NEGLIGIBLE DEGREE TWO COHOMOLOGY OF FINITE GROUPS

MATTHEW GHERMAN AND ALEXANDER MERKURJEV

ABSTRACT. For a finite group G, a G-module M and a field F, an element $u \in H^d(G, M)$ is negligible over F if for each field extension L/F and every group homomorphism $\operatorname{Gal}(L_{\operatorname{sep}}/L) \to G$, u belongs to the kernel of the induced homomorphism $H^d(G, M) \to H^d(L, M)$. We determine the group of negligible elements in $H^2(G, M)$ for every abelian group M with trivial G-action.

1. Introduction

The notion of negligible cohomology was introduced by J-P. Serre in [7] (see also [2, Part I, §26]). Let G be a finite group, M a G-module and F a field. A (continuous) group homomorphism $j: \Gamma_L = \operatorname{Gal}(L_{\operatorname{sep}}/L) \to G$ from the absolute Galois group Γ_L of a field extension L of F to G yields a homomorphism

$$j^*: H^d(G,M) \to H^d(L,M)$$

of cohomology groups for every $d \ge 0$. An element $u \in H^d(G, M)$ is called *negligible over* F if $u \in \text{Ker}(j^*)$ for all field extensions L/F and all j. All negligible over F elements form a subgroup

$$H^d(G, M)_{\text{neg}} = H^d(G, M)_{\text{neg},F} \subset H^d(G, M).$$

Examples 1.1. 1) Negligible cohomology elements are related to the *embedding problem*. Let K/F be a finite Galois field extension with G = Gal(K/F). Let

$$(1.2) 1 \to M \to G' \xrightarrow{f} G \to 1$$

be an exact sequence of finite groups with M abelian. The conjugation G'-action on M makes M a G-module. The embedding problem for the exact sequence (1.2) and field extension K/F is to find a Galois G'-algebra K' over F such that the restriction map $G' = \operatorname{Gal}(K'/F) \to \operatorname{Gal}(K/F) = G$ coincides with f. Equivalently, one needs to find a lifting $\Gamma_F \to G'$ of the homomorphism $\Gamma_F \to G$ corresponding to the extension K/F.

Let $u \in H^2(G, M)$ be the class of the exact sequence (1.2) and let $j : \Gamma_L \to G$ be the group homomorphism given by a field extension L/F. Then j extends to a homomorphism $\Gamma_L \to G'$ if and only if the pull-back of the sequence (1.2) under j is split. The latter is equivalent to the triviality of the image of u under $j^* : H^2(G, M) \to H^2(L, M)$. In other words, the class u is negligible if and only if all embedding problems for the exact sequence (1.2) and all G-Galois field extensions L'/L of fields containing F have solutions.

2) Let M be an abelian group which we view as a module over any profinite group with trivial action. The cohomology group $H^d(F, M) = H^d(\Gamma_F, M)$ is the colimit of the

The second author has been supported by the NSF grant DMS #1801530.

groups $H^d(G, M)$ over all finite discrete factor groups G of Γ_F . The group $H^d(G, M)_{\text{neg}}$ is contained in the kernel of the natural homomorphism $H^d(G, M) \to H^d(F, M)$.

3) Negligible cohomology elements of G are related to the *invariants* of G as follows. Let M be an abelian group with trivial group action. Write $Inv^d(G, M)$ for the group of degree d (normalized) invariants of G with values in M over a field F (for the definition of the invariant see [2]). We have a homomorphism

$$\operatorname{inv}: H^d(G, M) \to \operatorname{Inv}^d(G, M),$$

taking an element $u \in H^d(G, M)$ to the invariant sending the class of a G-algebra N over a field extension L of F (that is a G-torsor over $\operatorname{Spec} L$) to the image of u under the homomorphism

$$j^*: H^d(G,M) \to H^d(L,M)$$

with respect to the natural group homomorphism $j: \Gamma_L \to G$. By the very definition of negligible elements, $H^d(G, M)_{\text{neg}} = \text{Ker}(\text{inv})$.

Let M be a G-module. The groups $H^d(G,M)_{\text{neg}}$ are trivial if d=0 or 1 (see Corollary 2.2). In the present paper we determine the group $H^2(G,M)_{\text{neg}}$ for an arbitrary finite group G and arbitrary abelian group M with trivial G-action. In Section 2 we reduce the problem to the case $M=\mathbb{Z}/p^s\mathbb{Z}$ for a prime integer p and $\text{char}(F)\neq p$.

