VERSAL TORSORS AND RETRACTS
ALEXANDER S. MERKURJEV

ABSTRACT. Let G be an algebraic group over F' and p a prime integer. We introduce
the notion of a p-retract rational variety and prove that if Y — X is a p-versal G-torsor,
then BG is a stable p-retract of X. It follows that the classifying space BG is p-retract
rational if and only if there is a p-versal G-torsor Y — X with X a rational variety, that
is all G-torsors over infinite fields are rationally parameterized. In particular, for such
groups G the unramified Galois cohomology group H}% (F(BG),Q,/Zy(j)) coincides with

H"™(F,Qp/Zy(j)).

1. INTRODUCTION

Let G be an algebraic group over a field F'. In the present paper we study G-torsors
E — Spec K for field extensions K/F. In many cases G-torsors are related to classical
algebraic objects. For example, if G = PGL, such objects are central simple algebras
A of degree n over K. Every PGL,-torsor over Spec K is the torsor of isomorphisms
between A and the matrix algebra M, (K).

A G-torsor f:Y — X is called versal if every G-torsor E — Spec K for an extension
K/F with K an infinite field is isomorphic to the pull-back of f with respect to a morphism
(a point) Spec K — X and the set of images of such morphisms is dense in X. Thus, a
versal G-torsor keeps information about all G-torsors over field extensions K/F.

Versal G-torsors exist. For example, let V' be a generically free representation of G
(that is the generic stabilizer of a vector in V' is trivial). There is a nonempty G-invariant
open subset I C V and a G-torsor I — Z for some variety Z over F. (One can think of
Z as the variety of orbits I/G.) It appears that I — Z is a versal G-torsor. We call such
torsors standard versal G-torsors. We think of the variety Z as an “approximation” of
the stack BG of all G-torsors, which we call the classifying space of G.

If I - Z and I' — Z' are two standard versal G-torsors, then the varieties Z and
Z' are stably birationally isomorphic. In other words, the stable birational type of the
classifying space BG is well defined.

If I — Z is a standard versal G-torsor and Y — X is a versal G-torsor, then Z and X
may not be stably birationally isomorphic. But we prove in Theorem 5.7 that Z is a stable
retract of X, that is there are rational morphisms f : Z --» X x A% and g : X x A% --» Z
for some n such that the composition g o f is defined and equals the identity of Z.

We say that all G-torsors over infinite fields for an algebraic group G are rationally
parameterized if there is a versal G-torsor Y — X with X a rational variety. We prove
(Theorem 5.8) that all G-torsors over infinite fields are rationally parameterized if and
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only if BG (that is, its approximation Z for a standard versal torsor I — Z) is retract of
a rational variety.

We also consider the local setting. Namely, for a prime integer p we consider p-versal
torsors and define p-retracts, roughly, by ignoring the effects given by dominant morphisms
of finite degree prime to p. We prove local analogs of the theorems mentioned above.

In Section 7 we prove (Theorem 7.4) that if X and X’ are smooth varieties over F' such
that X is a p-retract of X', then there is an injective homomorphism of the groups of
unramified cohomology

Hy (F(X),Qp/Z,(5)) = Hiy (F(X'), Qp/Z4 (7))

In particular, if X is a p-retract rational smooth variety over F', then the natural homo-
morphism

H"(F,Qp/Zy(j)) — Hy, (F(X),Qp/Zy(5))
is an isomorphism.

We use the following notation. A wariety over a field F' is an integral separated scheme
of finite type over F. We write F'(X) for the function field of X over F. An algebraic
group over I is an affine group scheme of finite type over F' (not necessarily smooth or
connected). The degree of a dominant morphism Y — X of varieties is the integer [F'(X) :
F(Y)]. We write X ~ Y if X and Y are birationally isomorphic, i.e., F(X) ~ F(Y') over
F. If X is a scheme over F' and L/F' is a field extension, we write X for the scheme
X X g Spec L over L. The generic fiber of a dominant rational morphism f :Y --» X of
varieties over F' is the scheme U X x Spec K over K = F(X), where U C Y is the domain
of definition of f. We write pt for Spec F.

