriented cohomology theory over F (see [7]) is a functor

$$A^*: \mathbf{Sm}(F)^{op} \to \mathbf{GrRings}$$

together with a graded (push-forward) group homomorphism

$$f_A: A^*(Y) \to A^{*+d}(X)$$

for every projective morphism $f: Y \to X$ in $\mathbf{Sm}(F)$ of pure codimension d, satisfying the following:

(i) (Additivity) Let $Z = X \coprod Y$ where $X, Y \in \mathbf{Sm}(F)$, and let $i : X \hookrightarrow Z$, $j : Y \hookrightarrow Z$ be the closed embeddings. Then the homomorphism

$$i_A + j_A : A^*(X) \oplus A^*(Y) \rightarrow A^*(Z)$$

is an isomorphism.

- (ii) For a pair of projective morphisms $f: Y \to X$ and $g: Z \to Y$, one has $(f \circ g)_A = f_A \circ g_A$.
- (iii) Let $E \to X$ be a vector bundle over $X \in \mathbf{Sm}(F)$ of rank r, and let $\mathbb{P}(E) \to X$ be the associated projective bundle. Then $A^*(\mathbb{P}(E))$ is a free $A^*(X)$ -module with basis $1, \xi, \xi^2, \ldots, \xi^{r-1}$, where $\xi = s^A s_A(1_{\mathbb{P}(E)})$, and s is the zero section of the tautological line bundle over $\mathbb{P}(E)$.
- (iv) (Transverse property) Let

$$(2.1) Y' \xrightarrow{f'} X'$$

$$\downarrow g$$

$$Y \xrightarrow{f} X$$

be a transverse Cartesian square in $\mathbf{Sm}(F)$ with f a projective morphism, i.e. the sequence of tangent bundles over Y'

$$0 \to T_{Y'} \xrightarrow{df' \oplus dh} f'^* T_{X'} \oplus h^* T_Y \xrightarrow{dg-df} (fh)^* T_X \to 0$$

is exact. Then $f'_A \circ h^A = g^A \circ f_A$.

- (v) (Homotopy invariance) Let $p: V \to X$ be an affine bundle (a torsor for a vector bundle over X). Then $p^A: A^*(X) \to A^*(V)$ is an isomorphism.
- (vi) (Projection formula) Let $f: Y \to X$ be a projective morphism in $\mathbf{Sm}(F)$. Then for every $a \in A^*(X)$ and $b \in A^*(Y)$, $f_A(b \cdot f^A(a)) = f_A(b) \cdot a$.

The ring $A^*(pt)$, where $pt = \operatorname{Spec}(F)$, is called the *coefficient ring of* A^* . For every $X \in \operatorname{\mathbf{Sm}}(F)$, $A^*(X)$ is an algebra over $A^*(pt)$.

Example 2.2. ([7, Ex. 1.2]) The Chow cohomology theory H^* assigns to every variety $X \in \mathbf{Sm}(F)$ the Chow ring $H^*(X) = \mathrm{CH}^*(X)$. The push-forward and pull-back homomorphisms are defined in [2]. The coefficient ring $\mathrm{CH}^*(\mathrm{pt})$ is equal to \mathbb{Z} .

Example 2.3. ([7, Ex. 1.3]) The *K*-theory assigns to every variety $X \in \mathbf{Sm}(F)$ the Laurent polynomial ring $K^*(X) = K_0(X)[t, t^{-1}]$ graded by $\deg(t) = -1$, i.e. $K^i(X) = K_0(X)t^{-i}$. If $f: Y \to X$ is a projective morphism of pure codimension d, then for every $a \in K^*(Y)$, $f_K(at^{-i}) = f_*(a)t^{-i-d}$, where f_* is the push-forward homomorphism in algebraic K-theory. We have also $K^*(\mathrm{pt}) = \mathbb{Z}[t, t^{-1}]$.

Lemma 2.4. Let E be an étale F-algebra, $X \in \mathbf{Sm}(F)$ and let $f: X_E = X \times_{\operatorname{Spec} F} \operatorname{Spec} E \to X$ be the canonical morphism. Then $f_A(1_{X_E}) = [E:F] \cdot 1_X$.

Proof. We proceed by induction on [E:F]. By the additivity property and projection formula we may assume that E is a field and $X = \operatorname{pt}$. There is a smooth curve W over F and a morphism $g:W\to \mathbb{A}^1_F$ such that $g^{-1}(0)=\operatorname{Spec} E$ and $g^{-1}(1)=\operatorname{Spec} K$, where K is an étale F-algebra that is not a field (see [8, Lemma 4.8]). The diagram

$$Spec E \xrightarrow{j} W
f \downarrow \qquad \qquad \downarrow^{g}
pt \xrightarrow{i_0} \mathbb{A}_F^1$$

is transverse. Hence,

$$f_A(1) = f_A j^A(1) = i_0^A g_A(1).$$

Let $p: \mathbb{A}_F^1 \to \text{pt}$ be the structure morphism. By homotopy invariance, $i_0 = (p^A)^{-1}$, hence $f_A(1) = (p^A)^{-1}g_A(1)$.

Similarly, for the structure morphism $h: \operatorname{Spec} K \to \operatorname{pt}$, we have $h_A(1) = (p^A)^{-1}g_A(1) = f_A(1)$. By the induction hypothesis, $h_A(1_{X_E}) = [E:F] \cdot 1_X$ as K is not a field, therefore, $f_A(1_{X_E}) = [E:F] \cdot 1_X$.

Let $X \in \mathbf{Sm}(F)$ and let $p: X \to \mathrm{pt}$ be the structure morphism. If X is projective of dimension d, we define the fundamental class $[X]^A$ of X in the theory A as the element

$$[X]^A = p_A(1_X) \in A^{-d}(pt).$$

For example, $[pt]^A = 1$, $[X]^H = 0$ if d > 0 and $[X]^K = td(X)t^d$, where $td(X) = p_*([\mathcal{O}_X]) \in \mathbb{Z}$ is the Todd number of X [2, Example 15.2.13].

Proposition 2.5. Let X and Y be projective varieties in Sm(F). Then $[X \times Y]^A = [X]^A \cdot [Y]^A$.

Proof. Consider Cartesian transverse square

$$\begin{array}{ccc} X \times Y & \stackrel{p}{\longrightarrow} & X \\ \downarrow^q & & \downarrow^s \\ Y & \stackrel{r}{\longrightarrow} & \mathrm{pt} \, . \end{array}$$

We have

$$[X \times Y]^{A} = (sp)_{A}(1_{X \times Y})$$

$$= (s_{A}p_{A}q^{A})(1_{Y}) \quad \text{(property (iv))}$$

$$= (s_{A}s^{A}r_{A})(1_{Y}) \quad \text{(projection formula)}$$

$$= s_{A}(1_{X}) \cdot r_{A}(1_{Y})$$

$$= [X]^{A} \cdot [Y]^{A}.$$

For every smooth variety X we consider the graded subgroup $A_c^*(X)$ in $A^*(X)$ generated by the elements $f_A(1_Y)$ for all projective morphisms $f: Y \to X$ in $\mathbf{Sm}(F)$. Clearly, $A_c^i(X) = 0$ if $i > \dim(X)$. For a projective morphism $g: X \to X'$ the push-forward map g_A takes $A_c^*(X)$ to $A_c^*(X')$.

The subgroup $A_c^*(\text{pt}) \subset A^*(\text{pt})$ is generated by the fundamental classes $[X]^A$ for all smooth projective varieties X. Proposition 2.5 shows that $A_c^*(\text{pt})$ is a subring in $A^*(\text{pt})$.

Example 2.6. $H_c^*(pt) = H^*(pt) = \mathbb{Z}, K_c^*(pt) = \mathbb{Z}[t].$

3. Chern classes

Let $p: L \to X$ be a line bundle over $X \in \mathbf{Sm}(F)$. We define the first Chern class of L in an oriented cohomology theory A^* over F by

$$c_1^A(L) = s^A s_A(1_X) \in A^1(X),$$

where $s: X \to L$ is the zero section of p (see [7]). Since $p \circ t = \mathrm{id}_X$ for every section t of p, we have $t^A = (p^A)^{-1}$ (property (v)). Hence,

$$c_1^A(L) = (p^A)^{-1} s_A(1_X).$$

Example 3.1. The first Chern class of a vector bundle $E \to X$ in K-theory is defined by

$$c_1^K(E) = (\operatorname{rank}(E) - [E^{\vee}])t^{-1} \in K_0(X)t^{-1} = K^1(X).$$

Proposition 3.2. Let $p: L \to X$ be a line bundle over $X \in \mathbf{Sm}(F)$ and let $i: Y \hookrightarrow X$ be the subscheme of zeros of a section t of p. If Y is a smooth divisor in X, then $i_A(1_Y) = c_1^A(L) \in A^1(X)$.

Proof. The diagram

$$\begin{array}{ccc}
Y & \xrightarrow{i} & X \\
\downarrow i & & \downarrow t \\
X & \xrightarrow{s} & L
\end{array}$$

where s is the zero section of p, is transverse. Hence,

$$i_A(1_Y) = i_A i^A(1_X) = t^A s_A(1_X) = (p^A)^{-1} s_A(1_X) = c_1^A(L).$$

The standard method by Grothendieck (see [7]) gives Chern classes $c_i^A(E) \in A^i(X)$ for every vector bundle $p: E \to X$ of rank r. They satisfy the equation

$$\sum_{i=0}^{r} (-1)^{i} p^{A} (c_{i}^{A}(E)) \xi^{r-i} = 0 \in A^{r} (\mathbb{P}(E)),$$

where ξ is the first Chern class of the tautological line bundle over $\mathbb{P}(E)$.

A partition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ is a sequence of integers (possibly empty) $\alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_k > 0$. The degree of α is the integer

$$|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_k.$$

The integer k is called the *length* $l(\alpha)$ of the partition α . Denote by p(d) the number of all partitions of degree d.

We consider the polynomial ring $\mathbb{Z}[b_1, b_2, \dots] = \mathbb{Z}[\mathbf{b}]$ in infinitely many variables b_1, b_2, \dots as a graded ring with deg $b_i = i$. For every partition α set

$$b_{\alpha} = b_{\alpha_1} b_{\alpha_2} \dots b_{\alpha_k}.$$

The monomials b_{α} form a basis of the polynomial ring over \mathbb{Z} , and more precisely, the b_{α} with $|\alpha| = d$ form a basis of the d-graded component $\mathbb{Z}[\mathbf{b}]_d$. Thus, $\mathbb{Z}[\mathbf{b}]_d$ is a free abelian group of rank p(d).