In Section 3 we consider the case when the base field F contains sufficiently many roots of unity. We identify $\mathbb{Z}/m\mathbb{Z}$ with the group μ_m of m-th roots of unity and compute $H^2(G, \mu_m)_{\text{neg}}$ using the Brauer group considerations.

Let p^t be the order of the group of p-primary roots of unity in the field $F(\xi_p)$. In Theorem 4.1 we determine the group $H^2(G, \mathbb{Z}/p^s\mathbb{Z})_{\text{neg}}$ in all cases except when p=2 and t=1. The group of negligible elements in $H^2(G, \mathbb{Z}/p^s\mathbb{Z})$ depends on the character group G^* and the integers p^s and t.

The exceptional case p=2 and t=1 is more delicate and it requires some computations in the Brauer group. Let $2^{t'}$ be the order of the 2-primary roots of unity in the field $F(\sqrt{-1})$. The group of negligible elements in $H^2(G, \mathbb{Z}/2^s\mathbb{Z})$ depends on the group G^* and the integers s and t' (Theorem 5.2).

We use the following notations in the paper.

F is the base field, F_{sep} is a separable closure of F, $\Gamma_F = \text{Gal}(F_{\text{sep}}/F)$ is the absolute Galois group of F;

 μ_m is the group of m-th roots of unity in F_{sep} , $\mu_m(F) = \mu_m \cap F^{\times}$, ξ_m is a generator of μ_m ; For an abelian group A write A_{tors} for the torsion part of A and set $A[q] := \text{Ker}(A \xrightarrow{q} A)$, where q is an integer; $A[p^{\infty}] := \bigcup_{s>0} A[p^s]$, where p is a prime integer;

 $H^d(F,M) := H^d(\Gamma_F,M)$ for a (discrete) Γ_F -module (Galois module) M.

2. Preliminary results

Let V be a faithful (finite dimensional) representation of the group G over F. The group G acts on the field F(V) of rational functions on V over F making $F(V)/F(V)^G$ a Galois G-extension. The following proposition shows that in the definition of negligible

elements it suffices to consider only surjective group homomorphisms j and, moreover, only one (generic) Galois field extension $F(V)/F(V)^G$.

Proposition 2.1. Let G be a finite group, M a G-module, $u \in H^d(G, M)$ and F a field. Let V be a faithful representation of G. The following conditions are equivalent:

- (1) u is negligible over F, i.e., $u \in H^d(G, M)_{neg}$;
- (2) $j^*(u) = 0$ for all field extensions L/F and every surjective group homomorphism $j: \Gamma_L \to G$;
- (3) If $K = F(V)^G$ and $j_K : \Gamma_K \to G$ is given by the Galois G-extension F(V)/K, then $j_K^*(u) = 0$ in $H^d(K, M)$.

Proof. $(1) \Rightarrow (2)$ is trivial.

- $(2) \Rightarrow (3)$ is clear since the map j_K in (3) is surjective.
- $(3) \Rightarrow (1)$: Let N/L be a Galois G-algebra for a field extension L/F and $j: \Gamma_L \to G$ a group homomorphism. We need to show that $j^*(u) = 0$. As the natural homomorphism $H^d(L, M) \to H^d(L(t), M)$, where L(t) is the rational function field over L, is injective, replacing F by F(t) and L by L(t) if necessary, we may assume that the field L is infinite.

The scheme $\operatorname{Spec}(K)$ is the limit of the family of varieties U/G, where $U \subset V$ is a nonempty open G-invariant subscheme such that the morphism $U \to U/G$ is a G-torsor. For every such U write

$$i_U: H^d(G,M) \to H^d_{\mathcal{E}_t}(U/G,M)$$

for the edge homomorphism in the Hochschild-Serre spectral sequence [4, Ch. III, Th. 2.20]

$$E_2^{p,q} = H^p(G, H^q_{\acute{e}t}(U, M)) \Rightarrow H^{p+q}_{\acute{e}t}(U/G, M).$$

Since $j_K^*(u) = 0$ and the étale cohomology commutes with limits, there is U such that $i_U(u) = 0$. As L is infinite, by [2, Part I, Ch.1, §5], there is a morphism $k : \operatorname{Spec}(L) \to U/G$ such that $\operatorname{Spec}(N) \to \operatorname{Spec}(L)$ is the pull-back of $U \to U/G$ with respect to k. Then the composition

$$H^d(G,M) \xrightarrow{i_U} H^d_{\acute{e}t}(U/G,M) \xrightarrow{k^*} H^d(L,M)$$

coincides with j^* . Since $i_U(u) = 0$ we have $j^*(u) = 0$.

