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In the book [21] Milnor introduced the K2-groups for arbitrary rings. Milnor’s
discovery of K2 using partly Steinberg’s ideas of universal central extensions turned
out to be a truly revolutionary step. The definition of the higher algebraic K-theory
was in the air, and soon after that, Quillen showed the world how to define higher
K-groups in [25].

On the other hand, Matsumoto’s theorem on the presentation of the group K2

of a field led Milnor in [19] to the definition the Milnor’s K-groups KM
n (F ) of a

field F . Milnor also proposed two conjectures that connect the groups kMn (F ) :=
KM

n (F )/2KM
n (F ) with certain Galois cohomology groups Hn(F ) and the compo-

nents GWn(F ) of the graded Witt ring of F via the two homomorphisms

kMn (F )

hF
n

zzuuuuuuuuu
sFn

%%KKKKKKKKKK

Hn(F ) GWn(F )

Milnor conjectured that both hF
n and sFn were isomorphisms. The aim of this paper

is to survey the results influenced by [19] that culminate in the solution of Milnor’s
conjectures.

Milnor assumed that the characteristic of the field F is different from 2. In the
case char(F ) = 2, one can still define the maps hF

n and sFn and prove the analogs of
Milnor’s conjectures. The Witt ring of quadratic forms should be replaced by the
Witt ring of bilinear forms. We include the case of fields of characteristic 2 in the
present paper.

In Section 3 we review Voevodsky’s proof of Milnor’s conjecture on the bijectivity
of hF

n . In the proof Voevodsky introduces a number of revolutionary ideas and tools,
the main one being the use of motivic cohomology. Another tool is the motivic
Steenrod operations defined by Voevodsky in analogy with the classical topological
operations. This part of the work was influenced by the paper [18], where Milnor
determined the structure of the dual of the Steenrod algebra. In particular, Milnor
introduced a basis for the Steenrod algebra. The motivic analogs of some of the
basis operations, the Milnor operations Qi, played an essential role in Voevodsky’s
proof.

This work was supported by the NSF grant DMS #0652316.
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2 A. MERKURJEV

1. K0, K1, K2 and Milnor’s K-theory of fields

Let R be an associative ring with unit. The group K0(R) is defined as the
Grothendieck group of the category P(R) of finitely generated projective left R-
modules. If R is a connected commutative ring, the rank of a module provides a
group homomorphism K0(R) → Z. This map is an isomorphism if R is a field.

Identifying each n × n matrix a with the (n + 1) × (n + 1) matrix
(
a 0
0 1

)
gives

an embedding of GLn(R) into GLn+1(R). The union of the groups of the resulting
sequence

GL1(R) ⊂ GL2(R) ⊂ · · · ⊂ GLn(R) ⊂ · · ·
is called the infinite general linear group GL(R). The subgroup E(R) of GL(R) gen-
erated by elementary matrices coincides with the commutator subgroup of GL(R).
The group K1(R) is defined as the factor group GL(R)/E(R) (see [4]).

If R is a commutative ring, the determinant of a matrix provides a group homo-
morphism K1(R) → R×. This map is an isomorphism if R is a field.

The group K2 of a ring R was defined by Milnor in [21]. For n ≥ 3 the Steinberg
group Stn(R) is the group defined by generators xij(r), with i, j = 1, . . . , n, i ̸= j
and r ∈ R, subject to the following relations:

• xij(r)xij(s) = xij(r + s),

• [xij(r), xjl(s)] = xil(rs) for i ̸= l,

• [xij(r), xkl(s)] = 1 for j ̸= k and i ̸= l.

The Steinberg relations are satisfied by the elementary matrices eij(r) in the
group GLn(R) and can be viewed as “elementary relations” between the elementary
matrices. There is a group homomorphism φn : Stn(R) → GLn(R) taking xij(r)
to eij(r).

There is an obvious homomorphism Stn(R) → Stn+1(R) for any n ≥ 3. We write
St(R) for the colimit of the groups Stn(R). The homomorphisms φn give rise to a
group homomorphism

φ : St(R) → GL(R).

The image of φ is the subgroup E(R) of GL(R). The group K2(R) is defined as
the kernel of φ. Thus there is an exact sequence of groups

0 → K2(R) → St(R) → GL(R) → K1(R) → 1.

The group K2(R) is abelian and it coincides with the center of St(R).

The Steinberg group St(R) can be described in terms of universal central exten-
sions as follows. A central extension of a group G is a surjective group homomor-
phism α : H → G such that the kernel of α is a central subgroup of H. For example,
the canonical homomorphism St(R) → E(R) is a central extension of E(R).

A central extension α : H → G of a group G is called universal if for any other
central extension α′ : H ′ → G of G there is a unique homomorphism H → H ′ over
G. A universal central extension of G is unique up to a canonical isomorphism. A
group G admits a universal central extension α : H → G if and only if G is perfect.
In this case the kernel of α is canonically isomorphic to H2(G,Z).

Theorem 1.1. ([21, Th. 5.10]) For any ring R, the canonical homomorphism
St(R) → E(R) is a universal central extension of E(R). In particular, K2(R) ≃
H2(E(R),Z).
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Let A,B ∈ E(R) be two commuting matrices. Choose elements a, b ∈ St(R) such
that φ(a) = A and φ(b) = B. As K2(R) is central in St(R), the element

A ⋆ B := [a, b] ∈ K2(R)

is well defined. If r and s are commuting invertible elements in R, we define the
Steinberg symbol {r, s} ∈ K2(R) as follows:

{r, s} = diag(r, r−1, 1) ⋆ diag(s, 1, s−1),

where diag(r, s, t) is the diagonal 3 × 3 matrix with the diagonal terms r, s and t.
The Steinberg symbol satisfies the following relations:

• {r, s1s2} = {r, s1}+ {r, s2},
• {r1r2, s} = {r1, s}+ {r2, s},
• (Steinberg Relation) {r, 1− r} = 0 if r, 1− r ∈ R×.

Let R be a commutative ring. Write KM
2 (R) for the abelian group defined by

generators {r, s} for all r, s ∈ R× subject to the relations above. There is an
obvious group homomorphism KM

2 (R) → K2(R). The following important result
was proven by Matsumoto in [14]:

Theorem 1.2. If R is a field, then the homomorphism KM
2 (R) → K2(R) is an

isomorphism.

1.A. Milnor ring of a field. Inspired by Matsumoto’s theorem, Milnor defined
in [19] the higher Milnor K-groups for a field as follows. Let F be a field and let
T∗ denote the tensor ring of the multiplicative group F× of the field F . That is a
graded ring with

Tn = F× ⊗Z F× ⊗Z . . .⊗Z F×

the nth tensor power of F× over Z. For instance, T0 = Z, and T1 = F×. The
Milnor ring K∗(F ) of F is the factor ring of T∗ by the ideal generated by tensors
of the form a⊗ b with a+ b = 1.

