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1. Introduction

We begin by recalling the norm principles of Knebusch and Scharlau from the
algebraic theory of quadratic forms. Let (V, q) be a non-degenerate quadratic
form over a field F and let L/F be a finite field extension. Let D(q) denote
the subgroup in F× generated by the non-zero values of q. Knebusch norm
principle asserts that NL/F

(
D(q⊗F L)

)
⊂ D(q), where NL/F : L× → F× is the

norm map. Let G(q) be the group of multipliers of the quadratic form q, i.e.
the group of all x ∈ F× such that (V, xq) ≃ (V, q). Scharlau norm principle
states that NL/F

(
G(q ⊗F L)

)
⊂ G(q).

More generally, let φ : G→ T be an algebraic group homomorphism defined
over a field F . Assume that the group T is commutative, so that the norm
homomorphism NL/F : T (L) → T (F ) is defined for any finite separable field
extension L/F . The norm principle for φ and L/F claims that the norm
homomorphism NL/F maps the image of the induced homomorphism φL :
G(L) → T (L) to the image of φF : G(F ) → T (F ). Knebusch and Scharlau
norm principles are the special cases of the norm principle for certain group
homomorphisms

(
cf. Examples (3.2) and (3.3)

)
.

In the general setting the validity of the norm principle is an open problem.
The main result of the paper is the following

Theorem 1.1. Let G be a reductive group over a field F . Assume that the
Dynkin diagram of G does not contain connected components Dn, n ≥ 4, E6 or
E7. Then the norm principle holds for any group homomorphism G → T to a
commutative group T and any finite separable field extension L/F .

2. Definition and properties of the norm principle

Let T be a commutative algebraic group over a field F and let L/F be a
finite separable filed extension. The norm homomorphism

NL/F : T (L) → T (F )
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can be defined as follows. Assuming L ⊂ Fsep, the separable closure of F , we
set for arbitrary t ∈ T (L):

NL/F (t) =
∏

γ(t),

where γ runs over all cosets of Gal(Fsep/L) in Gal(Fsep/F ). The definition
of the norm homomorphism easily extends to the case of an arbitrary étale
F -algebra L.

For example, if T = Gm, we get the standard norm homomorphism NL/F :
L× → F×.

Let φ : G → T be an algebraic group homomorphism defined over F .
Assume that the group T is commutative. For an étale F -algebra L we have
the following diagram:

G(L)
φL // T (L)

NL/F

��
G(F )

φF // T (F ).

We say that the norm principle holds for φ and L/F if

Im
(
NL/F ◦ φL

)
⊂ ImφF .

If we write L as a product of finite separable field extensions L1 × L2 × · · · ×
Lk, then the norm principle for φ and L/F is clearly equivalent to the norm
principles for φ and all the field extensions Li/F .

We say that the norm principle holds for φ if the norm principle holds for
φ and any finite separable field extension L/F (or, equivalently, for any étale
F -algebra L).

Note that if G is also commutative, the norm principle clearly holds: the
norm homomorphism for G makes the diagram (??) commutative.

In this section we prove simple properties of the norm principle. The fol-
lowing Lemma can be proven by a straightforward diagram chase.

Lemma 2.1. Let φ : G → T and ψ : T → T ′ be two algebraic group homo-
morphisms over F . Assume that the groups T and T ′ are commutative. Then
the norm principle for φ implies the norm principle for the composition ψ ◦φ.

Let φ : G → T be an algebraic group homomorphism over F . Assume that
the commutator subgroup G′ in G is defined over F . Then φ factors through
the natural homomorphism φ′ : G → G/G′ and, by Lemma 2.1, the norm
principle for φ′ implies the norm principle for φ, i.e. the norm principle for
φ′ is the universal one. We call it the norm principle for the group G. Thus,
the norm principle for G implies the norm principle for any homomorphism
φ : G → T to any commutative group T . In the sequel we will consider only
algebraic groups with the commutator subgroup defined over F . For example,
reductive groups satisfy this property. In this case the commutator subgroup
G′ is the semisimple part of G.
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Note that the norm principle for G is equivalent to the norm principle for
any homomorphism φ : G → T (not necessarily surjective) to a commutative
group T with the kernel G′. If G′ = G (for example, if G is semisimple), the
norm principle for G trivially holds.