Corollary 2.2. (cf., [7] and [5, Proposition 4.5])

(1) In the notation of the proposition,

$$H^d(G, M)_{\text{neg}} = \text{Ker}(H^d(G, M) \xrightarrow{j^*} H^d(F(V)^G, M)).$$

(2) The group $H^d(G, M)_{\text{neg}}$ is trivial if $d \leq 1$.

Proof. (1): This follows immediately from Proposition 2.1

(2): As j is surjective, the inflation map j^* is injective if $d \leq 1$.

In the following proposition we collect some functorial properties of negligible elements.

Proposition 2.3. Let L/F be a field extension, G a finite group, M a G-module and $f: H \to G$ a homomorphism of finite groups. Then

- (1) The map $f^*: H^d(G,M) \to H^d(H,M)$ takes $H^d(G,M)_{\text{neg}}$ into $H^d(H,M)_{\text{neg}}$;
- (2) $H^d(G, M)_{\text{neg}} \subset H^d(G, M)_{\text{neg}, L};$

- (3) If L/F is finite, then $[L:F] \cdot H^d(G,M)_{\text{neg},L} \subset H^d(G,M)_{\text{neg}}$;
- (4) If $\alpha: M \to N$ is a G-module homomorphism, then the map $\alpha^*: H^d(G, M) \to H^d(G, N)$ takes $H^d(G, M)_{neg}$ into $H^d(G, N)_{neg}$.

Proof. (1): Let $j: \Gamma_L \to H$ be a group homomorphism for a field extension L of F and $u \in H^d(G, M)_{neg}$. Then $j^*(f^*(u)) = (f \circ j)^*(u) = 0$, hence $f^*(u) \in H^d(H, M)_{neg}$.

- (2): Let $K = F(V)^G$ as in Proposition 2.1(3) and set $KL := L(V)^G$. Let $u \in H^d(G, M)_{\text{neg}}$. By definition, $j_K^*(u) = 0$ in $H^d(K, M)$. It follows that $j_{KL}^*(u) = \text{res}_{KL/K} \circ j_K^*(u) = 0$ in $H^d(KL, M)$, hence $u \in H^d(G, M)_{\text{neg}, L}$ by Corollary 2.2(1).
- (3): If L/F is finite and $u \in H^d(G, M)_{\text{neg},L}$, then $\text{res}_{KL/K} \circ j_K^*(u) = j_{KL}^*(u) = 0$. Applying the correstriction homomorphism, we get

$$[L:F] \cdot j_K^*(u) = \operatorname{cor}_{KL/K} \circ \operatorname{res}_{KL/K} \circ j_K^*(u) = \operatorname{cor}_{KL/K} \circ j_{KL}^*(u) = 0,$$

therefore, $[L:F] \cdot u \in H^d(G,M)_{neg}$.

(4) is clear.
$$\Box$$

Corollary 2.4. If p is a prime integer such that $char(F) \neq p$ and $p^s \cdot M = 0$ for some s, then

$$H^d(G, M)_{\text{neg}} = H^d(G, M)_{\text{neg}, F(\xi_p)}.$$

Proof. Indeed, the degree $[F(\xi_p):F]$ is prime to p.

From now on assume that M is an abelian group with trivial G-action.

Lemma 2.5. If M is a torsion free abelian group then $H^2(G, M)_{neg} = 0$.

Proof. The exact sequence $0 \to M \to M \otimes \mathbb{Q} \to M \otimes (\mathbb{Q}/\mathbb{Z}) \to 0$ yields the isomorphisms $H^2(G,M) \simeq H^1(G,M \otimes (\mathbb{Q}/\mathbb{Z})), \quad H^2(L,M) \simeq H^1(L,M \otimes (\mathbb{Q}/\mathbb{Z}))$

for every field L. Therefore,
$$H^2(G, M)_{\text{neg}} \simeq H^1(G, M \otimes (\mathbb{Q}/\mathbb{Z}))_{\text{neg}} = 0$$
 by Corollary

2.2(2). \Box The following proposition reduces the computation of negligible elements to the case when M is a torsion group.