The class of a tensor a1 ⊗ a2 ⊗ . . .⊗ an in KM
∗ (F ) is denoted by {a1, a2, . . . , an}

and is called a symbol. We have KM
n (F ) = 0 if n < 0, KM

0 (F ) = Z and KM
1 (F ) =

F×. For n ≥ 2, KM
n (F ) is generated (as an abelian group) by the symbols

{a1, a2, . . . , an} with ai ∈ F× subject to the following defining relations:

• {a1, . . . , aia′i, . . . , an} = {a1, . . . , ai, . . . , an}+ {a1, . . . , a′i, . . . , an};
• (Steinberg Relation) {a1, a2, . . . , an} = 0 if ai + aj = 1 for some i ̸= j.

The canonical homomorphism

KM
n (F ) → Kn(F )

is an isomorphism for n = 0, 1, 2.
Note that the operation in the group KM

n (F ) is written additively. In particular,
{ab} = {a}+ {b} in KM

1 (F ) where a, b ∈ F×.
The product in the ring KM

∗ (F ) is given by the rule

{a1, a2, . . . , an} · {b1, b2, . . . , bm} = {a1, a2, . . . , an, b1, b2, . . . , bm}.
Suppose that a field E has a discrete valuation v with residue field Fv. For an

element u ∈ E× with v(u) = 0 write ū for the residue of u in Fv. There is the
residue homomorphism

∂v : KM
n (E) → KM

n−1(Fv)
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satisfying
∂v

(
{x1, x2, . . . , xn}

)
= v(x1){x̄2, . . . , x̄n}

for arbitrary x1, x2, . . . , xn ∈ E× such that v(x2) = · · · = v(xn) = 0.
Each monic irreducible polynomial p ∈ F [t] gives rise to (p)-adic discrete valu-

ation on the rational function field F (t) with residue field Fp := F [t]/(p). Hence
there is the associated residue homomorphism

∂p : KM
n

(
F (t)

)
→ KM

n−1(Fp).

In [19, Th. 2.3] Milnor computed the KM -groups of the field F (t):

Theorem 1.3. The sequence

0 → KM
n (F )

resF (t)/F−−−−−−→ KM
n

(
F (t)

) (∂p)−−→
⨿

KM
n−1(Fp) → 0,

where the direct sum extends over all monic irreducible polynomial p ∈ F [t], is
exact.

In [25] Quillen defined the higher Kn-groups of a small exact category. Quillen’s
higher K-groups KQ(R) of a ring R are defined as the groups Kn(P(R)). There
are canonical isomorphisms Kn(R) → KQ

n (R) for n = 0, 1 and 2. Hence for a field
F , the canonical homomorphism KM

n (F ) → KQ
n (F ) is an isomorphism for n ≤ 2.

Let X be an algebraic variety over F and let X(i) denote the set of points in X
of codimension i. For any i, we write Ai(X,KM

n+i) for the homology group of the
complex ⨿

x∈X(i−1)

KM
n+1

(
F (x)

) ∂−→
⨿

x∈X(i)

KM
n

(
F (x)

) ∂−→
⨿

x∈X(i+1)

KM
n−1

(
F (x)

)
,

where the differentials are induced by residue homomorphisms (see [29]). For ex-
ample, Theorem 1.3 asserts that A0(A1,KM

n ) ≃ KM
n (F ) and A1(A1,KM

n ) = 0.

In a similar fashion one defines the groups Ai(X,KQ
n+i).

IfX is a projective variety of dimension d, then the corestriction homomorphisms
KM

n (F (x)) → KM
n (F ) for every x ∈ X(d) yield the norm homomorphism

NX : Ad(X,KM
n+d) → KM

n (F ).

1.B. The norm residue homomorphism. Let F be a field, Fsep a separable clo-
sure of F and ΓF = Gal(Fsep/F ). For a discrete ΓF -module M we write Hn(F,M)
for the nth cohomology group Hn(ΓF ,M).

We write kM∗ (F ) for the factor ring KM
∗ (F )/2KM

∗ (F ) and {a1, a2, . . . , an} for
the class of the symbol {a1, a2, . . . , an} in kMn (F ).

Suppose first that the characteristic of F is different from 2. We view the group
Z/2Z as a ΓF -module with trivial action. The graded group H∗(F,Z/2Z) has the
structure of a commutative ring with respect to the cup-product. We simply write
H∗(F ) for this ring.

The group Z/2Z can be identified with the subgroup {±1} of the multiplicative
group F×. The exact sequence of ΓF -modules

0 → Z/2Z → F×
sep

2−→ F×
sep → 1

yields an exact sequence

H0(F, F×
sep)

2−→ H0(F, F×
sep) → H1(F ) → H1(F, F×

sep)
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of cohomology groups. The group H1(F, F×
sep) is zero by Hilbert’s Theorem 90.

Identifying the first two groups with F×, we get an isomorphism

hF
1 : F×/F×2 ∼→ H1(F ).

Lemma 1.4. (Bass-Tate) hF
1 (a) ∪ hF

1 (b) = 0 in H2(F ) for all a, b ∈ F× with
a+ b = 1.

It follows from Lemma 1.4 that the ring homomorphism T ∗(F×/F×2) → H∗(F )
induced by hF

1 factors through kM∗ (F ). The resulting homomorphisms

hF
n : kMn (F ) → Hn(F )

are called the norm residue homomorphisms modulo 2.

Suppose now that F is a field of characteristic 2. Let Ωn
F be the nth exterior

power of the absolute differential module Ω1
F . Let

d : Ωn−1
F → Ωn

F

be the exterior derivation defined by

d(xdy1 ∧ dy2 ∧ · · · ∧ dyn−1) = dx ∧ dy1 ∧ dy2 ∧ · · · ∧ dyn−1.

Write Hn(F ) for the kernel of the homomorphism

℘ : Ωn
F → Ωn

F /d(Ω
n−1
F ),

given by

℘(x
dy1
y1

∧ dy2
y2

∧ · · · ∧ dyn
yn

) = (x2 + x)
dy1
y1

∧ dy2
y2

∧ · · · ∧ dyn
yn

.

Note that H0(F ) ≃ Z/2Z and H1(F ) ≃ F×/F×2, so the groups Hn(F ) in the case
char(F ) = 2 can be viewed as the analogs of the cohomology groups Hn(F ) for
fields of characteristic different from 2.

If x+ y = 1 in F , then dx ∧ dy = 0 in Ω2
F . It follows that the homomorphism

hF
n : kMn (F ) → Hn(F ),

hF
n ({x1, x2, . . . , xn}) =

dx1

x1
∧ dx2

x2
∧ · · · ∧ dxn

xn

is well defined.
Thus we have the homomorphisms hF

n defined for any n ≥ 0 and every field F .
In [19, p. 340] Milnor wrote: “I don’t know of any examples for which the

homomorphism hF
n fails to be injective.” The following statement is known as the

Milnor’s Conjecture 1 for a field F :

MC1(n):
The homomorphism hF

n : kMn (F ) → Hn(F )
is an isomorphism.

