NON-FORMALITY OF GALOIS COHOMOLOGY MODULO ALL PRIMES

ALEXANDER MERKURJEV AND FEDERICO SCAVIA

Abstract

Let p be a prime number and let F be a field of characteristic different from p. We prove that there exist a field extension L / F and a, b, c, d in L^{\times}such that $(a, b)=(b, c)=(c, d)=0$ in $\operatorname{Br}(F)[p]$ but $\langle a, b, c, d\rangle$ is not defined over L. Thus the Strong Massey Vanishing Conjecture at the prime p fails for L, and the cochain differential graded ring $C^{\cdot}\left(\Gamma_{L}, \mathbb{Z} / p \mathbb{Z}\right)$ of the absolute Galois group Γ_{L} of L is not formal. This answers a question of Positselski.

1. Introduction

Let p be a prime number, let F be a field of characteristic different from p and containing a primitive p-th root of unity ζ, and let Γ_{F} be the absolute Galois group of F. The Norm-Residue Isomorphism Theorem of Voevodsky and Rost [HW19] gives an explicit presentation by generators and relations of the cohomology ring $H^{\cdot}(F, \mathbb{Z} / p \mathbb{Z})=H^{\cdot}\left(\Gamma_{F}, \mathbb{Z} / p \mathbb{Z}\right)$. In view of this complete description of the cup product, the research on $H^{\cdot}(F, \mathbb{Z} / p \mathbb{Z})$ shifted in recent years to external operations, defined in terms of the differential graded ring of continuous cochains $C^{\cdot}\left(\Gamma_{F}, \mathbb{Z} / p \mathbb{Z}\right)$.

Hopkins-Wickelgren [HW15] asked whether $C^{\cdot}\left(\Gamma_{F}, \mathbb{Z} / p \mathbb{Z}\right)$ is formal for every field F and every prime p. Loosely speaking, this amounts to saying that no essential information is lost when passing from $C^{\cdot}\left(\Gamma_{F}, \mathbb{Z} / p \mathbb{Z}\right)$ to $H^{\cdot}(F, \mathbb{Z} / p \mathbb{Z})$. Positselski [Pos17] showed that $C^{\cdot}\left(\Gamma_{F}, \mathbb{Z} / p \mathbb{Z}\right)$ is not formal for some finite extensions F of \mathbb{Q}_{ℓ} and $\mathbb{F}_{\ell}((z))$, where $\ell \neq p$. He then posed the following question; see [Pos17, p. 226].
Question 1.1 (Positselski). Does there exist a field F containing all roots of unity of p-power order such that $C^{\cdot}\left(\Gamma_{F}, \mathbb{Z} / p \mathbb{Z}\right)$ is not formal?

We showed in [MS22, Theorem 1.6] that Question 1.1 has a positive answer when $p=2$. In the present work we provide examples showing that the answer to Question 1.1 is affirmative for all primes p.
Theorem 1.2. Let p be a prime number and let F be a field of characteristic different from p. There exists a field L containing F such that the differential graded ring $C^{\cdot}\left(\Gamma_{L}, \mathbb{Z} / p \mathbb{Z}\right)$ is not formal.

In order to detect non-formality of the cochain differential graded ring, we use Massey products. For any $n \geq 2$ and all $\chi_{1}, \ldots, \chi_{n} \in H^{1}(F, \mathbb{Z} / p \mathbb{Z})$, the Massey product of $\chi_{1}, \ldots, \chi_{n}$ is a certain subset $\left\langle\chi_{1}, \ldots, \chi_{n}\right\rangle \subset H^{2}(F, \mathbb{Z} / p \mathbb{Z})$; see Section 2.2 for the definition. We say that $\left\langle\chi_{1}, \ldots, \chi_{n}\right\rangle$ is defined if it is not empty, and that it vanishes if it contains 0 . When $\operatorname{char}(F) \neq p$ and F contains a primitive p-th root of unity ζ, Kummer Theory gives an identification

[^0]$H^{1}(F, \mathbb{Z} / p \mathbb{Z})=F^{\times} / F^{\times p}$, and we may thus consider Massey products $\left\langle a_{1}, \ldots, a_{n}\right\rangle$, where $a_{i} \in F^{\times}$for $1 \leq i \leq n$.

Let $n \geq 3$ be an integer, let $\chi_{1}, \ldots, \chi_{n} \in H^{1}(F, \mathbb{Z} / p \mathbb{Z})$, and consider the following assertions:

The Massey product $\left\langle\chi_{1}, \ldots, \chi_{n}\right\rangle$ vanishes.
The Massey product $\left\langle\chi_{1}, \ldots, \chi_{n}\right\rangle$ is defined.
We have $\chi_{i} \cup \chi_{i+1}=0$ for all $1 \leq i \leq n-1$.
We have that (1.1) implies (1.2), and that (1.2) implies (1.3). The Massey Vanishing Conjecture, due to Mináč-Tân [MT17b] and inspired by the earlier work of Hopkins-Wickelgren [HW15], predicts that (1.2) implies (1.1). This conjecture has sparked a lot of activity in recent years. When F is an arbitrary field, the conjecture is known when either $n=3$ and p is arbitrary, by Efrat-Matzri and Mináč-Tân [Mat18, EM17, MT16], or $n=4$ and $p=2$, by [MS23]. When F is a number field, the conjecture was proved for all $n \geq 3$ and all primes p, by Harpaz-Wittenberg [HW23].

When $n=3$, it is a direct consequence of the definition of Massey product that (1.3) implies (1.2). Thus (1.1), (1.2) and (1.3) are equivalent when $n=3$.

In [MT17a, Question 4.2], Mináč and Tân asked whether (1.3) implies (1.1). This became known as the Strong Massey Vanishing Conjecture (see e.g. [PS18]): If F is a field, p is a prime number and $n \geq 3$ is an integer then, for all characters $\chi_{1}, \ldots, \chi_{n} \in H^{1}(F, \mathbb{Z} / p \mathbb{Z})$ such that $\chi_{i} \cup \chi_{i+1}=0$ for all $1 \leq i \leq n-1$, the Massey product $\left\langle\chi_{1}, \ldots, \chi_{n}\right\rangle$ vanishes.

The Strong Massey Vanishing Conjecture implies the Massey Vanishing Conjecture. However, Harpaz and Wittenberg produced a counterexample to the Strong Massey Vanishing Conjecture, for $n=4, p=2$ and $F=\mathbb{Q}$; see [GMT18, Example A.15]. More precisely, if we let $b=2, c=17$ and $a=d=b c=34$, then $(a, b)=(b, c)=(c, d)=0$ in $\operatorname{Br}(\mathbb{Q})$ but $\langle a, b, c, d\rangle$ is not defined over \mathbb{Q}. In this example, the classes of a, b, c, d in $F^{\times} / F^{\times 2}$ are not \mathbb{F}_{2}-linearly independent modulo squares. In fact, by a theorem of Guillot-Mináč-Topaz-Wittenberg [GMT18], if F is a number field and a, b, c, d are independent in $F^{\times} / F^{\times 2}$ and satisfy $(a, b)=(b, c)=(c, d)=0$ in $\operatorname{Br}(F)$, then $\langle a, b, c, d\rangle$ vanishes.

If F is a field for which the Strong Massey Vanishing Conjecture fails, for some $n \geq 3$ and some prime p, then $C^{\cdot}\left(\Gamma_{F}, \mathbb{Z} / p \mathbb{Z}\right)$ is not formal; see Lemma 2.3 for the $n=4$ case. Therefore Theorem 1.2 follows from the next more precise result.

Theorem 1.3. Let p be a prime number, let F be a field of characteristic different from p. There exist a field L containing F and $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4} \in H^{1}(L, \mathbb{Z} / p \mathbb{Z})$ such that $\chi_{1} \cup \chi_{2}=\chi_{2} \cup \chi_{3}=\chi_{3} \cup \chi_{4}=0$ in $H^{2}(L, \mathbb{Z} / p \mathbb{Z})$ but $\left\langle\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\right\rangle$ is not defined. Thus the Strong Massey Vanishing conjecture at $n=4$ and the prime p fails for L, and $C \cdot\left(\Gamma_{L}, \mathbb{Z} / p \mathbb{Z}\right)$ is not formal.

This gives the first counterexamples to the Strong Massey Vanishing Conjecture for all odd primes p. We easily deduce that (1.3) does not imply (1.2) for all $n \geq 4$, in general: indeed, if the fourfold Massey product $\left\langle\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\right\rangle$ is not defined, neither is the n-fold Massey product $\left\langle\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, 0, \ldots, 0\right\rangle$. Theorem 1.3 was proved in [MS22, Theorem 1.6] when $p=2$, and is new when p is odd. Our proof of Theorem 1.3 is uniform in p.

We now describe the main ideas that go into the proof of Theorem 1.3. We may assume without loss of generality that F contains a primitive p-th root of unity. In Section 2, we collect preliminaries on formality, Massey products and Galois algebras. In particular, we recall Dwyer's Theorem (see Theorem 2.4): a Massey product $\left\langle\chi_{1}, \ldots, \chi_{n}\right\rangle \subset H^{2}(F, \mathbb{Z} / p \mathbb{Z})$ vanishes (resp. is defined) if and only if the homomorphism $\left(\chi_{1}, \ldots, \chi_{n}\right): \Gamma_{F} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{n}$ lifts to the group U_{n+1} of upper unitriangular matrices in $\mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)$ (resp. to the group \bar{U}_{n+1} of upper unitriangular matrices in $\mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)$ with top-right corner removed). As for [MS22, Theorem 1.6], our approach is based on Corollary 2.5, which is a restatement of Theorem 2.4 in terms of Galois algebras.

In Section 3, we show that a fourfold Massey product $\langle a, b, c, d\rangle$ is defined over F if and only if a certain system of equations admits a solution over F, and the variety defined by these equations is a torsor under a torus; see Proposition 3.7. This is done by using Dwyer's Theorem 2.4 to rephrase the property that $\langle a, b, c, d\rangle$ is defined in terms of \bar{U}_{5}-Galois algebras, and then by a detailed study of Galois G-algebras, for $G=U_{3}, \bar{U}_{4}, U_{4}, \bar{U}_{5}$. As a consequence, we also obtain an alternative proof of the Massey Vanishing Conjecture for $n=3$ and any prime p; see Proposition 3.6.

In Section 4, we use the work of Section 3.4 to construct a "generic variety" for the property that $\langle a, b, c, d\rangle$ is defined. More precisely, under the assumption that $(a, b)=(c, d)=0$ in $\operatorname{Br}(F)$ and letting X be the Severi-Brauer variety of (b, c),
 then $\langle a, b, c, d\rangle$ is not defined over $F(X)$; see Corollary 4.5. The definition of E_{w} depends on a rational function $w \in F(X)^{\times}$, which we construct in Lemma 4.1(3).

Since $(a, b)=(b, c)=(c, d)=0$ in $\operatorname{Br}(F(X))$, the proof of Theorem 1.3 will be complete once we give an example of a, b, c, d for which the corresponding torsor E_{w} is non-trivial. Here we consider the generic quadruple a, b, c, d such that (a, b) and (c, d) are trivial. More precisely, we let x, y be two variables over F, and replace F by $E:=F(x, y)$. We then set $a:=1-x, b:=x, c:=y$ and $d:=1-y$ over E. We have $(a, b)=(b, c)=0$ in $\operatorname{Br}(E)$. The class (b, c) is not zero in $\operatorname{Br}(E)$, so that the Severi-Brauer variety X / E of (b, c) is non-trivial, but $(b, c)=0$ over $L:=E(X)$.

It is natural to attempt to prove that E_{w} is non-trivial over L by performing residue calculations to deduce that this torsor is ramified. However, the torsor E_{w} is in fact unramified. We are thus led to consider a finer obstruction to the triviality of E_{w}. This "secondary obstruction" is only defined for unramified torsors. We describe the necessary homological algebra in Appendix A, and we define the obstruction and give a method to compute it in Appendix B. In Section 5, an explicit calculation shows that the obstruction is non-zero on E_{w}, and hence E_{w} is non-trivial, as desired.

Notation. Let F be a field, let F_{s} be a separable closure of F, and denote by $\Gamma_{F}:=\operatorname{Gal}\left(F_{s} / F\right)$ the absolute Galois group of F.

If E is an F-algebra, we let $H^{i}(E,-)$ be the étale cohomology of $\operatorname{Spec}(E)$ (possibly non-abelian if $i \leq 1$). If E is a field, $H^{i}(E,-)$ may be identified with the continuous cohomology of Γ_{E}.

We fix a prime p, and we suppose that $\operatorname{char}(F) \neq p$. If E is an F-algebra and $a_{1}, \ldots, a_{n} \in E^{\times}$, we define the étale E-algebra $E_{a_{1}, \ldots, a_{n}}$ by

$$
E_{a_{1}, \ldots, a_{n}}:=E\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{p}-a_{1}, \ldots, x_{n}^{p}-a_{n}\right)
$$

and we set $\left(a_{i}\right)^{1 / p}:=x_{i}$. More generally, for all integers d, we set $\left(a_{i}\right)^{d / p}:=x_{i}^{d}$. We denote by $R_{a_{1}, \ldots, a_{n}}(-)$ the functor of Weil restriction along $F_{a_{1}, \ldots, a_{n}} / F$. In particular $R_{a_{1}, \ldots, a_{n}}\left(\mathbb{G}_{\mathrm{m}}\right)$ is the quasi-trivial torus associated to $F_{a_{1}, \ldots, a_{n}} / F$, and we denote by $R_{a_{1}, \ldots, a_{n}}^{(1)}\left(\mathbb{G}_{\mathrm{m}}\right)$ the norm-one subtorus of $R_{a_{1}, \ldots, a_{n}}\left(\mathbb{G}_{\mathrm{m}}\right)$. We denote by $N_{a_{1}, \ldots, a_{n}}$ the norm map from $F_{a_{1}, \ldots, a_{n}}$ to F.

We write $\operatorname{Br}(F)$ for the Brauer group of F. If $\operatorname{char}(F) \neq p$ and F contains a primitive p-th root of unity, for all $a, b \in F^{\times}$we let (a, b) be the corresponding degree- p cyclic algebra and for its class in $\operatorname{Br}(F)$; see Section 2.1. We denote by $N_{a_{1}, \ldots, a_{n}}: \operatorname{Br}\left(F_{a_{1}, \ldots, a_{n}}\right) \rightarrow \operatorname{Br}(F)$ for the corestriction map along $F_{a_{1}, \ldots, a_{n}} / F$.

An F-variety is a separated integral F-scheme of finite type. If X is an F-variety, we denote by $F(X)$ the function field of X, and we write $X^{(1)}$ for the collection of all points of codimension 1 in X. We set $X_{s}:=X \times_{F} F_{s}$. If K is an étale algebra over F, we write X_{K} for $X \times_{F} K$. For all $a_{1}, \ldots, a_{n} \in F^{\times}$, we write $X_{a_{1}, \ldots, a_{n}}$ for $X_{F_{a_{1}, \ldots, a_{n}}}$. When $X=\mathbb{P}_{F}^{d}$ is a d-dimensional projective space, we denote by $\mathbb{P}_{a_{1}, \ldots, a_{n}}^{d}$ the base change of \mathbb{P}_{F}^{d} to $F_{a_{1}, \ldots, a_{d}}$.

2. Preliminaries

2.1. Galois algebras and Kummer Theory. Let F be a field and let G be a finite group. A G-algebra is an étale F-algebra L on which G acts via F-algebra automorphisms. The G-algebra L is Galois if $|G|=\operatorname{dim}_{F}(L)$ and $L^{G}=F$; see [KMRT98, Definitions (18.15)]. A G-algebra L / F is Galois if and only if the morphism of schemes $\operatorname{Spec}(L) \rightarrow \operatorname{Spec}(F)$ is an étale G-torsor. If L / F is a Galois G-algebra, the group algebra $\mathbb{Z}[G]$ acts on the multiplicative group L^{\times}: an element $\sum_{i=1}^{r} m_{i} g_{i} \in \mathbb{Z}[G]$, where $m_{i} \in \mathbb{Z}$ and $g_{i} \in G$, sends $x \in L^{\times}$to $\prod_{i=1}^{r} g_{i}(x)^{m_{i}}$.

