NEGLIGIBLE DEGREE TWO COHOMOLOGY OF FINITE GROUPS
MATTHEW GHERMAN AND ALEXANDER MERKURJEV

ABSTRACT. For a finite group G, a G-module M and a field F, an element v € H(G, M)
is negligible over F if for each field extension L/F and every group homomorphism
Gal(Lsep/L) — G, u belongs to the kernel of the induced homomorphism H(G, M) —
HY(L,M). We determine the group of negligible elements in H?(G, M) for every abelian
group M with trivial G-action.

1. INTRODUCTION

The notion of negligible cohomology was introduced by J-P. Serre in [7] (see also [2,
Part I, §26]). Let G be a finite group, M a G-module and F a field. A (continuous) group
homomorphism j : I'y, = Gal(Lgep/L) — G from the absolute Galois group I';, of a field
extension L of F' to G yields a homomorphism

§*: HYG, M) — H*(L, M)

of cohomology groups for every d > 0. An element u € HY(G, M) is called negligible over
F if u € Ker(j*) for all field extensions L/F and all j. All negligible over F' elements
form a subgroup

HY G, M)peg = HY (G, M) peg.r € HY(G, M).

Examples 1.1. 1) Negligible cohomology elements are related to the embedding problem.
Let K/F be a finite Galois field extension with G = Gal(K/F'). Let

(1.2) 1-M—-G6La-s1

be an exact sequence of finite groups with M abelian. The conjugation G’-action on M
makes M a G-module. The embedding problem for the exact sequence (1.2) and field
extension K/F is to find a Galois G’-algebra K’ over F' such that the restriction map
G' = Gal(K'/F) — Gal(K/F) = G coincides with f. Equivalently, one needs to find a
lifting I'r — G’ of the homomorphism I'r — G corresponding to the extension K/F.
Let u € H?(G, M) be the class of the exact sequence (1.2) and let j : I';, — G be the
group homomorphism given by a field extension L/F. Then j extends to a homomorphism
'y, — G if and only if the pull-back of the sequence (1.2) under j is split. The latter
is equivalent to the triviality of the image of w under j* : H*(G, M) — H*(L,M). In
other words, the class u is negligible if and only if all embedding problems for the exact
sequence (1.2) and all G-Galois field extensions L'/ L of fields containing F' have solutions.

2) Let M be an abelian group which we view as a module over any profinite group
with trivial action. The cohomology group H4(F, M) = H%('p, M) is the colimit of the
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groups H(G, M) over all finite discrete factor groups G of I'rz. The group HY(G, M )yeq
is contained in the kernel of the natural homomorphism H4(G, M) — H(F, M).

3) Negligible cohomology elements of G are related to the invariants of G as follows.
Let M be an abelian group with trivial group action. Write Invd(G, M) for the group of
degree d (normalized) invariants of G with values in M over a field F' (for the definition
of the invariant see [2]). We have a homomorphism

inv: HY(G, M) — Inv'(G, M),

taking an element v € H(G, M) to the invariant sending the class of a G-algebra N over
a field extension L of F' (that is a G-torsor over Spec L) to the image of u under the
homomorphism

§* HYG, M) — HYL, M)

with respect to the natural group homomorphism j : I'y — G. By the very definition of
negligible elements, H(G, M),q = Ker(inv).

Let M be a G-module. The groups H%(G, M),eq are trivial if d = 0 or 1 (see Corollary
2.2). In the present paper we determine the group H?(G, M)ne for an arbitrary finite
group G and arbitrary abelian group M with trivial G-action. In Section 2 we reduce the
problem to the case M = Z/p°Z for a prime integer p and char(F') # p.

In Section 3 we consider the case when the base field F' contains sufficiently many
roots of unity. We identify Z/mZ with the group p,, of m-th roots of unity and compute
H?(G, iy )neg using the Brauer group considerations.

Let p' be the order of the group of p-primary roots of unity in the field F(§,). In
Theorem 4.1 we determine the group H?(G,Z/p*Z) e in all cases except when p = 2 and
t = 1. The group of negligible elements in H%(G,Z/p*Z) depends on the character group
G* and the integers p® and t.

The exceptional case p = 2 and ¢t = 1 is more delicate and it requires some computations
in the Brauer group. Let 2 be the order of the 2-primary roots of unity in the field
F(v/=1). The group of negligible elements in H?(G,Z/2Z) depends on the group G*
and the integers s and ¢ (Theorem 5.2).

We use the following notations in the paper.