Let $\mathbb{Z}[c_1, c_2, \dots] = \mathbb{Z}[\mathbf{c}]$ be another polynomial ring with similar grading deg $c_i = i$. The elements of $\mathbb{Z}[\mathbf{c}]$ are called the *characteristic classes* and the c_n - the *Chern classes*.

For every partition α we define the "smallest" symmetric polynomial

$$P_{\alpha}(x_1, x_2, \dots) = \sum_{(i_1, i_2, \dots, i_k)} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \dots x_{i_k}^{\alpha_k} = Q_{\alpha}(\sigma_1, \sigma_2, \dots),$$

containing the monomial $x_1^{\alpha_1} x_2^{\alpha_2} \dots x_k^{\alpha_k}$, where the σ_i are the standard symmetric functions, and set

$$c_{\alpha} = Q_{\alpha}(c_1, c_2, \dots).$$

For example, $c_n = c_{(1,1,\dots,1)}$ (*n* units). The characteristic classes c_α with $|\alpha| = d$ form a basis of $\mathbb{Z}[\mathbf{c}]_d$.

Let A^* be an oriented cohomology theory over a field F. For every element (characteristic class) $c \in \mathbb{Z}[\mathbf{c}]$ and every vector bundle E over a variety $X \in$

 $\mathbf{Sm}(F)$ there is a well defined class $c^A(E) \in A^*(X)$. In particular, for every partition α there are generalized Chern classes

$$c_{\alpha}^{A}(E) \in A^{|\alpha|}(X).$$

We define the characteristic polynomial of E in the theory A^* by the formula

$$\mathbf{P}^{A}(E) = \sum_{\alpha} c_{\alpha}^{A}(E) b_{\alpha} \in A^{*}(X)[\mathbf{b}].$$

Example 3.3. If L is a line bundle, then $\mathbf{P}^{A}(L) = \sum_{i>0} c_{1}^{A}(L)^{i}b_{i}$.

Assume that a vector bundle $E \to X$ has a filtration with line factors L_1, L_2, \ldots, L_r . Then it follows from definition of the generalized Chern classes that

$$\mathbf{P}^{A}(E) = \mathbf{P}^{A}(L_1) \cdot \mathbf{P}^{A}(L_2) \cdot \ldots \cdot \mathbf{P}^{A}(L_r).$$

Hence, by the splitting principle, for an exact sequence of vector bundles $0 \to E' \to E \to E'' \to 0$ over X,

(3.4)
$$\mathbf{P}^{A}(E) = \mathbf{P}^{A}(E') \cdot \mathbf{P}^{A}(E'').$$

The value of the *i*-th Chern class $c_i(E)$ is nilpotent for i > 0 (see [7]), hence for every $\alpha \neq \emptyset$, the class $c_{\alpha}^{A}(E)$ is also nilpotent. The constant term of the polynomial $\mathbf{P}^{A}(E)$ is equal to 1, so that the polynomial $\mathbf{P}^{A}(E)$ is invertible in the polynomial ring $A^{*}(X)[\mathbf{b}]$. Thus, there is well defined group homomorphism

$$\mathbf{P}^A: K_0(X) \to A^*(X)[\mathbf{b}]^{\times}, \quad [E] \mapsto \mathbf{P}^A(E).$$

For a variety $X \in \mathbf{Sm}(F)$ we define the *characteristic polynomial of* X *in the theory* A^* :

$$\mathbf{P}_{X}^{A} = \mathbf{P}^{A}(T_{X})^{-1} = \mathbf{P}^{A}(-T_{X}) \in A^{*}(X)[\mathbf{b}],$$

where T_X is the tangent bundle of X.

Assume that X is projective. Let $p: X \to \text{pt}$ be the structure morphism. The polynomial

$$\mathbf{F}_X^A = p_A \mathbf{P}_X^A = \sum_{\alpha} p_A c_{\alpha} (-T_X) b_{\alpha} \in A^*(\mathrm{pt})[\mathbf{b}]$$

is called the the fundamental polynomial of X in the theory A^* . The coefficients of the polynomial \mathbf{F}_X^A , the elements $p_A c_\alpha(-T_X) \in A^*(\mathrm{pt})$, are called the characteristic numbers of X in the theory A^* . Clearly, the fundamental class $[X]^A$ is the constant term of the fundamental polynomial \mathbf{F}_X^A .

Example 3.5. Let $X \in \mathbf{Sm}(F)$ be a variety of dimension d. Then the polynomial $\mathbf{F}_X^H \in \mathbb{Z}[\mathbf{b}]$ is either zero or homogeneous of degree d. The class of the tangent bundle of the projective space \mathbb{P}_F^d is equal to $[L_{can}]^{d+1} - 1$, where L_{can} is the canonical bundle over \mathbb{P}_F^d . Since $c_1^H(L_{can})^d$ is the class of a rational point, the polynomial $\mathbf{F}_{\mathbb{P}^d}^H$ is equal to the degree d part of the power series

 $(1+b_1+b_2+\dots)^{-d-1}$. In particular, the b_d -coefficient of $\mathbf{F}_{\mathbb{P}^d}^H$ equals -(d+1). For example,

$$\mathbf{F}_{\mathbb{P}^1}^H = -2b_1,$$

 $\mathbf{F}_{\mathbb{P}^2}^H = -3b_2 + 6b_1^2.$

Example 3.6. Note that for every vector bundle E over a variety $X \in \mathbf{Sm}(F)$,

$$c_{\alpha}^{K}(E) \in K_{0}(X)^{(|\alpha|)} t^{-|\alpha|},$$

where $K_0(X)^{(i)}$ is the *i*-th term of the topological filtration of $K_0(X)$. Therefore, $c_{\alpha}^K(E) = 0$ if $|\alpha| > d = \dim X$ (cf. Corollary 9.10). Hence, $\mathbf{F}_X^K \in \mathbb{Z}[t, \mathbf{b}]$ is a homogeneous polynomial (with t of degree 1). The t^d -coefficient of \mathbf{F}_X^K is the Todd number of X. For example,

$$\mathbf{F}_{\mathbb{P}^1}^K = t - 2b_1,$$

$$\mathbf{F}_{\mathbb{P}^2}^K = t^2 - 3tb_1 - 3b_2 + 6b_1^2.$$

We will prove (Proposition 6.2) that $\mathbf{F}_X^K|_{t=0} = \mathbf{F}_X^H$ for every $X \in \mathbf{Sm}(F)$.

Thus, every projective variety $X \in \mathbf{Sm}(F)$ has the class \mathbf{F}_X^H in $\mathbb{Z}[\mathbf{b}]$. Clearly, the class does not change under field extensions: for every field extension E/F the varieties X and $X_E = X \times_{\operatorname{Spec} F} \operatorname{Spec} E$ have the same class in $\mathbb{Z}[\mathbf{b}]$. Hence, if X and Y are twisted forms of each other (if they are isomorphic over a separable closure of F), then $\mathbf{F}_X^H = \mathbf{F}_Y^H$.

For a variety $X \in \mathbf{Sm}(F)$ denote by n_X the gcd of $\deg(x) = [F(x) : F]$ over all closed points $x \in X$. By the very definition, for a projective variety X, all the coefficients of \mathbf{F}_X^H (the characteristic numbers) are divisible by n_X . We have proved

Proposition 3.7. (1) For every projective variety $X \in \mathbf{Sm}(F)$, the polynomial \mathbf{F}_X^H is divisible by n_Y for every twisted form Y of X_E over a field extension E/F.

(2) Let n be the gcd of all the coefficients of \mathbf{F}_X^H for a projective variety $X \in \mathbf{Sm}(F)$. Then X has a zero-cycle of degree n.

Example 3.8. For every $d \in \mathbb{N}$ and a field F there is a field extension E/F and a division algebra A over E of dimension $(d+1)^2$. Let Y be the Severi-Brauer variety over E corresponding to A (see [4]). The variety Y is a twisted form of the projective space \mathbb{P}_F^d . Since $n_Y = d+1$, the Proposition 3.7 explains why the characteristic polynomial of the projective space \mathbb{P}_F^d in $\mathbb{Z}[\mathbf{b}]$ is divisible by d+1.

4. Tilde operation

Let A^* be an oriented cohomology theory over F. We associate to A^* a new cohomology theory \widetilde{A}^* defined by

$$\widetilde{A}^*(X) = A^*(X) \otimes \mathbb{Z}[\mathbf{b}] = A^*(X)[\mathbf{b}].$$

The structure of a graded ring on $\widetilde{A}^*(X)$ is given by the one of the graded ring $A^*(X)$ and by assigning degree $-|\alpha|$ to every b_{α} . In particular, for every $X \in \mathbf{Sm}(F)$, $\mathbf{P}_X^A \in \widetilde{A}^0(X)$ and, if X is projective, $\mathbf{F}_X^A \in \widetilde{A}^{-d}(\mathrm{pt})$, where $d = \dim(X)$.

The pull-back homomorphism $f^{\widetilde{A}}: \widetilde{A}^*(X) \to \widetilde{A}^*(Y)$ associated to a morphism $f: Y \to X$ is equal to $f^A \otimes \mathrm{id}_{\mathbb{Z}[\mathbf{b}]}$. The push-forward map $f_{\widetilde{A}}$ associated to a projective morphism $f: Y \to X$ is defined by

$$(4.1) f_{\widetilde{A}}(a) = f_A(a \cdot \mathbf{P}_Y^A) \cdot (\mathbf{P}_X^A)^{-1} = f_A(a \cdot \mathbf{P}_Y^A \cdot f^A(\mathbf{P}_X^A)^{-1}).$$

If f is a closed embedding, then $[f^*T_X]-[T_Y]$ is equal to the class of the normal bundle N_YX of Y in X. Hence $\mathbf{P}_Y^A\cdot f^A(\mathbf{P}_X^A)^{-1}=\mathbf{P}^A(N_YX)$ and

$$f_{\widetilde{A}}(a) = f_A(a \cdot \mathbf{P}^A(N_Y X)).$$

Lemma 4.2. Let $p: L \to X$ be a line bundle. Then

$$c_1^{\widetilde{A}}(L) = c_1^{A}(L) \cdot \mathbf{P}^{A}(L) = \sum_{i \ge 0} c_1^{A}(L)^{i+1} b_i \in A^*(X)[\mathbf{b}].$$

Proof. Let $s: X \to L$ be the zero section. The normal bundle of s is equal to L. Hence,

$$c_1^{\widetilde{A}}(L) = s^{\widetilde{A}} s_{\widetilde{A}}(1_X)$$

$$= s^A s_A(\mathbf{P}^A(L)) \quad \text{(projection formula)}$$

$$= s^A (s_A(1) \cdot p^A \mathbf{P}^A(L))$$

$$= c_1^A(L) \cdot \mathbf{P}^A(L).$$

Proposition 4.3. The functor \widetilde{A}^* is an oriented cohomology theory.