Proposition 2.6. Let M be an abelian group. Then the natural map

$$H^2(G, M_{\text{tors}})_{\text{neg}} \to H^2(G, M)_{\text{neg}}$$

is an isomorphism.

Proof. If Γ is a profinite group and N is a torsion free abelian group, then $H^1(\Gamma, N) = \text{Hom}(\Gamma, N) = 0$ since the image of every (continuous) homomorphism $\Gamma \to N$ is finite. Since the factor group M/M_{tors} is torsion free, it follows that the natural homomorphism $H^2(\Gamma, M_{\text{tors}}) \to H^2(\Gamma, M)$ is injective. Therefore, both horizontal maps in the commutative diagram

$$H^{2}(G, M_{\text{tors}}) \longrightarrow H^{2}(G, M)$$

$$\downarrow^{*} \downarrow \qquad \qquad \downarrow^{*} \downarrow$$

$$H^{2}(L, M_{\text{tors}}) \longrightarrow H^{2}(L, M)$$

are injective for every field extension L/F and a group homomorphism $j:\Gamma_L\to G$.

Let $u \in H^2(G, M)_{\text{neg}}$. By Lemma 2.5, the group $H^2(G, M/M_{\text{tors}})_{\text{neg}}$ is trivial, hence u comes from an element $w \in H^2(G, M_{\text{tors}})$. The diagram chase shows that $w \in H^2(G, M_{\text{tors}})_{\text{neg}}$, i.e., the map in the statement of the proposition is surjective.

If $M = \operatorname{colim} M_i$ is a directed colimit of abelian groups M_i then since cohomology of profinite groups commute with directed colimits, we have

$$H^2(G, M)_{\text{neg}} = \operatorname{colim} H^2(G, M_i)_{\text{neg}}.$$

Since every torsion abelian group is the union of finite groups and every finite group is a direct sum of primary cyclic groups, Proposition 2.6 shows that in order to compute $H^2(G, M)_{\text{neg}}$ for an arbitrary abelian group M, it suffices to determine the structure of $H^2(G, \mathbb{Z}/p^s\mathbb{Z})_{\text{neg}}$ for all primes p and positive integers s.

If $\operatorname{char}(F) = p > 0$, then $H^d(G, \mathbb{Z}/p^s\mathbb{Z})_{\operatorname{neg}} = H^d(G, \mathbb{Z}/p^s\mathbb{Z})$ since $H^2(L, \mathbb{Z}/p^s\mathbb{Z}) = 0$ for every field extension L/F (see [6, Chapter II, Proposition 4]). In what follows when computing the group $H^d(G, \mathbb{Z}/p^s\mathbb{Z})_{\operatorname{neg}}$ we will assume that $\operatorname{char}(F) \neq p$.

2a. Cyclic algebras. Let F be a field and $\Gamma_F = \operatorname{Gal}(F_{\operatorname{sep}}/F)$. Write $(\Gamma_F)^*$ for the group of (continuous) characters $\Gamma_F \to \mathbb{Q}/\mathbb{Z}$, i.e.,

$$(\Gamma_F)^* = \operatorname{Hom}(\Gamma_F, \mathbb{Q}/\mathbb{Z}) = H^1(F, \mathbb{Q}/\mathbb{Z}) = H^2(F, \mathbb{Z}).$$

For a character $x \in (\Gamma_F)^*$ and an element $a \in F^{\times}$ denote by (x, a) the class of the corresponding *cyclic algebra* in the Brauer group Br(F) (see [3, §2.5]). By definition, $(x, a) = x \cup a$ with respect to the cup-product

$$(\Gamma_F)^* \otimes F^{\times} = H^2(F, \mathbb{Z}) \otimes H^0(F, F_{\text{sep}}^{\times}) \to H^2(F, F_{\text{sep}}^{\times}) = \text{Br}(F).$$

If $x \in (\Gamma_F)^*[2]$, i.e., 2x = 0, then (x, a) is the class of a quaternion algebra split by the quadratic extension $F(a^{1/2})/F$. Conversely, every element in Br(F) that is split by $F(a^{1/2})/F$ is of the form (x, a) for some $x \in (\Gamma_F)^*[2]$.