The letter p in the paper denotes either a prime integer or 0. An integer k is said to
be prime to p when k is prime topif p >0 and k =11if p =0.

We collect technical (mostly known) results in the Appendix.

Acknowledgment: The author is grateful to Jean-Louis Colliot-Thélene, David Harbater
and Zinovy Reichstein for useful comments.

2. SPLIT RATIONAL MORPHISMS

A rational dominant morphism of varieties f : X’ --» X over a field F' is called
(rationally) p-split if for every nonempty open subset U’ C X’ in the domain of definition
of f, there is a morphism of varieties g : Y — X’ such that Im(g) C U’ and the composition
fog:Y — X is dominant of finite degree prime to p:

Y

g
/ lof degree prime to p

x-I.x

Clearly, a dominant morphism f : X’ --» X is p-split if and only if the set of closed
points of degree prime to p in the generic fiber of f is everywhere dense.

Remark 2.1. By Lemma 8.5, the set of closed points of degree prime to p > 0 in a
regular variety is either empty of everywhere dense. It follows that in the case the generic
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fiber of a dominant rational morphism f : X’ --» X is regular, the density condition in
the definition of p-retract for f can be removed if p > 0.

Example 2.2. If f: X' --» X is a dominant rational morphism of finite degree prime p,
then f is p-split. Indeed, we can take Y the domain of definition of f and g the inclusion
of Y into X'.

We say that f is split is f is p-split for p = 0. By definition, f is split if and only if
for every nonempty open subset U’ in the domain of definition of f, there is a rational
morphism ¢ : X --» X’ such that Im(g) N U’ # () and f o g = 1x. Equivalently, f is split
if and only if the rational points in the generic fiber of f are everywhere dense.

Lemma 2.3. (D) Iff: X' --» X and [+ X" --» X' are p-split morphisms of
varieties over I, then so is fo f’.
(2) Every birational isomorphism is split.
(3) If X is a variety over F' such that the field F(X) is infinite, then the projection
X x At — X s split for all n.

Proof. (1): Let U” C X” be a nonempty open subset in the domains of definition of f’
and f o f’. Choose a morphism ¢’ : Y’/ — X" such that Im(¢’) C U” and ¢/ := f' o g is
dominant of finite degree prime to p.

By Lemma 8.3, there exists a nonempty open subset U’ C X’ in the domain of definition
of f such that for every point u € U’ there is y € Y’ with ¢'(y) = u and finite [F(y) : F(u)]
prime to p. Since f is p-split, there is a morphism ¢ : Y — X’ with Im(g) C U’ such that
t := f o g is dominant of finite degree prime to p.

By Lemma 8.4, there is a variety Y”, a morphism ¢” : Y” — Y’ and a dominant
morphism ¢” : Y” — Y of finite degree prime to p such that t' o ¢ = g o t”:

Y//

.
t
Y’ Y
o e
t
X'-==X"-=>X.
We have
(fof)o(dog)=fotog'=fogot'=tot"
and Im(¢’ o ¢") C Im(¢’) C U”. Moreover, deg(t o t”") = deg(t)deg(t”) is prime to p.
Therefore, f o f' is p-split.
(2) follows immediately from the definition.
3): Under the assumption, the F'(X)-points are dense in the generic fiber A% ., of the
F(X)
projection X x A% — X. U

Lemma 2.4. If f: X' --» X is p-split, then so is f x 1: X' x A% --» X X A% for every
n.
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Proof. Let W be the domain of definition of f and U C W x AL a nonempty open
subset. As the projection p : W x A% — W is flat, it is an open morphism, hence
the image U’ := p(U) is open in W. As f is p-split, there is a morphism of varieties
g Y — X’ such that Im(g) C U’ and the composition fog : Y — X is dominant
of finite degree prime to p. It follows that the image of g x 1 : ¥ x A% — X' x A%
intersects U. Therefore, the subset T':= (g x 1)7*(U) C Y x A% is nonempty open. Then
the restriction h := (g x 1)|p : T — X’ x A% satisfies Im(h) C U and the composition
(f x1)oh:T — X x A% is dominant of finite degree prime to p. O

3. RETRACTS

We say that a variety X is a (rational) p-retract of a variety X' if there is a p-split
rational morphism f: X’ --» X. We write X <, X’ if X is a p-retract of X'.