Proof. We need to check properties (i)-(vi) in the definition of an oriented cohomology theory.

- (i) Let $Z = X \coprod Y$ where $X, Y \in \mathbf{Sm}(F)$, and let $i : X \hookrightarrow Z$, $j : Y \hookrightarrow Z$ be the closed embeddings. The normal bundles $N_X Z$ and $N_Y Z$ are trivial, hence $i_{\widetilde{A}} = i_A \otimes \mathrm{id}_{\mathbb{Z}[\mathbf{b}]}$, $j_{\widetilde{A}} = j_A \otimes \mathrm{id}_{\mathbb{Z}[\mathbf{b}]}$ and obviously $i_{\widetilde{A}} + j_{\widetilde{A}}$ is an isomorphism.
- (ii) Let $f: Y \to X$ and $g: Z \to Y$ be two projective morphisms. Then for any $a \in A^*(Z)$,

$$(f_{\widetilde{A}} \circ g_{\widetilde{A}})(a) = f_{\widetilde{A}} (g_A (a \mathbf{P}_Z^A) \cdot (\mathbf{P}_Y^A)^{-1})$$

$$= f_A (g_A (a \mathbf{P}_Z^A) \cdot (\mathbf{P}_Y^A)^{-1} \cdot \mathbf{P}_Y^A)) \cdot (\mathbf{P}_X^A)^{-1}$$

$$= (f_A \circ g_A) (a \mathbf{P}_Z^A) \cdot (\mathbf{P}_X^A)^{-1}$$

$$= (f \circ g)_{\widetilde{A}}(a).$$

(iii) Let E be a vector bundle of rank r over X and L the tautological line bundle over $\mathbb{P}(E)$. By Lemma 4.2,

$$\widetilde{\xi} = c_1^{\widetilde{A}}(L) = \sum_{i \ge 0} \xi^{i+1} b_i,$$

where $\xi = c_1^A(L)$. Since

$$\xi^r - c_1(E)\xi^{r-1} + \dots + (-1)^r c_r(E) = 0$$

(see [7]) and the classes $c_i(E)$ are nilpotent, the higher powers ξ^s , $s \geq r$, are trivial modulo the nilradical of $A^*(X)$. Therefore, the matrix expressing the powers of $\widetilde{\xi}$ in terms of powers of ξ is upper triangular modulo the nilradical of $\widetilde{A}^*(X)$ and hence is invertible. Thus, the powers $1, \widetilde{\xi}, \ldots, \widetilde{\xi}^{r-1}$ form a basis of $\widetilde{A}^*(\mathbb{P}(E))$ over $\widetilde{A}^*(X)$.

(iv) Consider a transverse Cartesian square (2.1). We have

$$\mathbf{P}_{Y'}^{A} \cdot f'^{A} (\mathbf{P}_{X'}^{A})^{-1} = h^{A} \mathbf{P}_{Y}^{A} \cdot h^{A} f^{A} (\mathbf{P}_{X}^{A})^{-1}$$

and therefore, for every $a \in A^*(Y)$,

$$(f'_{\widetilde{A}} \circ h^{\widetilde{A}})(a) = f'_{A} (h^{A}(a) \cdot \mathbf{P}_{Y'}^{A} \cdot f'^{A} (\mathbf{P}_{X'}^{A})^{-1})$$

$$= f'_{A} (h^{A}(a) \cdot h^{A} \mathbf{P}_{Y}^{A} \cdot h^{A} f^{A} (\mathbf{P}_{X}^{A})^{-1})$$

$$= f'_{A} h^{A} (a \cdot \mathbf{P}_{Y}^{A} \cdot f^{A} (\mathbf{P}_{X}^{A})^{-1})$$

$$= g^{A} f_{A} (a \cdot \mathbf{P}_{Y}^{A} \cdot f^{A} (\mathbf{P}_{X}^{A})^{-1})$$

$$= g^{A} (f_{A} (a \cdot \mathbf{P}_{Y}^{A}) \cdot (\mathbf{P}_{X}^{A})^{-1})$$

$$= (g^{\widetilde{A}} \circ f_{\widetilde{A}})(a).$$

- (v) Obvious.
- (vi) Let $f: Y \to X$ be a projective morphism in $\mathbf{Sm}(F)$, $a \in A^*(X)$ and $b \in A^*(Y)$. We have

$$f_{\widetilde{A}}(b \cdot f^{\widetilde{A}}(a)) = f_A(b \cdot f^A(a) \cdot \mathbf{P}_Y^A) \cdot (\mathbf{P}_X^A)^{-1} \quad \text{(projection formula)}$$
$$= f_A(b \cdot \mathbf{P}_Y^A) \cdot a \cdot (\mathbf{P}_X^A)^{-1}$$
$$= f_{\widetilde{A}}(b) \cdot a$$

Remark 4.4. The correspondence $E \mapsto \mathbf{P}^A(E)$ is given by the characteristic class $\mathbf{P}^A = \sum_{\alpha} c_{\alpha} b_{\alpha}$ over $\mathbb{Z}[\mathbf{b}]$. In view of [9], \mathbf{P}^A is the inverse Todd genus of the natural embedding of A^* into \widetilde{A}^* and the formula (4.1) is the Riemann-Roch theorem for this embedding.

Note that if $X \in \mathbf{Sm}(F)$ is projective, the fundamental class $[X]^{\widetilde{A}} \in \widetilde{A}(\mathrm{pt}) = A(\mathrm{pt})[\mathbf{b}]$ coincides with the fundamental polynomial \mathbf{F}_X^A . In particular, by Proposition 2.5, $\mathbf{F}_{X \times Y}^A = \mathbf{F}_X^A \cdot \mathbf{F}_Y^A$ for all $X, Y \in \mathbf{Sm}(F)$.

5. Formal group law of a theory

Let A^* be an oriented cohomology theory over F. By [7], there is unique commutative formal group law

$$\Phi^A = \sum_{i,j>0} a_{ij}^A x^i y^j = x + y + \sum_{i,j>1} a_{ij}^A x^i y^j,$$

over the coefficient ring $A^*(\text{pt})$ with $a_{ij}^A \in A^{1-i-j}(\text{pt})$, such that for every two line bundles L and L' over a variety $X \in \mathbf{Sm}(F)$,

$$c_1(L \otimes L') = c_1(L) + c_1(L') + \sum_{i,j>1} a_{ij}^A c_1(L)^i c_1(L')^j \in A^1(X).$$

Example 5.1. Since $c_1^H(L \otimes L') = c_1^H(L) + c_1^H(L')$ for two line bundles L and L' [2, Prop. 2.5(e)], $\Phi^H(x,y) = x + y$ is the additive group law. It follows from the description of the first Chern class in K-theory (Example 3.1) that $\Phi^K(x,y) = x + y - xyt$ (called the multiplicative group law).

In the rest of the section we prove that the coefficients of the group law Φ^A belong to the subring $A_c^*(\text{pt}) \subset A^*(\text{pt})$.

Lemma 5.2. Let L_{can} be the canonical line bundle over the projective space \mathbb{P}_F^n over F. Then $p_A(c_1^A(L_{can})^i) = [\mathbb{P}_F^{n-i}]^A$ for every $i \geq 0$.

Proof. Induction on n. Let $p: \mathbb{P}_F^n \to \operatorname{pt}$ the structure morphism, $j: \mathbb{P}_F^{n-1} \hookrightarrow \mathbb{P}_F^n$ an embedding, $q = p \circ j$, $\xi = c_1^A(L_{can})$. Then $j^A(\xi) = c_1^A(L'_{can})$, where $L'_{can} = j^*(L_{can})$ is the canonical vector bundle over \mathbb{P}_F^{n-1} . Proposition 3.2 gives $\xi = j_A(1_{\mathbb{P}^{n-1}})$, hence, by the induction hypothesis,

$$p_A(\xi^i) = p_A(j_A(1) \cdot \xi^{i-1}) = p_A j_A(j^A(\xi)^{i-1}) = q_A(c_1^A(L'_{can})^{i-1}) = [\mathbb{P}_F^{n-i}]^A.$$

Lemma 5.3. (cf. [1, Prop. II.10.6]) Let V be a smooth hypersurface in $\mathbb{P}_F^n \times \mathbb{P}_F^m$ of type (1,1) for some n and m. Then

$$[V]^A = \sum_{i=0}^n \sum_{j=0}^m a_{ij}^A \ [\mathbb{P}_F^{n-i}]^A \cdot [\mathbb{P}_F^{m-j}]^A \in A^{1-n-m}(\mathrm{pt}).$$

Proof. Let $i: V \hookrightarrow \mathbb{P}_F^n \times \mathbb{P}_F^m$ be the embedding of V as a divisor. The corresponding line bundle is the tensor product $q_1^*L_1 \otimes q_2^*L_2$, where L_1 and L_2 are canonical line bundles on \mathbb{P}_F^n and \mathbb{P}_F^m respectively, q_1 and q_2 are projections of $\mathbb{P}_F^n \times \mathbb{P}_F^m$ onto \mathbb{P}_F^n and \mathbb{P}_F^m . Hence, by Proposition 3.2,

$$i_A(1_V) = c_1^A(q_1^*L_1 \otimes q_2^*L_2) = \Phi^A(\xi, \eta) = \sum_{i,j \ge 0} a_{ij}^A \xi^i \eta^j,$$

where $\xi = q_1^A c_1^A(L_1), \, \eta = q_2^A c_1^A(L_2).$

П

Let $p: \mathbb{P}_F^n \times \mathbb{P}_F^m \to \text{pt}$, $h_1: \mathbb{P}_F^n \to \text{pt}$ and $h_2: \mathbb{P}_F^m \to \text{pt}$ be the structure morphisms. Then

$$\begin{aligned} p_{A}(\xi^{i}\eta^{j}) &= h_{1A}q_{1A}\left(q_{1}^{A}c_{1}^{A}(L_{1})^{i}\cdot q_{2}^{A}c_{1}(L_{2})^{j}\right) \quad \text{(projection formula)} \\ &= h_{1A}\left(c_{1}^{A}(L_{1})^{i}\cdot q_{1A}q_{2}^{A}c_{1}(L_{2})^{j}\right) \quad \text{(transverse property)} \\ &= h_{1A}\left(c_{1}^{A}(L_{1})^{i}\cdot h_{1}^{A}h_{2A}c_{1}(L_{2})^{j}\right) \quad \text{(projection formula)} \\ &= h_{1A}\left(c_{1}^{A}(L_{1})^{i}\right)\cdot h_{2A}\left(c_{1}^{A}(L_{2})^{j}\right) \quad \text{(Lemma 5.2)} \\ &= [\mathbb{P}_{F}^{n-i}]^{A}\cdot [\mathbb{P}_{F}^{m-j}]^{A}, \end{aligned}$$

and therefore,

$$[V]^A = p_A(i_A(1_V)) = p_A(\sum_{i,j\geq 0} a_{ij}^A \xi^i \eta^j) = \sum_{i=0}^n \sum_{j=0}^m a_{ij}^A [\mathbb{P}_F^{n-i}]^A \cdot [\mathbb{P}_F^{m-j}]^A.$$

Corollary 5.4. $a_{nm}^A \in A_c^{1-n-m}(pt)$ for every n and m.