Lemma 2.7. If $char(F) \neq 2$, the kernel of the homomorphism $(\Gamma_F)^* \to Br(F)$ taking a character x to (x, -1) coincides with $2(\Gamma_F)^*$.

Proof. Let $x \in (\Gamma_F)^*$ and let m be the order of x. Consider the matrix $A \in GL_m(F)$ defined by $(a_1, a_2, \ldots, a_m) \cdot A = (a_2, a_3, \ldots, a_m, -a_1)$ for all $a_i \in F$. Note that $A^m = -1$, hence we have a homomorphism $i : \mathbb{Z}/2m\mathbb{Z} \to GL_m(F_{sep})$ defined by $i(r + 2m\mathbb{Z}) = A^r$. The upper row of the commutative diagram

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\frac{1}{2}} \mathbb{Q}/\mathbb{Z} \xrightarrow{2} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where $k(1+2\mathbb{Z}) = -1$ yields an exact sequence $(\Gamma_F)^* \xrightarrow{2} (\Gamma_F)^* \xrightarrow{\partial} H^2(F,\mathbb{Z}/2\mathbb{Z})$. Identifying $\mathbb{Z}/2\mathbb{Z}$ with μ_2 and $H^2(F,\mathbb{Z}/2\mathbb{Z})$ with the subgroup $H^2(F,\mu_2) = \operatorname{Br}(F)[2]$ of the Brauer group $H^2(F,F_{\operatorname{sep}}^{\times}) = \operatorname{Br}(F)$ we see that it suffices to show that $\partial(x)$ is equal to the cyclic class (x,-1).

It is shown in $[3, \S 2.5]$ that the image of x under the composition

$$(\Gamma_F)^* = H^1(F, \mathbb{Q}/\mathbb{Z}) \to H^1(F, \mathrm{PGL}_m(F_{\mathrm{sep}})) \to H^2(F, F_{\mathrm{sep}}^{\times}) = \mathrm{Br}(F)$$

given by the bottom row of the diagram coincides with (x, -1).

3. FIELDS WITH MANY ROOTS OF UNITY

Proposition 3.1. Let G be a finite group and F a field and let m be a positive integer such that char(F) does not divide m and $\mu_m \subset F^{\times}$. Then

$$H^2(G, \mu_m)_{\text{neg}} = \text{Ker}\big(H^2(G, \mu_m) \to H^2(G, F^{\times})\big),$$

where we view μ_m and F^{\times} as trivial G-modules.

Proof. Let V be a finite dimensional faithful representation of G such that there is a G-invariant open subset $U \subset V$ with the property that $V \setminus U$ is of codimension at least 2 in V and there is a G-torsor $U \to X$ for a variety X over F. Such representations exist (see [8, Remark 1.4]).

The Hochschild-Serre spectral sequence [4, Ch. III, Th. 2.20]

$$E_2^{p,q} = H^p(G, H^q_{\mathcal{E}_t}(U, \mathbb{G}_m)) \Rightarrow H^{p+q}_{\mathcal{E}_t}(X, \mathbb{G}_m)$$

yields an exact sequence

$$\operatorname{Pic}(U)^G \to H^2(G, F[U]^{\times}) \to \operatorname{Br}(X).$$

The group $\operatorname{Pic}(U)$ is trivial as U is an open subset of the affine space V. By the choice of U every invertible regular function on U is constant, i.e., $F[U]^{\times} = F^{\times}$ and hence the map $H^2(G, F^{\times}) \to \operatorname{Br}(X)$ is injective.

By [4, III, 2.22], the natural map $Br(X) \to Br(K)$, where K = F(X), is injective. It follows that the bottom map of the commutative diagram

$$H^{2}(G, \mu_{m}) \longrightarrow H^{2}(K, \mu_{m})$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{2}(G, F^{\times}) \longrightarrow \operatorname{Br}(K)$$

is injective. The right vertical morphism is also injective identifying $H^2(K, \mu_m)$ with Br(K)[m]. Hence the other two homomorphisms in the diagram have equal kernels. Now the statement follows from Corollary 2.2(1).