Example 2.2. Assume that the field F is finite and the commutator subgroup
G′ of G is connected (for example, if G is reductive). Then H1(F,G′) = 1
by [11, Ch III, Th.1] and hence the homomorphism G(F ) → (G/G′)(F ) is
surjective. In particular, the norm principle for G trivially holds.

Let φ : G → T and ψ : T ′ → T be two algebraic group homomorphisms
over F with T and T ′ commutative. Consider the fiber square

G′ φ′
//

��

T ′

ψ
��

G
φ // T,

so that G′ = G×T T
′. A simple diagram chase gives a proof of the following

Lemma 2.3. The norm principle for φ implies the norm principle for φ′.

Corollary 2.4. Let H be a subgroup in G. Assume that the commutator
subgroup G′ of G coincides with the commutator subgroup H ′ of H. Then the
norm principle for G implies the norm principle for H.

Proof. Under assumptions, we have a fiber square

H //

��

H/H ′

��
G // G/G′.

Hence, the statement follows from Lemma 2.3. �
�

Lemma 2.5. Let G → G̃ be a surjective algebraic group homomorphism with
the kernel S. Assume that H1(L, S) = 1 for any field extension L/F (for
example, if S is a quasi-trivial torus). Then the norm principle for G implies

the norm principle for G̃.

Proof. A simple diagram chase using surjectivity of G(L) → G̃(L). � �

Let E be an étale F -algebra and G an algebraic group over E. Denote by
RE/F (G) the corestriction of scalars [6, Ch. 6].

Lemma 2.6. The norm principle for G implies the norm principle for RE/F (G).
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3. Examples

Example 3.1. Let A be a central simple algebra over F . Denote by GL1(A)
the algebraic group of invertible elements in A. The reduced norm homomor-
phism for A [4, §22], [6, §1] defines an algebraic group homomorphism

Nrd : GL1(A) → Gm.

The norm principle for Nrd amounts the inclusion

NL/F

(
Nrd(A⊗F L)

×) ⊂ Nrd(A×)

for any finite separable field extension L/F . This statement is an easy impli-
cation of the following description of the reduced norms: The group Nrd(A×)
is a product of the norm groups NE/F (E

×) for all finite field extensions E/F
such that the E-algebra A⊗F E splits.

Example 3.2. (Knebusch norm principle) Let (V, q) be a non-degenerate qua-
dratic form over F , Γ(V, q) the Clifford group and

Sn : Γ(V, q) → Gm

the spinor norm homomorphism [6, Ch. 6]. The image of SnF in F× consists
of the products of non-zero values of the quadratic form q. The norm principle
for Sn is known as Knebusch norm principle [7, Ch. 7].

Example 3.3. (Scharlau norm principle) Let GO(V, q) be the group of simil-
itudes and

µ : GO(V, q) → Gm

the multiplier homomorphism [6, Ch. 3]. The image of µF consists of all
x ∈ F× such that the forms q and xq are isomorphic. The norm principle for
µ is known as Scharlau norm principle [7, Ch. 7].

4. The envelope of a semisimple algebraic group

Let G be a semisimple algebraic group over F . The center C of G is a finite
algebraic group of multiplicative type. Consider an embedding ρ : C ↪→ S over
F of C into a quasi-split torus S. We define the envelope of G with respect to
ρ, denoted e(G, ρ), to be the cofiber product of G and S over C:

C //

ρ

��

G

��
S // e(G, ρ),

i.e. e(G, ρ) = (G×S)/C. Thus, e(G, ρ) is a reductive group with the semisim-
ple part isomorphic to G and center isomorphic to S. An envelope of G is the
group e(G, ρ) for some ρ.

