
VERSAL TORSORS AND RETRACTS

ALEXANDER S. MERKURJEV

Abstract. Let G be an algebraic group over F and p a prime integer. We introduce
the notion of a p-retract rational variety and prove that if Y → X is a p-versal G-torsor,
then BG is a stable p-retract of X. It follows that the classifying space BG is p-retract
rational if and only if there is a p-versal G-torsor Y → X with X a rational variety, that
is all G-torsors over infinite fields are rationally parameterized. In particular, for such
groups G the unramified Galois cohomology groupHn

nr

(
F (BG),Qp/Zp(j)

)
coincides with

Hn
(
F,Qp/Zp(j)

)
.

1. Introduction

Let G be an algebraic group over a field F . In the present paper we study G-torsors
E → SpecK for field extensions K/F . In many cases G-torsors are related to classical
algebraic objects. For example, if G = PGLn such objects are central simple algebras
A of degree n over K. Every PGLn-torsor over SpecK is the torsor of isomorphisms
between A and the matrix algebra Mn(K).
A G-torsor f : Y → X is called versal if every G-torsor E → SpecK for an extension

K/F withK an infinite field is isomorphic to the pull-back of f with respect to a morphism
(a point) SpecK → X and the set of images of such morphisms is dense in X. Thus, a
versal G-torsor keeps information about all G-torsors over field extensions K/F .
Versal G-torsors exist. For example, let V be a generically free representation of G

(that is the generic stabilizer of a vector in V is trivial). There is a nonempty G-invariant
open subset I ⊂ V and a G-torsor I → Z for some variety Z over F . (One can think of
Z as the variety of orbits I/G.) It appears that I → Z is a versal G-torsor. We call such
torsors standard versal G-torsors. We think of the variety Z as an “approximation” of
the stack BG of all G-torsors, which we call the classifying space of G.
If I → Z and I ′ → Z ′ are two standard versal G-torsors, then the varieties Z and

Z ′ are stably birationally isomorphic. In other words, the stable birational type of the
classifying space BG is well defined.
If I → Z is a standard versal G-torsor and Y → X is a versal G-torsor, then Z and X

may not be stably birationally isomorphic. But we prove in Theorem 5.7 that Z is a stable
retract of X, that is there are rational morphisms f : Z 99K X×An

F and g : X×An
F 99K Z

for some n such that the composition g ◦ f is defined and equals the identity of Z.
We say that all G-torsors over infinite fields for an algebraic group G are rationally

parameterized if there is a versal G-torsor Y → X with X a rational variety. We prove
(Theorem 5.8) that all G-torsors over infinite fields are rationally parameterized if and
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2 ALEXANDER S. MERKURJEV

only if BG (that is, its approximation Z for a standard versal torsor I → Z) is retract of
a rational variety.

We also consider the local setting. Namely, for a prime integer p we consider p-versal
torsors and define p-retracts, roughly, by ignoring the effects given by dominant morphisms
of finite degree prime to p. We prove local analogs of the theorems mentioned above.

In Section 7 we prove (Theorem 7.4) that if X and X ′ are smooth varieties over F such
that X is a p-retract of X ′, then there is an injective homomorphism of the groups of
unramified cohomology

Hn
nr

(
F (X),Qp/Zp(j)

)
→ Hn

nr

(
F (X ′),Qp/Zp(j)

)
.

In particular, if X is a p-retract rational smooth variety over F , then the natural homo-
morphism

Hn
(
F,Qp/Zp(j)

)
→ Hn

nr

(
F (X),Qp/Zp(j)

)
is an isomorphism.

We use the following notation. A variety over a field F is an integral separated scheme
of finite type over F . We write F (X) for the function field of X over F . An algebraic
group over F is an affine group scheme of finite type over F (not necessarily smooth or
connected). The degree of a dominant morphism Y → X of varieties is the integer [F (X) :
F (Y )]. We write X ≈ Y if X and Y are birationally isomorphic, i.e., F (X) ≃ F (Y ) over
F . If X is a scheme over F and L/F is a field extension, we write XL for the scheme
X ×F SpecL over L. The generic fiber of a dominant rational morphism f : Y 99K X of
varieties over F is the scheme U ×X SpecK over K = F (X), where U ⊂ Y is the domain
of definition of f . We write pt for SpecF .

The letter p in the paper denotes either a prime integer or 0. An integer k is said to
be prime to p when k is prime to p if p > 0 and k = 1 if p = 0.

We collect technical (mostly known) results in the Appendix.

Acknowledgment: The author is grateful to Jean-Louis Colliot-Thélène, David Harbater
and Zinovy Reichstein for useful comments.