By [KMRT98, Example (28.15)], we have a canonical bijection
(2.1) $\operatorname{Hom}_{\text {cont }}\left(\Gamma_{F}, G\right) / \sim \xrightarrow{\sim}$ \{Isomorphism classes of Galois G-algebras over $\left.F\right\}$,
where, if $f_{1}, f_{2}: \Gamma_{F} \rightarrow G$ are continuous group homomorphisms, we say that $f_{1} \simeq f_{2}$ if there exists $g \in G$ such that $g f_{1}(\sigma) g^{-1}=f_{2}(\sigma)$ for all $\sigma \in \Gamma_{F}$.

Let H be a normal subgroup of G. Under the correspondence (2.1), the map $\operatorname{Hom}_{\text {cont }}\left(\Gamma_{F}, G\right) / \sim \rightarrow \operatorname{Hom}_{\text {cont }}\left(\Gamma_{F}, G / H\right) / \sim$ sends the class of a Galois G-algebra L to the class of the Galois G / H-algebra L^{H}.

Lemma 2.1. Let G be a finite group, and let H, H^{\prime}, S be normal subgroups of G such that $H \subset S, H^{\prime} \subset S$, and the square

is cartesian.
(1) Let L be a Galois G-algebra. Then the tensor product $L^{H} \otimes_{L^{S}} L^{H^{\prime}}$ has a Galois G-algebra structure given by $g\left(x \otimes x^{\prime}\right):=g(x) \otimes g\left(x^{\prime}\right)$ for all $x \in L^{H}$ and $x^{\prime} \in L^{H^{\prime}}$. Moreover, the inclusions $L^{H} \rightarrow L$ and $L^{H^{\prime}} \rightarrow L$ induce an isomorphism of Galois G-algebras $L^{H} \otimes_{L^{S}} L^{H^{\prime}} \rightarrow L$.
(2) Conversely, let K be a Galois G / H-algebra, let K^{\prime} be a Galois G / H^{\prime}-algebra, and let E be a Galois G / S-algebra. Suppose given G-equivariant algebra homomorphisms $E \rightarrow K$ and $E \rightarrow K^{\prime}$. Endow the tensor product $L:=K \otimes_{E} K^{\prime}$ with the
structure of a G-algebra given by $g\left(x \otimes x^{\prime}\right):=g(x) \otimes g\left(x^{\prime}\right)$ for all $x \in K$ and $x^{\prime} \in K^{\prime}$. Then L is a Galois G-algebra such that $L^{H} \simeq K$ as G / H-algebras, and $L^{H^{\prime}} \simeq K^{\prime}$ as G / H^{\prime}-algebras.

The condition that (2.2) is cartesian is equivalent to $H \cap H^{\prime}=\{1\}$ and $S=H H^{\prime}$.
Proof. (1) It is clear that the formula $g\left(x \otimes x^{\prime}\right):=g(x) \otimes g\left(x^{\prime}\right)$ makes $L^{H} \otimes_{L^{S}} L^{H^{\prime}}$ into a G-algebra. Consider the commutative square of F-schemes

After base change to a separable closure of F, this square becomes the cartesian square (2.2), and therefore it is cartesian. Passing to coordinate rings, we deduce that the map $L^{H} \otimes_{L^{S}} L^{H^{\prime}} \rightarrow L$ is an isomorphism of G-algebras. In particular, since L is a Galois G-algebra, so is $L^{H} \otimes_{L^{S}} L^{H^{\prime}}$.
(2) We have a G-equivariant cartesian diagram

Every G-equivariant morphism between G / H and G / S is isomorphic to the projection map $G / H \rightarrow G / S$. Therefore the base change of $\operatorname{Spec}(K) \rightarrow \operatorname{Spec}(E)$ to F_{s} is G-equivariantly isomorphic to the projection $G / H \rightarrow G / S$. Similarly for $\operatorname{Spec}\left(K^{\prime}\right) \rightarrow \operatorname{Spec}(E)$. Therefore the base change of $\operatorname{Spec}(L) \rightarrow \operatorname{Spec}(F)$ over F_{s} is G-equivariantly isomorphic to $(G / H) \times_{G / S}\left(G / H^{\prime}\right) \simeq G$, that is, the morphism $\operatorname{Spec}(L) \rightarrow \operatorname{Spec}(F)$ is an étale G-torsor.

Suppose that $\operatorname{char}(F) \neq p$ and that F contains a primitive p-th root of unity. We fix a primitive p-th root of unity $\zeta \in F^{\times}$. This determines an isomorphism of Galois modules $\mathbb{Z} / p \mathbb{Z} \simeq \mu_{p}$, given by $1 \mapsto \zeta$, and so the Kummer sequence yields an isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\text {cont }}\left(\Gamma_{F}, \mathbb{Z} / p \mathbb{Z}\right)=H^{1}(F, \mathbb{Z} / p \mathbb{Z}) \simeq H^{1}\left(F, \mu_{p}\right) \simeq F^{\times} / F^{\times p} \tag{2.3}
\end{equation*}
$$

For every $a \in F^{\times}$, we let $\chi_{a}: \Gamma_{F} \rightarrow \mathbb{Z} / p \mathbb{Z}$ be the homomorphism corresponding to the coset $a F^{\times p}$ under (2.3). Explicitly, letting $a^{\prime} \in F_{\text {sep }}^{\times}$be such that $\left(a^{\prime}\right)^{p}=a$, we have $g\left(a^{\prime}\right)=\zeta^{\chi_{a}(g)} a^{\prime}$ for all $g \in \Gamma_{F}$. This definition does not depend on the choice of a^{\prime}.

Now let $n \geq 1$ be an integer. For all $i=1, \ldots, n$, let σ_{i} be the canonical generator of the i-th factor $\mathbb{Z} / p \mathbb{Z}$ of $(\mathbb{Z} / p \mathbb{Z})^{n}$. By (2.3) all Galois $(\mathbb{Z} / p \mathbb{Z})^{n}$-algebras over F are of the form $F_{a_{1}, \ldots, a_{n}}$, where $a_{1}, \ldots, a_{n} \in F^{\times}$and the Galois $(\mathbb{Z} / p \mathbb{Z})^{n}$-algebra structure is defined by $\left(\sigma_{i}-1\right) a_{i}^{1 / p}=\zeta$ for all i and $\left(\sigma_{i}-1\right) a_{j}^{1 / p}=1$ for all $j \neq i$.

We write (a, b) for the cyclic degree- p central simple algebra over F generated, as an F-algebra, by F_{a} and an element y such that

$$
y^{p}=b, \quad t y=y \sigma_{a}(t) \text { for all } t \in F_{a} .
$$

We also write (a, b) for the class of (a, b) in $\operatorname{Br}(F)$. The Kummer sequence yields a group isomorphism

$$
\iota: H^{2}(F, \mathbb{Z} / p \mathbb{Z}) \xrightarrow{\sim} \operatorname{Br}(F)[p] .
$$

For all $a, b \in F^{\times}$, we have $\iota\left(\chi_{a} \cup \chi_{b}\right)=(a, b)$ in $\operatorname{Br}(F)$; see [Ser79, Chapter XIV, Proposition 5].
Lemma 2.2. Let p be a prime, and let F be a field of characteristic different from p and containing a primitive p-th root of unity ζ. The following are equivalent:
(i) $(a, b)=0$ in $\operatorname{Br}(F)$;
(ii) there exists $\alpha \in F_{a}^{\times}$such that $b=N_{a}(\alpha)$;
(iii) there exists $\beta \in F_{b}^{\times}$such that $a=N_{b}(\beta)$.

Proof. See [Ser79, Chapter XIV, Proposition 4(iii)].
2.2. Formality and Massey products. Let (A, ∂) be a differential graded ring, i.e, $A=\oplus_{i \geq 0} A^{i}$ is a non-negatively graded abelian group with an associative multiplication which respects the grading, and $\partial: A \rightarrow A$ is a group homomorphism of degree 1 such that $\partial \circ \partial=0$ and $\partial(a b)=\partial(a) b+(-1)^{i} a \partial(b)$ for all $i \geq 0, a \in A^{i}$ and $b \in A$. We denote by $H^{\cdot}(A):=\operatorname{Ker}(\partial) / \operatorname{Im}(\partial)$ the cohomology of (A, ∂), and we write \cup for the multiplication (cup product) on $H^{\cdot}(A)$.

We say that A is formal if it is quasi-isomorphic, as a differential graded ring, to $H^{\cdot}(A)$ with the zero differential.

Let $n \geq 2$ be an integer and $a_{1}, \ldots, a_{n} \in H^{1}(A)$. A defining system for the n-th order Massey product $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is a collection M of elements of $a_{i j} \in A^{1}$, where $1 \leq i<j \leq n+1,(i, j) \neq(1, n+1)$, such that
(1) $\partial\left(a_{i, i+1}\right)=0$ and $a_{i, i+1}$ represents a_{i} in $H^{1}(A)$, and
(2) $\partial\left(a_{i j}\right)=-\sum_{l=i+1}^{j-1} a_{i l} a_{l j}$ for all $i<j-1$.

It follows from (2) that $-\sum_{l=2}^{n} a_{1 l} a_{l, n+1}$ is a 2 -cocycle: we write $\left\langle a_{1}, \ldots, a_{n}\right\rangle_{M}$ for its cohomology class in $H^{2}(A)$, called the value of $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ corresponding to M. By definition, the Massey product of a_{1}, \ldots, a_{n} is the subset $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ of $H^{2}(A)$ consisting of the values $\left\langle a_{1}, \ldots, a_{n}\right\rangle_{M}$ of all defining systems M. We say that the Massey product $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is defined if it is non-empty, and that it vanishes if $0 \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$.

Lemma 2.3. Let (A, ∂) be a differential graded ring, and let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ be elements of $H^{1}(A)$ satisfying $\alpha_{1} \cup \alpha_{2}=\alpha_{2} \cup \alpha_{3}=\alpha_{3} \cup \alpha_{4}=0$. If A is formal, then $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$ is defined.

Proof. This was proved in [MS22, Lemma B.1] under the assumption that A is a differential graded \mathbb{F}_{2}-algebra. The proof for an arbitrary differential graded ring remains the same.

In fact, one could prove the following: If the differential graded ring A is formal, then for all $n \geq 3$ and all $\alpha_{1}, \ldots, \alpha_{n} \in H^{1}(A)$ such that $\alpha_{i} \cup \alpha_{i+1}=0$ for all $1 \leq i \leq n-1$, then $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ vanishes.
2.3. Dwyer's Theorem. Let p be a prime, and let $U_{n+1} \subset \mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)$ be the subgroup of $(n+1) \times(n+1)$ upper unitriangular matrices. For all $1 \leq i<j \leq n+1$, we denote by $e_{i j}$ the matrix whose non-diagonal entries are all zero except for the entry (i, j), which is equal to 1 . We set $\sigma_{i}:=e_{i, i+1}$ for all $1 \leq i \leq n$. By [BD01,

Theorem 1], the group U_{n+1} admits a presentation with generators the σ_{i} and relations:

$$
\begin{gather*}
\sigma_{i}^{p}=1 \quad \text { for all } 1 \leq i \leq n, \tag{2.4}\\
{\left[\sigma_{i}, \sigma_{j}\right]=1 \quad \text { for all } 1 \leq i \leq j-2 \leq n-2,} \tag{2.5}\\
{\left[\sigma_{i},\left[\sigma_{i}, \sigma_{i+1}\right]\right]=\left[\sigma_{i+1},\left[\sigma_{i}, \sigma_{i+1}\right]\right] \quad \text { for all } 1 \leq i \leq n-2,} \tag{2.6}\\
{\left[\left[\sigma_{i}, \sigma_{i+1}\right],\left[\sigma_{i+1}, \sigma_{i+2}\right]\right]=1 \quad \text { for all } 1 \leq i \leq n-3 .} \tag{2.7}
\end{gather*}
$$

The following relation holds in U_{n+1} :

$$
\left[e_{i j}, e_{j k}\right]=e_{i k} \quad \text { for all } 1 \leq i<j<k \leq n+1
$$

By induction, we deduce that

$$
e_{1, n+1}=\left[\sigma_{1},\left[\sigma_{2}, \ldots,\left[\sigma_{n-2},\left[\sigma_{n-1}, \sigma_{n}\right]\right] \ldots\right]\right]
$$

The center Z_{n+1} of U_{n+1} is the subgroup generated by $e_{1, n+1}$. The factor group $\bar{U}_{n+1}:=U_{n+1} / Z_{n+1}$ may be identified with the group of all $(n+1) \times(n+1)$ upper unitriangular matrices with entry $(1, n+1)$ omitted. For all $1 \leq i<j \leq n+1$, let $\bar{e}_{i j}$ be the coset of $e_{i j}$ in \bar{U}_{n+1}, and set $\bar{\sigma}_{i}:=\bar{e}_{i, i+1}$ for all $1 \leq i \leq n$. Then \bar{U}_{n+1} is generated by all the $\bar{e}_{i j}$ modulo the relations

$$
\begin{gather*}
\bar{\sigma}_{i}^{p}=1 \quad \text { for all } 1 \leq i \leq n, \tag{2.8}\\
{\left[\bar{\sigma}_{i}, \bar{\sigma}_{j}\right]=1 \quad \text { for all } 1 \leq i \leq j-2 \leq n-2,} \tag{2.9}\\
{\left[\bar{\sigma}_{i},\left[\bar{\sigma}_{i}, \bar{\sigma}_{i+1}\right]=\left[\bar{\sigma}_{i+1},\left[\bar{\sigma}_{i}, \bar{\sigma}_{i+1}\right]\right] \quad \text { for all } 1 \leq i \leq n-2,\right.} \tag{2.10}\\
{\left[\left[\bar{\sigma}_{i}, \bar{\sigma}_{i+1}\right],\left[\bar{\sigma}_{i+1}, \bar{\sigma}_{i+2}\right]\right]=1 \quad \text { for all } 1 \leq i \leq n-3 .} \tag{2.11}\\
{\left[\bar{\sigma}_{1},\left[\bar{\sigma}_{2}, \ldots,\left[\bar{\sigma}_{n-2},\left[\bar{\sigma}_{n-1}, \bar{\sigma}_{n}\right]\right] \ldots\right]\right]=1 .} \tag{2.12}
\end{gather*}
$$

We write $u_{i j}: U_{n+1} \rightarrow \mathbb{Z} / p \mathbb{Z}$ for the (i, j)-th coordinate function on U_{n+1}. Note that $u_{i j}$ is not a group homomorphism unless $j=i+1$. We have commutative diagram

where the row is a central exact sequence and the homomorphism $U_{n+1} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{n}$ is given by $\left(u_{12}, u_{23}, \ldots, u_{n, n+1}\right)$. We also let

$$
Q_{n+1}:=\operatorname{Ker}\left[U_{n+1} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{n}\right], \quad \bar{Q}_{n+1}:=\operatorname{Ker}\left[\bar{U}_{n+1} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{n}\right]=Q_{n+1} / Z_{n+1}
$$

Note that $Z_{n+1} \subset Q_{n+1}$, with equality when $n=2$.
Let G be a profinite group. The complex $\left(C^{\cdot}(G, \mathbb{Z} / p \mathbb{Z}), \partial\right)$ of $\bmod p$ non-homogeneous continuous cochains of G with the standard cup product is a differential graded ring. Therefore $H^{\cdot}(G, \mathbb{Z} / p \mathbb{Z})=H^{\cdot}\left(C^{\cdot}(G, \mathbb{Z} / p \mathbb{Z}), \partial\right)$ is endowed with Massey products. The following theorem is due to Dwyer [Dwy75].

Theorem 2.4 (Dwyer). Let p be a prime number, let G be a profinite group, let $\chi_{1}, \ldots, \chi_{n} \in H^{1}(G, \mathbb{Z} / p \mathbb{Z})$, and write $\chi: G \rightarrow(\mathbb{Z} / p \mathbb{Z})^{n}$ for the continuous homomorphism with components $\left(\chi_{1}, \ldots, \chi_{n}\right)$. Consider (2.13).
(1) The Massey product $\left\langle\chi_{1}, \ldots, \chi_{n}\right\rangle$ is defined if and only if χ lifts to a continuous homomorphism $G \rightarrow \bar{U}_{n+1}$.
(2) The Massey product $\left\langle\chi_{1}, \ldots, \chi_{n}\right\rangle$ vanishes if and only if χ lifts to a continuous homomorphism $G \rightarrow U_{n+1}$.