If p =0, we simply write X < X’ for X <, X’ and call X a retract of X'. Clearly,
X < X' implies X <, X' for every p.

Our definition of retract coincides with the one in [24, Definition 1.1].

Example 3.1. If f: X’ --» X is a dominant rational morphism of finite degree prime p,
then X <, X’ (see Example 2.2).

In the case p = 0, the following lemma was proved in [24, Lemma 1.3, Lemma 1.4,
Example 1.5a].

Lemma 3.2. (1) If X <, X' and X' <, X", then X <, X".
(2) If X =Y, then X <, Y <, X for all p.
B) IfX <, X', X~Y and X' =Y, thenY <, Y".
(4) If X is a variety over F such that the function field F(X) is infinite, then
X < (X x A%) for all n.

Proof. (3) follows from (1) and (2). The other statements are proved in Lemma 2.3. [

Lemma 3.2 shows that the relation <, can be defined on the set of birational isomor-
phism classes of varieties over F.
The following statement is proved in Lemma 2.4.

Lemma 3.3. If X <, X', then (X x A}) <, (X' x A%}) for every n.

We say that X is a stable p-retract of X" and write X <1, X" if X <, (X’ x A}) for some
n >0 (cf., [24, Definition 4.1]). If X is a p-retract of X', i.e., X <, X', then X <, X".

Corollary 3.4. If X <, X" and X' <, X", then X <, X".

Proof. We have X <, X' x A} and X' <, X" x A}, for some m and n. By Lemma 3.3,
X' x AT <, X" x A% hence X <, X" x A% in view of Lemma 3.2. O

b.
If X and Y are varieties over F, we write X ~ Y if X and Y are stably birational,
ie, X x AT =Y x A% for some m and n.

Corollary 3.5. If F(Y) is infinite, X <, X', X WY and X! X Y’ thenY <, Y’
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Proof. We have birational isomorphisms X x A ~ Y x A%, X’ x A7 ~ Y’ x A% and
X <, X' x A3, for some m,n,r, k,s. By Lemmas 3.2 and 3.3,

Y <, (Y x A% <, (X x AT) <1, (X x AL) <, (X x ALY <, (Y x AkF) <, V7.
By Corollary 3.4, Y <, Y. O

A variety X is called p-retract rational if X is a p-retract of a rational variety. Equiva-
lently, by Lemma 3.2, X is p-retract rational if and only if X <, pt. A variety X is called
retract rational if X is p-retract rational for p = 0.

4. VERSAL TORSORS

Let G be an algebraic group over F'. We consider G-torsors Y — X over a variety X.
Note that we don’t assume that Y is a variety, i.e., Y is integral.

A G-torsor Y — X over a variety X is called p-versal if for every G-torsor E —
Spec(K) for a field extension K/F with K an infinite field and every nonempty open
subset U C X, there is a finite field extension L/F' of degree prime to p such that the
G-torsor E;, — Spec L is isomorphic to the pull-back of Y — X with respect to a point
x : Spec(L) — X with Im(z) € U (see [11]).

A G-torsor Y — X is called wversal if it is p-versal for p = 0 (see [13]). Every versal
torsor is p-versal for every p.

Proposition 4.1. Let f : X1 — X5 be a dominant morphism of varieties over F', Yo — X
a G-torsor and Yy — X; the pull-back of Yo — Xy with respect to f. Then

(1) If Y1 — X; is a p-versal G-torsor, then so is Yo — Xs.
(2) If Yo — Xy is a p-versal G-torsor and f is p-split, then Yy — X is p-versal.

Proof. (1) Let E — Spec K be a G-torsor, where K is a field extension of F' such that K
is an infinite field, and Uy C X5 a nonempty open subset. As f is dominant, the open
subset U; := f~}(U,) C X, is nonempty. Since Y; — X is a p-versal torsor, there is
a field extension L/K of finite degree prime to p and a point z; : Spec L — X; with
Im(x1) C Uy such that the torsor £, — Spec L is isomorphic to the pull-back of Y} — X;
with respect to zy. If 9 := fox; : Spec L — Xy, then Im(zy) C Us and Ep — Spec L is
isomorphic to the pull-back of Y5 — X, with respect to x,.