2. Split rational morphisms

A rational dominant morphism of varieties f : X ′ 99K X over a field F is called
(rationally) p-split if for every nonempty open subset U ′ ⊂ X ′ in the domain of definition
of f , there is a morphism of varieties g : Y → X ′ such that Im(g) ⊂ U ′ and the composition
f ◦ g : Y → X is dominant of finite degree prime to p:

Y

of degree prime to p
��

g

}}{{
{{
{{
{{

X ′ f //___ X.

Clearly, a dominant morphism f : X ′ 99K X is p-split if and only if the set of closed
points of degree prime to p in the generic fiber of f is everywhere dense.

Remark 2.1. By Lemma 8.5, the set of closed points of degree prime to p > 0 in a
regular variety is either empty of everywhere dense. It follows that in the case the generic
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fiber of a dominant rational morphism f : X ′ 99K X is regular, the density condition in
the definition of p-retract for f can be removed if p > 0.

Example 2.2. If f : X ′ 99K X is a dominant rational morphism of finite degree prime p,
then f is p-split. Indeed, we can take Y the domain of definition of f and g the inclusion
of Y into X ′.

We say that f is split is f is p-split for p = 0. By definition, f is split if and only if
for every nonempty open subset U ′ in the domain of definition of f , there is a rational
morphism g : X 99K X ′ such that Im(g) ∩ U ′ ̸= ∅ and f ◦ g = 1X . Equivalently, f is split
if and only if the rational points in the generic fiber of f are everywhere dense.

Lemma 2.3. (1) If f : X ′ 99K X and f ′ : X ′′ 99K X ′ are p-split morphisms of
varieties over F , then so is f ◦ f ′.

(2) Every birational isomorphism is split.
(3) If X is a variety over F such that the field F (X) is infinite, then the projection

X × An
F → X is split for all n.

Proof. (1): Let U ′′ ⊂ X ′′ be a nonempty open subset in the domains of definition of f ′

and f ◦ f ′. Choose a morphism g′ : Y ′ → X ′′ such that Im(g′) ⊂ U ′′ and t′ := f ′ ◦ g′ is
dominant of finite degree prime to p.
By Lemma 8.3, there exists a nonempty open subset U ′ ⊂ X ′ in the domain of definition

of f such that for every point u ∈ U ′ there is y ∈ Y ′ with t′(y) = u and finite [F (y) : F (u)]
prime to p. Since f is p-split, there is a morphism g : Y → X ′ with Im(g) ⊂ U ′ such that
t := f ◦ g is dominant of finite degree prime to p.
By Lemma 8.4, there is a variety Y ′′, a morphism g′′ : Y ′′ → Y ′ and a dominant

morphism t′′ : Y ′′ → Y of finite degree prime to p such that t′ ◦ g′′ = g ◦ t′′:

Y ′′

g′′

}}{{
{{
{{
{{

t′′

��
Y ′

t′

��

g′

}}{{
{{
{{
{{

Y

t
��

g

}}{{
{{
{{
{{

X ′′ f ′
//___ X ′ f //___ X.

We have

(f ◦ f ′) ◦ (g′ ◦ g′′) = f ◦ t′ ◦ g′′ = f ◦ g ◦ t′′ = t ◦ t′′

and Im(g′ ◦ g′′) ⊂ Im(g′) ⊂ U ′′. Moreover, deg(t ◦ t′′) = deg(t) deg(t′′) is prime to p.
Therefore, f ◦ f ′ is p-split.

(2) follows immediately from the definition.

(3): Under the assumption, the F (X)-points are dense in the generic fiber An
F (X) of the

projection X × An
F → X. �

Lemma 2.4. If f : X ′ 99K X is p-split, then so is f × 1 : X ′ ×An
F 99K X ×An

F for every
n.
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Proof. Let W be the domain of definition of f and U ⊂ W × An
F a nonempty open

subset. As the projection p : W × An
F → W is flat, it is an open morphism, hence

the image U ′ := p(U) is open in W . As f is p-split, there is a morphism of varieties
g : Y → X ′ such that Im(g) ⊂ U ′ and the composition f ◦ g : Y → X is dominant
of finite degree prime to p. It follows that the image of g × 1 : Y × An

F → X ′ × An
F

intersects U . Therefore, the subset T := (g× 1)−1(U) ⊂ Y ×An
F is nonempty open. Then

the restriction h := (g × 1)|T : T → X ′ × An
F satisfies Im(h) ⊂ U and the composition

(f × 1) ◦ h : T → X × An
F is dominant of finite degree prime to p. �

3. Retracts

We say that a variety X is a (rational) p-retract of a variety X ′ if there is a p-split
rational morphism f : X ′ 99K X. We write X <p X

′ if X is a p-retract of X ′.
If p = 0, we simply write X < X ′ for X <p X ′ and call X a retract of X ′. Clearly,

X < X ′ implies X <p X
′ for every p.