Proof. Note first that for every n and m there is a smooth hypersurface V in $\mathbb{P}_F^n \times \mathbb{P}_F^m$ of type (1,1). We can take V given by the equation $\sum_{i=0}^k S_i T_i = 0$, where S_i and T_i are the homogeneous coordinates in \mathbb{P}_F^n and \mathbb{P}_F^m respectively and $k = \min(n, m)$. We prove the statement by induction on n + m. By Lemma 5.3 and induction hypothesis, $a_{nm} - [V]^A \in A_c^{1-n-m}(pt)$, whence the result.

Corollary 5.5. Let $i(t) = \sum_{k \geq 1} b_k^A t^k$ be the additive inverse power series of Φ^A , that is $\Phi_A(t, i(t)) = 0$. Then $b_k^A \in A_c^{1-k}(\mathrm{pt})$ for every $k \geq 1$.

6. K-Theory Versus Chow Theory

A relation between K-theory and (rational) Chow-theory is given by the $Chern\ character$

$$\operatorname{ch}_X: K^*(X) \to H^*(X) \otimes \mathbb{Q}$$

for every $X \in \mathbf{Sm}(F)$. It is the ring homomorphism defined by

$$\operatorname{ch}([E]t^{-k}) = \operatorname{ch}([E]) = \operatorname{rank}(E) + \sum_{i=1}^{\infty} \frac{1}{i!} c_{(i)}^{H}(E)$$

for a vector bundle $E \to X$ [2, Ch. 15]. In particular, the homomorphism

$$\operatorname{ch}_{\operatorname{pt}}: K^*(\operatorname{pt}) = \mathbb{Z}[t, t^{-1}] \to \mathbb{Q} = H^*(\operatorname{pt}) \otimes \mathbb{Q}$$

is the evaluation at t = 1.

For a projective morphism $f: X \to Y$, by the classical Riemann-Roch formula [2, Th. 15.2], for every $a \in K^*(X)$:

$$f_H(\operatorname{ch}_X(a) \cdot td(T_X)) = \operatorname{ch}_Y(f_K(a)) \cdot td(T_Y),$$

where $td \in \mathbb{Q}[\mathbf{c}]$ is the (rational) Todd characteristic class.

Let $X \in \mathbf{Sm}(F)$ be a projective variety of dimension d and $p: X \to \mathsf{pt}$ the structure morphism. Applying the Riemann-Roch formula for p and a = $c_{\alpha}^{K}(-T_{X})$, we get

(6.1) $(\operatorname{ch}_X(c_{\alpha}^K(-T_X)) \cdot td(T_X)) = \operatorname{ch}_{\operatorname{pt}}(p_K(c_{\alpha}^K(-T_X))) = p_K c_{\alpha}^K(-T_X)|_{t=1},$ where $deg = p_H$ is the degree homomorphism.

Proposition 6.2. (1) For every projective $X \in \mathbf{Sm}(F)$, $\mathbf{F}_X^K|_{t=0} = \mathbf{F}_X^H$. (2) The evaluation homomorphism $\mathbb{Z}[t, \mathbf{b}] \to \mathbb{Z}[\mathbf{b}]$ at t = 0 induces ring isomorphism between $\widetilde{K}_c(pt)$ and $\widetilde{H}_c(pt)$. In particular, for every d, the degree d components $K_c(pt)_d$ and $H_c(pt)_d$ are free abelian groups of rank at most p(d).

Proof. (1) Let $d = \dim X$. For every partition α ,

$$p_K c_{\alpha}^K(-T_X) \in K^{|\alpha|-d}(X) = K_0(X)t^{d-|\alpha|}$$
.

- a) If $|\alpha| > d$, then $c_{\alpha}^{K}(-T_{X})$ and $c_{\alpha}^{H}(-T_{X})$ are both zero (Examples 3.5 and 3.6).
- b) If $|\alpha| < d$, then $p_K c_{\alpha}^K (-T_X)|_{t=0} = 0 = \deg c_{\alpha}^H (-T_X)$.
- c) Assume that $|\alpha| = d$. We have

$$\operatorname{ch}(c_{\alpha}^{K}) \cdot td^{-1} = c_{\alpha}^{H} + \text{ characteristic class of degree} > d.$$

Hence, by (6.1),

$$p_K c_{\alpha}^K(-T_X)|_{t=0} = p_K c_{\alpha}^K(-T_X) = p_K c_{\alpha}^K(-T_X)|_{t=1} = \deg c_{\alpha}^H(-T_X).$$

(2) By the first statement, the evaluation at t=0 takes $\widetilde{K}_c(pt)$ onto $\widetilde{H}_c(pt)$. We need to prove injectivity of the evaluation. Let $X_1, \ldots, X_s \in \mathbf{Sm}(F)$ be projective varieties of the same dimension and $m_1, \ldots, m_s \in \mathbb{Z}$ such that

$$\sum_{i=1}^{s} m_i \, \mathbf{F}_{X_i}^K |_{t=0} = \sum_{i=1}^{s} m_i \, \mathbf{F}_{X_i}^H = 0.$$

Equivalently,

(6.3)
$$\sum_{i=1}^{s} m_i \deg c^H(-T_{X_i}) = 0$$

for every generalized Chern class $c = c_{\alpha}$. Since c_{α} generate $\mathbb{Q}[\mathbf{c}]$, the formula (6.3) holds for every characteristic class $c \in \mathbb{Q}[\mathbf{c}]$. Taking $c = \operatorname{ch}(c_{\alpha}) \cdot td^{-1}$ and applying formula (6.1) for every X_i , we get

$$\sum_{i=1}^{s} m_i p_K^{(i)} c_{\alpha}^K (-T_{X_i})|_{t=1} = 0$$

for every α , where $p^{(i)}: X_i \to \text{pt}$ is the structure morphism. But the sum $\sum_{i=1}^{s} m_i p_K^{(i)} c_{\alpha}^K (-T_{X_i}) \text{ is a monomial in } t \text{ and hence it is zero for every } \alpha. \text{ It follows that } \sum_{i=1}^{s} m_i \mathbf{F}_{X_i}^K = 0.$

The group $H_c(pt)_d$ is a subgroup of the free group $\mathbb{Z}[\mathbf{b}]_d$ of rank p(d), whence the last statement of the Proposition.

7. Hypersurfaces
$$V(n_1, n_2, \ldots, n_k)$$

Let \mathbb{P} be the product of projective spaces $\mathbb{P}_F^{n_1} \times \mathbb{P}_F^{n_2} \times \cdots \times \mathbb{P}_F^{n_k}$. We write L_i for the pull-back on \mathbb{P} of the canonical vector bundle over $\mathbb{P}_F^{n_i}$ and by L the tensor product of the L_i . Let

$$V = V(n_1, n_2, \dots, n_k) \subset \mathbb{P}$$

be the scheme of zeros of a section of L. Assume that V is smooth. Let $i:V\hookrightarrow\mathbb{P}$ be the embedding. For an oriented cohomology theory A^* over F, by Proposition 3.2,

$$i_{\widetilde{A}}(1_V) = c_1^{\widetilde{A}}(L) = c_1^{A}(L) \cdot \mathbf{P}^{A}(L).$$

Denote by $q: \mathbb{P} \to \text{pt}$ the structure morphism. Then

$$\mathbf{F}_V^A = [V]^{\widetilde{A}} = q_{\widetilde{A}} i_{\widetilde{A}}(1_V) = q_{\widetilde{A}} \left(c_1^A(L) \cdot \mathbf{P}^A(L) \right) = q_A \left(c_1^A(L) \cdot \mathbf{P}^A(L) \cdot \mathbf{P}^A \right).$$

The class in $K_0(\mathbb{P})$ of the tangent bundle of \mathbb{P} equals $\sum [L_i]^{n_i+1} - k1$. We have then

$$\mathbf{P}_{\mathbb{P}}^{A} = \prod_{i=1}^{k} \mathbf{P}^{A}(L_{i})^{-n_{i}-1}.$$

Thus,

$$\mathbf{F}_V^A = q_A \left(c_1^A(L) \cdot \mathbf{P}^A(L) \cdot \prod_{i=1}^k \mathbf{P}^A(L_i)^{-n_i - 1} \right).$$

Set $\xi_i = c_1^A(L_i)$, $\xi = c_1^A(L)$. Therefore,

(7.1)
$$\mathbf{F}_{V}^{A} = q_{A} \left(\left(\sum_{j \geq 0} \xi^{j+1} b_{j} \right) \cdot \prod_{i=1}^{k} \left(\sum_{j \geq 0} \xi_{i}^{j} b_{j} \right)^{-n_{i}-1} \right).$$

Note that

$$\xi = \Psi^A(\xi_1, \xi_2, \dots, \xi_k),$$

where Ψ^A is the iterated group law of A.