Let Ĝ be a reductive group with the semisimple part G. Assume that the

center S of Ĝ is a quasi-split torus. The center C of G is the intersection of S
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and G. Denote by ρ the embedding of C into S. Then clearly Ĝ is isomorphic
to the envelope e(G, ρ).

Let E be an étale F -algebra and G a semisimple algebraic group over E
with center C and embedding ρ : C ↪→ S for a quasi-trivial torus S over
E. Then RE/F (C) is the center of the semisimple group RE/F (G), RE/F (ρ) :
RE/F (C) → RE/F (S) is an embedding into a quasi-trivial torus RE/F (S) and

e
(
RE/F (G), RE/F (ρ)

)
= RE/F

(
e(G, ρ)

)
.

In the examples below we consider “small” envelopes of some absolutely
simple simply connected algebraic groups.

Example 4.1. (Type An−1) Let G be an absolutely simple simply connected
algebraic groups of type An−1. Then G is the special unitary group SU(B, τ),
where B is a central simple algebra of degree n over a quadratic extensionK/F

with a unitary involution τ [6, Ch. 6]. Consider the group Ĝ = GU(B, τ)
of unitary similitudes [6, §23]. It is a reductive group with the semisimple

part G = SU(B, τ). The center of Ĝ is the 2-dimensional quasi-split torus

RK/F (Gm). Hence, Ĝ is an envelope of G.

Example 4.2. (Type Bn) Let G be an absolutely simple simply connected
algebraic groups of type Bn. Then G is the spinor group Spin(V, q) of a non-
degenerate quadratic form (V, q) of dimension 2n+ 1 [6, Ch. 6]. Consider the

even Clifford group Ĝ = Γ+(V, q). It is a reductive group with the semisimple

part G = Spin(V, q). The center of Ĝ is the split torus Gm. Hence, Ĝ is an
envelope of G.

Example 4.3. (Type Cn) Let G be an absolutely simple simply connected
algebraic groups of type Cn. Then G is the symplectic group Sp(A, σ) of a
central simple F -algebra A of degree 2n with a symplectic involution σ [6, Ch.

6]. Consider the group of symplectic similitudes Ĝ = GSp(A, σ) [6, §23]. It is
a reductive group with the semisimple part G = Sp(A, σ). The center of Ĝ is

the split torus Gm. Hence, Ĝ is an envelope of G.

Example 4.4. (Type Dn) Let G be an absolutely simple simply connected
algebraic groups of type Dn, n ̸= 4. Then G is the spinor group Spin(A, σ, f)
for a central simple F -algebra A of degree 2n with a quadratic pair (σ, f)

[6, Ch. 6]. Consider the extended Clifford group Ĝ = Omega(A, σ, f) [6,
§23]. It is a reductive group with the semisimple part G = Spin(A, σ, f). The

center of Ĝ is the 2-dimensional quasi-split torus RZ/F (Gm) where Z/F is the

discriminant quadratic extension. Hence, Ĝ is an envelope of G.

Example 4.5. (Types G2,F4,E8) Let G be an absolutely simple simply con-
nected algebraic groups of type G2,F4 or E8. The center of G is trivial, hence
the group G can be chosen as an envelope of itself.
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5. Reduction

In this section we reduce the statement of Theorem 1.1 to the case of an
envelope of an absolutely simple simply connected group.

Proposition 5.1. The norm principle for a reductive group G follows from
the norm principle for any envelope of the semisimple part G′ of G.

Proof. Let Ĝ = e(G′, ρ) be an envelope of G′, the semisimple part of G, where
ρ : C → S is an embedding of the center C of G′ into a quasi-trivial torus S.

Denote by γ : S → Ĝ the natural embedding. Let T be the center of G (T is a
group of multiplicative type, neither reduced, nor connected in general), and

let T̃ be the cofiber product of T and S over C:

C //

ρ

��

T

α
��

S
ν // T̃ ,

i.e. T̃ = (S × T )/C.