(2) Let £ — Spec K be a G-torsor, where K is a field extension of F' such that K is an
infinite field, and U; C X; a nonempty open subset. Since f is p-split, there is a morphism
of varieties ¢ : Y — X such that Im(g) C U; and the composition fog:Y — Xj is finite
of degree prime to p. In view of Lemma 8.3 applied to the morphism fog:Y — X5 of
finite degree prime to p, we find a nonempty open subset Uy C X5 such that for every
point x5 € U, there is a point y € Y with the property that f(g(y)) = xo and the field
extension F(y)/F(z2) is finite of degree prime to p.

As Y, — X5 is a p-versal G-torsor, there is a field extension L/K of finite degree prime
to p and a morphism h : Spec L — X5 such that {zs} := Im(h) C U, and E;, — Spec L
is isomorphic to the pull-back of the torsor Yo — X5 with respect to h. Choose a point
y € Y such that f(g(y)) = =2 and the field extension F(y)/F(x3) is finite of degree prime
to p. By Corollary 8.2, applied to the morphism fog:Y — Xs, there is a field extension
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L'/ L of finite degree prime to p and a morphism k : Spec L’ — Y such that Im(k) = {y}
and the composition of Spec L' — Spec L with h coincides with f o g o k:

Spec L' —— Spec L

| N

y— ¢ x, Lo x,

It follows that Er, — Spec L' is isomorphic to the pull-back of the torsor Y7 — X; with
respect to go k and [L' : K] = [L' : L] - [L : K] is prime to p. Finally, Im(g o k) =
g(Im(k)) = {g(y)} C Uy. It follows that Y7 — X, is a p-versal torsor. O

5. STANDARD VERSAL TORSORS

Let G be an algebraic group over F. Let V be a generically free G-representation and
I C V a nonempty G-invariant open subset together with a G-torsor I — Z, where Z is
a variety over F'. We call I — Z a standard G-torsor. We always assume that [ is chosen
so that dim(Z) > 0, hence the field F/(Z) is infinite.

Example 5.1. Embed G into GL,, as a closed subgroup. Then the natural morphism
GL, — GL, /G is a standard G-torsor since GL,, is an open subset of the affine space
of M,,(F) and G acts on M, (F') by multiplication generically freely.

Let Y — X be a G-torsor with X a variety over F'. The trivial vector bundle Y xV — Y
with the diagonal G-action on Y x V descends to a vector bundle YV — X (see [2] and
[26, Chapter 4]). The open nonempty G-invariant subset Y x I C Y x V descends to an

open subset Y! C YV, In particular, Y7 is a variety over F birational to X x V, therefore,

Y! e~ X. The projection Y x I — I yields a morphism Y/ — Z.

Let E — Spec K, where K = F(Z), be the generic fiber of I — Z. Write YZ — Spec K
for the generic fiber of Y/ — Z. As Y¥ is a localization of Y/, Y is a variety over K.

If I, = Z; and I, — Z, are two standard G-torsors, then

7 R (L)~ ()" R 2,

hence Z; and Z, are stably birationally isomorphic.

If Y is a variety, we write BG <, Y if Z <, Y for a standard G-torsor I — Z. By
Corollary 3.5, this makes sense. We say that BG is stably rational (respectively, p-retract
rational) if so is Z.

Example 5.2. If char(F) = p > 0 and G is a finite p-group, then BG is stably rational
(see [14] and [18, §5.6]).

Example 5.3. Let H C G be a subgroup of finite index prime to p and I — Z a
standard G-torsor. Then I — T := [/H is a standard H-torsor. Since the natural
morphism 7" — Z is of degree [G : H] prime to p, we have Z <, T by Example 3.1. In
other words, BG' <, BH.

By [13, Part 1, §5.4], every standard G-torsor I — Z is versal.