Proof. See [Dwy75] for Dwyer's original proof in the setting of abstract groups, and [Efr14] or [HW23, Proposition 2.2] for the statement in the case of profinite groups.

Theorem 2.4 may be rephrased as follows.
Corollary 2.5. Let p be a prime, F be a field of characteristic different from p and containing a primitive p-th root of unity ζ, and let $a_{1}, \ldots, a_{n} \in F^{\times}$. The Massey product $\left\langle a_{1}, \ldots, a_{n}\right\rangle \subset H^{2}(F, \mathbb{Z} / p \mathbb{Z})$ is defined (resp. vanishes) if and only if there exists a Galois \bar{U}_{n+1}-algebra K / F (resp. a Galois U_{n+1}-algebra L / F) such that $K^{\bar{Q}_{n+1}} \simeq F_{a_{1}, \ldots, a_{n}}\left(\right.$ resp.$\left.L^{Q_{n+1}} \simeq F_{a_{1}, \ldots, a_{n}}\right)$ as $(\mathbb{Z} / p \mathbb{Z})^{n}$-algebras.

Proof. This follows from Theorem 2.4 and (2.1).
We will apply Lemma 2.1 to the cartesian square of groups

where φ_{n+1} (respectively, φ_{n+1}^{\prime}) is the restriction homomorphism from U_{n+1} or from U_{n+1} to the top-left (respectively, bottom-right) $n \times n$ subsquare U_{n} in U_{n+1}.

The fact that the square (2.14) is cartesian is proved in [MS22, Proposition 2.7] when $p=2$. The proof extends to odd p without change.

3. Massey products and Galois algebras

In this section, we let p be a prime number and we let F be a field. With the exception of Proposition 3.6, we assume that $\operatorname{char}(F) \neq p$ and that F contains a primitive p-th root of unity ζ.
3.1. Galois U_{3}-algebras. Let $a, b \in F^{\times}$, and suppose that $(a, b)=0$ in $\operatorname{Br}(F)$. By Lemma 2.2, we may fix $\alpha \in F_{a}^{\times}$and $\beta \in F_{b}^{\times}$such that $N_{a}(\alpha)=b$ and $N_{b}(\beta)=a$.

We write $(\mathbb{Z} / p \mathbb{Z})^{2}=\left\langle\sigma_{a}, \sigma_{b}\right\rangle$, and we view $F_{a, b}$ as a Galois $(\mathbb{Z} / p \mathbb{Z})^{2}$-algebra as in Section 2.1. The projection $U_{3} \rightarrow \bar{U}_{3}=(\mathbb{Z} / p \mathbb{Z})^{2}$ sends $e_{12} \mapsto \sigma_{a}$ and $e_{23} \mapsto \sigma_{b}$. We define the following elements of U_{3} :

$$
\sigma_{a}:=e_{12}, \quad \sigma_{b}:=e_{23}, \quad \tau:=e_{13}=\left[\sigma_{a}, \sigma_{b}\right] .
$$

Suppose given $x \in F_{a}^{\times}$such that

$$
\begin{equation*}
\left(\sigma_{a}-1\right) x=\frac{b}{\alpha^{p}} \tag{3.1}
\end{equation*}
$$

The étale F-algebra $K:=\left(F_{a, b}\right)_{x}$ has the structure of a Galois U_{3}-algebra such that the Galois $(\mathbb{Z} / p \mathbb{Z})^{2}$-algebra $K^{Q_{3}}$ is equal to $F_{a, b}$, and

$$
\begin{equation*}
\left(\sigma_{a}-1\right) x^{1 / p}=\frac{b^{1 / p}}{\alpha}, \quad\left(\sigma_{b}-1\right) x^{1 / p}=1, \quad(\tau-1) x^{1 / p}=\zeta^{-1} \tag{3.2}
\end{equation*}
$$

Similarly, suppose given $y \in F_{b}^{\times}$such that

$$
\begin{equation*}
\left(\sigma_{b}-1\right) y=\frac{a}{\beta^{p}} \tag{3.3}
\end{equation*}
$$

The étale F-algebra $K:=\left(F_{a, b}\right)_{y}$ has the structure of a Galois U_{3}-algebra, such that the Galois $(\mathbb{Z} / p \mathbb{Z})^{2}$-algebra $K^{Q_{3}}$ is equal to $F_{a, b}$, and

$$
\begin{equation*}
\left(\sigma_{a}-1\right) y^{1 / p}=1, \quad\left(\sigma_{b}-1\right) y^{1 / p}=\frac{a^{1 / p}}{\beta}, \quad(\tau-1) y^{1 / p}=\zeta \tag{3.4}
\end{equation*}
$$

In (3.2) and (3.4), the relation involving τ follows from the first two.
If $x \in F_{a}^{\times}$satisfies (3.1), then so does $a x$. We may thus apply (3.2) to $\left(F_{a, b}\right)_{a x}$. Therefore $\left(F_{a, b}\right)_{a x}$ has the structure of a Galois U_{3}-algebra, where U_{3} acts via $\bar{U}_{3}=\operatorname{Gal}\left(F_{a, b} / F\right)$ on $F_{a, b}$, and

$$
\left(\sigma_{a}-1\right)(a x)^{1 / p}=\frac{b^{1 / p}}{\alpha}, \quad\left(\sigma_{b}-1\right)(a x)^{1 / p}=1, \quad(\tau-1)(a x)^{1 / p}=\zeta^{-1}
$$

Similarly, if $y \in F_{b}^{\times}$satisfies (3.3), we may apply (3.4) to $\left(F_{a, b}\right)_{b y}$. Therefore $\left(F_{a, b}\right)_{b y}$ admits a Galois U_{3}-algebra structure, where U_{3} acts via $\bar{U}_{3}=\operatorname{Gal}\left(F_{a, b} / F\right)$ on $F_{a, b}$, and

$$
\left(\sigma_{a}-1\right)(b y)^{1 / p}=1, \quad\left(\sigma_{b}-1\right)(b y)^{1 / p}=\frac{a^{1 / p}}{\beta}, \quad(\tau-1)(b y)^{1 / p}=\zeta
$$

Lemma 3.1. (1) Let $x \in F_{a}^{\times}$satisfy (3.1), and consider the Galois U_{3}-algebras $\left(F_{a, b}\right)_{x}$ and $\left(F_{a, b}\right)_{a x}$ as in (3.2). Then $\left(F_{a, b}\right)_{x} \simeq\left(F_{a, b}\right)_{a x}$ as Galois U_{3}-algebras.
(2) Let $y \in F_{b}^{\times}$satisfy (3.1), and consider the Galois U_{3}-algebras $\left(F_{a, b}\right)_{y}$ and $\left(F_{a, b}\right)_{b y}$ as in (3.4). Then $\left(F_{a, b}\right)_{y} \simeq\left(F_{a, b}\right)_{b y}$ as Galois U_{3}-algebras.
Proof. (1) The automorphism $\sigma_{b}: F_{a, b} \rightarrow F_{a, b}$ extends to an isomorphism of étale algebras $f:\left(F_{a, b}\right)_{x} \rightarrow\left(F_{a, b}\right)_{a x}$ by sending $x^{1 / p}$ to $(a x)^{1 / p} a^{-1 / p}$. The map f is well defined because $f\left(x^{1 / p}\right)^{p}=x=\left[(a x)^{1 / p} a^{-1 / p}\right]^{p}$. We check that it is U_{3}-equivariant. This is true on $F_{a, b}$ because $\sigma_{a} \sigma_{b}=\sigma_{b} \sigma_{a}$ on $F_{a, b}$. Moreover,

$$
\begin{aligned}
& \sigma_{a}\left(f\left(x^{1 / p}\right)\right)=\sigma_{a}\left((a x)^{1 / p}\right) \cdot \sigma_{a}\left(a^{-1 / p}\right)=\left(b^{1 / p} / \alpha\right)(a x)^{1 / p} \cdot \zeta a^{-1 / p} \\
& \quad=\left(\zeta b^{1 / p} / \alpha\right) \cdot(a x)^{1 / p} a^{-1 / p}=f\left(\left(b^{1 / p} / \alpha\right)\left(x^{1 / p}\right)\right)=f\left(\sigma_{a}\left(x^{1 / p}\right)\right)
\end{aligned}
$$

and

$$
\sigma_{b}\left(f\left(x^{1 / p}\right)\right)=\sigma_{b}\left((a x)^{1 / p}\right) \cdot \sigma_{b}\left(a^{-1 / p}\right)=(a x)^{1 / p} a^{-1 / p}=f\left(x^{1 / p}\right)=f\left(\sigma_{b}\left(x^{1 / p}\right)\right)
$$

Thus f is U_{3}-equivariant, as desired.
(2) The proof is similar to that of (1).

Proposition 3.2. Let $a, b \in F^{\times}$be such that $(a, b)=0$ in $\operatorname{Br}(F)$, and fix $\alpha \in F_{a}^{\times}$ and $\beta \in F_{b}^{\times}$such that $N_{a}(\alpha)=b$ and $N_{b}(\beta)=a$.
(1) Every Galois U_{3}-algebra K over F such that $K^{Q_{3}} \simeq F_{a, b}$ as $(\mathbb{Z} / p \mathbb{Z})^{2}$-algebras is of the form $\left(F_{a, b}\right)_{x}$ for some $x \in F_{a}^{\times}$as in (3.1), with U_{3}-action given by (3.2).
(2) Every Galois U_{3}-algebra K over F such that $K^{Q_{3}} \simeq F_{a, b}$ as $(\mathbb{Z} / p \mathbb{Z})^{2}$-algebras is of the form $\left(F_{a, b}\right)_{y}$ for some $y \in F_{b}^{\times}$as in (3.3), with U_{3}-action given by (3.4).
(3) Let $\left(F_{a, b}\right)_{x}$ and $\left(F_{a, b}\right)_{y}$ be Galois U_{3}-algebras as in (3.2) and (3.4), respectively. The Galois U_{3}-algebras $\left(F_{a, b}\right)_{x}$ and $\left(F_{a, b}\right)_{y}$ are isomorphic if and only if there exists $w \in F_{a, b}^{\times}$such that

$$
w^{p}=x y, \quad\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) w=\zeta .
$$

Proof. (1) Since $Q_{3}=\langle\tau\rangle \simeq \mathbb{Z} / p \mathbb{Z}$ and $K^{Q_{3}} \simeq F_{a, b}$ as $(\mathbb{Z} / p \mathbb{Z})^{2}$-algebras, we have an isomorphism of étale $F_{a, b}$-algebras $K \simeq\left(F_{a, b}\right)_{z}$, for some $z \in F_{a, b}^{\times}$such that $(\tau-1) z^{1 / p}=\zeta^{-1}$. We may suppose that $K=\left(F_{a, b}\right)_{z}$. As τ commutes with σ_{b} we have

$$
(\tau-1)\left(\sigma_{b}-1\right) z^{1 / p}=\left(\sigma_{b}-1\right)(\tau-1) z^{1 / p}=\left(\sigma_{b}-1\right) \zeta^{-1}=1
$$

hence $\left(\sigma_{b}-1\right) z^{1 / p} \in F_{a, b}^{\times}$. By Hilbert's Theorem 90 for the extension $F_{a, b} / F_{a}$, there is $t \in F_{a, b}^{\times}$such that $\left(\sigma_{b}-1\right) z^{1 / p}=\left(\sigma_{b}-1\right) t$. Replacing z by $z t^{-p}$, we may thus assume that $\left(\sigma_{b}-1\right) z^{1 / p}=1$. In particular, $z \in F_{a}^{\times}$. Since $(\tau-1) z^{1 / p}=\zeta^{-1}$, we have $\sigma_{b} \sigma_{a}\left(z^{1 / p}\right)=\zeta \sigma_{a} \sigma_{b}\left(z^{1 / p}\right)$. Thus
$\left(\sigma_{b}-1\right)\left(\sigma_{a}-1\right) z^{1 / p}=\left(\sigma_{b} \sigma_{a}-\sigma_{a} \sigma_{b}+\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right)\right) z^{1 / p}=\zeta\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) z^{1 / p}=\zeta$, and hence $\left(\sigma_{a}-1\right) z^{1 / p}=b^{1 / p} / \alpha^{\prime}$ for some $\alpha^{\prime} \in F_{a}^{\times}$. Moreover $N_{a}\left(\alpha^{\prime} / \alpha\right)=b / b=1$, and so by Hilbert's Theorem 90 there exists $\theta \in F_{a}^{\times}$such that $\alpha^{\prime} / \alpha=\left(\sigma_{a}-1\right) \theta$. We define $x:=z \theta^{p} \in F_{a}^{\times}$, and set $x^{1 / p}:=z^{1 / p} \theta \in\left(F_{a, b}\right)_{z}^{\times}$. Then $K=\left(F_{a, b}\right)_{x}$, where

$$
\left(\sigma_{a}-1\right) x^{1 / p}=\left(\sigma_{a}-1\right) w \cdot\left(\sigma_{a}-1\right) \theta=\frac{b^{1 / p}}{\alpha^{\prime}} \cdot \frac{\alpha^{\prime}}{\alpha}=\frac{b^{1 / p}}{\alpha}
$$

and $\left(\sigma_{b}-1\right) x^{1 / p}=1$, as desired.
(2) The proof is analogous to that of (1).
(3) Suppose given an isomorphism of Galois U_{3}-algebras between $\left(F_{a, b}\right)_{x}$ and $\left(F_{a, b}\right)_{y}$. Let $t \in\left(F_{a, b}\right)_{x}$ be the image of $y^{1 / p}$ under the isomorphism and set

$$
w^{\prime}:=x^{1 / p} t \in\left(F_{a, b}\right)_{x}
$$

Set $y^{\prime}:=t^{p}$. We have $(\tau-1) w^{\prime}=\zeta^{-1} \cdot \zeta=1$, and hence $w^{\prime} \in F_{a, b}^{\times}$. We have $\left(w^{\prime}\right)^{p}=x y^{\prime}$. Since F_{b} coincides with the $\left\langle\sigma_{a}, \tau\right\rangle$-invariant subalgebra of $\left(F_{a, b}\right)_{x}$ and $\left(F_{a, b}\right)_{y}$, the isomorphism $\left(F_{a, b}\right)_{y} \rightarrow\left(F_{a, b}\right)_{x}$ restricts to an isomorphism of Galois $\mathbb{Z} / p \mathbb{Z}$-algebras $F_{b} \rightarrow F_{b}$. Since the automorphism group of F_{b} as a Galois $(\mathbb{Z} / p \mathbb{Z})$ algebra is $\mathbb{Z} / p \mathbb{Z}$, generated by σ_{b}, this isomorphism $F_{b} \rightarrow F_{b}$ is equal to σ_{b}^{i} for some $i \geq 0$. Thus $y^{\prime}=\sigma_{b}^{i}(y)$. Define

$$
w:=\left(w^{\prime} a^{i / p}\right) / \prod_{j=0}^{i} \sigma_{b}^{j}(\beta) \in F_{a, b}^{\times} .
$$

We have

$$
\left(1-\sigma_{b}^{i}\right) y=\left(\sum_{j=0}^{i} \sigma_{b}^{j}\left(1-\sigma_{b}\right)\right) y=a^{i} /\left(\prod_{j=0}^{i} \sigma_{b}^{j}\left(\beta^{p}\right)\right)=w^{p} /\left(w^{\prime}\right)^{p}
$$

Therefore

$$
\begin{equation*}
w^{p}=\left(w^{\prime}\right)^{p}\left(1-\sigma_{b}^{i}\right) y=x \sigma_{b}^{i}(y)\left(1-\sigma_{b}^{i}\right) y=x y \tag{3.5}
\end{equation*}
$$

We have $\left(\sigma_{b}-1\right) x^{1 / p}=1$ and

$$
\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) t=\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) y^{1 / p}=\left(\sigma_{a}-1\right)\left(a^{1 / p} / \beta\right)=\zeta
$$

therefore

$$
\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) w^{\prime}=\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) t=\zeta
$$

Since $\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) a^{1 / p}=1$ and $\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) \beta=1$, we conclude that

$$
\begin{equation*}
\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) w=\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) w^{\prime}=1 \tag{3.6}
\end{equation*}
$$

Putting (3.5) and (3.6) together, we see that w satisfies the conditions of (3).
Conversely, suppose given $w^{\prime} \in F_{a, b}^{\times}$such that

$$
x y=\left(w^{\prime}\right)^{p}, \quad\left(\sigma_{a}-1\right)\left(\sigma_{b}-1\right) w^{\prime}=\zeta .
$$

Claim 3.3. There exists $w \in F_{a, b}^{\times}$such that

$$
x y=w^{p}, \quad\left(\sigma_{a}-1\right) w=\zeta^{-i} \frac{b^{1 / p}}{\alpha}, \quad\left(\sigma_{b}-1\right) w=\zeta^{-j} \frac{a^{1 / p}}{\beta}
$$

for some integers i and j.
Proof of Claim 3.3. We first find $\eta_{a} \in F_{a}^{\times}$such that

$$
\begin{equation*}
\eta_{a}^{p}=1, \quad\left(\sigma_{a}-1\right)\left(w^{\prime} / \eta_{a}\right)=\zeta^{-i} \frac{b^{1 / p}}{\alpha} \tag{3.7}
\end{equation*}
$$

We have

$$
\left(\sigma_{a}-1\right)\left(w^{\prime}\right)^{p}=\left(\sigma_{a}-1\right) x=\frac{b}{\alpha^{p}}
$$

Let

$$
\zeta_{a}:=\left(\sigma_{a}-1\right) w^{\prime} \cdot \alpha \cdot b^{-1 / p} \in F_{a, b}^{\times} .
$$

We have $\zeta_{a}^{p}=1$. Moreover, $\left(\sigma_{b}-1\right) \zeta_{a}=\zeta \cdot 1 \cdot \zeta^{-1}=1$, that is, ζ_{a} belongs to F_{a}^{\times}. If F_{a} is a field, this implies that $\zeta_{a}=\zeta^{i}$ for some integer i, and (3.7) holds for $\eta_{a}=1$.