Consider the algebraic group G̃ defined by the cofiber square

G′ × T
µ //

id×α
��

G

��

G′ × T̃
ε // G̃,

where µ is the multiplication homomorphism. The cokernel of the embedding

β is isomorphic to Coker(α) ≃ Coker(ρ) and hence is a torus. Therefore, G̃ is
a reductive group with the semisimple part isomorphic to G′.

Consider the following commutative diagram with exact rows and cofiber
left square:

1 // C
(δ,νρ)

//

ρ

��

G′ × T̃

��

ε // G̃ // 1

1 // S
(γ,ν)

// Ĝ× T̃ // G̃ // 1,

where δ : C → G′ and η : G′ → Ĝ are the canonical embeddings.

The norm principle for Ĝ implies the norm principle for G̃ by Lemma 2.5

applied to the quotient of Ĝ× T̃ by the quasi-trivial torus S. Finally, the norm

principle for G follows from the norm principle for G̃ by Corollary 2.4 applied

to the embedding β : G ↪→ G̃. �
�

Proposition 5.2. Let G be a reductive group over F . Assume that for any
connected component Φ of the Dynkin diagram of G the norm principle for
some envelope of any simply connected semisimple group (defined over a field
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extension of F ) with the Dynkin diagram Φ holds. Then the norm principle
holds for G.

Proof. By [10, Lemma 7.6], there is an exact sequence

1 → P → K → G→ 1,

where P is a quasi-trivial torus and K is a reductive group with simply con-
nected semisimple part. By Lemma 2.5, the norm principle for G follows from
the norm principle for K. Thus, we may assume (replacing G by K) that the
semisimple part G′ of G is simply connected. By [6, Th. 26.8], there is an
étale F -algebra E and an absolutely simple simply connected group H ′ over
E such that

G′ = RE/F (H
′).

Let H be an envelope of H ′. By assumption, the norm principle holds for H.
By a property of the envelopes, the group G1 = RE/F (H) is an envelope of
G′. The norm principle for G1 holds by Lemma 2.6. Finally, Proposition 5.1
implies the norm principle for G. � �

In order to proof Theorem 1.1, in view of Proposition 5.2, it is sufficient to
prove the norm principle for some envelopes of all absolutely simple simply
connected groups of types An, Bn, Cn, G2, F4 and E8. As noticed in Example
4.5, for the exceptional types the envelopes can be chosen semisimple, hence
the norm principle trivially holds. In the remaining sections we consider the
classical types An, Bn and Cn.

6. Case An−1

By (4.1), an envelope Ĝ of an absolutely simple simply connected algebraic
group of type An−1 can be chosen as the group of unitary similitudesGU(B, τ),
where B is a central simple algebra of degree n over a quadratic extension
K/F with a unitary involution τ . Denote by T the torus Gm×RK/F (Gm) and
consider the homomorphism

φ : GU(B, τ) → T

taking a similitude b to the pair
(
τ(b)b,NrdB(b)

)
. The kernel of φ is the

special unitary group SU(B, τ), the semisimple part of GU(B, τ). Thus, it is
sufficient to prove the norm principle for the homomorphism φ.

By Wedderburn theorem, B = EndD(V ) for a central division algebra D
over K and a vector space V over D. By [6, Th. 4.2], D has a unitary
involution, say ρ, over K/F , and the involution τ is adjoint with respect to

a Hermitian form h on V over (D, ρ). Thus, the group Ĝ is the group of
similitudes GU(V, h) of the Hermitian form (V, h).

Let L be an étale F -algebra, b ∈ BL = B ⊗F L a similitude of (VL, hL) =
(V ⊗F L, h ⊗F L) with the multiplier x = τ(b)b ∈ L×, i.e. b is an isometry
between Hermitian forms (VL, hL) and (VL, xhL). The element φL(b) ∈ T (L)
is the pair (

x,NrdBL
(b)

)
∈ L× × (K ⊗F L)

×.
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We need to find a similitude b′ of the Hermitian form (V, h) with the multiplier
NL/F (x), i.e. an isometry b′ between (V, h) and (V,NL/F (x)h), such that

NrdB(b
′) = NK⊗L/K

(
NrdBL

(b)
)
.