If char(F ) = 2, the conjecture MC1(n) was proved by Kato in [12].

Suppose that char(F ) ̸= 2. The conjectures MC1(0) and MC1(1) obviously
hold for all fields.

In [19, Lemma 4.5] Milnor proved:

Proposition 1.5. MC1(n) holds for F a finite field, a local field or a global field.
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Using Milnor’s Theorem 1.3 and similar statement for Galois cohomology (see
[9, Th. 9.3]), one deduces the following:

Proposition 1.6. If MC1(n) holds for a field F and MC1(n − 1) holds for all
finite extensions L/F , then MC1(n) holds for the rational function field F (t).

We shall review the proof of MC1(n) in Section 3.

2. Bilinear and quadratic forms

Let F be an arbitrary field. Let b : V × V → F be a symmetric bilinear form on
a finite dimensional vector space V over F . For a subspace W ⊂ V write W⊥ for
the orthogonal complement of W in V with respect to b.

A subspace W ⊂ V is called totally isotropic if W ⊂ W⊥. If b is nondegenerate
and W is a totally isotropic subspace, then dimW ≤ 1

2 dimV . We say that W is

a lagrangian for b if dimW = 1
2 dimV , equivalently W⊥ = W . A nondegenerate

symmetric bilinear form is called metabolic if it has a lagrangian (see [7, Ch. I]).
The isometry classes of nondegenerate symmetric bilinear forms over F is a

semi-ring under orthogonal sum and tensor product. The Grothendieck ring of this

semi-ring is called the Witt-Grothendieck ring of F and denoted by Ŵ (F ).

The quotient ring W (F ) of Ŵ (F ) by the ideal generated the classes of metabolic
forms is called the Witt ring of nondegenerate symmetric bilinear forms over F . We
write [b] for the class of a form b. Two nondegenerate anisotropic symmetric bilinear
forms b1 and b2 are isomorphic if and only if [b1] = [b2] in W (F ). A nondegenerate
symmetric bilinear form b is metabolic if and only if [b] = 0 in W (F ).

We write ⟨a1, a2, . . . , an⟩ for the bilinear form on the space Fn with the diagonal
matrix diag(a1, a2, . . . , an) and write ⟨⟨a⟩⟩ for the binary symmetric bilinear form
⟨1,−a⟩. Let I(F ) be the ideal in W (F ) consisting of the classes of even-dimensional
forms. It is called the fundamental ideal of W (F ) and is generated by the classes
⟨⟨a⟩⟩ with a ∈ F×.

The powers In(F ) := I(F )n of the fundamental ideal I(F ) in W (F ) define the
filtration

W (F ) ⊃ I(F ) ⊃ I2(F ) ⊃ · · · ⊃ In(F ) ⊃ · · · .
In [19, Question 4.4] Milnor conjectured that the intersection of the ideals In(F )

is zero. This conjecture was proved by Arason and Pfister in [2]. Moreover, they
proved the following

Theorem 2.1. Let b be a binary symmetric bilinear form over F such that [b] ∈
In(F ). If [b] ̸= 0 then dim(b) ≥ 2n.

We write GW∗(F ) for the associated graded Witt ring⨿
n≥0

In(F )/In+1(F ).

The homomorphismW (F ) → Z/2Z taking the class of a form b to dim(b) modulo
2 yields an isomorphismGW0(F ) ≃ Z/2Z. The signed discriminant homomorphism

I(F ) → F×/F×2, [b] 7→ (−1)dim(b)/2 det(b)

gives rise to an isomorphism GW1(F ) ≃ F×/F×2.



ALGEBRAIC K-THEORY AND QUADRATIC FORMS AFTER MILNOR 7

Let a1, a2, . . . , an ∈ F×. We denote the tensor product ⟨⟨a1⟩⟩⊗⟨⟨a2⟩⟩⊗· · ·⊗⟨⟨an⟩⟩
by ⟨⟨a1, a2, . . . , an⟩⟩ and call it a bilinear n-fold Pfister form. The isometry classes
of bilinear n-fold Pfister forms generate In(F ) as an abelian group.

The map F× → GW1(F ) = I(F )/I2(F ) defined by a 7→ ⟨⟨a⟩⟩ + I2(F ) is a
homomorphism. If a, b ∈ F× with a + b = 1, then the form ⟨⟨a, b⟩⟩ is metabolic,
hence this map gives rise to a graded ring homomorphism

(2.2) sF∗ : kM∗ (F ) → GW∗(F )

taking the symbol {a1, a2, . . . , an} to ⟨⟨a1, a2, . . . , an⟩⟩+ In+1(F ). Since the graded
ring GW∗(F ) is generated by the degree one component I(F )/I2(F ), the map sF∗
is surjective.

In [19, Question 4.3] Milnor raised the following problem that we call Milnor’s
Conjecture 2 for a field F :

MC2(n):
The homomorphism sFn : kMn (F ) → GWn(F )

is an isomorphism.

We saw above that sFn is an isomorphism for n = 0 and 1. In [19, Th. 4.1]
Milnor proved that sF2 is an isomorphism. If char(F ) = 2, the conjecture MC2(n)
was proved by Kato in [12]. The proof of MC2(n) in the case char(F ) ̸= 2 is due
to Orlov, Vishik and Voevodsky (see [23] and Section 4).

Let b be a symmetric bilinear form on a vector space V over F . The map q :
V → F given by q(v) = b(v, v) is the quadratic form associated to b. If char(F ) ̸= 2,
the bilinear form b can be reconstructed from q via

b(v, w) = [q(v + w)− q(v)− q(w)]/2.

In the case char(F ) = 2 the theory of quadratic forms deviates from that of bilinear
forms. The latter theory was studied by Milnor in [20].

Let F be a field and

α = (a1, a2, . . . , an) ∈ (F×)
n
.

Write {α} for the symbol {a1, a2, . . . , an} in kMn (F ) and ⟨⟨α⟩⟩ for the n-fold Pfister
form ⟨⟨a1, a2, . . . , an⟩⟩.

Consider the bilinear form

bα = ⟨⟨a1, a2, . . . , an−1⟩⟩ ⊥ ⟨−an⟩

and the smooth projective quadric hypersurface Xα of dimension 2n−1−1 given by
the equation qα = 0, where qα is the quadratic form associated to bα.

The following statement was proved by Elman and Lam in [8, Th. 3.2] in the
case char(F ) ̸= 2 and by Aravire and Baeza in [3] if char(F ) = 2.