Our definition of retract coincides with the one in [24, Definition 1.1].

Example 3.1. If f : X ′ 99K X is a dominant rational morphism of finite degree prime p,
then X <p X

′ (see Example 2.2).

In the case p = 0, the following lemma was proved in [24, Lemma 1.3, Lemma 1.4,
Example 1.5a].

Lemma 3.2. (1) If X <p X
′ and X ′ <p X

′′, then X <p X
′′.

(2) If X ≈ Y , then X <p Y <p X for all p.
(3) If X <p X

′, X ≈ Y and X ′ ≈ Y ′, then Y <p Y
′.

(4) If X is a variety over F such that the function field F (X) is infinite, then
X < (X × An

F ) for all n.

Proof. (3) follows from (1) and (2). The other statements are proved in Lemma 2.3. �

Lemma 3.2 shows that the relation <p can be defined on the set of birational isomor-
phism classes of varieties over F .

The following statement is proved in Lemma 2.4.

Lemma 3.3. If X <p X
′, then (X × An

F ) <p (X
′ × An

F ) for every n.

We say that X is a stable p-retract of X ′ and write X▹pX
′ if X <p (X

′×An
F ) for some

n ≥ 0 (cf., [24, Definition 4.1]). If X is a p-retract of X ′, i.e., X <p X
′, then X ▹p X

′.

Corollary 3.4. If X ▹p X
′ and X ′ ▹p X

′′, then X ▹p X
′′.

Proof. We have X <p X ′ × Am
F and X ′ <p X ′′ × An

F for some m and n. By Lemma 3.3,
X ′ × Am

F <p X
′′ × An+m

F , hence X <p X
′′ × An+m

F in view of Lemma 3.2. �

If X and Y are varieties over F , we write X
s.b.
≈ Y if X and Y are stably birational,

i.e., X × Am
F ≈ Y × An

F for some m and n.

Corollary 3.5. If F (Y ) is infinite, X ▹p X
′, X

s.b.≈ Y and X ′ s.b.≈ Y ′, then Y ▹p Y
′.
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Proof. We have birational isomorphisms X × Am
F ≈ Y × An

F , X
′ × Ar

F ≈ Y ′ × Ak
F and

X <p X
′ × As

F for some m,n, r, k, s. By Lemmas 3.2 and 3.3,

Y <p (Y × An+r
F ) <p (X × Am+r

F )▹p (X × Ar
F ) <p (X

′ × Ar+s
F ) <p (Y

′ × Ak+s
F )▹p Y

′.

By Corollary 3.4, Y ▹p Y
′. �

A variety X is called p-retract rational if X is a p-retract of a rational variety. Equiva-
lently, by Lemma 3.2, X is p-retract rational if and only if X ▹p pt. A variety X is called
retract rational if X is p-retract rational for p = 0.

4. Versal torsors

Let G be an algebraic group over F . We consider G-torsors Y → X over a variety X.
Note that we don’t assume that Y is a variety, i.e., Y is integral.
A G-torsor Y → X over a variety X is called p-versal if for every G-torsor E →

Spec(K) for a field extension K/F with K an infinite field and every nonempty open
subset U ⊂ X, there is a finite field extension L/F of degree prime to p such that the
G-torsor EL → SpecL is isomorphic to the pull-back of Y → X with respect to a point
x : Spec(L) → X with Im(x) ∈ U (see [11]).
A G-torsor Y → X is called versal if it is p-versal for p = 0 (see [13]). Every versal

torsor is p-versal for every p.

Proposition 4.1. Let f : X1 → X2 be a dominant morphism of varieties over F , Y2 → X2

a G-torsor and Y1 → X1 the pull-back of Y2 → X2 with respect to f . Then

(1) If Y1 → X1 is a p-versal G-torsor, then so is Y2 → X2.
(2) If Y2 → X2 is a p-versal G-torsor and f is p-split, then Y1 → X1 is p-versal.

Proof. (1) Let E → SpecK be a G-torsor, where K is a field extension of F such that K
is an infinite field, and U2 ⊂ X2 a nonempty open subset. As f is dominant, the open
subset U1 := f−1(U2) ⊂ X1 is nonempty. Since Y1 → X1 is a p-versal torsor, there is
a field extension L/K of finite degree prime to p and a point x1 : SpecL → X1 with
Im(x1) ⊂ U1 such that the torsor EL → SpecL is isomorphic to the pull-back of Y1 → X1

with respect to x1. If x2 := f ◦ x1 : SpecL → X2, then Im(x2) ⊂ U2 and EL → SpecL is
isomorphic to the pull-back of Y2 → X2 with respect to x2.