Assume that $A^* = H^*$, so that $\xi = \sum \xi_i$. We would like to compute the α -characteristic number of V for $\alpha = (n-1)$, where $n = \sum n_i$, that is the coefficient of b_{n-1} in \mathbf{F}_V^H . Assume that $n_i > 1$ for at least two values of i, so that $n-1 \geq n_i+1$ for all i. Since $\xi_i^{n_i+1} = 0$, we can ignore the second multiple in (7.1). Hence

$$\deg c_{(n-1)}^H(-T_V) = q_A(\xi^n) = \frac{n!}{n_1! n_2! \dots n_k!} q_A(\xi_1^{n_1} \dots \xi_k^{n_k}) = \frac{n!}{n_1! n_2! \dots n_k!}.$$

We have proved

Proposition 7.2. (cf. [10, Lemma VII.6.8], [11]) Let $V = V(n_1, n_2, ..., n_k)$ be a smooth hypersurface, $n = \sum n_i$. If $n_i > 1$ for at least two values of i, then

$$\deg c_{(n-1)}^H(V) = \frac{n!}{n_1! n_2! \dots n_k!}.$$

Now consider K-theory $A^* = K^*$. Let p be a prime integer. Assume that for some s, $n_i = p^{s-1}$ for every i and k = p, so that $n = p^s$. We have

$$\xi = \Phi(\xi_1, \xi_2, \dots, \xi_p) = v_1 - v_2 t + \dots + (-1)^p v_p t^{p-1},$$

where v_j are the standard symmetric functions on the ξ_i . Note that the r.h.s. of (7.1) is a polynomial in the b_i with the coefficients of the form $q_K(P(v))$, where P is a polynomial over \mathbb{Z} .

Lemma 7.3. Let v be a monomial $v_1^{\alpha_1} \dots v_p^{\alpha_p}$. If $\alpha_i > 0$ for some $i = 1, 2, \dots, p-1$, then $q_K(v)$ is divisible by p.

Proof. Assume $\alpha_i > 0$, so that $v = v_i u$, where $u = v_i^{-1} v$ is a monomial. For every permutation $\sigma \in S_p$ let $\xi_{\sigma} = \xi_{\sigma(1)} \xi_{\sigma(2)} \dots \xi_{\sigma(i)}$. Then $v = \sum_{\sigma \in S_p/H} \xi_{\sigma} u$, where $H = S_i \times S_{p-i}$ is the stabilizer of $\xi_1 \dots \xi_i$ and hence $q_K(v)$ is divisible by p since $q_K(\xi_{\sigma} u) = q_K(\xi_{\tau} u)$ for every $\sigma, \tau \in S_p$ and the number $\binom{p}{i}$ of terms in the sum is divisible by p.

Thus, we can delete all monomials in the v_i 's containing v_i for i = 1, 2, ..., p-1 and rewrite (7.1) modulo p:

$$(7.4) \mathbf{F}_{V}^{K} \equiv q_{K} \left(\left(\sum_{j>0} [(-1)^{p} v_{p} t^{p-1}]^{j+1} b_{j} \right) \cdot \prod_{i=1}^{p} \left(\sum_{j>0} \xi_{i}^{j} b_{j} \right)^{-p^{s-1}-1} \right) \pmod{p}.$$

Recall that \mathbf{F}_{V}^{K} is a homogeneous polynomial in $\mathbb{Z}[t, \mathbf{b}]$ of degree dim $(V) = p^{s} - 1$.

Proposition 7.5. (cf. [11, Lemma, p.121]) Let $V = V(p^{s-1}, p^{s-1}, \ldots, p^{s-1})$ (p terms) be a smooth hypersurface, $\alpha = (p^{s-1} - 1, p^{s-1} - 1, \ldots, p^{s-1} - 1)$. Then the b_{α} -coefficient of \mathbf{F}_{V}^{K} is not divisible by p. If $\deg \beta \geq p^{s} - p$ and b_{β} -coefficient of \mathbf{F}_{V}^{K} is not divisible by p, then $\deg \beta = p^{s} - p$ and β is a refinement of α .

Proof. A typical monomial of the r.h.s. of (7.4) is of the form

$$t^{(p-1)(j+1)}b_ib_{\alpha^1}\dots b_{\alpha^p}=t^{(p-1)(j+1)}b_{\beta}$$

for partitions $\alpha^1, \ldots, \alpha^p$. Note that since $v_p \xi_i^{p^{s-1}} = 0$ we may assume that $|\alpha^i| \leq p^{s-1} - 1$ for all i. We have $|\beta| = p^s - 1 - (p-1)(j+1) \leq p^s - p$ and equality holds iff j = 0. Hence, if $\deg \beta \geq p^s - p$ and the b_β -coefficient of \mathbf{F}_V^K is not divisible by p, then $\deg \beta = p^s - p$ and j = 0. Therefore, $|\alpha^i| = p^{s-1} - 1$ for all i and β is a refinement of α .

It follows from (7.4) that modulo p, the b_{α} -coefficient of \mathbf{F}_{V}^{K} is equal to $(-1)^{p}t^{p-1}q_{K}(v_{p}^{p^{s-1}})=(-1)^{p}t^{p-1}$ and hence it is not trivial.

Define the following partial ordering on the set of all partitions. We write $\alpha \leq \beta$ if $|\alpha| < |\beta|$ or $|\alpha| = |\beta|$ and $l(\alpha) \geq l(\beta)$. We consider largest monomials of polynomials in the b'_i s with respect to this ordering.

We will use the following variant of Bertini theorem [3, Th.II.8.18]:

Theorem 7.6. Let X be a smooth variety over an infinite field, L a very ample line bundle over X. Then there is a section of L with smooth subscheme of zeros.

Lemma 7.7. (cf. [11, Proposition, p.125]) Let F be an infinite field. Then for every prime integer p and every integer $d \ge 1$ there exists a projective variety $M_d^p \in \mathbf{Sm}(F)$ of dimension d such that the polynomial $\mathbf{F}_{M_d^p}^K$ has largest monomial b_d modulo p if $d \ne p^s - 1$ for any s or $t^{p-1}(b_{p^{s-1}-1})^p$ if $d = p^s - 1$ for some s > 0.

Proof. Assume first that d+1 is not divisible by p and set $M_d^p = \mathbb{P}_F^d$. By Proposition 6.2, the b_d -coefficients of $\mathbf{F}_{M_d^p}^K$ and $\mathbf{F}_{M_d^p}^H$ coincide. By Example 3.5, this coefficient is equal to -(d+1) and it is not divisible by p.

Assume now that d+1 is divisible by p but $d+1 \neq p^s$ for any s. We write $d+1=p^r(pu+v)$ with r>0 and 0< v< p. If u=0, v>1, we set $M_d^p=V\left(p^r,p^r(v-1)\right)$. By Proposition 7.2, the b_d -coefficient of $\mathbf{F}_{M_d^p}^H$ is equal to $\binom{p^rv}{p^r}$ and hence it is not divisible by p.

If u > 0, let $M_d^p = V(p^r v, p^{r+1} u)$ and again by Proposition 7.2, the b_d -coefficient of $\mathbf{F}_{M_d^p}^H$ is equal to $\binom{p^r(pu+v)}{p^r v}$ and it is not divisible by p.

If $d+1=p^s$ for some s, let $M_d^p = V(p^{s-1}, p^{s-1}, \ldots, p^{s-1})$ (p terms) be a

If $d+1=p^s$ for some s, let $M_d^p=V(p^{s-1},p^{s-1},\ldots,p^{s-1})$ (p terms) be a smooth hypersurface. It exists by Theorem 7.6. Then by Proposition 7.5, the b_{α} -coefficient of $\mathbf{F}_{M_d^p}^K$ is zero modulo p if $|\alpha| \geq p^s - p$ unless $|\alpha| = p^s - p$ and α refines $(p^{s-1}-1,\ldots,p^{s-1}-1)$.

Corollary 7.8. (cf. [11, Corollary, p.126]) For a partition α let $M_{\alpha}^p = M_{\alpha_1}^p \times \cdots \times M_{\alpha_r}^p$. Then for every integer $d \geq 0$, the polynomials $\mathbf{F}_{M_{\alpha}^p}^K$ (mod p) in $(\mathbb{Z}/p\mathbb{Z})[t,\mathbf{b}]$ with $|\alpha|=d$ are linearly independent.

Proposition 7.9. Let F be an infinite field. Then the ring $K_c(\operatorname{pt}) \otimes \mathbb{Z}/p\mathbb{Z}$ (resp. $\widetilde{H}_c(\operatorname{pt}) \otimes \mathbb{Z}/p\mathbb{Z}$) is a polynomial ring over $\mathbb{Z}/p\mathbb{Z}$ in the variables $\mathbf{F}_{M_d^p}^K$ (resp. $\mathbf{F}_{M_d^p}^H$) (mod p), $d \geq 1$.

Proof. By Corollary 7.8, $\mathbb{Z}/p\mathbb{Z}$ -dimension of the image of $\widetilde{K}_c(\operatorname{pt})_d$ in $(\mathbb{Z}/p\mathbb{Z})[t,\mathbf{b}]$ for every prime integer p is at least p(d). On the other hand, the rank of $\widetilde{K}_c(\operatorname{pt})_d$ is at most p(d) by Proposition 6.2. Hence the classes $\mathbf{F}_{M_\alpha^p}^K \pmod{p}$ form a basis of $\widetilde{K}_c(\operatorname{pt}) \otimes \mathbb{Z}/p\mathbb{Z}$ over $\mathbb{Z}/p\mathbb{Z}$. The statements about $\widetilde{H}_c(\operatorname{pt})$ follow from Proposition 6.2.

Let J be the ideal in $\widetilde{K}_c(\operatorname{pt}) \otimes \mathbb{Z}/p\mathbb{Z}$ generated by \mathbf{F}_X^K for all projective $X \in \mathbf{Sm}(F)$ of positive dimension. If the field F is infinite, by Proposition 7.9, for every projective $X \in \mathbf{Sm}(F)$ of dimension d,

(7.10)
$$\mathbf{F}_{X}^{K} \equiv \lambda \, \mathbf{F}_{M_{d}^{p}}^{K} \; (mod \; J^{2})$$

for a uniquely determined $\lambda \in \mathbb{Z}/p\mathbb{Z}$. Recall that the b_d -coefficients of \mathbf{F}_X^K and \mathbf{F}_X^H coincide and are equal to $\deg c_{(d)}^H(-T_X)$. Note that the b_d -coefficient of every element of J^2 is trivial for every d.