Remark 3.2. The proposition also follows from the isomorphism $\operatorname{Inv}^2(G, \mathbb{Q}/\mathbb{Z}) \simeq H^2(G, F^{\times})$ established in [1].

It follows from Proposition 3.1 that $H^2(G, \mu_m)_{\text{neg}}$ coincides with the image of the connecting homomorphism

$$H^1(G, F^{\times}/\mu_m) \to H^2(G, \mu_m)$$

for the exact sequence $1 \to \mu_m \to F^{\times} \to F^{\times}/\mu_m \to 1$. An element of the group $H^1(G, F^{\times}/\mu_m)$ is a group homomorphism $G \to F^{\times}/\mu_m$. Its image is contained in $\mu(F)/\mu_m$. Consider the exact sequence

$$(3.3) 1 \to \mu_m \to \mu(F) \to \mu(F)/\mu_m \to 1.$$

We have proved the following statement:

Corollary 3.4. In the conditions of Proposition 3.1 the group $H^2(G, \mu_m)_{\text{neg}}$ coincides with the image of the connecting homomorphism $H^1(G, \mu(F)/\mu_m) \to H^2(G, \mu_m)$ for the exact sequence (3.3).

The exact sequence $0 \to \mathbb{Z}/m\mathbb{Z} \xrightarrow{\frac{1}{m}} \mathbb{Q}/\mathbb{Z} \xrightarrow{m} \mathbb{Q}/\mathbb{Z} \to 0$ for an integer m > 0 yields an embedding

$$G^*/mG^* \hookrightarrow H^2(G, \mathbb{Z}/m\mathbb{Z}),$$

where $G^* := \operatorname{Hom}(G, \mathbb{Q}/\mathbb{Z}) = H^1(G, \mathbb{Q}/\mathbb{Z})$ is the *character group* of G. We identify G^*/mG^* with a subgroup of $H^2(G, \mathbb{Z}/m\mathbb{Z})$.

4. Primary case

Let p be a prime integer and F a field such that $char(F) \neq p$.

Lemma 4.1. Let $\mu_{p^{\infty}}(F(\xi_p)) = \mu_{p^t}$ for some t with $1 \leq t \leq \infty$. Assume that $t \geq 2$ if p = 2. Then $\mu_{p^{\infty}}(F(\xi_{p^r})) = \mu_{p^r}$ for every $r \geq t$.

Proof. The image of the injective homomorphism $\chi: \Gamma = \operatorname{Gal}(F(\mu_{p^{\infty}})/F(\xi_p)) \to \mathbb{Z}_p^{\times}$ taking an automorphism σ to the unique p-adic unit a such that $\sigma(\xi) = \xi^a$ for all $\xi \in \mu_{p^{\infty}}$ is contained in $U_t = \{a \in \mathbb{Z}_p^{\times} \mid a \equiv 1 \mod p^t\}$. Choose an element $\sigma \in \Gamma$ such that $\chi(\sigma) \notin U_{t+1}$. By assumption, U_t is a topological cyclic group generated by σ . It follows that $\operatorname{Im}(\chi) = U_t$ and $F(\xi_{p^r})$ for all $r \geqslant t$ are all intermediate fields between $F(\xi_p)$ and $F(\mu_{p^{\infty}})$ corresponding to all closed subgroups $U_r \subset U_t$.

Theorem 4.2. Let G be a finite group, p a prime integer and s a positive integer. Let F be a field such that $\operatorname{char}(F) \neq p$ and $\mu_{p^{\infty}}(F(\xi_p)) = \mu_{p^t}$ for some t with $1 \leq t \leq \infty$.

(1) If $t \geqslant s$, then

$$H^2(G, \mathbb{Z}/p^s\mathbb{Z})_{\text{neg}} = \left(G^*[p^{t-s}] + p^sG^*\right)/p^sG^* \subset G^*/p^sG^* \subset H^2(G, \mathbb{Z}/p^s\mathbb{Z}).$$

(2) If t < s and $t \geqslant 2$ in the case p = 2, then $H^2(G, \mathbb{Z}/p^s\mathbb{Z})_{\text{neg}} = 0$.