Proposition 2.3. Let α ∈ (F×)
n
. Then the following conditions are equivalent:

(1) The form bα is isotropic.
(2) The n-fold Pfister form ⟨⟨α⟩⟩ is metabolic.
(3) The symbol {α} is trivial in kMn (F ).
(4) The quadric Xα has a point over F .
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3. Milnor’s Conjecture 1

In this Section we review the proof of Milnor’s Conjecture MC1(n) for fields of
characteristic different from 2 given by Voevodsky in [35]. A detailed account on
the history of Milnor’s Conjectures can be found in [24].

Recall that the homomorphisms hF
0 and hF

1 are isomorphisms, i.e., MC1(0) and
MC1(1) hold.

3.A. The homomorphism hF
2 . Below we review the proof of Milnor’s Conjecture

MC1(2) in the case char(F ) ̸= 2 given in [15].
One of the approaches to the study of hF

n is the comparison of hF
n with hL

n for
various field extensions L/F . The case of a quadratic extension was considered by
Arason in [1]. He proved that there is an infinite exact sequence of cohomology
groups for the quadratic field extension L = F (

√
a) of F :

(3.1) · · · → Hn(F )
resL/F−−−−→ Hn(L)

corL/F−−−−→ Hn(F )
∪(a)−−−→ Hn+1(F )

resL/F−−−−→ . . .

A similar sequence (a complex) can be written for the kM∗ -groups:

(3.2) · · · → kMn (F )
resL/F−−−−→ kMn (L)

corL/F−−−−→ kMn (F )
∪{a}−−−→ kMn+1(F )

resL/F−−−−→ . . .

The two sequences are connected by the norm residue homomorphisms hF
∗ and

hL
∗ . If one could prove that the second sequence is exact then Milnor’s Conjecture

MC1(n) would follow by induction on the number of symbols (injectivity) and on
the degree of a splitting field (surjectivity).

One can attempt to prove the exactness of (3.2) at the term kMn (L) as follows.
Let u ∈ kMn (L) be in the kernel of corL/F . There is an irreducible algebraic variety
X (depending on u) over the field F1 = F0(a), where F0 is the prime subfield of F ,
and a “universal” element U ∈ kMn (L1(X)), where L1 = F1(

√
a) and L1(X) is the

function field of XL1 , such that

• The corestriction of U for the quadratic extension L1(X)/F1(X) is trivial
in kMn (F1(X)).

• There is a place F1(X) 99K F specializing U to u.

If MC1(n) holds for the fields F1(X) and L1(X), it would follow from the exact-
ness of (3.1) that the sequence (3.2) for the quadratic field extension L1(X)/F1(X)
is exact at the term kMn (L1(X)), therefore U belongs to the image of the restric-
tion map kMn (F1(X)) → kMn (L1(X)) and hence, by specialization, u belongs to the
image of the restriction map kMn (F ) → kMn (L), i.e., the sequence (3.2) is exact at
the term kMn (L).

The field F1 is either finite or global, or rational function field over a finite or
global field. By Propositions 1.5 and 1.6, MC1(n) holds for the fields F1 and L1.
The variety X over F1 appears to be a product of projective quadrics of the form
Xα for α = (a1, . . . , an) with an = a (see Section 2). Thus, to complete the proof
one needs to prove the following ”going-up” statement:

Let α = (a1, . . . , an) ∈ (F×)
n
and L = F (

√
an). If MC1(n) holds for the fields

F and L, then MC1(n) holds for the fields F (Xα) and L(Xα).

In [30] Suslin proved this statement in the case n = 2. In the proof he used a
computation of Quillen’s KQ-groups of the projective conic curve Xα given in [25,
§8]. This completes the proof of MC1(2).
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3.B. Hilbert’s Theorem 90. Consider the following statement H90(n) for a
Galois quadratic extension L/F :

Let σ the generator of Gal(L/F ). Then the following sequence

(3.3) KM
n (L)

1−σ−−−→ KM
n (L)

corL/F−−−−→ KM
n (F )

is exact.

The statement H90(0) is obvious and H90(1) is the classical Hilbert’s Theorem
90 for quadratic extensions.

Another approach to the proof of MC1(n) is to prove H90(n) first for Galois
quadratic field extensions which then implies that the sequence (3.2) is exact at the
first and the second terms. This exactness implies MC1(n) via the specialization
argument as described in Section 3.A.

In order to prove H90(n) for a quadratic field extension L = F (
√
a)/F by

induction on n, Suslin proposed the following “going-down” method. Suppose first
that the corestriction homomorphism KM

n−1(L) → KM
n−1(F ) is surjective. We can

construct the homomorphism

s : KM
n (F ) → KM

n (L)/(1− σ)KM
n (L)

as follows. Let u = {a1, . . . , an} ∈ KM
n (F ). Write {a1, . . . , an−1} = corL/F (v) for

some v ∈ KM
n−1(L) and set s(u) = v · {an} + (1 − σ)KM

n (L). One checks that s
extends to a well defined homomorphism that is the inverse to the homomorphism
KM

n (L)/(1 − σ)KM
n (L) → KM

n (F ) induced by the corestriction, whence H90(n)
for L/F .

Write V (n,L/F ) for the homology of the complex (3.3). It is sufficient to con-
struct a field extension F ′/F such that the corestriction homomorphism

KM
n−1(F

′L) → KM
n−1(F

′)

is surjective and the natural map V (n,L/F ) → V (n, F ′L/F ′) is injective.
Let An(F ) be the set of all tuples (a1, . . . , an) with ai ∈ F× for all i and an = a.

For any α = (a1, . . . , an) ∈ An(F ) consider the projective quadric Xα as in Section
2. By Proposition 2.3, the symbol {a1, . . . , an} is trivial in kMn over any field
extension of F over which Xα has a point. In particular, {a1, . . . , an−1} belongs to
the image of the corestriction KM

n−1(L(Xα)) → KM
n−1(F (Xα)).

For any finite subset S ⊂ An(F ), let XS be the product of Xα over all α ∈ S.
If S′ is a subset of S, we have a natural projection XS → XS′ inducing the field
extension F (XS)/F (XS′). Let F1 be the colimit of the fields F (XS) over all finite
subsets S ⊂ An(F ). By construction, the image of KM

n−1(F ) → KM
n−1(F1) belongs

to the image of the corestriction KM
n−1(F1L) → KM

n−1(F1).
Iterating the construction, we build a tower of field extensions F ⊂ F1 ⊂ F2 ⊂

. . . . Let F ′ be the union of all Fi. Clearly, the corestriction KM
n−1(F

′L) →
KM

n−1(F
′) is surjective.

Suppose that for any field extension K/F and any α ∈ An(K), the natural
homomorphism

(3.4) V (n,KL/K) → V (n,KL(Xα)/K(Xα))

is injective. It follows that the map V (n,L/F ) → V (n,LF ′/F ′) is injective and
hence H90(n) holds for L/F .
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The injectivity of (3.4) in the case n = 2 follows from the injectivity of the re-
striction homomorphism A1(Xα,K

M
2 ) → A1((Xα)L,K

M
2 ). The latter is equivalent

to the injectivity of the norm map

NXα : A1(Xα,K
M
2 ) → K1(F ).