(2) Let E → SpecK be a G-torsor, where K is a field extension of F such that K is an
infinite field, and U1 ⊂ X1 a nonempty open subset. Since f is p-split, there is a morphism
of varieties g : Y → X1 such that Im(g) ⊂ U1 and the composition f ◦g : Y → X2 is finite
of degree prime to p. In view of Lemma 8.3 applied to the morphism f ◦ g : Y → X2 of
finite degree prime to p, we find a nonempty open subset U2 ⊂ X2 such that for every
point x2 ∈ U2 there is a point y ∈ Y with the property that f(g(y)) = x2 and the field
extension F (y)/F (x2) is finite of degree prime to p.
As Y2 → X2 is a p-versal G-torsor, there is a field extension L/K of finite degree prime

to p and a morphism h : SpecL → X2 such that {x2} := Im(h) ⊂ U2 and EL → SpecL
is isomorphic to the pull-back of the torsor Y2 → X2 with respect to h. Choose a point
y ∈ Y such that f(g(y)) = x2 and the field extension F (y)/F (x2) is finite of degree prime
to p. By Corollary 8.2, applied to the morphism f ◦ g : Y → X2, there is a field extension
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L′/L of finite degree prime to p and a morphism k : SpecL′ → Y such that Im(k) = {y}
and the composition of SpecL′ → SpecL with h coincides with f ◦ g ◦ k:

SpecL′

k
��

// SpecL
h

##H
HH

HH
HH

HH

Y
g // X1

f // X2.

It follows that EL′ → SpecL′ is isomorphic to the pull-back of the torsor Y1 → X1 with
respect to g ◦ k and [L′ : K] = [L′ : L] · [L : K] is prime to p. Finally, Im(g ◦ k) =
g(Im(k)) = {g(y)} ⊂ U1. It follows that Y1 → X1 is a p-versal torsor. �

5. Standard versal torsors

Let G be an algebraic group over F . Let V be a generically free G-representation and
I ⊂ V a nonempty G-invariant open subset together with a G-torsor I → Z, where Z is
a variety over F . We call I → Z a standard G-torsor. We always assume that I is chosen
so that dim(Z) > 0, hence the field F (Z) is infinite.

Example 5.1. Embed G into GLn as a closed subgroup. Then the natural morphism
GLn → GLn /G is a standard G-torsor since GLn is an open subset of the affine space
of Mn(F ) and G acts on Mn(F ) by multiplication generically freely.

Let Y → X be a G-torsor withX a variety over F . The trivial vector bundle Y ×V → Y
with the diagonal G-action on Y × V descends to a vector bundle Y V → X (see [2] and
[26, Chapter 4]). The open nonempty G-invariant subset Y × I ⊂ Y × V descends to an
open subset Y I ⊂ Y V . In particular, Y I is a variety over F birational to X×V , therefore,

Y I s.b.
≈ X. The projection Y × I → I yields a morphism Y I → Z.

Let E → SpecK, where K = F (Z), be the generic fiber of I → Z. Write Y E → SpecK
for the generic fiber of Y I → Z. As Y E is a localization of Y I , Y E is a variety over K.

If I1 → Z1 and I2 → Z2 are two standard G-torsors, then

Z1
s.b.≈ (I1)

I2 ≃ (I2)
I1

s.b.≈ Z2,

hence Z1 and Z2 are stably birationally isomorphic.
If Y is a variety, we write BG ▹p Y if Z ▹p Y for a standard G-torsor I → Z. By

Corollary 3.5, this makes sense. We say that BG is stably rational (respectively, p-retract
rational) if so is Z.

Example 5.2. If char(F ) = p > 0 and G is a finite p-group, then BG is stably rational
(see [14] and [18, §5.6]).
Example 5.3. Let H ⊂ G be a subgroup of finite index prime to p and I → Z a
standard G-torsor. Then I → T := I/H is a standard H-torsor. Since the natural
morphism T → Z is of degree [G : H] prime to p, we have Z <p T by Example 3.1. In
other words, BG <p BH.

By [13, Part 1, §5.4], every standard G-torsor I → Z is versal.