Proof. (1): Since $t \ge s$, by Corollary 2.4, we may assume that $\mu_{p^s} \subset F^{\times}$, hence $\mathbb{Z}/p^s\mathbb{Z} \simeq \mu_{p^s}$ as Galois modules. The *p*-primary component of the exact sequence (3.3) is isomorphic to the upper row of the commutative diagram

$$0 \longrightarrow \mathbb{Z}/p^{s}\mathbb{Z} \xrightarrow{p^{-s}} p^{-t}\mathbb{Z}/\mathbb{Z} \xrightarrow{p^{s}} p^{s-t}\mathbb{Z}/\mathbb{Z} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Applying cohomology groups to the diagram and using Corollary 3.4 we see that the group $H^2(G, \mathbb{Z}/p^s\mathbb{Z})_{\text{neg}}$ coincides with the image of the composition

$$G^*[p^{t-s}] = H^1(G, p^{s-t}\mathbb{Z}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) = G^* \to G^*/p^sG^* \subset H^2(G, \mathbb{Z}/p^s\mathbb{Z}),$$

whence the result.

(2): Let $L = F(\mu_{p^s})$. By Lemma 4.1, we have $\mu_{p^{\infty}}(L) = \mu_{p^s}$. The first part of the theorem applied to the field L show that $H^2(G, \mathbb{Z}/p^s\mathbb{Z})_{\text{neg},L} = 0$. It follows from Proposition 2.3(2) that $H^2(G, \mathbb{Z}/p^s\mathbb{Z})_{\text{neg}} = 0$.

5. The case
$$p=2$$
 and $t=1$

It remains to consider the case p = 2 and t = 1 and F is a field of characteristic different from 2. The condition t = 1 means that -1 is not a square in F.

Proposition 5.1. Let $b \geqslant a$ be positive integers, L a field such that $\xi_{2^b} \in L(\sqrt{-1})$ and let $\Gamma = \Gamma_L$. Then

$$\Gamma^*[2^{b-a}] \cap 2\Gamma^* \subset 2^a \Gamma^*.$$

Proof. We prove the statement by induction on a. The case a=1 is obvious.

a=2: Let $x\in\Gamma^*[2^{b-2}]\cap 2\Gamma^*$. Write x=2y for $y\in\Gamma^*[2^{b-1}]$. Consider the cyclic class $(y,-1)\in \operatorname{Br}(L)$. As $-1=(\xi_{2^b})^{2^{b-1}}$ in $L':=L(\sqrt{-1})$, we have

$$(y,-1) \otimes_L L' = (y_{L'},-1) = 2^{b-1} \cdot (y_{L'},\xi_{2b}) = (2^{b-1}y_{L'},\xi_{2b}) = 0$$

in the Brauer group $\operatorname{Br}(L')$ since $2^{b-1}y=0$. We proved that (y,-1) is split by the extension $L(\sqrt{-1})$ of L, hence (y,-1) is the class of the quaternion algebra (z,-1) for some $z\in\Gamma^*[2]$. It follows that (y-z,-1)=0, hence $y-z\in 2\Gamma^*$ by Lemma 2.7 and therefore, $x=2y=2(y-z)\in 4\Gamma^*$.

 $a-1\Rightarrow a$: Let $x\in\Gamma^*[2^{b-a}]\cap 2\Gamma^*$. By the induction hypothesis, $x=2^{a-1}y$ for some $y\in\Gamma^*[2^{b-1}]$. Then $2y\in\Gamma^*[2^{b-2}]\cap 2\Gamma^*$ and hence $2y\in 4\Gamma^*$ by the first part of the proof. Finally, $x=2^{a-2}\cdot 2y\in 2^{a-2}\cdot 4\Gamma^*=2^a\Gamma^*$.

Theorem 5.2. Let G be a finite group and s a positive integer. Let F be a field such that such that $\operatorname{char}(F) \neq 2$ and $-1 \notin F^{\times 2}$. Write $\mu_{2^{\infty}}(F(\sqrt{-1})) = \mu_{2^{t'}}$ for some t' with $1 \leqslant t' \leqslant \infty$.

(1) If $t' \geqslant s$, then

$$H^{2}(G, \mathbb{Z}/2^{s}\mathbb{Z})_{\text{neg}} = \left((G^{*}[2^{t'-s}] \cap 2G^{*}) + 2^{s}G^{*} \right) / 2^{s}G^{*} \subset G^{*}/2^{s}G^{*} \subset H^{2}(G, \mathbb{Z}/2^{s}\mathbb{Z}).$$

(2) If t' < s, then $H^2(G, \mathbb{Z}/2^s\mathbb{Z})_{\text{neg}} = 0$.