Suppose that F_{a} is not a field. Then $F_{a} \simeq F^{p}$, where σ_{a} acts by cyclically permuting the coordinates:

$$
\sigma_{a}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\left(x_{2}, \ldots, x_{p}, x_{1}\right)
$$

We have $\zeta_{a}=\left(\zeta_{1}, \ldots, \zeta_{p}\right)$ in $F_{a}=F^{p}$, where $\zeta_{i} \in F^{\times}$is a p-th root of unity for all i. We have $N_{a}\left(\zeta_{a}\right)=N_{a}(\alpha) / b=1$, and so $\zeta_{1} \cdots \zeta_{p}=1$. Inductively define $\eta_{1}:=1$ and $\eta_{i+1}:=\zeta_{i} \eta_{i}$ for all $i=1, \ldots, p-1$. Then

$$
\eta_{1} / \eta_{p}=\left(\eta_{1} / \eta_{2}\right) \cdot\left(\eta_{2} / \eta_{3}\right) \cdots\left(\eta_{p-1} / \eta_{p}\right)=\zeta_{1}^{-1} \zeta_{2}^{-1} \cdots \zeta_{p-1}^{-1}=\zeta_{p}
$$

Therefore the element $\eta_{a}:=\left(\eta_{1}, \ldots, \eta_{p}\right) \in F^{p}=F_{a}$ satisfies $\eta_{a}^{p}=1$ and

$$
\left(\sigma_{a}-1\right) \eta_{a}=\left(\eta_{2} / \eta_{1}, \ldots, \eta_{p} / \eta_{p-1}, \eta_{1} / \eta_{p}\right)=\left(\zeta_{1}, \ldots, \zeta_{p-1}, \zeta_{p}\right)=\zeta_{a}
$$

Thus

$$
\eta_{a}^{p}=1, \quad\left(\sigma_{a}-1\right)\left(w^{\prime} / \eta_{a}\right)=\left(\sigma_{a}-1\right) w^{\prime} \cdot \zeta_{a}^{-1}=\frac{b^{1 / p}}{\alpha}
$$

Independently of whether F_{a} is a field or not, we have found η_{a} satisfying (3.7).
Similarly, we construct $\eta_{b} \in F_{b}^{\times}$such that

$$
\begin{equation*}
\eta_{b}^{p}=1, \quad\left(\sigma_{b}-1\right)\left(w^{\prime} / \eta_{b}\right)=\zeta^{-j} \frac{a^{1 / p}}{\beta} \tag{3.8}
\end{equation*}
$$

for some integer j. Set $w:=w^{\prime} /\left(\eta_{a} \eta_{b}\right) \in F_{a, b}^{\times}$. Putting together (3.7) and (3.8), we deduce that w satisfies the conclusion of Claim 3.3.

Let $w \in F_{a, b}^{\times}$be as in Claim 3.3. By Lemma 3.1(1), applied i times, the Galois U_{3}-algebra $\left(F_{a, b}\right)_{x}$ is isomorphic to $\left(F_{a, b}\right)_{a^{i} x}$, where

$$
\left(\sigma_{a}-1\right)\left(a^{i} x\right)^{1 / p}=\frac{b^{1 / p}}{\alpha}, \quad\left(\sigma_{b}-1\right)\left(a^{i} x\right)^{1 / p}=1
$$

By Lemma 3.1(2), applied j times, the Galois U_{3}-algebra $\left(F_{a, b}\right)_{y}$ is isomorphic to $\left(F_{a, b}\right)_{b^{j} y}$, where

$$
\left(\sigma_{a}-1\right)\left(b^{j} y\right)^{1 / p}=1, \quad\left(\sigma_{b}-1\right)\left(b^{j} y\right)^{1 / p}=\frac{a^{1 / p}}{\beta}
$$

It thus suffices to construct an isomorphism of $U_{3 \text {-algebras }}\left(F_{a, b}\right)_{a^{i} x} \simeq\left(F_{a, b}\right)_{b^{j} y}$. Let

$$
\tilde{w}:=w a^{i / p} b^{j / p} \in F_{a, b}^{\times},
$$

so that

$$
\left(\sigma_{a}-1\right) \tilde{w}=\frac{a^{1 / p}}{\beta}, \quad\left(\sigma_{b}-1\right) \tilde{w}=\frac{b^{1 / p}}{\alpha}
$$

Let $f:\left(F_{a, b}\right)_{a^{i} x} \rightarrow\left(F_{a, b}\right)_{b^{j} y}$ be the isomorphism of étale algebras which is the identity on $F_{a, b}$ and sends $\left(a^{i} x\right)^{1 / p}$ to $\tilde{w} /\left(b^{j} y\right)^{1 / p}$. Note that f is well defined because

$$
(\tilde{w})^{p}=w a^{i} b^{j}=\left(a^{i} x\right)\left(b^{j} y\right)
$$

Moreover,

$$
\begin{gathered}
\left(\sigma_{a}-1\right)\left(\tilde{w} /\left(b^{j} y\right)^{1 / p}\right)=\frac{a^{1 / p}}{\beta}=\left(\sigma_{a}-1\right)\left(a^{i} x\right)^{1 / p} \\
\left(\sigma_{b}-1\right)\left(\tilde{w} /\left(b^{j} y\right)^{1 / p}\right)=\frac{b^{1 / p}}{\alpha} \cdot \frac{\alpha}{b^{1 / p}}=1=\left(\sigma_{b}-1\right)\left(a^{i} x\right)^{1 / p}
\end{gathered}
$$

and hence f is U_{3}-equivariant.
3.2. Galois \bar{U}_{4}-algebras. Let $a, b, c \in F^{\times}$be such that $(a, b)=(b, c)=0$ in $\operatorname{Br}(F)$. By Lemma 2.2, we may fix $\alpha \in F_{a}^{\times}$and $\gamma \in F_{c}^{\times}$be such that $N_{a}(\alpha)=N_{c}(\gamma)=b$. We have $\operatorname{Gal}\left(F_{a, b, c} / F\right)=\left\langle\sigma_{a}, \sigma_{b}, \sigma_{c}\right\rangle$. The projection map $\bar{U}_{4} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{3}$ is given by $\bar{e}_{12} \mapsto \sigma_{a}, \bar{e}_{23} \mapsto \sigma_{b}, \bar{e}_{34} \mapsto \sigma_{c}$. Its kernel $\bar{Q}_{4} \subset \bar{U}_{4}$ is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{2}$, generated by \bar{e}_{13} and \bar{e}_{24}. We define the following elements of \bar{U}_{4} :

$$
\sigma_{a}:=\bar{e}_{12}, \quad \sigma_{b}:=\bar{e}_{23}, \quad \sigma_{c}:=\bar{e}_{34}, \quad \tau_{a b}:=\bar{e}_{13}, \quad \tau_{b c}:=\bar{e}_{24}
$$

Let $x \in F_{a}^{\times}$and $z \in F_{c}^{\times}$be such that

$$
\begin{equation*}
\left(\sigma_{a}-1\right) x=\frac{b}{\alpha^{p}}, \quad\left(\sigma_{c}-1\right) z=\frac{b}{\gamma^{p}} \tag{3.9}
\end{equation*}
$$

and consider the Galois \bar{U}_{4}-algebra $K:=\left(F_{a, b, c}\right)_{x, z}$, where \bar{U}_{4} acts on $F_{a, b, c}$ via the surjection onto $\operatorname{Gal}\left(F_{a, b, c} / F\right)$, and

$$
\begin{gather*}
\left(\sigma_{a}-1\right) x^{1 / p}=\frac{b^{1 / p}}{\alpha}, \quad\left(\sigma_{b}-1\right) x^{1 / p}=1, \quad\left(\sigma_{c}-1\right) x^{1 / p}=1 \tag{3.10}\\
\left(\tau_{a b}-1\right) x^{1 / p}=\zeta^{-1}, \quad\left(\tau_{b c}-1\right) x^{1 / p}=1, \tag{3.11}\\
\left(\sigma_{a}-1\right)\left(x^{\prime}\right)^{1 / p}=1, \quad\left(\sigma_{b}-1\right)\left(x^{\prime}\right)^{1 / p}=1, \quad\left(\sigma_{c}-1\right)\left(x^{\prime}\right)^{1 / p}=\frac{b^{1 / p}}{\gamma} \tag{3.12}\\
\left(\tau_{a b}-1\right)\left(x^{\prime}\right)^{1 / p}=1, \quad\left(\tau_{b c}-1\right)\left(x^{\prime}\right)^{1 / p}=\zeta . \tag{3.13}
\end{gather*}
$$

Note that (3.11) follows from (3.10) and (3.13) follows from (3.12). We leave to the reader to check that the relations (2.8)-(2.12) are satisfied.

Proposition 3.4. Let $a, b, c \in F^{\times}$be such that $(a, b)=(b, c)=0$ in $\operatorname{Br}(F)$. Fix $\alpha \in F_{a}^{\times}$and $\gamma \in F_{c}^{\times}$such that $N_{a}(\alpha)=N_{c}(\gamma)=b$. Let K be a Galois \bar{U}_{4}-algebra such that $K^{\bar{Q}_{4}} \simeq F_{a, b, c}$ as $(\mathbb{Z} / p \mathbb{Z})^{3}$-algebras. Then there exist $x \in F_{a}^{\times}$and $x^{\prime} \in F_{c}^{\times}$ such that $K \simeq\left(F_{a, b, c}\right)_{x, x^{\prime}}$ as Galois \bar{U}_{4}-algebras, where \bar{U}_{4} acts on $\left(F_{a, b, c}\right)_{x, x^{\prime}}$ by (3.10)-(3.13).

Proof. Let H (resp. H^{\prime}) be the subgroup of \bar{U}_{4} generated by σ_{c} and $\tau_{b c}$ (resp. σ_{b} and $\tau_{a b}$), and let S be the subgroup of \bar{U}_{4} generated by H and H^{\prime}. Note that K^{H} is a Galois U_{3}-algebra over F such that $\left(K^{H}\right)^{Q_{3}} \simeq F_{a, b}$ as $(\mathbb{Z} / p \mathbb{Z})^{2}$-algebras and $K^{S} \simeq F_{b}$ as $(\mathbb{Z} / p \mathbb{Z})$-algebras. Thus by Proposition 3.2(1) there exists $x \in F_{a}^{\times}$such that $K^{H} \simeq\left(F_{a, b}\right)_{x}$ as Galois U_{3}-algebras. Similarly, by Proposition 3.2(2) there exists $x^{\prime} \in F_{c}^{\times}$such that $K^{H^{\prime}} \simeq\left(F_{b, c}\right)_{x^{\prime}}$ as Galois U_{3}-algebras. Therefore x satisfies (3.10) and x^{\prime} satisfies (3.12). We apply Lemma 2.1(2) to (2.14). We obtain the isomorphisms of \bar{U}_{4}-algebras

$$
K \simeq K^{H} \otimes_{K^{s}} K^{H^{\prime}} \simeq\left(F_{a, b, c}\right)_{x, x^{\prime}}
$$

where $\left(F_{a, b, c}\right)_{x, x^{\prime}}$ is the \bar{U}_{4}-algebra given by (3.10) and (3.12).
3.3. Galois U_{4}-algebras. Let $a, b, c \in F^{\times}$, and suppose that $(a, b)=(b, c)=0$ in $\operatorname{Br}(F)$. We write $(\mathbb{Z} / p \mathbb{Z})^{3}=\left\langle\sigma_{a}, \sigma_{b}, \sigma_{c}\right\rangle$ and view $F_{a, b, c}$ as a Galois $(\mathbb{Z} / p \mathbb{Z})^{3}$-algebra over F as in Section 2.1. The quotient $\operatorname{map} U_{4} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{3}$ is given by $e_{12} \mapsto \sigma_{a}$, $e_{23} \mapsto \sigma_{b}$ and $e_{34} \mapsto \sigma_{c}$. The kernel Q_{4} of this map is generated by e_{13}, e_{24} and e_{14} and is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{3}$. We define the following elements of U_{4} :

$$
\begin{aligned}
\sigma_{a}:=e_{12}, \quad \sigma_{b}:=e_{23}, \quad \sigma_{c}:=e_{34} \\
\tau_{a b}:=e_{13}=\left[\sigma_{a}, \sigma_{b}\right], \quad \tau_{b c}:=e_{24}=\left[\sigma_{b}, \sigma_{c}\right], \quad \rho:=e_{14}=\left[\sigma_{a}, \tau_{b c}\right]=\left[\tau_{a b}, \sigma_{c}\right] .
\end{aligned}
$$

Proposition 3.5. Let $a, b, c \in F^{\times}$be such that $(a, b)=(b, c)=0$ in $\operatorname{Br}(F)$. Let $\alpha \in F_{a}^{\times}$and $\gamma \in F_{c}^{\times}$be such that $N_{a}(\alpha)=b$ and $N_{c}(\gamma)=b$. Let K be a Galois \bar{U}_{4}-algebra such that $K^{\bar{Q}_{4}} \simeq F_{a, b, c}$ as $(\mathbb{Z} / p \mathbb{Z})^{3}$-algebras.

There exists a Galois U_{4}-algebra L over F such that $L^{Z_{4}} \simeq K$ as \bar{U}_{4}-algebras if and only if there exist $u, u^{\prime} \in F_{a, c}^{\times}$such that

$$
\alpha \cdot\left(\sigma_{a}-1\right) u=\gamma \cdot\left(\sigma_{c}-1\right) u^{\prime}
$$

and such that K is isomorphic to the Galois \bar{U}_{4}-algebra $\left(F_{a, b, c}\right)_{x, x^{\prime}}$ determined by (3.10)-(3.13), where $x=N_{c}(u) \in F_{a}^{\times}$and $x^{\prime}=N_{a}\left(u^{\prime}\right) \in F_{c}^{\times}$.