Any DL-endomorphism of VL can be considered as just an D-endomorphism,

i.e. we can consider BL as a subalgebra in the central simple K-algebra B̃ =

EndD(VL). Clearly, BL is the centralizer of L in B̃. By the reduced tower
formula [4, p. 150],

(6.1) NK⊗L/K
(
NrdBL

(b)
)
= NrdB̃(b).

Assume first that the degreem = [L : F ] is odd, m = 2k+1, and x generates
L as F -algebra. Thus, the elements 1, x, x2, . . . , xm−1 form a basis of L over
F . Consider the F -linear map s : L → F given by s(1) = 1 and s(xi) = 0 for
i = 1, 2, . . . ,m− 1. We also denote by s the extended D-linear map DL → D.
Composing h with s we get a Hermitian form h′ on VL over D. Clearly, h′

is the tensor product of (V, h) and (L, p), where p is the bilinear form on L
given by p(y, z) = s(yz). The orthogonal complement of (F, ⟨1⟩) in (L, p)
is the subspace with the basis x, x2, . . . , xm−1. The restriction of p on this
space is metabolic since it contains a totally isotropic subspace generated by
x, x2, . . . , xk. Thus, there is an isometry

α : (L, p) →∼ (F, ⟨1⟩) ⊥ (F 2k, p′),

where p′ is a metabolic bilinear form. We have

(6.2) det(α)2 =
det p

det p′
.

Composing xh with s we get a Hermitian form h′′ on VL over D. Clearly,
h′′ is the tensor product of (V, h) and (L, q) where q is the bilinear form on L
given by q(y, z) = s(xyz). The subspace generated by 1, x, . . . , xk−1 is totally
isotropic for q. Hence, (L, q) contains a metabolic subspace of dimension 2k. As
computed in [7, p. 196], the orthogonal complement of it is the 1-dimensional
space (F, ⟨NL/F (x)⟩). Thus, there is an isometry

β : (L, q) →∼ (F, ⟨NL/F (x)⟩) ⊥ (F 2k, q′),

where q′ is a metabolic bilinear form. We have

(6.3) det(β)2 =
det q

NL/F (x) det q′
.

An easy computation shows that

det(q) = NL/F (x) · det(p).
Hence, (6.2) and (6.3) imply

(6.4)

(
det β

detα

)2

=
det p′

det q′
.

Note that if char(F ) ̸= 2, the forms p′ and q′ are hyperbolic and hence
are isomorphic. If char(F ) = 2, the forms p′ and q′ may not be isomorphic.
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Nevertheless, after tensoring with h these forms become isomorphic. We will
need a more precise statement.

Lemma 6.5. There is an isometry

c : (V 2k, h⊗ p′) →∼ (V 2k, h⊗ q′)

such that Nrd(c) = fn and det p′

det q′
= f 2 for some f ∈ F×.

Proof. Let {ei, fi}, i = 1, 2, . . . , k be a metabolic basis of (F 2k, p′), i.e. p′(ei, ej) =
0, p′(ei, fj) = δij for all i, j, and p

′(fi, fj) = 0 for i ̸= j. Choose also a meta-
bolic basis {e′i, f ′

i} of (F 2k, q′). If a is the linear automorphism of F 2k taking

ei to fi and e
′
i to f

′
i , then det(a)2 = det p′

det q′
.

By [6, Prop. 2.17], any ρ-symmetric element of D is of the form ρ(d)+ d for
some d ∈ D. Choose elements di ∈ D such that

p′(fi, fi) = q′(f ′
i , f

′
i) + ρ(di) + di

for any i. Let vj, j = 1, 2, . . . , l, be a D-basis of V . Define an automorphism
c of V 2k = V ⊗F F

2k over D by

c(vj ⊗ ei) = vj ⊗ e′i,

c(vj ⊗ fi) = vj ⊗ f ′
i + divj ⊗ e′i.