F' is the base field, Fy,, is a separable closure of F', I'r = Gal(Fip,/F) is the absolute
Galois group of F;

[ is the group of m-th roots of unity in Fyep, fm(F) = pm N E>, &, is a generator of fi,;
For an abelian group A write Ay for the torsion part of A and set A[g] := Ker(4 % A),
where ¢ is an integer; A[p™] := UgsoA[p®], where p is a prime integer;

HY(F, M) := HYTr, M) for a (discrete) I'p-module (Galois module) M.

2. PRELIMINARY RESULTS

Let V' be a faithful (finite dimensional) representation of the group G over F. The
group G acts on the field F(V) of rational functions on V over F' making F(V)/F (V)¢
a Galois G-extension. The following proposition shows that in the definition of negligible
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elements it suffices to consider only surjective group homomorphisms j and, moreover,
only one (generic) Galois field extension F(V)/F(V)¢.

Proposition 2.1. Let G be a finite group, M a G-module, w € HY(G, M) and F a field.
Let V' be a faithful representation of G. The following conditions are equivalent:
(1) u is negligible over F, i.e., u € HY G, M )yeg;
(2) j*(u) = 0 for all field extensions L/F and every surjective group homomorphism
j Iy — G,’
(3) If K = F(V)Y and jx : T — G is given by the Galois G-extension F(V)/K,
then ji(u) = 0 in HY(K, M).
Proof. (1) = (2) is trivial.
(2) = (3) is clear since the map jx in (3) is surjective.
(3) = (1): Let N/L be a Galois G-algebra for a field extension L/F and j : I'y, — G a
group homomorphism. We need to show that j*(u) = 0. As the natural homomorphism
HY(L, M) — HYL(t), M), where L(t) is the rational function field over L, is injective,
replacing F' by F(t) and L by L(t) if necessary, we may assume that the field L is infinite.

The scheme Spec(K) is the limit of the family of varieties U/G, where U C V is a
nonempty open G-invariant subscheme such that the morphism U — U/G is a G-torsor.
For every such U write

iy : HY(G, M) — HL(U/G, M)
for the edge homomorphism in the Hochschild-Serre spectral sequence [4, Ch. III, Th.
2.20]
EY = HP(G,HY(U,M)) = HEM(U/G, M).

Since jj(u) = 0 and the étale cohomology commutes with limits, there is U such that
iy(u) = 0. As L is infinite, by [2, Part I, Ch.1, §5], there is a morphism k : Spec(L) — U/G
such that Spec(N) — Spec(L) is the pull-back of U — U/G with respect to k. Then the
composition

HYG, M) % HL(U/G, M) £ HY (L, M)
coincides with j*. Since iy (u) = 0 we have j*(u) = 0. O
Corollary 2.2. (cf., [7] and [5, Proposition 4.5])
(1) In the notation of the proposition,
HY(G, M) peg = Ker(HY(G, M) L5 HYF(V)9, M)).
(2) The group HY(G, M )peq is trivial if d < 1.

Proof. (1): This follows immediately from Proposition 2.1
(2): As j is surjective, the inflation map j* is injective if d < 1. O

In the following proposition we collect some functorial properties of negligible elements.

Proposition 2.3. Let L/F be a field extension, G a finite group, M a G-module and
f+H— G a homomorphism of finite groups. Then

(1) The map f*: HY(G, M) — HY(H, M) takes HY(G, M )peg into HY(H, M )yeq;
(2) HYG, M)peg C HYG, M )peg.1.;
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(3) If L/F is finite, then [L: F] - HY(G, M)neg.. C HY (G, M) peq;
(4) If « : M — N is a G-module homomorphism, then the map o* : HY(G, M) —
HY(G,N) takes HY (G, M )peg into HY(G, N)peg-
Proof. (1): Let j : ', — H be a group homomorphism for a field extension L of F' and
u € HYG, M)peg. Then j*(f*(u)) = (f o j)*(u) = 0, hence f*(u) € HY(H, M )yeq.
(2): Let K = F(V)% as in Proposition 2.1(3) and set KL := L(V)%. Let u € HY(G, M) peq.
By definition, jj(u) = 0 in HY(K,M). It follows that jj, (u) = resgr x ojj(u) = 0 in
HYKL,M), hence u € HY(G, M )yeq.1, by Corollary 2.2(1).
(3): If L/F is finite and u € HY(G, M )peg, 1, then resyr, x oji(u) = jip(u) = 0. Applying
the correstriction homomorphism, we get
[L:F]- ji(u) = corgr/x oresgr i 0jj(u) = corgr i ojj(u) =0,

therefore, [L : F]-u € HYG, M) peq.
(4) is clear. O

Corollary 2.4. If p is a prime integer such that char(F) # p and p*- M = 0 for some s,
then
Hd(G7 M)neg = Hd(G7 M)neg,F(ﬁp)-
Proof. Indeed, the degree [F'(&,) : F] is prime to p. O
From now on assume that M is an abelian group with trivial G-action.