Proposition 7.11. For a projective variety $X \in \mathbf{Sm}(F)$ of dimension $d = p^s - 1$, the characteristic number $\deg c_{(d)}^H(-T_X)$ is divisible by p.

Proof. The characteristic numbers do not change under field extensions, hence we may assume that the field F is infinite. The statement follows from (7.10) since by Lemma 7.7, $\deg c_{(d)}^H(-T_{M_d^p})$ is divisible by p.

Lemma 7.12. Let S a set of smooth projective varieties over F. Assume that for every prime integer p and every $d \ge 1$ there is $X \in S$ such that $\deg c_{(d)}^H(-T_X)$ is not divisible by p if $d \ne p^s - 1$ for any s and $\deg c_{(d)}^H(-T_X)$ is not divisible by p^2 if $d = p^s - 1$ for some s > 0. Then the ring $\widetilde{K}_c(\operatorname{pt})$ is generated by the \mathbf{F}_X^K , $X \in S$.

Proof. We may assume that F is infinite. Let p be a prime integer. For every $d \geq 1$, there is $X \in S$ such that λ in (7.10) is not zero modulo p. Hence the polynomials \mathbf{F}_X^K generate $\widetilde{K}_c(\operatorname{pt})$ modulo p for every p, whence the statement.

Proposition 7.13. The subring $\widetilde{K}_c(\operatorname{pt}) \subset \mathbb{Z}[t, \mathbf{b}]$ is generated by the classes of projective spaces \mathbb{P}_F^n and smooth hypersurfaces V(n, m).

Proof. Let S be the set of all projective spaces \mathbb{P}_F^n and smooth hypersurfaces V(n,m). Let p be a prime integer and $d \geq 1$. If $d \neq p^s - 1$ for any s, the proof of Lemma 7.7 shows the there is $X \in S$ such that $\deg c_{(d)}^H(-T_X)$ is not divisible by p.

Assume that $d = p^s - 1$ for some s. If s > 1, then by Proposition 7.2,

$$\deg c_{(p^s-1)}^H(V_{p^{s-1},p^s-p^{s-1}}) = \begin{pmatrix} p^s \\ p^{s-1} \end{pmatrix}$$

is not divisible by p^2 . If s = 1, by Example 3.5,

$$\deg c_{(p-1)}^H(\mathbb{P}^{p-1}) = -p.$$

By Lemma 7.12, the set S generates $\widetilde{K}_c(pt)$.

Propositions 6.2 and 7.13 imply

Corollary 7.14. The subring $\widetilde{H}_c(\operatorname{pt}) \subset \mathbb{Z}[\mathbf{b}]$ is generated by the fundamental polynomials of projective spaces \mathbb{P}_F^n and smooth hypersurfaces V(n,m).

Remark 7.15. It follows from Corollary 7.14 and Proposition 6.2 that the groups $\widetilde{H}_c(\text{pt})$ and $\widetilde{K}_c(\text{pt})$ do not depend on the base field. In Theorem 8.2 we will identify $\widetilde{H}_c(\text{pt})$ with the Lazard subring of $\mathbb{Z}[\mathbf{b}]$.

Proposition 7.16. (1) The degree d component $\widetilde{K}_c(\operatorname{pt})_d$ is a direct summand of $\mathbb{Z}[t, \mathbf{b}]_d$ of rank p(d).

(2) The degree d component $\widetilde{H}_c(\mathrm{pt})_d \subset \mathbb{Z}[\mathbf{b}]_d$ is a free subgroup of (maximal) rank p(d).

Proof. In view of Remark 7.15 we may assume that the field F is infinite. It follows from the proof of Proposition 7.9 that the monomials $\mathbf{F}_{M_{\alpha}^{p}}^{K}$ are linearly independent in $(\mathbb{Z}/p\mathbb{Z})[t,\mathbf{b}]$ and therefore the map $\widetilde{K}_{c}(\mathrm{pt})_{d}\otimes\mathbb{Z}/p\to(\mathbb{Z}/p\mathbb{Z})[t,\mathbf{b}]$ is injective for every prime p. Hence, $\widetilde{K}_{c}(\mathrm{pt})_{d}$ is a direct summand of $\mathbb{Z}[t,\mathbf{b}]_{d}$. The statements about $\widetilde{H}_{c}(\mathrm{pt})$ follow from Proposition 6.2.

Remark 7.17. The first statement of the Proposition is an algebraic analog of the Hattori-Stong Theorem [11, Theorem, p.129].

8. Lazard ring

Let Laz be the Lazard ring, the coefficient ring of the universal (one-dimensional, commutative) group law [10, Prop. VII.5.3]. For a commutative ring R, the set of R-points

$$\operatorname{Spec}(\operatorname{Laz})(R) = \operatorname{Mor}(\operatorname{Spec}(R), \operatorname{Spec}(\operatorname{Laz})) = \operatorname{Hom}_{rings}(\operatorname{Laz}, R)$$

is identified with the set of all formal group laws over R.

Let G denote the scheme $\operatorname{Spec} \mathbb{Z}[\mathbf{b}]$. For a commutative ring R the set of R-points $G(R) = \operatorname{Hom}_{rings}(\mathbb{Z}[\mathbf{b}], R)$ can be identified with the set of sequences (r_1, r_2, \dots) of elements of R $(r_i$ is the image of the b_i) and therefore with the set of power series

$$t + r_1 t^2 + r_2 t^3 + \dots \in R[[t]].$$

The composition of power series makes G a group scheme over \mathbb{Z} . The group $\operatorname{Spec}(\mathbb{Z}[\mathbf{b}])(R)$ acts on $\operatorname{Spec}(\operatorname{Laz})(R)$ by conjugation

$$(f\Phi)(x,y) = f(\Phi(f^{-1}(x), f^{-1}(y))).$$

Thus, the group scheme G acts on the scheme Spec(Laz). We write

$$\log t = t + m_1 t^2 + m_2 t^3 + \dots \in \mathbb{Z}[\mathbf{b}][[t]]$$

for the formal inverse of

$$\exp t = t + b_1 t^2 + b_2 t^3 + \dots \in \mathbb{Z}[\mathbf{b}][[t]].$$

It is known that $m_d = \mathbf{F}_{\mathbb{P}^d}^H / (d+1)$ [10, VII, Cor. 6.12].

Lemma 8.1. For every oriented cohomology theory A^* ,

$$\Phi^{\widetilde{A}}(x,y) = \exp \Phi^{A}(\log x, \log y).$$

Proof. For a line bundle L,

$$c_1^{\widetilde{A}}(L) = \exp c_1^{A}(L), \quad c_1^{A}(L) = \log c_1^{\widetilde{A}}(L).$$

Hence for a pair of line bundles L and L',

$$\begin{split} c_1^{\widetilde{A}}(L \otimes L') &= \exp c_1^A(L \otimes L') \\ &= \exp \Phi^A \big(c_1^A(L), c_1^A(L') \big) \\ &= \exp \Phi^A \big(\log c_1^{\widetilde{A}}(L), \log c_1^{\widetilde{A}}(L') \big). \end{split}$$

By Lemma 8.1, the group law

$$\Phi = \exp(\log x + \log y) = x + y + \sum_{i,j \ge 1} a_{ij} x^i y^j$$

over $\mathbb{Z}[\mathbf{b}]$ coincides with $\Phi^{\tilde{H}}$. It defines a ring homomorphism Laz $\to \mathbb{Z}[\mathbf{b}]$ which is, in fact, injective [10, VII,§5]. We will identify Laz with its image in $\mathbb{Z}[\mathbf{b}]$. The ring Laz is generated by the coefficients a_{ij} and Φ is the universal group law over Laz.

Theorem 8.2. The subgroup of $\mathbb{Z}[\mathbf{b}]$ generated by the fundamental polynomials \mathbf{F}_X^H for all $X \in \mathbf{Sm}(F)$, coincides with $\mathrm{Laz} \subset \mathbb{Z}[\mathbf{b}]$.

Proof. The differential form

$$d \log(x) = (1 + 2m_1 x + 3m_2 x^2 + \dots) dx = (1 + \mathbf{F}_{\mathbb{P}^1}^H x + \mathbf{F}_{\mathbb{P}^2}^H x^2 + \dots) dx$$

can be computed out of the formal group law by the formula [10, Prop. VII.5.7]

$$d \log(x) = \frac{dx}{\Phi_y(x,0)}.$$

Hence, the classes of the projective spaces \mathbb{P}_F^n can be expressed in terms of the a_{ij} , so that $\mathbf{F}_{\mathbb{P}^n}^H \in \text{Laz}$. By Lemma 5.3, $\mathbf{F}_{V(n,m)}^H \in \text{Laz}$ for every n and m. It follows from Corollary 7.14 that $\widetilde{H}_c(\text{pt}) \subset \text{Laz}$.

Conversely, the inclusion Laz $\subset H_c(pt)$ follows from Corollary 5.4 since Laz is generated by the coefficients a_{ij} .

Thus, every projective variety $X \in \mathbf{Sm}(F)$ has the class \mathbf{F}_X^H in the Lazard ring Laz.

9. Values of characteristic classes

In this section we prove that the characteristic classes in an oriented cohomology theory A^* over F take values in $A_c^* \subset A^*$. For $X \in \mathbf{Sm}(F)$ let $A_{cl}^*(X)$ be the subgroup in $A_c^*(X)$ generated by the elements $i_A(1_Z)$, where $i: Z \hookrightarrow X$ is a smooth closed subvariety. We write $A_{norm}^*(X)$ the subgroup in $A_c^*(X)$ generated by the subgroups $f_A(A_{cl}^*(X_E))$ for all finite separable field extensions E/F, where $f: X_E \to X$ is the canonical morphism. We have

$$A_{cl}^*(X) \subset A_{norm}^*(X) \subset A_c^*(X).$$

Lemma 9.1. Let L be a very ample line bundle over $X \in \mathbf{Sm}(F)$. Then $c_1^A(L) \in A_{norm}^*(X)$.