Proposition 5.4. Let Y — X be a G-torsor with X a variety and let I — Z be a standard
G-torsor. Then'Y — X is p-versal if and only if the morphism Y1 — Z is p-split.
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Proof. =: Let K = F(Z) and E — Spec K the generic fiber of I — Z. It suffices to show
that closed points of degree prime to p are dense in Y7,

Let U C Y¥ be a nonempty open subset. We will show that U contains a closed point
of degree prime to p.

Since Y¥ is a localization of Y, there is an open subset U’ C Y7 such that U is the
pull-back of U’ under the natural morphism Y* — Y7, As the morphism Y — X is flat,
it is open and the image W of U’ is an open subset of X.

As 'Y — X is a p-versal torsor, there is a field extension L/K of finite degree prime
to p and a point = : Spec L — X such that Im(z) C W and the torsor E;, — Spec L is
isomorphic to the pull-back of Y — X with respect to . We can find a variety Z’ over
F, a morphism s : Z/ — Z of varieties over F' such that the field extension F(Z')/F(Z)
given by s is isomorphic to L/K, a morphism ¢ : Z' — X such that the composition

SpecL = Z' % X coincides with z and Im(¢) C W such that there is a commutative
diagram

with two fiber product squares.
The diagram

ax1 bx1

IxI<—Ix]—YxI

Lo

% p—* vy

where the vertical maps are first projections, yields a fiber product diagram

L (')’ S yI

Lol

R A ¢
Since Im(t) C W, we have Im(f) N U’ # (). Therefore, the open subset 7" := f~1(U’) C
(I')! is nonempty. As (I')¥ is a localization of (I')!, the inverse image T" of 7" under the

natural morphism (I')¥ — (I')! is a nonempty open subset of (I’)¥. The commutativity
of the diagram

(I/)E h yE

|

( [/)I f Y]
implies that h(T) C U.
The natural morphism ¢’ : (I')F — IF of varieties over K induced by g is dominant
of finite degree prime to p. By Lemma 8.3 applied to the restriction k : T — I” of ¢/,
there is a nonempty open subset U” C I” such that for every point x € U” there is a
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point ¢t € T with the property that k() = = and the field extension K (t)/K(z) is finite
of degree prime to p.

Let p : G — GL(V) be a generically free representation such that the variety I is a
nonempty G-invariant open subset of a vector space V. Hence [ E is open in a vector space
VE over K that is the twist (V x E)/G of V by E. If pE is the push-forward of E with
respect to p, we have V¥ ~ VPP By the classical Hilbert Theorem 90, the GL(V)-torsor
pE is trivial, hence V?¥ ~ Vi over K. Thus, I” ~ I over K. As K is an infinite field,
the K-points of I are everywhere dense. Choose a K-point x € U” C I¥. There is a
closed point ¢t € T of degree prime to p such that k(t) = x. Then h(t) € U C Y¥ is a
closed point of degree prime to p.

«: Consider the following diagram with two fiber product squares

I vxi- 2.y

L

A Yt X.

As I — Z is versal and Y! — Z is p-split, by Proposition 4.1(2), the torsor Y x I — Y
is p-versal. It follows from Proposition 4.1(1) that Y — X is p-versal. U

Remark 5.5. It was shown in [11] that if Y — X is a versal torsor, the rational points
are dense in Y. The p-local analog is false if p > 0.

Example 5.6. Let p = 2 and G = pg over a field F' of characteristic not 3 such that
G(F) = 1. If K/F is a field extension and a € K*, write K, := K|x]/(2® — a) and set
Y, = Spec K,. Then Y, — Spec K is a G-torsor and every G-torsor over Spec K is of this
form. If a € K>3, the torsor Y, is trivial. Otherwise, K, is a field, hence Y, is a variety.
Therefore, a nontrivial G-torsor Y, is split over the cubic field extension K,/K. It follows
that the trivial G-torsor G — Spec F' is 2-versal. But since G = Spec F' + Spec L, where
L/F is a quadratic field extension, the closed points of G' of odd degree are not dense in

G.
Theorem 5.7. Let Y — X be a p-versal G-torsor. Then BG s a stable p-retract of X.

Proof. As Y! Tox , we have Y < X by Corollary 3.5. In view of Proposition 5.4, the
morphism Y! — Z is p-split. Therefore, Z is a p-retract of Y, i.e., Z <, Y. Finally,
Z <, X by Corollary 3.4. O

Theorem 5.8. Let G be an algebraic group over F'. Then BG is p-retract rational if and
only if there is a p-versal G-torsor Y — X with X a rational variety.