Proof. Suppose that $K=\left(F_{a, b, c}\right)_{x, x^{\prime}}$, with \bar{U}_{4}-action determined by (3.10)-(3.13). Let L be a Galois U_{4}-algebra over F be such that $L^{Z_{4}}=K$, and let $y \in K^{\times}$be such that $L=K_{y}$.

We have $\operatorname{Gal}\left(L / F_{a, b, c}\right)=Q_{4}=\left\langle\tau_{a b}, \tau_{b c}, \rho\right\rangle \simeq(\mathbb{Z} / p \mathbb{Z})^{3}$, and hence one may choose y in $F_{a, b, c}^{\times}$and such that

$$
\left(\tau_{a b}-1\right) y^{1 / p}=1, \quad\left(\tau_{b c}-1\right) y^{1 / p}=1, \quad(\rho-1) y^{1 / p}=\zeta^{-1}
$$

The element σ_{b} commutes with $\tau_{a b}, \tau_{b c}$ and ρ. Hence

$$
\tau_{a b}\left(\sigma_{b}-1\right)\left(y^{1 / p}\right)=\left(\sigma_{b}-1\right) \tau_{a b}\left(y^{1 / p}\right)=\left(\sigma_{b}-1\right)\left(y^{1 / p}\right)
$$

Similarly

$$
\tau_{b c}\left(\sigma_{b}-1\right)\left(y^{1 / p}\right)=\left(\sigma_{b}-1\right)\left(y^{1 / p}\right)
$$

and

$$
\rho\left(\sigma_{b}-1\right)\left(y^{1 / p}\right)=\left(\sigma_{b}-1\right)\left(\zeta \cdot y^{1 / p}\right)=\left(\sigma_{b}-1\right)\left(y^{1 / p}\right)
$$

It follows that $\left(\sigma_{b}-1\right)\left(y^{1 / p}\right) \in F_{a, b, c}^{\times}$. By Hilbert's Theorem 90, applied to $F_{a, b, c} / F_{a, c}$, there is $q \in F_{a, b, c}^{\times}$such that $\left(\sigma_{b}-1\right)\left(y^{1 / p}\right)=\left(\sigma_{b}-1\right) q$. Replacing y by y / q^{p}, we may assume that $\sigma_{b}\left(y^{1 / p}\right)=y^{1 / p}$. In particular, $y \in F_{a, c}^{\times}$. We have:

$$
\begin{aligned}
\rho\left(\sigma_{a}-1\right)\left(y^{1 / p}\right) & =\left(\sigma_{a}-1\right) \rho\left(y^{1 / p}\right)=\left(\sigma_{a}-1\right)\left(\zeta^{-1} \cdot y^{1 / p}\right)=\left(\sigma_{a}-1\right)\left(y^{1 / p}\right) \\
\sigma_{b}\left(\sigma_{a}-1\right)\left(y^{1 / p}\right) & =\left(\sigma_{a} \sigma_{b} \tau_{a b}^{-1}-\sigma_{b}\right)\left(y^{1 / p}\right)=\left(\sigma_{a}-1\right)\left(y^{1 / p}\right) \\
\tau_{a b}\left(\sigma_{a}-1\right)\left(y^{1 / p}\right) & =\left(\sigma_{a}-1\right) \tau_{a b}\left(y^{1 / p}\right)=\left(\sigma_{a}-1\right)\left(y^{1 / p}\right) \\
\tau_{b c}\left(\sigma_{a}-1\right)\left(y^{1 / p}\right) & =\left(\rho^{-1} \sigma_{a}-1\right) \tau_{b c}\left(y^{1 / p}\right)=\left(\sigma_{a} \rho^{-1}-1\right)\left(y^{1 / p}\right)=\zeta \cdot\left(\sigma_{a}-1\right)\left(y^{1 / p}\right)
\end{aligned}
$$

By (3.12)-(3.13), analogous identities are satisfied by $\left(x^{\prime}\right)^{1 / p}$:

$$
(\rho-1)\left(x^{\prime}\right)^{1 / p}=\left(\sigma_{b}-1\right)\left(x^{\prime}\right)^{1 / p}=\left(\tau_{a b}-1\right)\left(x^{\prime}\right)^{1 / p}=1, \quad\left(\tau_{b c}-1\right)\left(x^{\prime}\right)^{1 / p}=\zeta
$$

Therefore

$$
\left(\sigma_{a}-1\right)\left(y^{1 / p}\right)=\frac{\left(x^{\prime}\right)^{1 / p}}{u^{\prime}}
$$

for some $u^{\prime} \in F_{a, c}^{\times}$. In particular, $x^{\prime}=N_{a}\left(u^{\prime}\right)$. A similar computation shows that

$$
\left(\sigma_{c}-1\right)\left(y^{1 / p}\right)=\frac{x^{1 / p}}{u}
$$

for some $u \in F_{a, c}^{\times}$. In particular, $x=N_{c}(u)$. In addition,

$$
\begin{aligned}
\frac{b^{1 / p}}{\alpha} & =\left(\sigma_{a}-1\right)\left(x^{1 / p}\right)=\left(\sigma_{a}-1\right)\left[u \cdot\left(\sigma_{c}-1\right)\left(y^{1 / p}\right)\right] \\
\frac{b^{1 / p}}{\gamma} & =\left(\sigma_{c}-1\right)\left(\left(x^{\prime}\right)^{1 / p}\right)=\left(\sigma_{c}-1\right)\left[u^{\prime} \cdot\left(\sigma_{a}-1\right)\left(y^{1 / p}\right)\right]
\end{aligned}
$$

Therefore

$$
\alpha \cdot\left(\sigma_{a}-1\right) u=\gamma \cdot\left(\sigma_{c}-1\right) u^{\prime}
$$

Conversely, suppose given $u, u^{\prime} \in F_{a, c}^{\times}$such that

$$
\alpha \cdot\left(\sigma_{a}-1\right) u=\gamma \cdot\left(\sigma_{c}-1\right) u^{\prime}, \quad x=N_{c}(u), \quad x^{\prime}=N_{a}\left(u^{\prime}\right)
$$

Then

$$
\begin{gathered}
\left(\sigma_{a}-1\right) x=\left(\sigma_{a}-1\right) N_{c}(u)=N_{c}\left(\sigma_{a}-1\right) u=N_{c}\left(\frac{\gamma}{\alpha}\right)=\frac{b}{\alpha^{p}} \\
\left(\sigma_{c}-1\right) x^{\prime}=\left(\sigma_{c}-1\right) N_{a}\left(u^{\prime}\right)=N_{a}\left(\sigma_{c}-1\right) u^{\prime}=N_{a}\left(\frac{\alpha}{\gamma}\right)=\frac{b}{\gamma^{p}}
\end{gathered}
$$

We have

$$
\begin{gathered}
N_{c}\left(\frac{x}{u^{p}}\right)=\frac{N_{c}(x)}{N_{c}\left(u^{p}\right)}=\frac{x^{p}}{x^{p}}=1, \\
N_{a}\left(\frac{x^{\prime}}{\left(u^{\prime}\right)^{p}}\right)=\frac{N_{a}\left(x^{\prime}\right)}{N_{a}\left(\left(u^{\prime}\right)^{p}\right)}=\frac{\left(x^{\prime}\right)^{p}}{\left(x^{\prime}\right)^{p}}=1, \\
\left(\sigma_{a}-1\right)\left(\frac{x}{u^{p}}\right)=\frac{b}{\alpha^{p} \cdot\left(\sigma_{a}-1\right) u^{p}}=\frac{b}{\gamma^{p} \cdot\left(\sigma_{c}-1\right)\left(u^{\prime}\right)^{p}}=\left(\sigma_{c}-1\right)\left(\frac{x^{\prime}}{\left(u^{\prime}\right)^{p}}\right) .
\end{gathered}
$$

By Hilbert's Theorem 90 applied to $F_{a, c} / F$, there is $y \in F_{a, c}^{\times}$such that

$$
\left(\sigma_{a}-1\right) y=\frac{x^{\prime}}{\left(u^{\prime}\right)^{p}} \quad \text { and } \quad\left(\sigma_{c}-1\right) y=\frac{x}{u^{p}}
$$

We consider the étale F-algebra $L:=K_{y}$ and make it into a Galois U_{4}-algebra such that $L^{Z_{4}}=K$. It suffices to describe the U_{4}-action on $y^{1 / p}$. We set:

$$
\left(\sigma_{a}-1\right)\left(y^{1 / p}\right)=\frac{\left(x^{\prime}\right)^{1 / p}}{u^{\prime}}, \quad\left(\sigma_{b}-1\right)\left(y^{1 / p}\right)=1, \quad\left(\sigma_{c}-1\right)\left(y^{1 / p}\right)=\frac{x^{1 / p}}{u}
$$

One checks that this definition is compatible with the relations (2.4)-(2.7), and hence that it makes L into a Galois U_{4}-algebra such that $L^{Z_{4}}=K$.

We use Proposition 3.5 to give an alternative proof for the Massey Vanishing Conjecture for $n=3$ and arbitrary p.

Proposition 3.6. Let p be a prime, let F be a field, and let $\chi_{1}, \chi_{2}, \chi_{3} \in H^{1}(F, \mathbb{Z} / p \mathbb{Z})$. The following are equivalent.
(1) We have $\chi_{1} \cup \chi_{2}=\chi_{2} \cup \chi_{3}=0$ in $H^{2}(F, \mathbb{Z} / p \mathbb{Z})$.
(2) The Massey product $\left\langle\chi_{1}, \chi_{2}, \chi_{3}\right\rangle \subset H^{2}(F, \mathbb{Z} / p \mathbb{Z})$ is defined.
(3) The Massey product $\left\langle\chi_{1}, \chi_{2}, \chi_{3}\right\rangle \subset H^{2}(F, \mathbb{Z} / p \mathbb{Z})$ vanishes.

Proof. It is clear that (3) implies (2) and that (2) implies (1). We now prove that (1) implies (3). The first part of the proof is a reduction to the case when $\operatorname{char}(F) \neq p$ and F contains a primitive p-th root of unity, and follows [MT16, Proposition 4.14].

Consider the short exact sequence

$$
\begin{equation*}
1 \rightarrow Q_{4} \rightarrow U_{4} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{3} \rightarrow 1 \tag{3.14}
\end{equation*}
$$

where the $\operatorname{map} U_{4} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{3}$ comes from (2.13). Recall from the paragraph preceding Proposition 3.5 that the group Q_{4} is abelian. Therefore, the homomorphism $\chi:=\left(\chi_{1}, \chi_{2}, \chi_{3}\right): \Gamma_{F} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{3}$ induces a pullback map

$$
H^{2}\left((\mathbb{Z} / p \mathbb{Z})^{3}, Q_{4}\right) \rightarrow H^{2}\left(F, Q_{4}\right)
$$

We let $A \in H^{2}\left(F, Q_{4}\right)$ be the image of the class of (3.14) under this map. By Theorem 2.4, for every finite extension F^{\prime} / F the Massey product $\left\langle\chi_{1}, \chi_{2}, \chi_{3}\right\rangle$ vanishes over F^{\prime} if and only if the restriction of χ to $\Gamma_{F^{\prime}}$ lifts to U_{4}, and this happens if and only if A restricts to zero in $H^{2}\left(F^{\prime}, Q_{4}\right)$.

When $\operatorname{char}(F)=p$, we have $\operatorname{cd}(F) \leq 1$ by [Ser97, $\S 2.2$, Proposition 3]. Therefore $H^{2}\left(F, Q_{4}\right)=0$ and hence $A=0$. Thus (1) implies (3) when $\operatorname{char}(F)=p$.

Suppose that $\operatorname{char}(F) \neq p$. There exists an extension F^{\prime} / F of prime-to- p degree such that F^{\prime} contains a primitive p-th root of 1 . If (1) implies (3) for F^{\prime}, then A restricts to zero in $H^{2}\left(F^{\prime}, Q_{4}\right)$. By a restriction-corestriction argument, we deduce that A vanishes, that is, (1) implies (3) for F. We may thus assume that F contains a primitive p-th root of unity ζ.

Let $a, b, c \in F^{\times}$be such that $\chi_{a}=\chi_{1}, \chi_{b}=\chi_{2}$ and $\chi_{c}=\chi_{3}$ in $H^{1}(F, \mathbb{Z} / p \mathbb{Z})$. Since $(a, b)=(b, c)=0$ in $\operatorname{Br}(F)$, there exists $\alpha \in F_{a}^{\times}$and $\gamma \in F_{c}^{\times}$such that $N_{a}(\alpha)=N_{c}(\gamma)=b$. Since $N_{a c}(\gamma / \alpha)=N_{c}(\gamma) / N_{a}(\alpha)=1$ in $F_{a c}^{\times}$, by Hilbert's Theorem 90 there exists $t \in F_{a, c}^{\times}$such that $\gamma / \alpha=\left(\sigma_{a} \sigma_{c}-1\right) t$. Define $u, u^{\prime} \in F_{a, c}^{\times}$ by $u:=\sigma_{c}(t)$ and $u^{\prime}:=t^{-1}$. Then

$$
\alpha \cdot\left(\sigma_{a}-1\right) u=\alpha \cdot\left(\sigma_{a} \sigma_{c}-\sigma_{c}\right) t=\alpha \cdot\left(\sigma_{a} \sigma_{c}-1\right) t \cdot\left(\sigma_{c}-1\right) t^{-1}=\gamma \cdot\left(\sigma_{c}-1\right) u^{\prime}
$$

Let $x:=N_{c}(u) \in F_{a}^{\times}$and $x^{\prime}:=N_{a}\left(u^{\prime}\right) \in F_{c}^{\times}$. Since $\sigma_{a} \sigma_{c}=\sigma_{c} \sigma_{a}$ on $F_{a, c}^{\times}$, we have

$$
\left(\sigma_{a}-1\right) x=N_{c}\left(\left(\sigma_{a}-1\right) u\right)=N_{c}\left(\left(\sigma_{c}-1\right) u^{\prime} \cdot(\gamma / \alpha)\right)=N_{c}(\gamma) / N_{c}(\alpha)=b / \alpha^{p}
$$

Similarly, $\left(\sigma_{c}-1\right) x^{\prime}=b / \gamma^{p}$. Therefore x, x^{\prime} satisfy (3.9). Let $K:=\left(F_{a, b, c}\right)_{x, x^{\prime}}$ be the Galois \bar{U}_{4}-algebra over F, with the \bar{U}_{4}-action given by (3.10)-(3.13). By Proposition 3.4, there exists a Galois U_{4}-algebra L over F such that $L^{Z_{4}} \simeq\left(F_{a, b, c}\right)_{x, x^{\prime}}$ as \bar{U}_{4}-algebras. In particular, $L^{Q_{4}} \simeq F_{a, b, c}$ as $(\mathbb{Z} / p \mathbb{Z})^{3}$-algebras. By Corollary 2.5, we conclude that $\langle a, b, c\rangle$ vanishes.
3.4. Galois \bar{U}_{5}-algebras. Let $a, b, c, d \in F^{\times}$. We write $(\mathbb{Z} / p \mathbb{Z})^{4}=\left\langle\sigma_{a}, \sigma_{b}, \sigma_{c}, \sigma_{d}\right\rangle$ and regard $F_{a, b, c, d}$ as a Galois $(\mathbb{Z} / p \mathbb{Z})^{4}$-algebra over F as in Section 2.1.

Proposition 3.7. Let $a, b, c, d \in F^{\times}$be such that $(a, b)=(b, c)=(c, d)=0$ in $\operatorname{Br}(F)$. Then the Massey product $\langle a, b, c, d\rangle$ is defined if and only if there exist $u \in F_{a, c}^{\times}, v \in F_{b, d}^{\times}$and $w \in F_{b, c}^{\times}$such that

$$
N_{a}(u) \cdot N_{d}(v)=w^{p}, \quad\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w=\zeta
$$

Proof. Denote by U_{4}^{+}and U_{4}^{-}the top-left and bottom-right 4×4 corners of U_{5}, respectively, and let $S:=U_{4}^{+} \cap U_{4}^{-}$be the middle subgroup U_{3}. Let Q_{4}^{+}and Q_{4}^{-} be the kernel of the map $U_{4}^{+} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{3}$ and $U_{4}^{-} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{3}$, respectively, and let P_{4}^{+}and P_{4}^{-}be the kernel of the maps $U_{4}^{+} \rightarrow U_{3}$ and $U_{4}^{-} \rightarrow U_{3}$, respectively.