The injectivity can be deduced from Quillen’s computation of the KQ-groups of
the conic curve Xα.

There are also “elementary” proofs of the injectivity of the norm map NXα in
the case n = 2 given in [37] and [7] that don’t use Quillen’s K-theory.

3.C. The homomorphism hF
3 . The conjecture MC1(3) was proved in [16] and

by Rost in [26]. One deduces MC1(3) from H90(3) as explained in Section 3.B
and applies the “going-down” method described in the previous section in order
to prove H90(3). We need to prove that for a quadratic field extension L/F
and an appropriate quadric Xα, the restriction homomorphism A1(Xα,K

M
3 ) →

A1((Xα)L,K
M
3 ) is injective.

How to compute A1(Xα,K
M
3 )? Although the groups KM

3 and KQ
3 for fields are

different, one still can prove that A1(Xα,K
M
3 ) = A1(Xα,K

Q
3 ). In order to compute

A1(Xα,K
Q
3 ), we use the Brown-Gersten-Quillen spectral sequence [25, §8]

Ap(Xα,K
Q
−q) ⇒ KQ

−p−q(Xα)

and Swan’s computation of the KQ-theory of quadrics [32]. One has to prove

that the differential A1(Xα,K
Q
3 ) → A3(Xα,K

Q
4 ) = A3(Xα,K

M
4 ) in the spectral

sequence is zero. This follows from the injectivity of the norm homomorphism

NXα : A3(Xα,K
M
4 ) → K1(F ).

Note that the injectivity of the norm homomorphism for the quadric Xα played
an essential role in the proof of Milnor’s Conjecture in the cases n = 2 and 3. It
is also used in Voevodsky’s proof of the general case that will be considered in the
next section.

The drawback of the use of Quillen’s K-groups is obvious: in higher degrees the
group KQ

n for fields deviates from KM
n , so we cannot use the powerful machinery of

the higher KQ-theory. On the other hand, we are lacking tools for the calculation
of Milnor’s K-groups of the function fields of algebraic varieties.

3.D. Proof of Milnor’s Conjecture MC1(n). Milnor’s Conjecture MC1(n) was
proved by Voevodsky in [35]. He has introduced a number of breakthrough ideas in
the proof. The main one is the use of motivic cohomology in the place of Quillen’s
K-theory. The motivic cohomology fits better in the context of Milnor’s Conjecture.
In particular, Milnor’s K-groups of a field are certain motivic cohomology groups.

Most of Voevodsky’s tools have analogs in algebraic topology. In particular, the
motivic cohomology in algebraic geometry plays the role of singular cohomology for
CW-complexes.

Let F be a field. The existence of motivic complexes over F was predicted by
Beilinson in [5]. Suslin and Voevodsky introduced in [31] the motivic complexes
Z(q), for q ≥ 0, of sheaves of abelian groups in the étale topology on the category
of smooth schemes over F such that:

(i) Z(0) = Z placed in degree 0,
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(ii) Z(1) is quasi-isomorphic to the sheaf Gm of invertible functions placed in
degree 1, i.e., Z(1) ≃ Gm[−1],

(iii) Z(q) is acyclic in degree greater than q.

For an abelian group A, let A(n) denote the derived tensor product Z(n)
L
⊗ A.

For a smooth scheme X over F define the motivic cohomology groups

Hp,q(X,A) := Hp
Zar(X,A(q)),

and the étale motivic cohomology groups

Hp,q
ét (X,A) := Hp

ét
(X,A(q)).

If X = Spec(F ), we write Hp,q(F,A) and Hp,q
ét (F,A) for the motivic and the étale

motivic cohomology groups of X respectively.
By Property (iii),

(3.5) Hp,q(F,A) = 0 if p > q.

More generally, if X is a smooth scheme over F , then

(3.6) Hp,q(X,A) = 0 if p > q + dim(X).

Milnor’s K-groups are the motivic cohomology: in the case p = q we have a
canonical isomorphism

Hp,p(F,Z) ≃ KM
p (F ).

This can be generalized as follows:

Proposition 3.7. ([35, Lemma 4.11]) Let X be smooth scheme over F of dimension
d. Then

Hp+2d,p+d(X,Z) ≃ Ad(X,KM
p+d)

for all p.

If char(F ) ̸= 2, then the complex Z(q)/2Z(q) is quasi-isomorphic to Z/2Z in the
étale topology, hence

(3.8) Hp,q
ét (F,Z/2Z) = Hp(F,Z/2Z) = Hp(F ).

In [34] Voevodsky introduced the triangulated category of motivic complexes
DM(F ) over F containing the motivic complexes Z(q) as objects. There is the
functor M from the category of smooth schemes over F to DM(F ) that takes a
scheme X to the motive M(X) of X. This functor is analogous to the singular
chain complex functor in topology.

The motivic cohomology groups are represented by the motivic complexes:

Hp,q(X,Z) = HomDM(F )(M(X),Z(q)[p]).

Therefore, the motivic cohomology can be defined for all objects in DM(F ).
Let π be the canonical morphism from the étale cite to the Zariski cite. We have

the following relation between motivic and étale motivic cohomology groups for a
smooth scheme X:

Hp,q
ét (X,Z) ≃ Hp

Zar(X,Rπ∗(π
∗(Z(q)))).

Let L(q) be the canonical truncation of the complex Rπ∗(π
∗(Z(q))) at level q + 1,

i.e., L(q) is a subcomplex of Rπ∗(π
∗(Z(q))) whose ith cohomology sheaf is the same

as for Rπ∗(π
∗(Z(q))) if i ≤ q + 1 and zero if i > q + 1. The canonical morphism
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Z(q) → Rπ∗(π
∗(Z(q))) factors through L(q). Let K(q) be the complex defined by

the distinguished triangle in DM(F ):

(3.9) Z(q) → L(q) → K(q) → Z(q)[1].
Lichtenbaum has conjectured in [13] that the complex K(q) is acyclic, i.e., the

morphism of complexes Z(q) → L(q) is a quasi-isomorphism, in particular, the

group Hn+1,n
ét (F,Z) is trivial. If n = 0 we have Z(0) = Z and

H1,0
ét (F,Z) = H1

ét(F,Z) = Homcont(Gal(Fsep/F ),Z) = 0.

If n = 1 we have Z(1) = Gm[−1] and Lichtenbaum’s conjecture is equivalent to the
classical Hilbert’s Theorem 90: H1

ét(F,Gm) = 0.
We consider the 2-part of Lichtenbaum’s Conjecture. Let Z(2) be the localization

of Z at the prime ideal 2Z. We say that the 2-part of motivic Hilbert’s Theorem 90
holds for a field F if the following condition holds:

MH90(n): The group Hn+1,n
ét (F,Z(2)) is trivial.