Proposition 5.4. Let Y → X be a G-torsor with X a variety and let I → Z be a standard
G-torsor. Then Y → X is p-versal if and only if the morphism Y I → Z is p-split.
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Proof. ⇒: Let K = F (Z) and E → SpecK the generic fiber of I → Z. It suffices to show
that closed points of degree prime to p are dense in Y E.
Let U ⊂ Y E be a nonempty open subset. We will show that U contains a closed point

of degree prime to p.
Since Y E is a localization of Y I , there is an open subset U ′ ⊂ Y I such that U is the

pull-back of U ′ under the natural morphism Y E → Y I . As the morphism Y I → X is flat,
it is open and the image W of U ′ is an open subset of X.
As Y → X is a p-versal torsor, there is a field extension L/K of finite degree prime

to p and a point x : SpecL → X such that Im(x) ⊂ W and the torsor EL → SpecL is
isomorphic to the pull-back of Y → X with respect to x. We can find a variety Z ′ over
F , a morphism s : Z ′ → Z of varieties over F such that the field extension F (Z ′)/F (Z)
given by s is isomorphic to L/K, a morphism t : Z ′ → X such that the composition

SpecL
∼→ Z ′ t−→ X coincides with x and Im(t) ⊂ W such that there is a commutative

diagram

I

��

I ′
aoo

��

b // Y

��
Z Z ′soo t // X

with two fiber product squares.
The diagram

I × I

��

I ′ × I
a×1oo

��

b×1 // Y × I

��
I I ′

aoo b // Y,

where the vertical maps are first projections, yields a fiber product diagram

II

��

(I ′)I
goo

��

f // Y I

��
Z Z ′soo t // X.

Since Im(t) ⊂ W , we have Im(f) ∩ U ′ ̸= ∅. Therefore, the open subset T ′ := f−1(U ′) ⊂
(I ′)I is nonempty. As (I ′)E is a localization of (I ′)I , the inverse image T of T ′ under the
natural morphism (I ′)E → (I ′)I is a nonempty open subset of (I ′)E. The commutativity
of the diagram

(I ′)E

��

h // Y E

��
(I ′)I

f // Y I

implies that h(T ) ⊂ U .
The natural morphism g′ : (I ′)E → IE of varieties over K induced by g is dominant

of finite degree prime to p. By Lemma 8.3 applied to the restriction k : T → IE of g′,
there is a nonempty open subset U ′′ ⊂ IE such that for every point x ∈ U ′′ there is a
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point t ∈ T with the property that k(t) = x and the field extension K(t)/K(x) is finite
of degree prime to p.

Let ρ : G → GL(V ) be a generically free representation such that the variety I is a
nonempty G-invariant open subset of a vector space V . Hence IE is open in a vector space
V E over K that is the twist (V × E)/G of V by E. If ρE is the push-forward of E with
respect to ρ, we have V E ≃ V ρE. By the classical Hilbert Theorem 90, the GL(V )-torsor
ρE is trivial, hence V ρE ≃ VK over K. Thus, IE ≈ IK over K. As K is an infinite field,
the K-points of IE are everywhere dense. Choose a K-point x ∈ U ′′ ⊂ IE. There is a
closed point t ∈ T of degree prime to p such that k(t) = x. Then h(t) ∈ U ⊂ Y E is a
closed point of degree prime to p.

⇐: Consider the following diagram with two fiber product squares

I

��

Y × I
p2oo

��

p1 // Y

��
Z Y Ioo // X.

As I → Z is versal and Y I → Z is p-split, by Proposition 4.1(2), the torsor Y × I → Y I

is p-versal. It follows from Proposition 4.1(1) that Y → X is p-versal. �

Remark 5.5. It was shown in [11] that if Y → X is a versal torsor, the rational points
are dense in Y . The p-local analog is false if p > 0.

Example 5.6. Let p = 2 and G = µ3 over a field F of characteristic not 3 such that
G(F ) = 1. If K/F is a field extension and a ∈ K×, write Ka := K[x]/(x3 − a) and set
Ya = SpecKa. Then Ya → SpecK is a G-torsor and every G-torsor over SpecK is of this
form. If a ∈ K×3, the torsor Ya is trivial. Otherwise, Ka is a field, hence Ya is a variety.
Therefore, a nontrivial G-torsor Ya is split over the cubic field extension Ka/K. It follows
that the trivial G-torsor G → SpecF is 2-versal. But since G = SpecF + SpecL, where
L/F is a quadratic field extension, the closed points of G of odd degree are not dense in
G.

Theorem 5.7. Let Y → X be a p-versal G-torsor. Then BG is a stable p-retract of X.