Suppose $\langle a, b, c, d\rangle$ is defined. By Corollary 2.5 , there exists a \bar{U}_{5}-algebra L such that $L^{\bar{Q}_{5}} \simeq F_{a, b, c, d}$ as $(\mathbb{Z} / p \mathbb{Z})^{4}$-algebras. Using Lemma 2.2, we fix $\alpha \in F_{a}^{\times}$ and $\gamma \in F_{c}^{\times}$such that $N_{a}(\alpha)=b$ and $N_{c}(\gamma)=b$. By Proposition 3.5, there exist $u, u^{\prime} \in F_{a, c}^{\times}$such that, letting $x^{\prime}:=N_{c}\left(u^{\prime}\right)$ and $x:=N_{a}(u)$, the \bar{U}_{4}^{+}-algebra K_{1} induced by L is isomorphic to the \bar{U}_{4}^{+}-algebra $\left(F_{a, b, c}\right)_{x^{\prime}, x}$, where \bar{U}_{4}^{+}acts via (3.10)-(3.13), and where the roles of x and x^{\prime} have been switched.

Similarly, there exist $v, v^{\prime} \in F_{b, d}^{\times}$such that, letting $z:=N_{d}(v)$ and $z^{\prime}:=N_{b}\left(v^{\prime}\right)$, the \bar{U}_{4}^{-}-algebra K_{2} induced by L is isomorphic to $\left(F_{b, c, d}\right)_{z, z^{\prime}}$. Since the U_{3}-algebras $\left(K_{1}\right)^{P_{4}^{+}}$and $\left(K_{2}\right)^{P_{4}^{-}}$are equal, by Proposition $3.2(3)$ there exists $w \in F_{b, c}^{\times}$such that

$$
N_{a}(u) \cdot N_{d}(v)=x z=w^{p}, \quad\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w=\zeta
$$

Conversely, let $u \in F_{a, c}^{\times}, v \in F_{b, d}^{\times}$, and $w \in F_{b, c}^{\times}$be such that

$$
N_{a}(u) \cdot N_{d}(v)=w^{p}, \quad\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w=\zeta
$$

By Lemma 2.2, there exist $\alpha \in F_{a}^{\times}$and $\delta \in F_{d}^{\times}$such that $N_{a}(\alpha)=b$ and $N_{d}(\delta)=c$. We may write

$$
\left(\sigma_{b}-1\right) w=\frac{c^{1 / p}}{\beta}, \quad\left(\sigma_{c}-1\right) w=\frac{b^{1 / p}}{\gamma}
$$

For some $\beta \in F_{b}^{\times}$and $\gamma \in F_{c}^{\times}$. We have

$$
N_{a}\left(\left(\sigma_{c}-1\right) u \cdot(\gamma / \alpha)\right)=\left(\sigma_{c}-1\right) N_{a}(u) \cdot N_{a}(\gamma / \alpha)=\left(\sigma_{c}-1\right) w^{p} \cdot\left(\gamma^{p} / b\right)=1
$$

By Hilbert's Theorem 90, there is $u^{\prime} \in F_{a, c}^{\times}$such that

$$
\alpha \cdot\left(\sigma_{a}-1\right) u^{\prime}=\gamma \cdot\left(\sigma_{c}-1\right) u
$$

By Proposition 3.5, we obtain a Galois U_{4}^{+}-algebra K_{1} over F with the property that $\left(K_{1}\right)^{Q_{4}^{+}} \simeq F_{a, b, c}$ as $(\mathbb{Z} / p \mathbb{Z})^{3}$-algebras. Similarly, we get a Galois U_{4}^{-}-algebra over F such that $\left(K_{2}\right)^{Q_{4}^{-}} \simeq F_{b, c, d}$ as $(\mathbb{Z} / p \mathbb{Z})^{3}$-algebras. Since $N_{a}(u) \cdot N_{d}(v)=w^{p}$,
by Proposition $3.2(3)$ the U_{3}-algebras $\left(K_{1}\right)^{P_{4}^{+}}$and $\left(K_{2}\right)^{P_{4}^{-}}$are isomorphic. Now Lemma 2.1 applied to the cartesian square (2.14) for $n=4$ yields a \bar{U}_{5}-Galois algebra L such that $L^{Q_{5}} \simeq F_{a, b, c, d}$ as $(\mathbb{Z} / p \mathbb{Z})^{4}$-algebras. By Corollary 2.5, this implies that $\langle a, b, c, d\rangle$ is defined.

Lemma 3.8. Let $b, c \in F^{\times}$and $w \in F_{b, c}^{\times}$. Then $\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w=1$ if and only if there exist $w_{b} \in F_{b}^{\times}$and $w_{c} \in F_{c}^{\times}$such that $w=w_{b} w_{c}$ in $F_{b, c}^{\times}$.

Proof. We have $\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right)\left(w_{b} w_{c}\right)=\left(\sigma_{b}-1\right) w_{c}=1$ for all $w_{b} \in F_{b}^{\times}$and $w_{c} \in F_{c}^{\times}$. Conversely, if $w \in F_{b, c}^{\times}$satisfies $\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w=1$, then $\left(\sigma_{c}-1\right) w \in F_{c}^{\times}$ and $N_{c}\left(\left(\sigma_{c}-1\right) w\right)=1$, and hence by Hilbert's Theorem 90 there exists $w_{c} \in F_{c}^{\times}$ such that $\left(\sigma_{c}-1\right) w_{c}=\left(\sigma_{c}-1\right) w$. Letting $w_{b}:=w / w_{c} \in F_{b, c}^{\times}$, we have

$$
\left(\sigma_{c}-1\right) w_{b}=\left(\sigma_{c}-1\right)\left(w / w_{c}\right)=1
$$

that is, $w_{b} \in F_{b}{ }^{\times}$.
From Proposition 3.7, we derive the following necessary condition for a fourfold Massey product to be defined.

Proposition 3.9. Let p be a prime, let F be a field of characteristic different from p and containing a primitive p-th root of unity ζ, let $a, b, c, d \in F^{\times}$, and suppose that $\langle a, b, c, d\rangle$ is defined over F. For every $w \in F_{b, c}^{\times}$such that $\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w=\zeta$, there exist $u \in F_{a, c}^{\times}$and $v \in F_{b, d}^{\times}$such that $N_{a}(u) N_{d}(v)=w^{p}$.

Proof. By Proposition 3.7, there exist $u_{0} \in F_{a, c}^{\times}, v_{0} \in F_{b, d}^{\times}$and $w_{0} \in F_{a, c}^{\times}$such that

$$
N_{a}\left(u_{0}\right) N_{d}\left(v_{0}\right)=w_{0}^{p}, \quad\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w_{0}=\zeta
$$

We have $\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right)\left(w_{0} / w\right)=1$. By Lemma 3.8, this implies that $w_{0}=w w_{b} w_{c}$, where $w_{b} \in F_{b}^{\times}$and $w_{c} \in F_{c}^{\times}$. If we define $u=u_{0} w_{c}$ and $v=v_{0} w_{b}$, then

$$
N_{a}(u) N_{d}(v)=N_{a}\left(u_{0}\right) N_{a}\left(w_{c}\right) N_{d}\left(v_{0}\right) N_{d}\left(w_{b}\right)=w_{0}^{p} w_{c}^{p} w_{b}^{p}=w^{p}
$$

4. A Generic variety

In this section, we let p be a prime number, and we let F be a field of characteristic different from p and containing a primitive p-th root of unity ζ.

Let $b, c \in F^{\times}$, and let X be the Severi-Brauer variety associated to (b, c) over F; see [GS17, Chapter 5]. For every étale F-algebra K, we have $(b, c)=0$ in $\operatorname{Br}(K)$ if and only if $X_{K} \simeq \mathbb{P}_{K}^{p-1}$ over K. In particular, $X_{b} \simeq \mathbb{P}_{b}^{p-1}$ over F_{b}. By [GS17, Theorem 5.4.1], the central simple algebra (b, c) is split over $F(X)$.

We define the degree map deg: $\operatorname{Pic}(X) \rightarrow \mathbb{Z}$ as the composition of the pullback $\operatorname{map} \operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X_{b}\right) \simeq \operatorname{Pic}\left(\mathbb{P}_{b}^{p-1}\right)$ and the degree isomorphism $\operatorname{Pic}\left(\mathbb{P}_{b}^{p-1}\right) \rightarrow \mathbb{Z}$. This does not depend on the choice of isomorphism $X_{b} \simeq \mathbb{P}_{b}^{p-1}$.
Lemma 4.1. Let $b, c \in F^{\times}$, let $G_{b}:=\operatorname{Gal}\left(F_{b} / F\right)$, and let X be the Severi-Brauer variety of (b, c) over F. Let s_{1}, \ldots, s_{p} be homogeneous coordinates on \mathbb{P}_{F}^{p-1}.
(1) There exists a G_{b}-equivariant isomorphism $X_{b} \xrightarrow{\sim} \mathbb{P}_{b}^{p-1}$, where G_{b} acts on X_{b} via its action on F_{b}, and on \mathbb{P}_{b}^{p-1} by

$$
\sigma_{b}^{*}\left(s_{1}\right)=c s_{p}, \quad \sigma_{b}^{*}\left(s_{i}\right)=s_{i-1} \quad(i=2, \ldots, p)
$$

(2) If $(b, c) \neq 0$ in $\operatorname{Br}(F)$, the image of $\operatorname{deg}: \operatorname{Pic}(X) \rightarrow \mathbb{Z}$ is equal to $p \mathbb{Z}$.
(3) There exists a rational function $w \in F_{b, c}(X)^{\times}$such that

$$
\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w=\zeta
$$

and

$$
\operatorname{div}(w)=x-y \quad \text { in } \operatorname{Div}\left(X_{b, c}\right)
$$

where $x, y \in\left(X_{b, c}\right)^{(1)}$ satisfy $\operatorname{deg}(x)=\operatorname{deg}(y)=1, \sigma_{b}(x)=x$ and $\sigma_{c}(y)=y$.
Proof. (1) Consider the 1-cocycle $z: G_{b} \rightarrow \mathrm{PGL}_{p}\left(F_{b}\right)$ given by

$$
\sigma_{b} \mapsto\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & c \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

By [GS17, Construction 2.5.1], the class $[z] \in H^{1}\left(G_{b}, \mathrm{PGL}_{p}\left(F_{b}\right)\right)$ coincides with the class of the degree- p central simple algebra over F with Brauer class (b, c), and hence with the class of the associated Severi-Brauer variety X. It follows that we have a G_{b}-equivariant isomorphism $X_{b} \simeq \mathbb{P}_{b}^{p-1}$, where G_{b} acts on X_{b} via its action on F_{b}, and on \mathbb{P}_{b}^{p-1} via the cocycle z. This proves (1).
(2) By a theorem of Lichtenbaum [GS17, Theorem 5.4.10], we have an exact sequence

$$
\operatorname{Pic}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z} \xrightarrow{\delta} \operatorname{Br}(F),
$$

where $\delta(1)=(b, c)$. Since (b, c) has exponent p, we conclude that the image of deg is equal to $p \mathbb{Z}$.
(3) Let $G_{b, c}:=\operatorname{Gal}\left(F_{b, c} / F\right)=\left\langle\sigma_{b}, \sigma_{c}\right\rangle$. By (1), there is a $G_{b, c}$-equivariant isomorphism $f: \mathbb{P}_{b, c}^{p-1} \rightarrow X_{b, c}$, where $G_{b, c}$ acts on $X_{b, c}$ via its action on $F_{b, c}$, the action of σ_{c} on $\mathbb{P}_{b, c}^{p-1}$ is trivial and the action of σ_{b} on $\mathbb{P}_{b, c}^{p-1}$ is determined by

$$
\sigma_{b}^{*}\left(s_{1}\right)=c s_{p}, \quad \sigma_{b}^{*}\left(s_{i}\right)=s_{i-1} \quad(i=2, \ldots, p)
$$

Consider the linear form $l:=\sum_{i=1}^{p} c^{i / p} \cdot s_{i}$ on $\mathbb{P}_{b, c}^{p-1}$ and set $w^{\prime}:=l / s_{p} \in F_{b, c}\left(\mathbb{P}^{p-1}\right)^{\times}$. We have $\sigma_{b}^{*}(l)=c^{1 / p} \cdot l$, and hence $\left(\sigma_{b}-1\right) w^{\prime}=c^{1 / p} \cdot\left(s_{p} / s_{p-1}\right)$. It follows that $\left(\sigma_{c}-1\right)\left(\sigma_{b}-1\right) w^{\prime}=\xi$. Let $x^{\prime}, y^{\prime} \in \operatorname{Div}\left(\mathbb{P}_{b, c}^{p-1}\right)$ be the classes of linear subspaces of $\mathbb{P}_{b, c}^{p-1}$ given by $l=0$ and $s_{p}=0$, respectively. Then

$$
\operatorname{div}\left(w^{\prime}\right)=x^{\prime}-y^{\prime}, \quad \sigma_{b}\left(x^{\prime}\right)=x^{\prime}, \quad \sigma_{c}\left(y^{\prime}\right)=y^{\prime}
$$

Define

$$
w:=w^{\prime} \circ f^{-1} \in F_{b, c}(X)^{\times}, \quad x^{\prime}:=f_{*}(x) \in\left(X_{b, c}\right)^{(1)}, \quad y^{\prime}:=f_{*}(y) \in\left(X_{b, c}\right)^{(1)}
$$

Then w, x, y satisfy the conclusion of (3).
Lemma 4.2. Let $a, b, c, d \in F^{\times}$. The complex of tori

$$
R_{a, c}\left(\mathbb{G}_{\mathrm{m}}\right) \times R_{b, d}\left(\mathbb{G}_{\mathrm{m}}\right) \xrightarrow{\varphi} R_{b, c}\left(\mathbb{G}_{\mathrm{m}}\right) \xrightarrow{\psi} R_{b, c}\left(\mathbb{G}_{\mathrm{m}}\right),
$$

where $\varphi(u, v):=N_{a}(u) N_{d}(v)$ and $\psi(z)=\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) z$, is exact.

Proof. By Lemma 3.8, we have an exact sequence

$$
R_{c}\left(\mathbb{G}_{\mathrm{m}}\right) \times R_{b}\left(\mathbb{G}_{\mathrm{m}}\right) \xrightarrow{\varphi^{\prime}} R_{b, c}\left(\mathbb{G}_{\mathrm{m}}\right) \xrightarrow{\psi} R_{b, c}\left(\mathbb{G}_{\mathrm{m}}\right),
$$

where $\varphi^{\prime}(x, y)=x y$. The homomorphism φ factors as

$$
R_{a, c}\left(\mathbb{G}_{\mathrm{m}}\right) \times R_{b, d}\left(\mathbb{G}_{\mathrm{m}}\right) \xrightarrow{N_{a} \times N_{d}} R_{c}\left(\mathbb{G}_{\mathrm{m}}\right) \times R_{b}\left(\mathbb{G}_{\mathrm{m}}\right) \xrightarrow{\varphi^{\prime}} R_{b, c}\left(\mathbb{G}_{\mathrm{m}}\right) .
$$

Since the homomorphisms N_{a} and N_{d} are surjective, so is $N_{a} \times N_{d}$. We conclude that $\operatorname{Im}(\varphi)=\operatorname{Im}\left(\varphi^{\prime}\right)=\operatorname{Ker}(\psi)$, as desired.