Proof. If F is infinite, by Bertini theorem 7.6, there exists a section of L with the smooth subscheme of zeros Z. Let $i:Z\hookrightarrow X$ be the closed embedding. By Proposition 3.2,

$$c_1^A(L) = i_A(1_Z) \in A_{cl}^*(X) \subset A_{norm}^*(X).$$

Assume that F is a finite field. We use the following trick from [8, p. 41]. For a prime integer p choose an infinite extension E/F such that the degree of every finite subextension of E/F is a power of p. By Bertini theorem 7.6, applied to the variety X_E , there exists a section of E with the smooth scheme of zeros E. The variety E is defined over a finite subextension E of E of degree E by E. Let E is defined over a finite subextension E and E is defined embedding. Then by Lemma 2.4, Proposition 3.2 and the projection formula,

$$p^{k}c_{1}(L) = [K : F]c_{1}(L) = f_{A}(1)c_{1}(L)$$
$$= f_{A}(c_{1}(f^{*}L)) = f_{A}i_{A}(1_{Z}) \in f_{A}(A_{cl}^{*}(X)) \subset A_{norm}^{*}(X).$$

Applying the same argument to another prime integer q, we get

$$q^m c_1(L) \in A^*_{norm}(X)$$

for some m, hence $c_1(L) \in A_{norm}^*(X)$.

Corollary 9.2. Let L be a very ample line bundle over $X \in \mathbf{Sm}(F)$. Then $c_1^A(L) \cdot A_{norm}^*(X) \subset A_{norm}^*(X)$.

Proof. By projection formula it is sufficient to show that $c_1^A(L) \cdot A_{cl}^*(X) \subset A_{norm}^*(X)$. Let $i: Z \hookrightarrow X$ be a smooth closed subvariety. The restriction $L' = L|_Z$ is very ample over Z. By Lemma 9.1,

$$c_1^A(L) \cdot i_A(1_Z) = i_A(i^A c_1(L)) = i_A(c_1^A(L')) \in i_A(A_{norm}^*(Z)) \subset A_{norm}^*(X).$$

Proposition 9.3. Let L be a line bundle over $X \in \mathbf{Sm}(F)$. Then $c_1^A(L) \cdot A_c^*(X) \subset A_c^*(X)$.

Proof. Let $f: Y \to X$ be a projective morphism with $Y \in \mathbf{Sm}(F)$ and let $L' = f^*(L)$. Choose very ample line bundles L_1 and L_2 over Y such that $L' = L_1 \otimes L_2^{-1}$. By Lemma 9.1,

$$c_1^A(L_1)^i \cdot c_1^A(L_2)^j \in A_{norm}^*(Y) \subset A_c^*(Y)$$

for all i and j. Then by Proposition 5.4 and Corollary 5.5,

$$c_1^A(L') = \Phi^A(c_1^A(L_1), ic_1^A(L_2)) \in A_c^*(Y).$$

Finally,

$$c_1^A(L) \cdot f_A(1_Y) = f_A(f^A c_1^A(L)) = f_A(c_1^A(L')) \in f_A(A_c^*(Y)) \subset A_c^*(X).$$

Let E be a vector bundle of rank r > 0 over X. Consider the projection $p: \mathbb{P}(E) \to X$ and set

$$\xi = c_1^A(L_{can}) \in A^1(\mathbb{P}(E)),$$

where L_{can} is the canonical line bundle over $\mathbb{P}(E)$.

Lemma 9.4. For every i > 0,

$$p_A(\xi^{r-1+i}) = c_i^A(-E) + \sum_{j>i} a_j d_j^A(E) \in A^*(X),$$

for some $a_j \in A_c^*(pt)$ and characteristic classes d_j of degree j.

Proof. By Jouanolou trick and the splitting principle we may assume that X is affine and E is a subbundle of a trivial bundle E' of rank n with the factor bundle E'/E isomorphic to the direct sum of line bundles L_1, L_2, \ldots Let $l: \mathbb{P}(E) \to \mathbb{P}(E')$ be the closed embedding, $q: \mathbb{P}(E') \to X$ the projection, L'_{can} the canonical line bundle over $\mathbb{P}(E'), \zeta = c_1^A(L'_{can}) \in A^1(\mathbb{P}(E'))$. We can consider l as a composition of closed embeddings of codimension 1 corresponding to the line bundles $q^*L_k \otimes L'_{can}$. Hence, by Proposition 3.2,

$$(9.5) l_A(\xi^{r-1+i}) = l_A(1 \cdot l^A \zeta^{r-1+i}) = \zeta^{r-1+i} \cdot \prod_k c_1^A (q^* L_k \otimes L'_{can}).$$

We can compute $c_1^A(q^*L_k\otimes L'_{can})$ using the formal group law Φ^A :

$$(9.6) c_1^A (q^* L_k \otimes L'_{can})) = q^A c_1^A (L_k) + \zeta + \sum_{l,m \ge 1} a_{lm} q^A c_1^A (L_k)^l \zeta^m.$$

Applying q_A to (9.5) and using (9.6), we get the formula we need, since by Lemma 5.2, $q_A(\zeta^s) = [\mathbb{P}_F^{n-1-s}]^A \in A_c^*(\mathrm{pt}), \ a_{lm} \in A_c^*(\mathrm{pt})$ (Lemma 5.4) and $\sigma_i(L_j) = c_i^A(E'/E) = c_i^A(-E)$.

Lemma 9.7. For every $s \ge 0$, $p_A(\xi^s) \cdot A_c^*(X) \subset A_c^*(X)$.

Proof. Let $f: Y \to X$ be a projective morphism in $\mathbf{Sm}(F)$, $E' = f^*(E)$. Consider the Cartesian transverse square

$$\begin{array}{ccc}
\mathbb{P}(E') & \stackrel{g}{\longrightarrow} & \mathbb{P}(E) \\
\downarrow^{p'} & & \downarrow^{p} \\
Y & \stackrel{f}{\longrightarrow} & X.
\end{array}$$

We have

 $p_A(\xi^s) \cdot f_A(1_Y) = p_A(\xi^s \cdot p^A f_A(1_Y)) = p_A(\xi^s \cdot g_A p'^A(1_Y)) = p_A(\xi^s \cdot g_A(1)) \in A_c^*(X)$ since by Proposition 9.3, $\xi^s \cdot g_A(1) \in A_c^*(\mathbb{P}(E))$.

Theorem 9.8. For every vector bundle E over X and every characteristic class c, $c^A(E) \cdot A_c^*(X) \subset A_c^*(X)$.

Proof. Since c(E) = c'(-E) for some characteristic class c', it is sufficient to prove that $c^A(-E) \cdot A_c^*(X) \subset A_c^*(X)$ for every c. We may assume that

$$c = c_{\alpha_1} c_{\alpha_2} \dots c_{\alpha_k}$$

for some partition $\alpha = (\alpha_1, \dots, \alpha_k)$. Let $a \in A_c^*(X)$. By Lemma 9.4,

$$(9.9) p_A(\xi^{r-1-\alpha_1}) \cdot \ldots \cdot p_A(\xi^{r-1-\alpha_k}) a = c^A(-E)a + \sum_{j>i} a_j d_j^A(E) a \in A^*(X),$$

for some $a_j \in A_c^*(\mathrm{pt})$ and characteristic classes d_j of degree bigger than the degree of c. By the reverse induction on the degree of c, we have $d_j^A(E)a \in A_c^*(X)$. By Lemma 9.7, the left hand side of (9.9) also belongs to $A_c^*(X)$. Hence, $c^A(-E)a \in A_c^*(X)$.

Corollary 9.10. For every smooth X and every vector bundle E over X, the classes $c_{\alpha}^{A}(E)$ belong to $A_{c}^{*}(X)$ for every partition α . Moreover, $c_{\alpha}^{A}(E) = 0$ if $|\alpha| > \dim(X)$. In particular, if X is projective, the fundamental polynomial \mathbf{F}_{X}^{A} is of degree at most $\dim(X)$.

Proof. The group
$$A_c^i(X)$$
 is trivial if $i > \dim(X)$.

10. Landweber-Novikov operations

Let R be a commutative ring. Assume that the group scheme $G = \operatorname{Spec} \mathbb{Z}[\mathbf{b}]$ acts on $\operatorname{Spec} R$. The co-morphism of the action we denote by

$$\theta_R: R \to R \otimes \mathbb{Z}[\mathbf{b}] = R[\mathbf{b}].$$

For every $r \in R$,

$$\theta(r) = \sum_{\alpha} s_{\alpha}^{R}(r) \otimes b_{\alpha}$$

for uniquely determined elements $s_{\alpha}^{R}(r) \in R$. We call the group endomorphisms

$$s^R_\alpha:R\to R$$

for all partitions α the Landweber-Novikov operations on R.

Now consider the natural action of G on Spec(Laz) (section 8). The corresponding operations s_{α}^{Laz} we simply denote by s_{α} .

Let $\varepsilon : \text{Laz} \to \mathbb{Z}$ be the restriction of the augmentation map $\mathbb{Z}[\mathbf{b}] \to \mathbb{Z}$.

Lemma 10.1. The composition

$$\operatorname{Laz} \xrightarrow{\theta_{\operatorname{Laz}}} \operatorname{Laz} \otimes \mathbb{Z}[\mathbf{b}] \xrightarrow{\varepsilon \otimes \operatorname{id}} \mathbb{Z}[\mathbf{b}]$$

coincides with the embedding Laz $\hookrightarrow \mathbb{Z}[\mathbf{b}]$.

Proof. The homomorphism θ_{Laz} corresponds to the group law

$$\exp(\Phi(\log x, \log y))$$

on Laz $\otimes \mathbb{Z}[\mathbf{b}]$, where Φ is the universal group law on Laz. The augmentation of Φ is the additive group law over \mathbb{Z} , whence the result.

Denote by

$$\mu: \mathbb{Z}[\mathbf{b}] \to \mathbb{Z}[\mathbf{b}] \otimes \mathbb{Z}[\mathbf{b}]$$

the co-multiplication ring homomorphism for the group scheme G. Let A^* be an oriented ring cohomology theory over F. Consider the ring homomorphism of cohomology theories

$$\widetilde{\mu} = \mathrm{id}_A \otimes \mu : \widetilde{A}^* \to \widetilde{\widetilde{A}^*}.$$

Lemma 10.2. For every $X \in \mathbf{Sm}(F)$ and $a \in K_0(X)$,

$$\widetilde{\mu}(\mathbf{P}^A(a)) = \mathbf{P}^A(a) \cdot \mathbf{P}^{\widetilde{A}}(a).$$

(In the r.h.s. the first term is a polynomial in the b'_{α} and the second - in the b''_{α} .)