Proof. =: Choose a standard G-torsor I — Z over F. By assumption, Z is a p-retract
of a rational variety X, i.e., there is a p-split rational dominant morphism f : X --+ Z.
Shrinking X, we may assume that f is regular. Let Y — X be the pull-back of I — Z
with respect to f. By Proposition 4.1(2), the torsor Y — X is p-versal.

«<: Let Y — X be a p-versal G-torsor with X a rational variety. By Theorem 5.7,
BG <, X. As X is rational, BG is p-retract rational. U
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Corollary 5.9. Let G be an algebraic group over F'. Then BG is retract rational if and
only if all G-torsors over field extensions of F' can be rationally parameterized, i.e., there
is a versal G-torsor’ Y — X with X a rational variety.

Note that in the case G is a finite group and F' is infinite, the corollary was proved in
[10, Lemma 5].

6. AN EXAMPLE

The classifying space of the alternating group A, is stably rational if n < 5 (see [22]
and [9, §4.7]). The case n > 6 remains open.

Theorem 6.1. The classifying space BA,, of the alternating group A,, is p-retract rational
for every prime integer p.

Proof. Let p be a prime integer.

Case 1: p = char(F). Let P be a Sylow p-subgroup of A,. The space BP is stably
rational by Example 5.2. As BA, <, BP in view of Example 5.3, the classifying space
BA, is p-retract rational.

Case 2: p # char(F') and p is odd. We prove that BA,, is p-retract rational by induction
on n. Let m := [n/p]. Consider the subgroup H := C™ x A,, of A,,, where C' := Z/pZ.
Let ' := F(¢,), where §, is a primitive root of unity of degree p. We consider C' as
the subgroup generated by &, of the quasi-trivial torus S := Rp//p(G,,) over F' and set
T:=5/C.

The group C' acts by multiplication by p-th roots of unity on the affine space A(F") of
F’ over F. Therefore, H acts faithfully naturally linearly on the affine space A(F'™). As
S™ is an open H-invariant subset of A(F"™), we have

(6.2) BH % S™/H =T"/A,.

The torus T is split by the cyclic cyclotomic field extension F'/F. As every flasque
module over a cyclic group is invertible (see [8, Proposition 2|), there is a torus 7" over F'
split by F’/F such that the torus 7' x T” is rational. The group A,, acts by permutations
on T™ x T'"™ hence

(6.3) BA,, = (T™ x T"™) /A
The generic fiber of the projection f : (T™ x T"™)/A,, — T™/A,, is equal to
(T"™ x Spec L) /A,
where L := F(T'™). This is a torus T over K := F(T"™/A,,) = LA split by F' @p L. As

K is infinite, the K-rational points are dense in the torus 7', i.e., f is split and hence
(6.4) T A < (T™ x T™) /A,
It follows from (6.2), (6.3) and (6.4) that BH is a stable retract of BA,,. By the induction
hypothesis, BA,, is p-retract rational, then so is BH. Since the index [A, : H] is prime
to p, we have BA,, <, BH by Example 5.3. Therefore, BA,, is p-retract rational.

Case 3: char(F) # 2 and p = 2. Let m := [n/2] and let B be the kernel of the map
(Z)2Z)™ — 727 taking (a;) to > a;. The symmetric group S,, acts by permutations
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on B. The group D := B x S, is a subgroup of A,. The group (Z/2Z)™ acts on
A = Spec Flty,...,tn) by t; — £t; and S, acts by permutations of the ¢;. Therefore,
D acts faithfully and linearly on A% with

A7 /D = Spec F[sy,...Sm-1,t] ~ A},

where s; is the i-th symmetric function on #3,... 2 and t = t; - - - t,,,. Thus, BD is stably
rational. As the index [A,, : D] is odd, BA,, <o BD by Example 5.3, and hence BA,, is
2-retract rational. 0