Proof. As Y I s.b.
≈ X, we have Y I ▹ X by Corollary 3.5. In view of Proposition 5.4, the

morphism Y I → Z is p-split. Therefore, Z is a p-retract of Y I , i.e., Z <p Y I . Finally,
Z ▹p X by Corollary 3.4. �

Theorem 5.8. Let G be an algebraic group over F . Then BG is p-retract rational if and
only if there is a p-versal G-torsor Y → X with X a rational variety.

Proof. ⇒: Choose a standard G-torsor I → Z over F . By assumption, Z is a p-retract
of a rational variety X, i.e., there is a p-split rational dominant morphism f : X 99K Z.
Shrinking X, we may assume that f is regular. Let Y → X be the pull-back of I → Z
with respect to f . By Proposition 4.1(2), the torsor Y → X is p-versal.

⇐: Let Y → X be a p-versal G-torsor with X a rational variety. By Theorem 5.7,
BG▹p X. As X is rational, BG is p-retract rational. �
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Corollary 5.9. Let G be an algebraic group over F . Then BG is retract rational if and
only if all G-torsors over field extensions of F can be rationally parameterized, i.e., there
is a versal G-torsor Y → X with X a rational variety.

Note that in the case G is a finite group and F is infinite, the corollary was proved in
[10, Lemma 5].

6. An example

The classifying space of the alternating group An is stably rational if n ≤ 5 (see [22]
and [9, §4.7]). The case n ≥ 6 remains open.

Theorem 6.1. The classifying space BAn of the alternating group An is p-retract rational
for every prime integer p.

Proof. Let p be a prime integer.

Case 1: p = char(F ). Let P be a Sylow p-subgroup of An. The space BP is stably
rational by Example 5.2. As BAn <p BP in view of Example 5.3, the classifying space
BAn is p-retract rational.

Case 2: p ̸= char(F ) and p is odd. We prove that BAn is p-retract rational by induction
on n. Let m := [n/p]. Consider the subgroup H := Cm o Am of An, where C := Z/pZ.
Let F ′ := F (ξp), where ξp is a primitive root of unity of degree p. We consider C as
the subgroup generated by ξp of the quasi-trivial torus S := RF ′/F (Gm) over F and set
T := S/C.
The group C acts by multiplication by p-th roots of unity on the affine space A(F ′) of

F ′ over F . Therefore, H acts faithfully naturally linearly on the affine space A(F ′m). As
Sm is an open H-invariant subset of A(F ′m), we have

(6.2) BH
s.b.≈ Sm/H = Tm/Am.

The torus T is split by the cyclic cyclotomic field extension F ′/F . As every flasque
module over a cyclic group is invertible (see [8, Proposition 2]), there is a torus T ′ over F
split by F ′/F such that the torus T ×T ′ is rational. The group Am acts by permutations
on Tm × T ′m, hence

(6.3) BAm
s.b.≈ (Tm × T ′m)/Am.

The generic fiber of the projection f : (Tm × T ′m)/Am → Tm/Am is equal to

(T ′m × SpecL)/Am,

where L := F (T ′m). This is a torus T̃ over K := F (T ′m/Am) = LAm split by F ′⊗F L. As

K is infinite, the K-rational points are dense in the torus T̃ , i.e., f is split and hence

(6.4) Tm/Am < (Tm × T ′m)/Am.

It follows from (6.2), (6.3) and (6.4) that BH is a stable retract of BAm. By the induction
hypothesis, BAm is p-retract rational, then so is BH. Since the index [An : H] is prime
to p, we have BAn <p BH by Example 5.3. Therefore, BAn is p-retract rational.

Case 3: char(F ) ̸= 2 and p = 2. Let m := [n/2] and let B be the kernel of the map
(Z/2Z)m → Z/2Z taking (ai) to

∑
ai. The symmetric group Sm acts by permutations
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on B. The group D := B o Sm is a subgroup of An. The group (Z/2Z)m acts on
Am

F = SpecF [t1, . . . , tm] by ti → ±ti and Sm acts by permutations of the ti. Therefore,
D acts faithfully and linearly on Am

F with

Am
F /D = SpecF [s1, . . . sm−1, t] ≃ Am

F ,

where si is the i-th symmetric function on t21, . . . , t
2
m and t = t1 · · · tm. Thus, BD is stably

rational. As the index [An : D] is odd, BAn <2 BD by Example 5.3, and hence BAn is
2-retract rational. �

7. Unramified cohomology

For every integer j ≥ 0 and a prime integer p, let Qp/Zp(j) denote an object in the
derived category of sheaves of abelian groups on the big étale site of SpecF , where

Qp/Zp(j) = colim
n

(µpn)
⊗j

if p ̸= charF , with µpn the sheaf of pn-th roots of unity, and if p = charF > 0, the
complex Qp/Zp(j) is defined via logarithmic de Rham-Witt differentials (see [17, I.5.7] or
[19]). In particular, Qp/Zp(0) = Qp/Zp.