Proof. The co-multiplication $\mu : \mathbb{Z}[\mathbf{b}] \to \mathbb{Z}[\mathbf{b}] \otimes \mathbb{Z}[\mathbf{b}] = \mathbb{Z}[\mathbf{b}', \mathbf{b}'']$ satisfies

$$\sum_{i\geq 0} t^{i+1} \mu(b_i) = \sum_{j\geq 0} \left(\sum_{k\geq 0} t^{k+1} b_k' \right)^{j+1} b_j''.$$

By the splitting principle and multiplicativity property (3.4), we may assume that a = [L], where L is a line bundle. Hence (with $\xi = c_1(L)$),

$$\widetilde{\mu}(\mathbf{P}^{A}(L)) = \sum_{i \geq 0} \xi^{i} \mu(b_{i})$$

$$= \sum_{j \geq 0} \left(\sum_{k \geq 0} \xi^{k} b'_{k} \right)^{j+1} \xi^{j} b''_{j}$$

$$= \sum_{j \geq 0} \mathbf{P}^{A}(L)^{j+1} \xi^{j} b''_{j}$$

$$= \mathbf{P}^{A}(L) \cdot \sum_{j \geq 0} c_{1}^{\widetilde{A}}(L)^{j} b''_{j}$$

$$= \mathbf{P}^{A}(L) \cdot \mathbf{P}^{\widetilde{A}}(L).$$

Corollary 10.3. For every projective variety $X \in \mathbf{Sm}(F)$,

$$\mu(\mathbf{F}_X^A) = \mathbf{F}_X^{\widetilde{A}}$$
.

Proof. We apply Lemma 10.2 for $a = [-T_X]$:

$$\mu(\mathbf{F}_X^A) = \mu(p_A \, \mathbf{P}_X^A) = p_A \widetilde{\mu}(\mathbf{P}_X^A) = p_A \left(\mathbf{P}_X^A \cdot \mathbf{P}_X^{\widetilde{A}}\right) = p_{\widetilde{A}} \left(\mathbf{P}_X^{\widetilde{A}}\right) = \mathbf{F}_X^{\widetilde{A}}.$$

We can express the Landweber-Novikov operations in terms of characteristic numbers in \widetilde{H} . This is an analog of Novikov's formula [1, Th. I.8.3] with the cobordism theory replaced by its approximation \widetilde{H} .

Proposition 10.4. For every projective variety $X \in \mathbf{Sm}(F)$,

$$s_{\alpha}(\mathbf{F}_{X}^{H}) = p_{\widetilde{H}}c_{\alpha}^{\widetilde{H}}(-T_{X}) \in \mathbb{Z}[\mathbf{b}],$$

where $p: X \to \operatorname{pt}$ is the structure morphism.

Proof. Consider the following commutative diagram

$$\begin{array}{ccc} \operatorname{Laz} & \xrightarrow{\theta_{\operatorname{Laz}}} & \operatorname{Laz} \otimes \mathbb{Z}[\mathbf{b}] & \xrightarrow{\varepsilon \otimes \operatorname{id}} & \mathbb{Z}[\mathbf{b}] \\ \\ \theta_{\operatorname{Laz}} \downarrow & & \operatorname{id} \otimes \mu \downarrow & \mu \downarrow \\ \operatorname{Laz} \otimes \mathbb{Z}[\mathbf{b}] & \xrightarrow{\theta_{\operatorname{Laz}} \otimes \operatorname{id}} & \operatorname{Laz} \otimes \mathbb{Z}[\mathbf{b}', \mathbf{b}''] & \xrightarrow{\varepsilon \otimes \operatorname{id}} & \mathbb{Z}[\mathbf{b}', \mathbf{b}'']. \end{array}$$

By Lemma 10.1 and Corollary 10.3, the composition $\mu \circ (\varepsilon \otimes id) \circ \theta_{Laz}$ takes the class \mathbf{F}_X^H to

$$\mathbf{F}_X^{\widetilde{H}} = \sum_{\alpha} p_{\widetilde{H}} c_{\alpha}^{\widetilde{H}} (-T_X) b_{\alpha}''.$$

By Lemma 10.1, another composition $(\varepsilon \otimes id) \circ (\theta_{Laz} \otimes id) \circ \theta_{Laz}$ takes \mathbf{F}_X^H to

$$\sum_{\alpha} s_{\alpha}(\mathbf{F}_X^H) b_{\alpha}^{"}.$$

11. Invariant ideals

Let R be a commutative ring. Assume that the group scheme $G = \operatorname{Spec} \mathbb{Z}[\mathbf{b}]$ acts on $\operatorname{Spec} R$. An ideal $I \subset R$ is called *invariant* if $s_{\alpha}^{R}(I) \subset I$ for every α .

Let p be a prime integer. The ideal $p\mathbb{Z}[\mathbf{b}]$ in $\mathbb{Z}[\mathbf{b}]$ is obviously prime and invariant with respect to the action of G on itself by left translations. Therefore, the intersection $I(p) = \text{Laz} \cap p\mathbb{Z}[\mathbf{b}] \subset \text{Laz}$ is a prime invariant ideal in Laz.

Let $n = 0, 1, 2, ..., \infty$. We write I(p, n) for the ideal in I(p) generated by all $a \in I(p)$ of degree $\leq p^n - 1$. For example, I(p, 0) = p Laz and $I(p, \infty) = I(p)$. Thus, for every prime p we have a chain of prime invariant ideals in Laz:

$$p \operatorname{Laz} = I(p, 0) \subset I(p, 1) \subset \cdots \subset I(p, n) \subset \cdots \subset I(p, \infty) = I(p).$$

It is known (see [10, Prop. VII.4.21] and [5, Th. 2.7]) that every ideal I(p, n) is prime and invariant and the only nonzero prime invariant ideals in Laz are I(p, n) for all prime p and $n \ge 0$.

Let X be a projective smooth variety over a field F. The set

$$I(X) = \{ \mathbf{F}_Y^H \in \text{Laz for all } Y \in \mathbf{Sm}(F) \text{ such that } \text{Mor}_F(Y, X) \neq \emptyset \}$$

is a graded ideal in Laz. Let $q: X \to \text{pt}$ be a structure morphism. For every projective morphism $f: Y \to X$,

$$q_{\widetilde{H}}f_{\widetilde{H}}(1_Y) = (qf)_{\widetilde{H}}(1_Y) = \mathbf{F}_Y^H.$$

Hence

$$I(X) = q_{\widetilde{H}}\widetilde{H}_c(X).$$

Recall that n_X is the gcd of deg(x) over all closed points x of a variety X.

Example 11.1. $I(X)_0 = n_X \mathbb{Z}$. If $X(F) \neq \emptyset$, I(X) = Laz.

Theorem 11.2. For a projective variety $X \in \mathbf{Sm}(F)$ over a field F, the ideal $I(X) \subset \text{Laz}$ is invariant.

Proof. Let $f: Y \to X$ be a morphism, $q: X \to \text{pt}$ the structure morphism. By Proposition 10.4 and Corollary 9.10,

$$s_{\alpha}(\mathbf{F}_{Y}^{H}) = q_{\widetilde{H}} f_{\widetilde{H}} \left(c^{\widetilde{H}} (-T_{Y}) \right) \in q_{\widetilde{H}} \left(\widetilde{H}_{c}(X) \right) = I(X).$$

Let P be a minimal prime ideal in Laz containing I(X). By [6, Th. 3.1], P is invariant and hence P = I(p, n) for some prime integer p and $n = 0, 1, \ldots, \infty$. Clearly, P is the only minimal prime ideal containing I(X) and p. We set $n_p(X) = n$. If for a prime integer p there is no invariant prime ideal containing I(X) and p, we set $n_p(X) = \infty$. Thus, for every projective variety X we have the numbers $n_p(X)$ assigned for each prime integer p.

Proposition 11.3. Let $X \in \mathbf{Sm}(F)$ be a projective variety, p a prime integer. Then the following conditions are equivalent:

- (1) $p \mid n_X$;
- (2) There exists an invariant prime ideal of Laz containing I(X) and p.

Proof. If $I(p, n_p(X))$ is the minimal prime ideal, then $I(X)_0 \subset p\mathbb{Z}$, i.e. $p \mid n_X$. Conversely, let $p \mid n_X$ and let $I(p_i, n_i)$ be all minimal prime ideals containing I(X). Since $I(p_i, n_i) \cap \mathbb{Z} = p_i\mathbb{Z}$ and $I(X) \cap \mathbb{Z} = n_X\mathbb{Z}$, the intersection of all the $p_i\mathbb{Z}$ coincides with the radical of $n_X\mathbb{Z}$, hence $p = p_i$ for some i.

Proposition 11.4. Let X and Y be projective smooth varieties such that $Mor(Y, X) \neq \emptyset$. Then $n_p(Y) \leq n_p(X)$ for every prime p.

Proof. We have $I(Y) \subset I(X) \subset I(p, n_p(X))$. The minimal prime ideal between I(Y) and $I(p, n_p(X))$ is equal $I(p, n_p(Y))$, hence $n_p(Y) \leq n_p(X)$.

References

- [1] J. F. Adams, Stable homotopy and generalised homology, University of Chicago Press, Chicago, IL, 1995, Reprint of the 1974 original.
- [2] W. Fulton, *Intersection theory*, Springer-Verlag, Berlin, 1984.
- [3] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.
- [4] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, *The book of involutions*, American Mathematical Society, Providence, RI, 1998, With a preface in French by J. Tits.
- [5] Peter S. Landweber, Annihilator ideals and primitive elements in complex bordism, Illinois J. Math. 17 (1973), 273–284.
- [6] _____, Associated prime ideals and Hopf algebras, J. Pure Appl. Algebra 3 (1973), 43–58.
- [7] M. Levine and F. Morel, *Cobordisme algébrique I*, C. R. Acad. Sci. Paris Sér. I Math. **332** (2001).
- [8] _____, Algebraic cobordism I, http://www.math.uiuc.edu/K-theory/0547/ (2002).

- [9] I. Panin, Riemann-roch theorem for oriented cohomology, http://www.math.uiuc.edu/K-theory/0552/ (2002).
- [10] Yuli B. Rudyak, On Thom spectra, orientability, and cobordism, Springer-Verlag, Berlin, 1998, With a foreword by Haynes Miller.
- [11] Robert E. Stong, *Notes on cobordism theory*, Princeton University Press, Princeton, N.J., 1968, Mathematical notes.

Alexander Merkurjev, Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

 $E ext{-}mail\ address: merkurev@math.ucla.edu}$