Lemma 2.5. If M is a torsion free abelian group then H?*(G, M )yeq = 0.

Proof. The exact sequence 0 > M — M ®Q — M ® (Q/Z) — 0 yields the isomorphisms
H*(G,M)~ H'(G,M ® (Q/Z)), H*(L,M)~ H"'(L,M ® (Q/Z))

for every field L. Therefore, H*(G, M)pee ~ H'(G,M ® (Q/Z))neg = 0 by Corollary

2.2(2). 0

The following proposition reduces the computation of negligible elements to the case

when M is a torsion group.

Proposition 2.6. Let M be an abelian group. Then the natural map
HQ(G7 Mtors)neg — H2(G> M)neg
1 an 1somorphism.

Proof. If T is a profinite group and N is a torsion free abelian group, then H'(T', N) =
Hom(I', N) = 0 since the image of every (continuous) homomorphism I' — N is finite.
Since the factor group M /M. is torsion free, it follows that the natural homomorphism
H?(T', Myoys) — H?(T, M) is injective. Therefore, both horizontal maps in the commuta-
tive diagram

H?*(G, Myors) — H*(G, M)

N /|

H?(L, Myops) — H*(L, M)
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are injective for every field extension L/F and a group homomorphism j : I', — G.

Let u € H*(G, M)peg. By Lemma 2.5, the group H?*(G, M /Miors)neg is trivial, hence u
comes from an element w € H?(G, Myoys). The diagram chase shows that w € H?(G, Miors)neg;
i.e., the map in the statement of the proposition is surjective. U

If M = colim M; is a directed colimit of abelian groups M; then since cohomology of
profinite groups commute with directed colimits, we have

H?*(G, M )peg = colim H*(G, M) yeg-

Since every torsion abelian group is the union of finite groups and every finite group is
a direct sum of primary cyclic groups, Proposition 2.6 shows that in order to compute
H?*(G, M )yeq for an arbitrary abelian group M, it suffices to determine the structure of
H*(G,Z/p*Z)peq for all primes p and positive integers s.

If char(F) = p > 0, then H¥(G,Z/p*Z)nee = H(G,Z/p°Z) since H*(L,Z/p*Z) = 0
for every field extension L/F (see [6, Chapter II, Proposition 4]). In what follows when
computing the group HY(G,Z/p°Z),eq we will assume that char(F') # p.

2a. Cyclic algebras. Let F' be a field and I'p = Gal(Fyep/F). Write (I'r)* for the group
of (continuous) characters I'r — Q/Z, i.e.,

(Tp)" =Hom(T'r,Q/Z) = H'(F,Q/Z) = H*(F,Z).

*

For a character x € (I'p)* and an element a € F* denote by (z,a) the class of the
corresponding cyclic algebra in the Brauer group Br(F) (see [3, §2.5]). By definition,
(x,a) = x U a with respect to the cup-product

(Tp)* ® F* = H*(F,Z) ® H°(F, F})) — H*(F, F ) = Br(F).

sep sep

If z € (p)*[2], i.e., 2 = 0, then (x,a) is the class of a quaternion algebra split by
the quadratic extension F(a'/?)/F. Conversely, every element in Br(F) that is split by
F(a'’?)/F is of the form (x,a) for some = € (I'r)*[2].

Lemma 2.7. If char(F) # 2, the kernel of the homomorphism (I'r)* — Br(F) taking a
character x to (x,—1) coincides with 2(T'g)*.

Proof. Let x € (I'p)* and let m be the order of x. Consider the matrix A € GL,,(F)
defined by (a1, as,...,ay) - A = (as,as,...,an,, —ap) for all a; € F. Note that A™ = —1,
hence we have a homomorphism i : Z/2mZ — GL,,(Fy,) defined by i(r + 2mZ) = A".
The upper row of the commutative diagram

=

2 2

0—=2Z/2Z —-Q/Z Q/z

|, ] J

0—2/22—2>1tz/z 2 ~1l7/7 .

| |

1 FX GLn(Faep) — PGLy, (Faep) —> 1,

sep

0
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where k(1 4 2Z) = —1 yields an exact sequence (I'p)* 2 (Cgp)* RN H?*(F,Z/2Z). Iden-
tifying Z/2Z with uy and H?(F,Z/2Z) with the subgroup H?(F, us) = Br(F)[2] of the
Brauer group H*(F, F},) = Br(F) we see that it suffices to show that d(z) is equal to

the cyclic class (z, —1).
It is shown in [3, §2.5] that the image of x under the composition