If X is a scheme over F , we write Hn
(
X,Qp/Zp(j)

)
for the degree n étale cohomology

group of X with values in Qp/Zp(j). If X = SpecR for a commutative ring R, we simply
write Hn

(
R,Qp/Zp(j)

)
for Hn

(
X,Qp/Zp(j)

)
. For example, if char(F ) = p > 0 (see [1]),

Hn(F,Qp/Zp(j)) =

 KM
j (F )⊗Qp/Zp, if n = j;

H1(F,KM
j (Fsep)⊗Qp/Zp), if n = j + 1;

0, otherwise,

where KM
j are Milnor K-groups.

If L/F is a field extension, there is a natural homomorphism

βL/F : Hn(F,Qp/Zp(j)) → Hn(L,Qp/Zp(j)).

If L/F is finite, the norm map for Milnor K-groups and the corestriction in cohomology
yield the norm (corestriction) homomorphism

γL/F : Hn(L,Qp/Zp(j)) → Hn(F,Qp/Zp(j)).

The composition γL/F ◦ βL/F is multiplication by [L : F ].

We write Hn
X

(
Qp/Zp(j)

)
for the Zariski sheaf on X associated with the presheaf

U 7→ Hn
(
U,Qp/Zp(j)

)
.

Let OX,x denote the local ring of X at a point x ∈ X.

Proposition 7.1. (see [6, §2.1] and [15, Theorem 1.4]) Let X be a smooth variety over
F . Then the pull-back to the generic point yields an injective homomorphism

H0
Zar

(
X,Hn

X(Qp/Zp(j))
)
→ H0

Zar

(
SpecF (X),Hn

F (X)(Qp/Zp(j))
)
= Hn

(
F (X),Qp/Zp(j)

)
.

Its image coincides with the intersection of images of natural homomorphisms

Hn
(
OX,x,Qp/Zp(j)

)
→ Hn

(
F (X),Qp/Zp(j)

)
for all points x ∈ X of codimension 1.
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Let K/F be a field extension and v a discrete valuation of K over F with valuation ring
Ov. Following [5] and [7], we say that an element a ∈ Hn

(
K,Qp/Zp(j)

)
is unramified with

respect to v if a belongs to the image of the map Hn
(
Ov,Qp/Zp(j)

)
→ Hn

(
K,Qp/Zp(j)

)
.

We write Hn
nr

(
K,Qp/Zp(j)

)
for the subgroup of all elements in Hn

(
K,Qp/Zp(j)

)
that

are unramified with respect to all discrete valuations of K over F . We have natural
homomorphism

(7.2) Hn
(
F,Qp/Zp(j)

)
→ Hn

nr

(
K,Qp/Zp(j)

)
.

Proposition 7.3. [21, Proposition 3.1] Let K/F be a purely transcendental field exten-
sion. Then the map (7.2) is an isomorphism.

Let X be a smooth variety over F . If x ∈ X is a point of codimension 1, the local ring
OX,x is a discrete valuation ring. It follows from Proposition 7.1 that the image of the
injective homomorphism H0

Zar

(
X,Hn

X(Qp/Zp(j))
)
→ Hn

(
F (X),Qp/Zp(j)

)
contains the

subgroup Hn
nr

(
F (X),Qp/Zp(j)

)
.

Theorem 7.4. Let X and X ′ be smooth varieties over F such that X is a p-retract of
X ′. Then there is a commutative diagram

Hn
(
F,Qp/Zp(j)

)
��

Hn
(
F,Qp/Zp(j)

)
��

Hn
nr

(
F (X),Qp/Zp(j)

) α // Hn
nr

(
F (X ′),Qp/Zp(j)

)
with α an injective homomorphism.

Proof. There is a rational dominant morphism f : X ′ 99K X and a morphism g : Y → X ′

with Im(g) in the domain of definition of f such that the composition f ◦ g is dominant
of finite degree prime to p. Shrinking X ′ and Y , we may assume that f is regular. We
have the following commutative diagram:

Hn
(
F,Qp/Zp(j)

)
��

Hn
(
F,Qp/Zp(j)

)
��

Hn
nr

(
F (X),Qp/Zp(j)

)
� _

��

α // Hn
nr

(
F (X ′),Qp/Zp(j)

)
� _

��

H0
Zar

(
X,Hn

X(Qp/Zp(j))
)

� _

��

// H0
Zar

(
X ′,Hn

X′(Qp/Zp(j))
)

// H0
Zar

(
Y,Hn

Y (Qp/Zp(j))
)

��

Hn
(
F (X),Qp/Zp(j)

) β // Hn
(
F (Y ),Qp/Zp(j)

)
.