Clearly, c is an isometry between (V 2k, h ⊗ p′) and (V 2k, h ⊗ q′). Finally,
Nrd(c) = det(a)n and we can set f = det(a). � �

Choose an isometry c and f ∈ F× as in Lemma 6.5. It follows from (6.4)
that det β = ±f · detα. Modifying α by an isometry (reflection) of (L, p) we
may assume that

(6.6) f =
det β

detα
.

Consider the composition

b1 : (V, h) ⊥ (V 2k, h⊗p′) →id⊗α−1

(VL, h
′) →b (VL, h

′′) →id⊗β (V,NL/F (x)h) ⊥ (V 2k, h⊗q′)
as an automorphism of the space V m over D. Then, by Lemma 6.5, (6.1) and
(6.6),

(6.7) Nrd(b1) = NrdB̃(b) ·
(
det β

detα

)n

= NK⊗L/K
(
NrdBL

(b)
)
· Nrd(c).

By [3, Ch IX, §4, Th.1], the isometry c can be extended to an isometry

b2 : (V, h) ⊥ (V 2k, h⊗ p′) →∼ (V,NL/F (x)h) ⊥ (V 2k, h⊗ q′)

which must be of the form b2 = b′′ ⊥ c for some isometry

b′′ : (V, h) →∼ (V,NL/F (x)h).

Thus,

Nrd(b2) = NrdB(b
′′) · Nrd(c).
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Hence, by (6.7),

(6.8) NrdB(b
′′) = Nrd(u) ·NK⊗L/K

(
NrdBL

(b)
)

for the isometry u = b2b
−1
1 of the space (V,NL/F (x)h) ⊥ (V 2k, h⊗ q′).

By [9, Prop. 6.1], the group of reduced norms of isometries of a Hermitian
form overD depends only onD and does not depend on the space of the form (a
characteristic free proof is given in [1, Th.5.1.3]). Hence, there is an isometry u′

of the form (V, h) such that NrdB(u
′) = Nrd(u). Finally, we set b′ = b′′ · (u′)−1.

By (6.8), b′ is a desired isometry between (V, h) and (V,NL/F (x)h) such that

NrdB(b
′) = NK⊗L/K

(
NrdBL

(b)
)
.

We will need the following

Lemma 6.9. Let L be an étale algebra over an infinite field F , let H be a
reductive algebraic group over F and ψ : H → RL/F (Gm) a surjective algebraic
group homomorphism. Denote by X the set of all h ∈ H(F ) such that the
element x = ψF (h) ∈ L× generates L as F -algebra. Then X generates the
group H(F ).

Proof. There is a non-empty open subset U ⊂ RL/F (Gm) defined over F such
that an element x belongs to U(F ) if and only if x generates L as F -algebra.
Denote by U ′ the open set ψ−1(U) ⊂ H so that U ′(F ) = X. The set U ′ is non-
empty since g is surjective. Let h ∈ H(F ); set W = hU ′∩U ′. The open set W
is non-empty (H is connected). Since F is infinite, the group H(F ) is dense
in H [2, Cor. 18.3], and therefore W (F ) is non-empty. Choose w ∈ W (F ).
Then w = hu ∈ U ′(F ) = X for some u ∈ U ′(F ). Finally, h = wu−1 and
u,w ∈ X. � �

Assume now that the degree [L : F ] is still odd but x may not generate L
as F -algebra. Consider the corestriction

ψ : RL/F (ĜL) → RL/F (Gm)

of the composition of φL : ĜL → TL with the first projection TL → Gm and
the subset

X ⊂ RL/F (ĜL)(F ) = Ĝ(L) = GU(BL, τL)

consisting of all b such that the element x = ψF (b) = τ(b)b generates L as
F -algebra. In the first part of the proof the norm principle was proven for all
elements in X. By Example 2.2, we may assume that the field F is infinite.