Let $a, b, c, d \in F^{\times}$, and consider the complex of tori of Lemma 4.2. We define the following groups of multiplicative type over F :

$$
P:=R_{a, c}\left(\mathbb{G}_{\mathrm{m}}\right) \times R_{b, d}\left(\mathbb{G}_{\mathrm{m}}\right), \quad S:=\operatorname{Ker}(\psi)=\operatorname{Im}(\varphi), \quad T:=\operatorname{Ker}(\varphi) \subset P
$$

By Lemma 4.2, we get a short exact sequence

$$
\begin{equation*}
1 \rightarrow T \xrightarrow{\iota} P \xrightarrow{\pi} S \rightarrow 1, \tag{4.1}
\end{equation*}
$$

where ι is the inclusion map and π is induced by φ.
Lemma 4.3. The groups of multiplicative type T, P and S are tori.
Proof. It is clear that P and S are tori. We now prove that T is a torus. Consider the subgroup $Q \subset R_{a, c}\left(\mathbb{G}_{\mathrm{m}}\right)$ which makes the following commutative square cartesian:

Here the bottom horizontal map is the obvious inclusion. It follows that Q is an $R_{c}\left(R_{a}^{(1)}\left(\mathbb{G}_{\mathrm{m}}\right)\right)$-torsor over \mathbb{G}_{m}, and hence it is smooth and connected. Therefore Q is a torus.

The image of the projection $T \stackrel{\iota}{\hookrightarrow} P \rightarrow R_{a, c}\left(\mathbb{G}_{\mathrm{m}}\right)$ is contained in the torus Q. Moreover, the kernel U of the projection is $R_{b}\left(R_{F_{b, d} / F_{b}}^{(1)}\left(\mathbb{G}_{\mathrm{m}}\right)\right)$, and hence it is also a torus. We have an exact sequence

$$
1 \rightarrow U \rightarrow T \rightarrow Q
$$

We have $\operatorname{dim}(U)=p(p-1)$. From (4.1), we see that $\operatorname{dim}(T)=2 p^{2}-2 p+1$, and from (4.2) that $\operatorname{dim}(Q)=p^{2}-p+1$. Therefore $\operatorname{dim}(T)=\operatorname{dim}(U)+\operatorname{dim}(Q)$, and so the sequence

$$
1 \rightarrow U \rightarrow T \rightarrow Q \rightarrow 1
$$

is exact. As U and Q are tori, so is T.
Proposition 4.4. Let p be a prime, let F be a field of characteristic different from p and containing a primitive p-th root of unity ζ, and let $a, b, c, d \in F^{\times}$. Suppose that $(a, b)=(b, c)=(c, d)=0$ in $\operatorname{Br}(F)$, and let $w \in F_{b, c}^{\times}$be such that $\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w=\zeta$. Let T and P be the tori appearing in (4.1), and let $E_{w} \subset P$ be the T-torsor given by the equation $N_{a}(u) N_{d}(v)=w^{p}$. Then the mod p Massey product $\langle a, b, c, d\rangle$ is defined if and only if E_{w} is trivial.

The construction of E_{w} is functorial in F. Therefore, for every field extension K / F, the $\bmod p$ Massey product $\langle a, b, c, d\rangle$ is defined if and only if E_{w} is split by K. We may thus call E_{w} a generic variety for the property "the Massey product $\langle a, b, c, d\rangle$ is defined."

Proof. By Proposition 3.9, the Massey product $\langle a, b, c, d\rangle$ is defined over F if and only if there exist $u \in F_{a, c}^{\times}$and $v \in F_{b, d}^{\times}$such that the equation $N_{a}(u) N_{d}(v)=w^{p}$ has a solution over F, that is, if and only if the T-torsor E_{w} is trivial.

Corollary 4.5. Let p be a prime, let F be a field of characteristic different from p and containing a primitive p-th root of unity ζ, and let $a, b, c, d \in F^{\times}$. Let X be the Severi-Brauer variety of (b, c) over F, fix $w \in F_{b, c}(X)^{\times}$as in Lemma 4.1(3), and let $E_{w} \subset P_{F(X)}$ be the $T_{F(X)}$-torsor given by the equation $N_{a}(u) N_{d}(v)=w^{p}$.

Then $\langle a, b, c, d\rangle$ is defined over $F(X)$ if and only if E_{w} is trivial over $F(X)$.
Proof. This is a special case of Proposition 4.4, applied over the ground field $F(X)$.

5. Proof of Theorem 1.3

Let p be a prime, and let F be a field of characteristic different from p and containing a primitive p-th root of unity ζ. Let $a, b, c, d \in F^{\times}$be such that their cosets in $F^{\times} / F^{\times p}$ are \mathbb{F}_{p}-linearly independent. Consider the field $K:=F_{a, b, c, d}$, and write $G=\operatorname{Gal}(K / F)=\left\langle\sigma_{a}, \sigma_{b}, \sigma_{c}, \sigma_{d}\right\rangle$ as in Section 2.1. We set $N_{a}:=\sum_{j=0}^{p-1} \sigma_{a}^{j} \in$ $\mathbb{Z}[G]$. For every subgroup H of G, we also write N_{a} for the image of $N_{a} \in \mathbb{Z}[G]$ under the canonical map $\mathbb{Z}[G] \rightarrow \mathbb{Z}[G / H]$. We define N_{b}, N_{c} and N_{d} in a similar way.

Let

$$
1 \rightarrow T \xrightarrow{\iota} P \xrightarrow{\pi} S \rightarrow 1
$$

be the short exact sequence of F-tori (4.1). It induces a short exact sequence of cocharacter G-lattices

$$
0 \rightarrow T_{*} \xrightarrow{\iota_{*}} P_{*} \xrightarrow{\pi_{*}} S_{*} \rightarrow 1 .
$$

By definition of P and S, we have

$$
P_{*}=\mathbb{Z}\left[G /\left\langle\sigma_{b}, \sigma_{d}\right\rangle\right] \oplus \mathbb{Z}\left[G /\left\langle\sigma_{a}, \sigma_{c}\right\rangle\right], \quad S_{*}=\left\langle N_{b}, N_{c}\right\rangle \subset \mathbb{Z}\left[G /\left\langle\sigma_{a}, \sigma_{d}\right\rangle\right] .
$$

Let X be the Severi-Brauer variety associated to $(b, c) \in \operatorname{Br}(F)$. Since $X_{K} \simeq \mathbb{P}_{K}^{p-1}$, the degree map $\operatorname{Pic}\left(X_{K}\right) \rightarrow \mathbb{Z}$ is an isomorphism, and so the map $\operatorname{Div}\left(X_{K}\right) \rightarrow$ $\operatorname{Pic}\left(X_{K}\right)$ is identified with the degree map $\operatorname{deg}: \operatorname{Div}\left(X_{K}\right) \rightarrow \mathbb{Z}$. The sequence (B.2) for the torus T thus takes the form

$$
\begin{equation*}
1 \rightarrow T(K) \rightarrow T(K(X)) \xrightarrow{\text { div }} \operatorname{Div}\left(X_{K}\right) \otimes T_{*} \xrightarrow{\text { deg }} T_{*} \rightarrow 0, \tag{5.1}
\end{equation*}
$$

where T_{*} denotes the cocharacter lattice of T.
Lemma 5.1. (1) We have $\left(T_{*}\right)^{G}=\mathbb{Z} \cdot \eta$, where $\iota_{*}(\eta)=\left(N_{a} N_{c},-N_{b} N_{d}\right)$ in $\left(P_{*}\right)^{G}$.
(2) If $(b, c) \neq 0$ in $\operatorname{Br}(F)$, the image of $\operatorname{deg}:\left(\operatorname{Div}\left(X_{b, c}\right) \otimes T_{*}\right)^{G} \rightarrow\left(T_{*}\right)^{G}$ is equal to $p\left(T_{*}\right)^{G}$.
Proof. (1) The free \mathbb{Z}-module $\left(P_{*}\right)^{G}$ has a basis consisting of the elements $\left(N_{a} N_{c}, 0\right)$ and $\left(0, N_{b} N_{d}\right)$. The map $\pi_{*}: P_{*} \rightarrow S_{*} \subset \mathbb{Z}\left[G /\left\langle\sigma_{a}, \sigma_{d}\right\rangle\right]$ takes $(1,0)$ to N_{b} and $(0,1)$ to N_{c}. It follows that $\operatorname{Ker}\left(\pi_{*}\right)^{G}$ is generated by $\left(N_{a} N_{c},-N_{b} N_{d}\right)$.
(2) By Lemma 4.1(2), the image of the composition

$$
\operatorname{Div}(X) \otimes T_{*}^{G}=\left(\operatorname{Div}(X) \otimes T_{*}\right)^{G} \rightarrow\left(\operatorname{Div}\left(X_{b, c}\right) \otimes T_{*}\right)^{G} \xrightarrow{\operatorname{deg}}\left(T_{*}\right)^{G}
$$

is equal to $p\left(T_{*}\right)^{G}$. Thus the image of the degree map contains $p\left(T_{*}\right)^{G}$. We now show that the image the degree map is contained in $p\left(T_{*}\right)^{G}$.

For every $x \in X^{(1)}$, pick $x^{\prime} \in\left(X_{b, c}\right)^{(1)}$ lying over x, and write H_{x} for the G-stabilizer of x^{\prime}. The injective homomorphisms of G-modules

$$
j_{x}: \mathbb{Z}\left[G / H_{x}\right] \hookrightarrow \operatorname{Div}\left(X_{b, c}\right), \quad g H_{x} \mapsto g\left(x^{\prime}\right)
$$

yield an isomorphism of G-modules

$$
\oplus_{x \in X^{(1)}} j_{x}: \oplus_{x \in X^{(1)}} \mathbb{Z}\left[G / H_{x}\right] \xrightarrow{\sim} \operatorname{Div}\left(X_{b, c}\right) .
$$

In order to conclude, it suffices to show that the image of

$$
\begin{equation*}
\left(T_{*}\right)^{H_{x}}=\left(\mathbb{Z}\left[G / H_{x}\right] \otimes T_{*}\right)^{G} \rightarrow\left(\operatorname{Div}\left(X_{b, c}\right) \otimes T_{*}\right)^{G} \xrightarrow{\operatorname{deg}}\left(T_{*}\right)^{G} \tag{5.2}
\end{equation*}
$$

is contained in $p\left(T_{*}\right)^{G}$ for all $x \in X^{(1)}$. Set $H:=H_{x}$.
The composition (5.2) takes a cocharacter $q \in\left(T_{*}\right)^{H}$ to

$$
\operatorname{deg}\left(\sum_{g H \in G / H} g x^{\prime} \otimes g q\right)=\operatorname{deg}\left(x^{\prime}\right) \cdot N_{G / H}(q) .
$$

Thus (5.2) coincides with the norm map $N_{G / H}$ times the degree of x^{\prime}.
Suppose that $G=H$. Then $\operatorname{deg}\left(x^{\prime}\right)=\operatorname{deg}(x)$ and, since $(b, c) \neq 0$, the degree of x is divisible by p by Lemma 4.1(2).

Suppose that $G \neq H$. Then either $\left\langle\sigma_{a}, \sigma_{c}\right\rangle$ or $\left\langle\sigma_{b}, \sigma_{d}\right\rangle$ is not contained in H. Suppose $\left\langle\sigma_{b}, \sigma_{d}\right\rangle$ is not in H, and let N be the subgroup generated by $H, \sigma_{b}, \sigma_{d}$. Note that H is a proper subgroup of N.

The norm map $N_{G / H}:\left(T_{*}\right)^{H} \rightarrow\left(T_{*}\right)^{G}$ is the composition of the two norm maps

$$
\left(T_{*}\right)^{H} \xrightarrow{N_{N / H}}\left(T_{*}\right)^{N} \xrightarrow{N_{G / N}}\left(T_{*}\right)^{G} .
$$

Since $\mathbb{Z}\left[G /\left\langle\sigma_{b}, \sigma_{d}\right\rangle\right]^{H}=\mathbb{Z}\left[G /\left\langle\sigma_{b}, \sigma_{d}\right\rangle\right]^{N}$, the norm map $\left(T_{*}\right)^{H} \rightarrow\left(T_{*}\right)^{N}$ is multiplication by $[N: H] \in p \mathbb{Z}$ on the first component of T_{*} with respect to the inclusion ι_{*} of T_{*} into $P_{*}=\mathbb{Z}\left[G /\left\langle\sigma_{b}, \sigma_{d}\right\rangle\right] \oplus \mathbb{Z}\left[G /\left\langle\sigma_{a}, \sigma_{c}\right\rangle\right]$.

By Lemma 5.1(1), $\left(T_{*}\right)^{G}=\mathbb{Z} \cdot \eta$, where $\iota_{*}(\eta)=\left(N_{a} N_{c},-N_{b} N_{d}\right)$ in $\left(P_{*}\right)^{G}$. Since $N_{a} N_{c}$ is not divisible by p in $\mathbb{Z}\left[G /\left\langle\sigma_{b}, \sigma_{d}\right\rangle\right]$, the image of (5.2) is contained in $p \mathbb{Z} \cdot \eta=p\left(T_{*}\right)^{G}$, as desired.

We write

$$
\bar{\eta} \in \operatorname{Coker}\left[\left(\operatorname{Div}\left(X_{b, c}\right) \otimes T_{*}\right)^{G} \xrightarrow{\operatorname{deg}}\left(T_{*}\right)^{G}\right]
$$

for the coset of the generator $\eta \in\left(T_{*}\right)^{G}$ appearing in Lemma 5.1(1). If $(b, c) \neq 0$, then we have $\bar{\eta} \neq 0$ by Lemma $5.1(2)$. We consider the subgroup of unramified torsors

$$
H^{1}(G, T(K(X)))_{\mathrm{nr}}:=\operatorname{Ker}\left[H^{1}(G, T(K(X))) \xrightarrow{\text { div }} H^{1}\left(G, \operatorname{Div}\left(X_{K} \otimes T_{*}\right)\right)\right]
$$

and the homomorphism

$$
\theta: H^{1}(G, T(K(X)))_{\mathrm{nr}} \rightarrow \operatorname{Coker}\left[\operatorname{Div}\left(X_{K}\right) \otimes T_{*} \xrightarrow{\operatorname{deg}} T_{*}\right],
$$

which are defined in (B.3).

Lemma 5.2. Let $b, c \in F^{\times}$be such that $(b, c) \neq 0$ in $\operatorname{Br}(F)$, let $w \in F_{b, c}(X)^{\times}$be such that $\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w=\zeta$ and $\operatorname{div}(w)=x-y$, where $\operatorname{deg}(x)=\operatorname{deg}(y)=1$ and $\sigma_{b}(x)=x$ and $\sigma_{c}(y)=y$. Let $E_{w} \subset P_{F(X)}$ be the $T_{F(X)}$-torsor given by the equation $N_{a}(u) N_{d}(v)=w^{p}$, and write $\left[E_{w}\right]$ for the class of E_{w} in $H^{1}(G, T(K(X)))$.
(1) We have $\left[E_{w}\right] \in H^{1}(G, T(K(X)))_{\mathrm{nr}}$.
(2) Let θ be the homomorphism of (B.3). We have $\theta\left(\left[E_{w}\right]\right)=-\bar{\eta} \neq 0$.

Proof. The F-tori T, P and S of (4.1) are split by $K=F_{a, b, c, d}$. Therefore, we may consider diagram (B.6) for the short exact sequence (4.1), the splitting field K / F, and X the Severi-Brauer variety of (b, c) over F :

Since $\left(\sigma_{b}-1\right)\left(\sigma_{c}-1\right) w^{p}=1$, we have $w^{p} \in S(F(X))$. The image of w^{p} under ∂ is equal to $\left[E_{w}\right] \in H^{1}(G, T(K(X)))$.