(Tp)* = HY(F,Q/Z) — H'(F,PGLyn(Fiep)) — H(F, FX) = Br(F)

sep

given by the bottom row of the diagram coincides with (x, —1). O

3. FIELDS WITH MANY ROOTS OF UNITY

Proposition 3.1. Let G be a finite group and F a field and let m be a positive integer
such that char(F) does not divide m and p,, C F*. Then

H?*(G, fn ) neg = Ker(HZ(G, ) — H?(G, FX)),
where we view p,, and F* as trivial G-modules.
Proof. Let V' be a finite dimensional faithful representation of GG such that there is a
G-invariant open subset U C V' with the property that V' \ U is of codimension at least
2 in V and there is a G-torsor U — X for a variety X over F'. Such representations exist
(see [8, Remark 1.4]).
The Hochschild-Serre spectral sequence [4, Ch. III, Th. 2.20]
By = HY(G, Hg,(U,Gy)) = Hy (X, Gy)
yields an exact sequence
Pic(U) — H*(G, F[U]*) — Br(X).

The group Pic(U) is trivial as U is an open subset of the affine space V. By the choice
of U every invertible regular function on U is constant, i.e., F[U]* = F* and hence the
map H?(G, F*) — Br(X) is injective.

By [4, III, 2.22], the natural map Br(X) — Br(K), where K = F(X), is injective. It
follows that the bottom map of the commutative diagram

H?*(G, piy) — H?(K, fim)

| l

H2(G, F¥) Br(K)

is injective. The right vertical morphism is also injective identifying H?*(K ji,,) with
Br(K')[m]. Hence the other two homomorphisms in the diagram have equal kernels. Now
the statement follows from Corollary 2.2(1). O

Remark 3.2. The proposition also follows from the isomorphism Inv?(G, Q/Z) ~ H?(G, F*)
established in [1].

It follows from Proposition 3.1 that H?(G, iy )neg coincides with the image of the con-
necting homomorphism

HY (G, F* /) = H*(G, i)



NEGLIGIBLE DEGREE TWO COHOMOLOGY OF FINITE GROUPS 7

for the exact sequence 1 — p,, — F* — F*/u,, — 1. An element of the group
HYG,F*/uy,) is a group homomorphism G — F*/u,,. Its image is contained in
p(F')/ - Consider the exact sequence

(3.3) 1= iy = (F) = p(F)/ o, — 1.
We have proved the following statement:
Corollary 3.4. In the conditions of Proposition 3.1 the group H?*(G, fim)neg coincides

with the image of the connecting homomorphism HY (G, (F)/pm) — H*(G, pm) for the
exact sequence (3.3).

1
The exact sequence 0 — Z/mZ ™ Q/Z ™ Q/Z — 0 for an integer m > 0 yields an
embedding

G*/mG* — H*(G,Z/mZ),

where G* := Hom(G,Q/Z) = H'(G,Q/Z) is the character group of G. We identify
G*/mG* with a subgroup of H*(G,Z/mZ).

4. PRIMARY CASE
Let p be a prime integer and F' a field such that char(F") # p.

Lemma 4.1. Let p1,00 (F(&,)) = ppt for some t with 1 <t < oco. Assume that t > 2 if
p=2. Then pyee (F(&pr)) = ppr for every r > t.

Proof. The image of the injective homomorphism x : I' = Gal(F(pp~)/F(&,)) — Z)
taking an automorphism o to the unique p-adic unit a such that o (&) = £* for all £ € ppeo
is contained in U, = {a € Z) | a = 1 mod p'}. Choose an element o € I' such that
x(0) ¢ Upy1. By assumption, U, is a topological cyclic group generated by o. It follows
that Im(x) = U; and F(,) for all r > t are all intermediate fields between F'(¢,) and
F(f100) corresponding to all closed subgroups U, C U;. O

Theorem 4.2. Let G be a finite group, p a prime integer and s a positive integer. Let F
be a field such that char(F) # p and pye(F(&,)) = ppt for some t with 1 <t < oo.

(1) If t > s, then
H*(G,Z/p°Z)nes = (G*p"°] + p°G*) /p°G* C G*/p°G* C H*(G, Z/p°Z).
(2) If t < s and t > 2 in the case p = 2, then H*(G,Z/p*Z)peg = 0.