Lemma 6.9, applied to ψ, shows that X generates the group Ĝ(L), whence the
norm principle.

Finally, assume that the degree [L : F ] is even. The norm principle in this
case follows from the norm principle for the étale algebra F ×L of odd degree
over F .
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7. Case Bn

By (4.2), an envelope Ĝ of an absolutely simple simply connected algebraic

group of type Bn can be chosen as the even Clifford group Ĝ = Γ+(V, q) of a
non-degenerate quadratic form (V, q) of dimension 2n + 1. The kernel of the
spinor norm homomorphism

φ : Γ+(V, q) → Gm

is the semisimple part Spin(V, q) of Γ+(V, q). Thus, it is sufficient to prove the
norm principle for the universal homomorphism φ. It follows from Knebusch
norm principle (Example 3.2). The proof is given in [7, Ch. 7] (it is valid also
if char(F ) = 2).

8. Case Cn

By (4.3), an envelope Ĝ of an absolutely simple simply connected alge-
braic group of type Cn can be chosen as the group of symplectic similitudes
GSp(A, σ) for a central simple F -algebra A of degree 2n with a symplectic
involution σ. The kernel of the multiplier homomorphism

µ : GSp(A, σ) → Gm, µ(a) = σ(a)a

is the semisimple part Sp(A, σ) of GSp(A, σ). Thus, it is sufficient to prove
the norm principle for the universal homomorphism µ.

By Wedderburn theorem, A = EndD(V ) for a central division algebra D
over F and a vector space V over D. By [6, Th. 4.2], D has an involution
of the first kind, say ρ, and the involution σ is adjoint with respect to an ε-

Hermitian form h on V over D. Thus, the group Ĝ is the group of similitudes
GSp(V, h) of the ε-Hermitian form (V, h).

Let L be an étale F -algebra, a ∈ AL a similitude of (VL, hL) with the
multiplier x = σ(a)a ∈ L×, i.e. a is an isometry between ε-Hermitian forms
(VL, hL) and (VL, xhL). We need to find a similitude a′ of the ε-Hermitian
form (V, h) with the multiplier NL/F (x), i.e. an isometry between (V, h) and
(V,NL/F (x)h).

Assume first that the degreem = [L : F ] is odd, m = 2k+1, and x generates
L as F -algebra. As in Section 6, we get an isometry

(V, h) ⊥ (V 2k, h⊗ p′) →∼ (V,NL/F (x)h) ⊥ (V 2k, h⊗ q′)

where p′ and q′ are metabolic bilinear forms over F . Since the involution σ is
symplectic, any metabolic ε-Hermitian form is hyperbolic. In particular, the
forms (V 2k, h⊗p′) and (V 2k, h⊗q′) are isomorphic. By the cancelation property
[5, Cor. 6.4.2], there is an isometry b′ between (V, h) and (V,NL/F (x)h).

Assume now that the degree [L : F ] is still odd but x may not generate L
as F -algebra. Consider the corestriction

ψ : RL/F (ĜL) → RL/F (Gm)
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of the homomorphism µL and the subset

X ⊂ RL/F (ĜL)(F ) = Ĝ(L) = GSp(AL, σL)

consisting of all a such that the element x = ψF (a) = σ(a)a generates L as
F -algebra. By Example 2.2 we may assume that the field F is infinite. Lemma

6.9, applied to ψ, shows that X generates the group Ĝ(L), whence the norm
principle.

Finally assume that the degree [L : F ] is even. The norm principle in this
case follows from the norm principle for the étale algebra F ×L of odd degree
over F .

References

[1] E. Bayer-Fluckiger, R. Parimala, Galois cohomology of the classical groups over fields
of cohomological dimension ≤ 2, Invent. Math., 122 (1995), 195–229.

[2] A. Borel, Linear Algebraic Groups, Second Enlarged Edition, Graduate Texts in Math-
ematics, Vol. 126, Springer, Berlin, 1991, xii+288 pp.
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