The maps α and β are the pull-back homomorphisms induced by the field extensions
F (X ′)/F (X) and F (Y )/F (X), respectively. For every a ∈ Ker(β), we have

0 = γ(β(a)) = [F (Y ) : F (X)] · a,



12 ALEXANDER S. MERKURJEV

where γ : Hn
(
F (Y ),Qp/Zp(j)

)
→ Hn

(
F (X),Qp/Zp(j)

)
is the norm homomorphism. As

[F (Y ) : F (X)] is prime to p, we have a = 0, i.e., β is injective. It follows that α is also
injective. �
Corollary 7.5. Let X be a p-retract rational smooth variety over F . Then the natural
homomorphism

Hn
(
F,Qp/Zp(j)

)
→ Hn

nr

(
F (X),Qp/Zp(j)

)
is an isomorphism.

Proof. Let X be a p-retract of a rational variety X ′. As F (X ′) is purely transcendental
over F , the map

Hn
(
F,Qp/Zp(j)

)
−→ Hn

nr

(
F (X ′),Qp/Zp(j)

)
is an isomorphism by Proposition 7.3. The statement now follows from Theorem 7.4. �
Example 7.6. Let p be a prime integer and F an algebraically closed field of characteristic
not p. The classifying space BG for all p-groups of order dividing p4 and 32 are stably
rational by [4] and [3]. There are finite groupsG such thatH2

nr

(
F (BG),Qp/Zp(1)

)
̸= 0 (see

[25]). In [16] such groups of order p5 (if p odd) and 64 (if p = 2) are given. By Corollary
7.5, BG is not p-retract rational for finite groups G with H2

nr

(
F (BG),Qp/Zp(1)

)
̸= 0.

Example 7.7. Let G be a finite group and F a field of characteristic p > 0. Let V be
a generically free representation of G and I ⊂ V a nonempty G-invariant open subset
together with a G-torsor I → Z. The H-torsor I → S := I/H is standard and the
degree [G : H] of the natural dominant morphism S → Z is prime to p. By Example 5.3,
Z <p S, hence BG <p BH. In view of Example 5.2, BH is stably rational, therefore, the
classifying space BG is p-retract rational over F . It follows from Corollary 7.5 that

Hn
(
F,Qp/Zp(j)

)
→ Hn

nr

(
F (BG),Qp/Zp(j)

)
is an isomorphism.

8. Appendix

In the appendix we collect a few technical results used in the paper.

Lemma 8.1. [20, Lemma 3.3] Let K ′/K be a field extension of finite degree prime to
p, and K → L a field homomorphism. Then there exists a field extension L′/L of finite
degree prime to p and a field homomorphism K ′ → L′ extending K → L.

Corollary 8.2. Let f : X ′ → X be a morphism of varieties over F , and let x′ ∈ X ′

and x ∈ X be points such that f(x′) = x and the field extension F (x′)/F (x) is finite of
degree prime to p. Let L/F be a field extension and v : SpecL → X a morphism over
F with image {x}. Then there is a field extension L′/L of finite degree prime to p and a
commutative diagram of morphisms over F

SpecL′

v′

��

// SpecL

v

��
X ′ f // X

such that Im(v′) = {x′}.
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Proof. Apply Lemma 8.1 to the field extension F (x′)/F (x) and the field homomorphism
F (x) → L. �

Lemma 8.3. [23, Lemma 6.2] Let f : X ′ → X be a morphism of varieties over F of
degree prime to p. Then there is a nonempty open subset U ⊂ X such that the restriction
f−1(U) → U is finite flat and for every x ∈ U there exists a point x′ ∈ X ′ with f(x′) = x
and the degree [F (x′) : F (x)] is prime to p.

Lemma 8.4. [23, Lemma 6.3] Let g : X → Y and h : Y ′ → Y be morphisms of varieties
over F . Let y ∈ Y be the image of the generic point of X. Suppose that there is a point
y′ ∈ Y ′ such that h(y′) = y and [F (y′) : F (y)] is finite and prime to p. Then there exists
a commutative square of morphisms of varieties

X ′

��

m // X

g

��
Y ′ h // Y

with m dominant of finite degree prime to p.

Lemma 8.5. [12, Proposition 6.8] Let X be a regular algebraic variety over a field F , p
a prime integer and S the set of all closed points in X of degree prime to p. Then if S is
nonempty, then S is dense in X.
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