7. UNRAMIFIED COHOMOLOGY

For every integer j > 0 and a prime integer p, let Q,/Z,(j) denote an object in the
derived category of sheaves of abelian groups on the big étale site of Spec F', where

Qu/Zy(j) = COLim ()™
if p # char ', with p,» the sheaf of p"-th roots of unity, and if p = char F' > 0, the
complex Q,/7Z,(j) is defined via logarithmic de Rham-Witt differentials (see [17, 1.5.7] or
[19]). In particular, Q,/Z,(0) = Q,/Z,.
If X is a scheme over F', we write H" (X L Qp/Z,(j )) for the degree n étale cohomology

group of X with values in Q,/Z,(j). If X = Spec R for a commutative ring R, we simply
write H" (R, Q,/Z,(j)) for H”(X Qp/Z (j)). For example, if char(F) =p > 0 (see [1]),

KM(F) ® Qy/Zy, if n = j;
Hn(F»Qp/Zp(j)): HI(RKJ ( Sep)®@p/Zp)a ifn=7j+1;
0, otherwise,

where K jM are Milnor K-groups.
If L/F is a field extension, there is a natural homomorphism

Brr - H'(F,Qp/Zp(§)) = H"(L, Qp/Zy(j))-
If L/F is finite, the norm map for Milnor K-groups and the corestriction in cohomology
yield the norm (corestriction) homomorphism

Yoyr (L, Qp/Zy(5)) = H"(F, Qp/Zp (7).
The composition y,/r o Br/r is multiplication by [L : F.
We write H'% (Q,/Z,(j)) for the Zariski sheaf on X associated with the presheaf

U H"(U,Q,/Zy(3)).
Let Ox, denote the local ring of X at a point x € X.

Proposition 7.1. (see [6, §2.1] and [15, Theorem 1.4]) Let X be a smooth variety over
F. Then the pull-back to the generic point yields an injective homomorphism

H%ar(X7 %;L((@P/Zp(j))) — Hgar(spec F(X), %(X)(@p/zp(j)» = Hn(F(X)an/Zp(j))-

Its image coincides with the intersection of images of natural homomorphisms

H"(Ox 2, Qp/Z,(5)) — H"(F(X),Q,/Z,(5))

for all points z € X of codimension 1.
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Let K/F be a field extension and v a discrete valuation of K over F with valuation ring
O,. Following [5] and [7], we say that an element a € H" (K, Q,/Z,(j)) is unramified with
respect to v if a belongs to the image of the map H"(0,, Q,/Z,(j)) — H" (K, Q,/Z,(j)).
We write H!"(K,Q,/Z,(j)) for the subgroup of all elements in H"(K,Q,/Z,(j)) that
are unramified with respect to all discrete valuations of K over F. We have natural
homomorphism

(7.2) H"(F,Qp/Zy(5)) = Hy (K, Qp/Zy(j))-
Proposition 7.3. [21, Proposition 3.1] Let K/F be a purely transcendental field exten-

sion. Then the map (7.2) is an isomorphism.

Let X be a smooth variety over F'. If z € X is a point of codimension 1, the local ring
Ox, is a discrete valuation ring. It follows from Proposition 7.1 that the image of the
injective homomorphism HY,, (X, H%(Q,/Zy(5))) — H"(F(X),Q,/Zy(j)) contains the

subgroup H" (F(X), Qp/Zp(j>) :

Theorem 7.4. Let X and X' be smooth varieties over F such that X is a p-retract of
X'. Then there is a commutative diagram

H" (F7 Qp/Zp(j)) — H" (F: Qp/Zp(j))
H} (F(X), Qu/Z(j)) — Hyi (F(X'), Qp/Zy(3))
with o an injective homomorphism.