The condition MH90(n) for fields of characteristic 2 was proved by Geisser and
Levine in [10, Th 8.6].

Note that by [35, Lemma 6.8] and (3.5),

Hn+1,n
ét (F,Q) ≃ Hn+1,n(F,Q) = 0,

hence Hn+1,n
ét (F,Z(2)) is a 2-primary torsion group.

In fact, MH90(n) is equivalent to the 2-part of Lichtenbaum’s Conjecture:

Theorem 3.10. ([35, Th. 6.6]) The condition MH90(n) holds for all fields if and
only if the complex K(n)⊗ Z(2) is quasi-isomorphic to zero for all fields.

Corollary 3.11. Assume that MH90(n) holds for all fields. Then for any smooth
simplicial scheme X one has:

(1) The homomorphisms

Hp,q(X ,Z(2)) → Hp,q
ét (X ,Z(2))

are isomorphisms for p− 1 ≤ q ≤ n and monomorphisms for p = q+2 and
q ≤ n.

(2) The homomorphisms

Hp,q(X ,Z/2Z) → Hp,q
ét (X ,Z/2Z)

are isomorphisms for p ≤ q ≤ n and monomorphisms for p = q + 1 and
q ≤ n.

In the special case p = q = n and X = Spec(F ), the isomorphism in Corol-
lary 3.11(2) coincides with the norm residue homomorphism hF

n . Thus, MH90(n)
implies MC1(n).

The motivic Hilbert’s Theorem 90 implies the classical one:

Proposition 3.12. ([35, Lemma 6.11]) MH90(n) for all fields implies H90(n) for
all Galois quadratic field extensions.

Thus, in order to prove MC1(n) it suffices to show MH90(n). By induction,
we may assume MH90(q) for all q < n and therefore, MC1(q) and H90(q) hold
by Proposition 3.12.

The proof of MH90(n) for fields of characteristic not 2 splits into several steps.
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A field F is called 2-special if F has no nontrivial odd degree extensions.

Step 1: MH90(n) holds for 2-special fields F with kMn (F ) = 0.

Indeed, under the assumption and induction hypothesis, the corestriction ho-
momorphism KM

n−1(L) → KM
n−1(F ) is surjective for any quadratic field extension

L/F . As in Section 3.B, one deduces H90(n) for any quadratic field extension
L/F . It follows that the sequence (3.2) is exact at the second term. Hence the two
assumptions on F are preserved under quadratic extensions and hence hold for all
finite extensions of F as F is 2-special.

We claim that Hn(F ) = 0. Let u ∈ Hn(F ). By induction on the degree of
a splitting field, we may assume that u is split over a quadratic field extension
L = F (

√
a)/F . From the commutativity of the diagram

kMn−1(F )
{a}−−−−→ kMn (F )

hF
n−1

y≀ hF
n

y
Hn−1(F )

(a)−−−−→ Hn(F )
resL/F−−−−→ Hn(L)

with the exact bottom row, the triviality of kMn (F ) and MC1(n−1), it follows that
u = 0. This proves the claim.

The exactness of the sequence (see (3.8))

Hn(F ) → Hn+1,n
ét (F,Z(2))

2−→ Hn+1,n
ét (F,Z(2)),

induced by 0 → Z(2)(n)
2−→ Z(2)(n) → (Z/2Z)(n) → 0, and the claim imply that

Hn+1,n
ét (F,Z(2)) has no 2-torsion and hence is trivial as Hn+1,n

ét (F,Z(2)) is a 2-
primary torsion group. Thus MH90(n) holds for F .

Recall that for an α = (a1, a2, . . . , an) ∈ (F×)
n
we write Xα for the projective

quadric hypersurface Xα of dimension 2n−1−1 given by the equation qα = 0, where
qα = ⟨⟨a1, a2, . . . , an−1⟩⟩ ⊥ ⟨−an⟩.

Step 2: Reduction to the proof of the injectivity of

(3.13) Hn+1,n
ét (F,Z(2)) → Hn+1,n

ét (F (Xα),Z(2)).

One employs the “going-down” method to prove MH90(n). In order to reduce
to the special case in Step 1, we need to prove the injectivity of (3.13) and the

injectivity of the restriction Hn+1,n
ét (F,Z(2)) → Hn+1,n

ét (E,Z(2)) for an odd degree
field extension E/F . The latter follows by the corestriction argument and the fact

that Hn+1,n
ét (F,Z(2)) is a 2-torsion group.

Another breakthrough idea of Voevodsky is the introduction and application of
the simplicial scheme associated to a usual scheme over F . For a smooth scheme X
over F write Č(X) for the Cech simplicial scheme with the terms Č(X)n = Xn+1

and face and degeneracy morphisms given by partial projections and diagonals
respectively (see [35, Appendix B]). If X has a point over F , then Č(X) is con-
tractible.

For an α ∈ (F×)
n
set Xα := Č(Xα). Denote by M(Xα) the motive of Xα in the

triangulated category DM(F ).
If Xα has a point over F , then M(Xα) = Z, so in general, M(Xα) is a “twisted

form” of Z. Write Hp,q(Xα,Z) for the motivic cohomology group Hp,q
(
M(Xα),Z

)
.
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In the étale topology Xα “has a point”, hence (see [35, Lemma 7.3])

(3.14) Hp,q
ét (Xα,Z) ≃ Hp,q

ét (F,Z).

Step 3: Reduction to the proof of the triviality of Hn+1,n(Xα,Z).
The exact triangle of complexes (3.9) yields a commutative diagram

Hn+1,n(Xα,Z(2)) −−−−→ Hn+1,n
ét (Xα,Z(2)) −−−−→ Hn+1

ét (Xα,K(n)(2))y y y
Hn+1,n(F (Xα),Z(2)) −−−−→ Hn+1,n

ét (F (Xα),Z(2)) −−−−→ Hn+1
ét (F (Xα),K(n)(2))

The middle term of the top row reduces to Hn+1,n
ét (F,Z(2)) by (3.14).

By the induction hypothesis, the complexes K(q) ⊗ Z(2) are quasi-isomorphic
to zero if q < n. Then the exactness of the Gysin sequence shows that the right
vertical homomorphism in the diagram is an isomorphism (see [11, Lemme 33]).

As Hn+1,n(F (Xα),Z(2)) = 0 by (3.5), the diagram yields an exact sequence

Hn+1,n(Xα,Z(2)) → Hn+1,n
ét (F,Z(2)) → Hn+1,n

ét (F (Xα),Z(2)).

Thus, by Step 3, it suffices to prove that Hn+1,n(Xα,Z) = 0.