Proof. (1): It follows from Theorem 4.2(1) applied to the field $F' := F(\sqrt{-1})$ and Proposition 2.3(2) that

$$H^2(G, \mathbb{Z}/2^s\mathbb{Z})_{\text{neg}} \subset H^2(G, \mathbb{Z}/2^s\mathbb{Z})_{\text{neg},F'} = \left(G^*[2^{t'-s}] + 2^sG^*\right)/2^sG^*.$$

Applying Corollary 3.4 in the case m=2 we see that $H^2(G,\mathbb{Z}/2\mathbb{Z})_{\text{neg}}=0$ since t=1. The commutativity of the diagram

$$G^*/2^sG^* \longrightarrow G^*/2G^*$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$H^2(G,\mathbb{Z}/2^s\mathbb{Z}) \longrightarrow H^2(G,\mathbb{Z}/2\mathbb{Z})$$

shows that $H^2(G, \mathbb{Z}/2^s\mathbb{Z})_{\text{neg}} \subset 2G^*/2^sG^*$. It follows that

$$H^2(G, \mathbb{Z}/2^s\mathbb{Z})_{\text{neg}} \subset \left((G^*[2^{t'-s}] \cap 2G^*) + 2^sG^* \right)/2^sG^*.$$

Conversely, let $x \in G^*[2^{t'-s}] \cap 2G^*$. We show that the corresponding element in $G^*/2^sG^* \subset H^2(G,\mathbb{Z}/2^s\mathbb{Z})$ is negligible. Let L/F be a field extension and $j:\Gamma_L \to G$ a group homomorphism. Consider the following commutative diagram

$$G^*/2^s G^* \xrightarrow{j^*} (\Gamma_L)^*/2^s (\Gamma_L)^*$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$H^2(G, \mathbb{Z}/2^s \mathbb{Z}) \xrightarrow{j^*} H^2(L, \mathbb{Z}/2^s \mathbb{Z}).$$

By Proposition 5.1 applied to a = s and b = t' we see that the image of x in $(\Gamma_L)^*/2^s(\Gamma_L)^*$ is trivial and hence the image of x in $H^2(L, \mathbb{Z}/2^s\mathbb{Z})$ is also trivial, i.e., x is negligible.

(2): Let $L = F(\mu_{2^s}) = F'(\mu_{2^s})$. By Lemma 4.1 applied to F', we have $\mu_{2^{\infty}}(L) = \mu_{2^s}$. The first part of the theorem applied to the field L shows that $H^2(G, \mathbb{Z}/2^s\mathbb{Z})_{\text{neg},L} = 0$. It follows from Proposition 2.3(2) that $H^2(G, \mathbb{Z}/2^s\mathbb{Z})_{\text{neg}} = 0$.

REFERENCES

- [1] Bailey, V. Cohomological invariants of finite groups. *Ph.D. Thesis*, *UCLA*, https://escholarship.org/uc/item/3t75w7j5 (2017), 75 p.
- [2] Garibaldi, R., Merkurjev, A., and J.-P., Serre. Cohomological Invariants in Galois Cohomology. American Mathematical Society, Providence, RI, 2003.
- [3] GILLE, P., AND SZAMUELY, T. Central simple algebras and Galois cohomology, vol. 101 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006.
- [4] MILNE, J. S. Étale cohomology. Princeton University Press, Princeton, N.J., 1980.
- [5] Saltman, D. J. Brauer groups of invariant fields, geometrically negligible classes, an equivariant Chow group, and unramified H^3 . In K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), vol. 58 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1995, pp. 189–246.
- [6] SERRE, J.-P. *Galois cohomology*. Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author.
- [7] SERRE, J.-P. Oeuvres/Collected papers. IV. 1985–1998, 165, in Springer Collected Works in Mathematics. Springer, Heidelberg, 2013. Reprint of the 2000 edition.
- [8] TOTARO, B. The Chow ring of a classifying space. In Algebraic K-theory (Seattle, WA, 1997), vol. 67 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1999, pp. 249–281.

Department of Mathematics, University of California, Los Angeles, CA, USA $\it Email~address:$ mattgherman30gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA, USA $\it Email~address$: merkurev@math.ucla.edu