Proof. There is a rational dominant morphism f : X’ --» X and a morphism g : ¥ — X’
with Im(g) in the domain of definition of f such that the composition f o g is dominant
of finite degree prime to p. Shrinking X’ and Y, we may assume that f is regular. We
have the following commutative diagram:

Hn(Fa Qp/Zp(j)) - Hn(Fv @p/Zp(j))

|

Hy (F(X), @/ Z,y(§)) — = i (F(X'), Qy/Z,(7)

Hgar (X7 H?{(Qp/zp(j))) - H[Z)ar (le H?{/(@p/zp(j))) - H%ar (Y’ Hg(@p/zp@')))

H(F(X),Q,/Z,(j)) H"(F(Y), Qp/Zp(3))-

The maps a and [ are the pull-back homomorphisms induced by the field extensions
F(X")/F(X) and F(Y)/F(X), respectively. For every a € Ker(3), we have

0=7(8(a)) = [F(Y): F(X)] - a,
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where v : H"(F(Y), Q,/Zy,(j)) = H"(F(X),Q,/Zy(j)) is the norm homomorphism. As
[F(Y) : F(X)] is prime to p, we have a = 0, i.e., 5 is injective. It follows that « is also
injective. U

Corollary 7.5. Let X be a p-retract rational smooth variety over F'. Then the natural
homomorphism

1S an isomorphism.

Proof. Let X be a p-retract of a rational variety X’. As F(X') is purely transcendental
over F', the map

Hn (F7 Qp/Zp(.])) — ng (F(X/)’ Qp/Zp(j))
is an isomorphism by Proposition 7.3. The statement now follows from Theorem 7.4. [J

Example 7.6. Let p be a prime integer and F' an algebraically closed field of characteristic
not p. The classifying space BG for all p-groups of order dividing p? and 32 are stably
rational by [4] and [3]. There are finite groups G such that H2, (F(BG), Q,/Z,(1)) # 0 (see
[25]). In [16] such groups of order p° (if p odd) and 64 (if p = 2) are given. By Corollary
7.5, BG is not p-retract rational for finite groups G with H2 (F(BG),Q,/Z,(1)) # 0.

Example 7.7. Let G be a finite group and F' a field of characteristic p > 0. Let V be
a generically free representation of G and I C V' a nonempty G-invariant open subset
together with a G-torsor I — Z. The H-torsor I — S := I/H is standard and the
degree [G : H] of the natural dominant morphism S — Z is prime to p. By Example 5.3,
Z <, S, hence BG' <, BH. In view of Example 5.2, BH is stably rational, therefore, the
classifying space BG is p-retract rational over F. It follows from Corollary 7.5 that

H"(F,Q,/Z,(j)) — HI.(F(BG),Q,/Z,(j))

is an isomorphism.

8. APPENDIX
In the appendix we collect a few technical results used in the paper.

Lemma 8.1. [20, Lemma 3.3] Let K'/K be a field extension of finite degree prime to
p, and K — L a field homomorphism. Then there exists a field extension L'/L of finite
degree prime to p and a field homomorphism K' — L' extending K — L.

Corollary 8.2. Let f : X' — X be a morphism of varieties over F, and let ©' € X'
and x € X be points such that f(z') = x and the field extension F(z')/F(x) is finite of
degree prime to p. Let L/F be a field extension and v : Spec L — X a morphism over
F with image {x}. Then there is a field extension L'/L of finite degree prime to p and a
commutative diagram of morphisms over F

Spec L' —— Spec L

X' X

such that Tm(v") = {2'}.
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Proof. Apply Lemma 8.1 to the field extension F(z')/F(z) and the field homomorphism
F(z) — L. O

Lemma 8.3. [23, Lemma 6.2] Let f : X' — X be a morphism of varieties over F of
degree prime to p. Then there is a nonempty open subset U C X such that the restriction
fHU) = U is finite flat and for every x € U there exists a point ¥’ € X' with f(z') = x
and the degree [F(x') : F(x)] is prime to p.

Lemma 8.4. [23, Lemma 6.3] Let g: X — Y and h: Y' =Y be morphisms of varieties
over F'. Lety € Y be the image of the generic point of X. Suppose that there is a point
y' €Y' such that h(y') =y and [F(y') : F(y)] is finite and prime to p. Then there ezists
a commutative square of morphisms of varieties

X' "o x

L,
v Loy
with m dominant of finite degree prime to p.

Lemma 8.5. [12, Proposition 6.8] Let X be a regular algebraic variety over a field F', p
a prime integer and S the set of all closed points in X of degree prime to p. Then if S is
nonempty, then S is dense in X.
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