Step 4: Reduction to the proof of the triviality of H2n−1,2n−1

(Xα,Z).
In this step Voevodsky introduced another powerful novelty: the Steenrod oper-

ations in motivic cohomology.
In topology, the operations on the cohomology groups with coefficients in Z/lZ

for a prime integer l form the (Hopf) Steenrod algebra. In the famous paper [18]
Milnor determined the structure of the dual of the Steenrod algebra. Milnor proved
that there are elements τi, i ≥ 0, of degree 2li − 1 and elements ξi, i ≥ 1, of degree
2li−2 in the dual Steenrod algebra satisfying the following. Let r = (r1, r2, . . . ) be
a sequence of non-negative integers that are almost all zero and let e = (e0, e1, . . . )
be a sequence of zeros and ones that are almost all zero. Then the elements

τeξr :=
∏
i≥0

τeii
∏
j≥1

ξrii

form a basis for the dual algebra.
Voevodsky defined the motivic Steenrod algebra and proved in [36] that there are

elements τi, i ≥ 0, of bidegree (2li−1, li−1) and ξi, i ≥ 1, of bidegree (2li−2, li−1)
in the dual motivic Steenrod algebra such that the elements τeξr form a basis of
the dual algebra.

Let Qi, i ≥ 0, be the operation of bidegree (2li − 1, li − 1) dual to τi. The
operations Qi are called the Milnor operations. The operation B := Q0 is the
Bockstein homomorphism, i.e., the connecting homomorphism of bidegree (1, 0) for
the exact sequence

0 → Z/lZ → Z/l2Z → Z/lZ → 0.

The operations Qi anti-commute: QkQj = −QjQk for j ̸= k and Q2
i = 0 for all i.

Let qi, i ≥ 1, be the operation of bidegree (2li − 2, li − 1) dual to ξi. We have
([36, Prop. 13.6])

(3.15) Qi = [B, qi].
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Let X be a smooth scheme of dimension d and E → X a vector bundle. Write
Th(E) for the Thom space of E in the pointed motivic homotopy category H•(F )

introduced in [22] and let tE ∈ H̃2d,d(Th(E),Z) be the Thom class of E (see [36,
§4]).

The Steenrod operations act on the Thom classes modulo l by multiplication
by certain Chern classes. For any integer k ≥ 0, let sk(E) ∈ H2k,k(X,Z) be the
additive in E Chern class uniquely determined by the property sk(L) = e(L)k,
where L is a line bundle over X and e(L) ∈ H2,1(X,Z) = Pic(X) is the Euler class
of L.

Proposition 3.16. ([36, Cor. 14.3]) For any vector bundle E over a smooth scheme
X of dimension d we have

qi(tE) = sli−1(E)tE

in H̃2(d+li−1),d+li−1
(
Th(E),Z/lZ

)
for any i ≥ 1.

For a smooth scheme X over F , let C̃(X) be the cone of the canonical morphism
Č(X)+ → Spec(F )+ in H•(F ), where X+ denotes X

⨿
Spec(F ). Using (3.15) and

Proposition 3.16, Voevodsky proved the following

Theorem 3.17. ([35, Th. 3.2]) Let Y be a smooth projective variety over F such
that there is a morphism X → Y , where X is a smooth projective variety over F
of dimension li − 1 satisfying

deg sli−1(TX) ̸= 0 (mod l2),

where TX is the tangent bundle of X. Then the sequence

H̃p,q(C̃(Y ),Z/lZ) Qi−−→ H̃p+2li−1,q+li−1(C̃(Y ),Z/lZ)
Qi−−→ H̃p+4li−2,q+2li−2(C̃(Y ),Z/lZ)

is exact for all p and q.

Corollary 3.18. ([35, Prop. 3.6]) Let Y be a smooth projective quadric of di-
mension 2m − 1. Then the sequence in Theorem 3.17 is exact for l = 2 and any
i ≤ m.

Indeed, if X is a smooth quadric of dimension d = 2i − 1, then the integer

deg s2i−1(TX) = 2(2i + 1− 2d)

is not divisible by 4. The quadric Y has smooth subquadrics of every dimension
2i − 1 ≤ 2m − 1.

Recall that Xα := Č(Xα) for α ∈ (F×)
n
.

Lemma 3.19. The group H̃p,q(X̃α,Z) is 2-torsion. If p > q then the natural

homomorphism Hp,q(Xα,Z) → H̃p+1,q(X̃α,Z) is an isomorphism.

Proof. If α = 0, then X̃α is contractible. As in general, α is split by a quadratic

extension of F , the group H̃p,q(X̃α,Z) is 2-torsion. The last statement follows from
(3.5). �

Lemma 3.20. The group H̃p,q(X̃α,Z) is trivial if p− 1 ≤ q < n.
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Proof. As we assume MH90(q) for all q < n, by Corollary 3.11 and 5-lemma
applied to the diagram

Hp−1,q(F,Z(2))→ Hp−1,q(Xα,Z(2))→ H̃p,q(X̃α,Z)→ Hp,q(Xα,Z(2))→ Hp,q(F,Z(2))y y y y y
Hp−1,q

ét (F,Z(2))→ Hp−1,q
ét (Xα,Z(2))→ H̃p,q

ét (X̃α,Z)→ Hp,q
ét (Xα,Z(2))→ Hp,q

ét (F,Z(2))

the vertical homomorphism in the middle is an isomorphism if p − 1 ≤ q < n. It

follows from (3.14) that H̃p,q
ét (X̃α,Z) = 0. �

We say that an element α ∈ H̃p,q(X̃θ,Z/2Z) is integral if α belongs to the image
of the natural homomorphism

H̃p,q(X̃α,Z) → H̃p,q(X̃α,Z/2Z).

It follows from the fact that the group H̃p,q(X̃α,Z) is 2-torsion (Lemma 3.19)
and from the equality QiB = −BQi that Qi takes integral elements to the integral

ones. The restriction of Qi on the subgroup of integral elements Hp,q(X̃α,Z) is still
denoted by Qi. Corollary 3.18 yields

Proposition 3.21. For every i = 1, . . . , n− 1, the sequence

H̃p,q(X̃α,Z)
Qi−−→ H̃p+2i+1−1,q+2i−1(X̃α,Z)

Qi−−→ H̃p+2i+2−2,q+2i+1−2(X̃α,Z)
is exact for all p and q.

Lemma 3.20 then implies

Corollary 3.22. If p− 1 ≤ q < n, then the operation

Qi : H̃
p+2i+1−1,q+2i−1(X̃α,Z) → H̃p+2i+2−2,q+2i+1−2(X̃α,Z)

is injective for any i = 1, 2, . . . , n− 1.

It follows from Lemma 3.19 and Corollary 3.22 that the operation

Qi : H
n+2i+1−i−2,n+2i−i−1(Xα,Z) → Hn+2i+2−i−3,n+2i+1−i−2(Xα,Z)

is injective for any i = 1, 2, . . . , n− 1. Hence the composition Qn−2 ◦ · · · ◦Q2 ◦Q1

is an injective homomorphism

Hn+1,n(Xα,Z) → H2n−1,2n−1

(Xα,Z).