Proof. (1): Since t > s, by Corollary 2.4, we may assume that p,- C F*, hence Z/p°Z ~
ftps as Galois modules. The p-primary component of the exact sequence (3.3) is isomorphic
to the upper row of the commutative diagram

0—Z/p°Z 2 p=1Z2/2 2o p1Z)Z —= 0

R

0—=2/pZ2—Q/Z Q/Z 0.
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Applying cohomology groups to the diagram and using Corollary 3.4 we see that the
group H?*(G,Z/p*Z)yeq coincides with the image of the composition

G*p'*] = HY(G,p*'2/Z) - H*(G,Q/Z) = G* — G*/p°G* C H*(G,Z/p°Z),

whence the result.

(2): Let L = F(pps). By Lemma 4.1, we have fpiyc(L) = pps. The first part of
the theorem applied to the field L show that H*(G,Z/p*Z)yeg = 0. It follows from
Proposition 2.3(2) that H*(G,Z/p*Z)yes = 0. O

5. THE CASE p=2 AND t =1

It remains to consider the case p = 2 and t = 1 and F' is a field of characteristic different
from 2. The condition ¢ = 1 means that —1 is not a square in F.

Proposition 5.1. Let b > a be positive integers, L a field such that &y € L(+/—1) and
letI' =Tr. Then

2" na2r* c 27+
Proof. We prove the statement by induction on a. The case a = 1 is obvious.
a=2: Let x € T*[2"2] N 2I'*. Write o = 2y for y € T*[2°~!]. Consider the cyclic class
(y,—1) € Br(L). As —1 = (&3)2" " in L/ := L(y/—1), we have

(yv _1) XL L'= (yL’a _1) = 2b_1 : (yL’a §2b) = (Qb_lyLUng) =0

in the Brauer group Br(L’) since 27!y = 0. We proved that (y,—1) is split by the
extension L(y/—1) of L, hence (y, —1) is the class of the quaternion algebra (z,—1) for
some z € I'*[2]. It follows that (y — z,—1) = 0, hence y — z € 2I'* by Lemma 2.7 and
therefore, x = 2y = 2(y — 2) € 4T™*.

a—1= a Let z € I'*[2°7%] N 2I'*. By the induction hypothesis, z = 221y for some
y € T*[2°71]. Then 2y € T'*[2°=2] N 2I™* and hence 2y € 4T* by the first part of the proof.
Finally, z = 2972 . 2y € 2972 . 4™ = 2°T*, 0

Theorem 5.2. Let G be a finite group and s a positive integer. Let F' be a field such
that such that char(F) # 2 and —1 ¢ F*2. Write pge(F(/=1)) = o for some t' with
1<t €.

(1) If t' > s, then
H2(GLZ/2°Z)neg = ((G*[2°75] N2G%) + 2°G*) /2°G" € G*/2°G* € HY(G,Z/2°Z).
(2) Ift' < s, then H*(G,Z/2°Z)yeq = 0.

Proof. (1): Tt follows from Theorem 4.2(1) applied to the field F’ := F(y/—1) and Propo-
sition 2.3(2) that

H*(G,Z)2°Z) g C HX(G,Z)2°Z) e = (G*[2"7°] + 2°G*) /2°G™.
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Applying Corollary 3.4 in the case m = 2 we see that H*(G,Z/2Z)yeq = 0 since t = 1.
The commutativity of the diagram

G*/2°G* G*/2G*

| |

H2(G,Z/2°Z) —— H*(G,Z2/22Z)

shows that H*(G,Z/2°Z)yeq C 2G*/25G*. Tt follows that
H*(G,Z/2°Z)peg € ((G*[2"75] N 2G*) + 2°G*) /2°G™.
Conversely, let z € G*[2°7°] N 2G*. We show that the corresponding element in

G*/2°G* C H*(G,Z/2°Z) is negligible. Let L/F be a field extension and j : ', — G a
group homomorphism. Consider the following commutative diagram

G*/2°GF — L (D})*/25(T1)"

|

H%(G,2/2°Z) —2~ H*(L,2/2°2).

By Proposition 5.1 applied to a = s and b = ¢’ we see that the image of x in (I')*/2°(I'z)*
is trivial and hence the image of x in H?(L,Z/2°Z) is also trivial, i.e., = is negligible.

(2): Let L = F(ugs) = F'(p9s). By Lemma 4.1 applied to F’, we have piges (L) = pigs.
The first part of the theorem applied to the field L shows that H*(G,Z/2°Z) e = 0. It
follows from Proposition 2.3(2) that H?*(G, Z/2°Z)pee = 0. O
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