Remark 3.23. Note that in the case n = 2 this map is the identity, i.e., the
Steenrod operations are not used in the proof in this case. In the case n = 3 the
only Steenrod operation Q1 used in the proof is closely related to the differential
in the spectral sequence (see Section 3.C).

Step 5: Proof of the triviality of H2n−1,2n−1

(Xα,Z).
If the quadric Xα has a rational point, i.e., the quadratic form qα is isotropic

and qα ≃ q′α ⊥ H for some form q′α and the hyperbolic plane H, the motive of Xα

decomposes into direct sum of motives as follows:

M(Xα) ≃ Z⊕ Z(d)[2d]⊕M(X ′
α),

where d = dim(Xα) = 2n−1 − 1 and X ′
α is the quadric of the form q′α. In general,

when Xα may not have a rational point, Rost proved in [28] that M(Xα) still splits
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off a canonical motive Mα, called the Rost motive of α. Over a field extension over
which Xα has a point, the Rost motive Mα is isomorphic to Z⊕ Z(d)[2d].

The simplicial motive Xα and the Rost motive fit into an exact triangle in
DM(F ) [35, Th. 4.4]:

(3.24) M(Xα)(2
n−1 − 1)[2n − 2] → Mα → M(Xα) → M(Xα)(2

n−1 − 1)[2n − 1].

The exact triangle yields an exact sequence

(3.25) H0,1(Xα,Z) → H2n−1,2n−1

(Xα,Z) → H2n−1,2n−1

(Mα,Z) → H1,1(Xα,Z).
As Z(1) = Gm[−1], we have

Hp,1(Xα,Z) = Hp−1(Xα,Gm).

It follows that the first group in the exact sequence (3.25) is trivial and the last one
is equal to F×. The last map in the exact sequence is the restriction to the direct
summand Mα of M(Xα) of the norm homomorphism (see Proposition 3.7):

NXα : H2n−1,2n−1

(Xα,Z) = A2n−1−1(Xα,K
M
2n−1) → F×.

Thus, it suffices to show that the norm homomorphism is injective. This was proved
by Rost in [27]. This is also a consequence of the following general result [6, Th.
6.2]:

Theorem 3.26. Let q be a non-degenerate quadratic form over a field F , X pro-
jective quadric hypersurface of dimension d given by q = 0. Then the kernel of
the norm homomorphism NX : Ad(X,Kd+1) → F× is naturally isomorphic to the
group of R-equivalence classes Spin(q)/R in the spinor group of q.

When q is a Pfister neighbor, i.e., q is a subform of an n-fold Pfister form of
dimension at least 2n−1 + 1, the variety of the algebraic group Spin(q) is rational
by [17, Th. 6.4], hence Spin(q)/R = 1.

4. Milnor’s Conjecture 2

We review the proof of MC2(n) by Orlov, Vishik and Voevodsky given in [23].
Assume that char(F ) ̸= 2.

Proposition 4.1. Let α ∈ (F×)n. Then the kernel of the natural homomorphism
kMn (F ) → kMn (F (Xα)) coincides with {0, {α}}.

Proof. We may assume that Xα has no rational points. Since by Lemma 3.19,

Hn+1,n−1(Xα,Z) = H̃n+1,n−1(X̃α,Z) is 2-torsion, we have an exact sequence

Hn,n−1(Xα,Z(2)) → Hn,n−1(Xα,Z/2Z) → Hn+1,n−1(Xα,Z) → 0.

It follows from Corollary 3.11, (3.14) and MH90(n− 1) that

Hn,n−1(Xα,Z(2)) ≃ Hn,n−1
ét (Xα,Z(2)) ≃ Hn,n−1

ét (F,Z(2)) = 0.

Hence the group Hn+1,n−1(Xα,Z) is canonically isomorphic to Hn,n−1(Xα,Z/2Z).
By the proof of [33, proof of Lemma 6.5], the latter group is canonically isomorphic
to the kernel of the homomorphism Hn(F ) → Hn(F (Xα)). In view of MC1(n),
we have

(4.2) Hn+1,n−1(Xα,Z) ≃ Ker
(
kMn (F ) → kMn (F (Xα))

)
.

It follows from Lemma 3.19 and Corollary 3.22 that the operation

Qi : H
n+2i+1−i−2,n+2i−i−2(Xα,Z) → Hn+2i+2−i−3,n+2i+1−i−3(Xα,Z)
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is injective for any i = 1, 2, . . . , n− 1. The composition Qn−2 ◦ · · · ◦Q2 ◦Q1 is then
an injective homomorphism

(4.3) Hn+1,n−1(Xα,Z) → H2n−1,2n−1−1(Xα,Z).

The exact triangle (3.24) yields an exact sequence

H0,0(Xα,Z) → H2n−1,2n−1−1(Xα,Z) → H2n−1,2n−1−1(Mα,Z).

The third group in the sequence is a subgroup of H2n−1,2n−1−1(Xα,Z) and hence is
trivial by (3.6) as (2n − 1)− (2n−1 − 1) = 2n−1 > dim(Xα). The first group in the

sequence is isomorphic to Z, hence the group H2n−1,2n−1−1(Xα,Z) is cyclic of order
at most 2 as it is a group of exponent 2. It follows from (4.2) and the injectivity of
(4.3) that the kernel of kMn (F ) → kMn (F (Xα)) has at most two elements. But {α}
is a nontrivial element in the kernel, hence the kernel coincides with {0, {α}}. �

Now we can prove MC2(n) for all fields of characteristic not 2. It suffices to
prove that the map sFn in injective. Let u ∈ Ker(sFn ) be a sum of m symbols. We
prove by induction on m that u = 0. Write u = {α}+ w, where α ∈ (F×)n and w
is a sum of m − 1 symbols. Over the field L = F (Xα), the element uL = wL is a
sum of m− 1 symbols. As uL belongs to the kernel of sLn , it is trivial by induction.
By Proposition 4.1, u = 0 or u = {α}. We show that in the latter case {α} = 0.
Indeed, as sFn ({α}) = 0, we have [⟨⟨α⟩⟩] ∈ In+1(F ). It follows from Theorem 2.1
that [⟨⟨α⟩⟩] = 0 in W (F ), i.e., the form ⟨⟨α⟩⟩ is metabolic. By Proposition 2.3,
{α} = 0.

As a result of positive solution of both Milnor’s conjectures we have the isomor-
phisms

eFn : In(F )/In+1(F )
(sFn )−1

−−−−→ kMn (F )
sFn−−→ Hn(F ).

The maps eFn provide cohomological invariants

ēFn : In(F ) → Hn(F )

of bilinear forms so that the invariant ēFn (b) for a form b is defined if the previous
one ēFn−1(b) was defined and vanished. As the intersection of the ideals In(F ) is
zero, these invariants determine bilinear forms up to isomorphism.
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