Let $H \subset G$ be the subgroup generated by σ_{a} and σ_{d}. The canonical isomorphism

$$
\operatorname{Div}\left(X_{b, c}\right)=\operatorname{Div}\left(X_{K}\right)^{H}=\left(\operatorname{Div}\left(X_{K}\right) \otimes \mathbb{Z}[G / H]\right)^{G}
$$

sends the divisor $\operatorname{div}(w)=x-y$ to $\sum_{i, j} \sigma_{b}^{i} \sigma_{c}^{j}(x-y) \otimes \sigma_{b}^{i} \sigma_{c}^{j}$. Therefore, the element $\operatorname{div}\left(w^{p}\right)$ in $\left(\operatorname{Div}\left(X_{K}\right) \otimes S_{*}\right)^{G} \subset\left(\operatorname{Div}\left(X_{K}\right) \otimes \mathbb{Z}[G / H]\right)^{G}$ is equal to

$$
e:=p \sum_{i, j=0}^{p-1}\left(\sigma_{b}^{i} \sigma_{c}^{j}(x-y) \otimes \sigma_{b}^{i} \sigma_{c}^{j}\right)=p \sum_{j=0}^{p-1}\left(\sigma_{c}^{j} x \otimes \sigma_{c}^{j} N_{b}\right)-p \sum_{i=0}^{p-1}\left(\sigma_{b}^{i} y \otimes \sigma_{b}^{i} N_{c}\right) .
$$

Since S_{*} is the sublattice of $\mathbb{Z}\left[G /\left\langle\sigma_{a}, \sigma_{d}\right\rangle\right]$ generated by N_{b} and N_{c}, this implies that e belongs to S_{*}. Then $e=\pi_{*}(f)$, where

$$
f:=\sum_{j=0}^{p-1}\left(\sigma_{c}^{j} x \otimes \sigma_{c}^{j} N_{a}\right)-\sum_{i=0}^{p-1}\left(\sigma_{b}^{i} y \otimes \sigma_{b}^{i} N_{d}\right) \in\left(\operatorname{Div}\left(X_{K}\right) \otimes P_{*}\right)^{G}
$$

It follows that $\operatorname{div}\left(E_{w}\right)=\partial(e)=\partial\left(\pi_{*}(f)\right)=0$, which proves (1).
Moreover, since $\operatorname{deg}(x)=\operatorname{deg}(y)=1$ we have

$$
\operatorname{deg}(f)=\left(N_{a} N_{c},-N_{b} N_{d}\right)=\iota_{*}(\eta) \quad \text { in }\left(P_{*}\right)^{G}
$$

In view of (B.7), this implies that $\theta\left(\left[E_{w}\right]\right)=-\bar{\eta}$. We know from Lemma 5.1(2) that $\bar{\eta} \neq 0$. This completes the proof of (2).

Proof of Theorem 1.3. Replacing F by a finite extension if necessary, we may suppose that F contains a primitive p-th root of unity ζ. Let $E:=F(x, y)$, where x and y are independent variables over F, let X be the Severi-Brauer variety of the degree- p cyclic algebra (x, y) over E, and let $L:=E(X)$. Consider the following elements of E^{\times}:

$$
a:=1-x, \quad b:=x, \quad c:=y, \quad d:=1-y
$$

We have $(a, b)=(c, d)=0$ in $\operatorname{Br}(E)$ by the Steinberg relations [Ser79, Chapter XIV, Proposition 4(iv)], and hence $(a, b)=(b, c)=0$ in $\operatorname{Br}(L)$. Moreover, $(b, c) \neq 0$ in $\operatorname{Br}(E)$ because the residue of (b, c) along $x=0$ is non-zero, while $(b, c)=0$ in $\operatorname{Br}(L)$ by [GS17, Theorem 5.4.1]. Thus $(a, b)=(b, c)=(c, d)=0$ in $\operatorname{Br}(L)$.

Consider the sequence of tori (4.1) over the ground field E, associated to the scalars $a, b, c, d \in E^{\times}$chosen above:

$$
1 \rightarrow T \rightarrow P \rightarrow S \rightarrow 1
$$

Let $E_{w} \subset P_{L}$ be the T_{L}-torsor given by the equation $N_{a}(u) N_{d}(v)=w^{p}$. By Lemma 5.2(2), the torsor E_{w} is non-trivial over L. Now Corollary 4.5 implies that the Massey product $\langle a, b, c, d\rangle$ is not defined over L. In particular, by Lemma 2.3, the differential graded ring $C^{\cdot}\left(\Gamma_{L}, \mathbb{Z} / p \mathbb{Z}\right)$ is not formal.

Appendix A. Homological algebra

Let G be a profinite group, and let

$$
\begin{equation*}
0 \rightarrow A_{0} \xrightarrow{\alpha_{0}} A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \rightarrow 0 \tag{A.1}
\end{equation*}
$$

be an exact sequence of discrete G-modules. We break (A.1) into two short exact sequences

$$
\begin{aligned}
& 0 \rightarrow A_{0} \xrightarrow{\alpha_{0}} A_{1} \rightarrow A \rightarrow 0 \\
& 0 \rightarrow A \rightarrow A_{2} \xrightarrow{\alpha_{2}} A_{3} \rightarrow 0
\end{aligned}
$$

We obtain a homomorphism

$$
\begin{equation*}
\theta: \operatorname{Ker}\left[H^{1}\left(G, A_{1}\right) \xrightarrow{\alpha_{1}} H^{1}\left(G, A_{2}\right)\right] \rightarrow \operatorname{Coker}\left[A_{2}^{G} \xrightarrow{\alpha_{2}} A_{3}^{G}\right] \tag{A.2}
\end{equation*}
$$

defined as the composition of the map

$$
\operatorname{Ker}\left[H^{1}\left(G, A_{1}\right) \xrightarrow{\alpha_{1}} H^{1}\left(G, A_{2}\right)\right] \rightarrow \operatorname{Ker}\left[H^{1}(G, A) \rightarrow H^{1}\left(G, A_{2}\right)\right]
$$

and the inverse of the isomorphism

$$
\begin{equation*}
\operatorname{Coker}\left[A_{2}^{G} \xrightarrow{\alpha_{2}} A_{3}^{G}\right] \xrightarrow{\sim} \operatorname{Ker}\left[H^{1}(G, A) \rightarrow H^{1}\left(G, A_{2}\right)\right] \tag{A.3}
\end{equation*}
$$

induced by the connecting homomorphism $A_{3}^{G} \rightarrow H^{1}(G, A)$.
Lemma A.1. We have an exact sequence

$$
H^{1}\left(G, A_{0}\right) \xrightarrow{\alpha_{0}} \operatorname{Ker}\left[H^{1}\left(G, A_{1}\right) \xrightarrow{\alpha_{1}} H^{1}\left(G, A_{2}\right)\right] \xrightarrow{\theta} \operatorname{Coker}\left[A_{2}^{G} \rightarrow A_{3}^{G}\right] \rightarrow H^{2}\left(G, A_{0}\right)
$$

where the last map is defined as the composition of (A.3) and the connecting homomorphism $H^{1}(G, A) \rightarrow H^{2}\left(G, A_{0}\right)$.

Proof. The proof follows from the definition of θ and the exactness of (A.1).
Consider a commutative diagram of discrete G-modules

with exact rows and columns. It yields a commutative diagram of abelian groups

where the columns are exact and the rows are complexes. Suppose that the connecting homomorphism $\partial_{1}: C_{1}^{G} \rightarrow H^{1}\left(G, A_{1}\right)$ is surjective. We define a function

$$
\theta^{\prime}: \operatorname{Ker}\left[H^{1}\left(G, A_{1}\right) \xrightarrow{\alpha_{1}} H^{1}\left(G, A_{2}\right)\right] \rightarrow \operatorname{Coker}\left(A_{2}^{G} \xrightarrow{\alpha_{2}} A_{3}^{G}\right)
$$

as follows. Let $z \in H^{1}\left(G, A_{1}\right)$ such that $\alpha_{1}(z)=0$ in $H^{1}\left(G, A_{2}\right)$. By assumption, there exists $c_{1} \in C_{1}^{G}$ such that $\partial_{1}\left(c_{1}\right)=z$. By the exactness of the second column, there exists $b_{2} \in B_{2}^{G}$ such that $\pi_{2}\left(b_{2}\right)=\gamma_{1}\left(c_{1}\right)$. By the exactness of the first column and the injectivity of ι_{3}, there exists a unique element $a_{3} \in A_{3}^{G}$ such that $\beta_{2}\left(b_{2}\right)=\iota_{3}\left(a_{3}\right)$. We set

$$
\theta^{\prime}(z):=a_{3}+\alpha_{2}\left(A_{2}^{G}\right)
$$

A diagram chase shows that θ^{\prime} is a well-defined homomorphism.
Lemma A.2. Let G be a profinite group, and suppose given an exact sequence (A.1) and a commutative diagram (A.4) such that the connecting homomorphism $\partial_{1}: C_{1}^{G} \rightarrow H^{1}\left(G, A_{1}\right)$ is surjective. Then $\theta=-\theta^{\prime}$.

Proof. Let $z \in H^{1}\left(G, A_{1}\right)$ be such that $\alpha_{1}(z)=0$ in $H^{1}\left(G, A_{2}\right)$. Since the map $\partial_{1}: C_{1}^{G} \rightarrow H^{1}\left(G, A_{1}\right)$ is surjective, there exists $c_{1} \in C_{1}^{G}$ such that $\partial_{1}\left(c_{1}\right)=z$. Let $b_{1} \in B_{1}$ be such that $\pi_{1}\left(b_{1}\right)=c_{1}$, and for all $g \in G$ let $a_{1 g}$ be the unique element of A_{1} such that $\iota\left(a_{1 g}\right)=g b-b$. Then $\partial_{1}\left(c_{1}\right)$ is represented by the 1-cocycle $\left\{a_{1 g}\right\}_{g \in G}$.

Define $b_{2}:=\beta_{1}\left(b_{1}\right)$ and $c_{2}:=\gamma_{1}\left(c_{1}\right)$, so that $\pi_{2}\left(b_{2}\right)=c_{2}$. Since $\alpha_{1}(z)=0$ is represented by the cocycle $\left\{\alpha_{1}\left(a_{1 g}\right)\right\}_{g \in G}$, we deduce that there exists $a_{2} \in A_{2}$ such that $\alpha_{1}\left(a_{1 g}\right)=g a_{2}-a_{2}$ for all $g \in G$. It follows that $g b_{2}-b_{2}=\iota_{2}\left(g a_{2}-a_{2}\right)$ for all $g \in G$, that is, $b_{2}-\iota_{2}\left(a_{2}\right)$ belongs to B_{2}^{G}. Moreover, we have

$$
\pi_{2}\left(b_{2}-\iota_{2}\left(a_{2}\right)\right)=\pi_{2}\left(b_{2}\right)=\gamma_{1}\left(c_{1}\right) .
$$

Finally, we have

$$
\beta_{2}\left(b_{2}-\iota_{2}\left(a_{2}\right)\right)=\beta_{2}\left(\beta_{1}\left(b_{1}\right)\right)-\iota_{3}\left(\alpha_{2}\left(a_{2}\right)\right)=\iota_{3}\left(-\alpha_{2}\left(a_{2}\right)\right)
$$

By definition, $\theta^{\prime}(z)=-\alpha_{2}\left(a_{2}\right)+\alpha_{2}\left(A_{2}^{G}\right)$. Note that $\alpha_{2}\left(a_{2}\right)$ belongs to A_{2}^{G} because for all $g \in G$ we have

$$
g \alpha_{2}\left(a_{2}\right)-\alpha_{2}\left(a_{2}\right)=\alpha_{2}\left(g a_{2}-a_{2}\right)=\alpha_{2}\left(\alpha_{1}\left(a_{1 g}\right)\right)=0 .
$$

For all $g \in G$, let $a_{g} \in A$ be the image of $a_{1 g}$. The homomorphism

$$
\operatorname{Ker}\left[H^{1}\left(G, A_{1}\right) \xrightarrow{\alpha_{1}} H^{1}\left(G, A_{2}\right)\right] \rightarrow \operatorname{Ker}\left[H^{1}(G, A) \rightarrow H^{1}\left(G, A_{2}\right)\right]
$$

induced by the map $A_{1} \rightarrow A$ sends the class of $\left\{a_{1 g}\right\}_{g \in G}$ to the class of $\left\{a_{g}\right\}_{g \in G}$.

The element $a_{2} \in A_{2}$ is a lift of $\alpha_{2}\left(a_{2}\right)$. As $g a_{2}-a_{2}=\alpha_{1}\left(a_{1 g}\right)$ for all $g \in G$, the injective map $A \rightarrow A_{2}$ sends a_{g} to $g a_{2}-a_{2}$ for all $g \in G$. Therefore, the connecting homomorphism $A_{3}^{G} \rightarrow H^{1}(G, A)$ sends $\alpha_{2}\left(a_{2}\right)$ to the class of $\left\{a_{g}\right\}_{g \in G}$. It follows that the isomorphism

$$
\operatorname{Coker}\left[A_{2}^{G} \xrightarrow{\alpha_{2}} A_{3}^{G}\right] \xrightarrow{\sim} \operatorname{Ker}\left[H^{1}(G, A) \rightarrow H^{1}\left(G, A_{2}\right)\right]
$$

induced by $A_{3}^{G} \rightarrow H^{1}(G, A)$ sends $\alpha_{2}\left(a_{2}\right)+\alpha_{2}\left(A_{2}^{G}\right)$ to the class of $\left\{a_{g}\right\}_{g \in G}$. By the definition of θ, we conclude that $\theta(z)=\alpha_{2}\left(a_{2}\right)+\alpha_{2}\left(A_{2}^{G}\right)=-\theta^{\prime}(z)$.

Appendix B. Unramified torsors under tori

Let F be a field, let X be a smooth projective geometrically connected F-variety, let K be a Galois extension of F (possibly of infinite degree over F), and let $G:=\operatorname{Gal}(K / F)$. We have an exact sequence of discrete G-modules

$$
\begin{equation*}
1 \rightarrow K^{\times} \rightarrow K(X)^{\times} \xrightarrow{\operatorname{div}} \operatorname{Div}\left(X_{K}\right) \xrightarrow{\lambda} \operatorname{Pic}\left(X_{K}\right) \rightarrow 0 \tag{B.1}
\end{equation*}
$$

where div takes a non-zero rational function $f \in K(X)^{\times}$to its divisor, and λ takes a divisor on X_{K} to its class in $\operatorname{Pic}\left(X_{K}\right)$.

Let T be an F-torus split by K. Write T_{*} for the cocharacter lattice of T : it is a finitely generated \mathbb{Z}-free G-module. Tensoring (B.1) with T_{*}, we obtain an exact sequence of G-modules

$$
\begin{equation*}
1 \rightarrow T(K) \rightarrow T(K(X)) \xrightarrow{\text { div }} \operatorname{Div}\left(X_{K}\right) \otimes T_{*} \xrightarrow{\lambda} \operatorname{Pic}\left(X_{K}\right) \otimes T_{*} \rightarrow 0 \tag{B.2}
\end{equation*}
$$

where we have used the fact that $K^{\times} \otimes T_{*}=T(K)$.
We define the subgroup of unramified torsors

$$
H^{1}(G, T(K(X)))_{\mathrm{nr}}:=\operatorname{Ker}\left[H^{1}(G, T(K(X))) \xrightarrow{\text { div }} H^{1}\left(G, \operatorname{Div}\left(X_{K} \otimes T_{*}\right)\right)\right]
$$

The sequence (B.1) is a special case of (A.1). In this case, the map θ of (A.1) takes the form

$$
\begin{equation*}
\theta: H^{1}(G, T(K(X)))_{\mathrm{nr}} \rightarrow \operatorname{Coker}\left[\operatorname{Div}\left(X_{K}\right) \otimes T_{*} \xrightarrow{\lambda} \operatorname{Pic}\left(X_{K}\right) \otimes T_{*}\right] \tag{B.3}
\end{equation*}
$$

Proposition B.1. We have an exact sequence
$H^{1}(G, T(K)) \rightarrow H^{1}(G, T(K(X)))_{\mathrm{nr}} \xrightarrow{\theta} \operatorname{Coker}\left[\left(\operatorname{Div}\left(X_{K}\right) \otimes T_{*}\right)^{G} \xrightarrow{\lambda}\left(\operatorname{Pic}\left(X_{K}\right) \otimes T_{*}\right)^{G}\right] \rightarrow H^{2}(G, T(K))$,
where the first map and the last map are induced by (B.2).
Proof. This is a special case of Lemma A.1.
By Lemma A.2, the map θ may be computed as follows. Let

$$
\begin{equation*}
1 \rightarrow T \xrightarrow{\iota} P \xrightarrow{\pi} S \rightarrow 1 \tag{B.4}
\end{equation*}
$$

be a short exact sequence of F-tori split by K such that P is a quasi-trivial torus. Passing to cocharacter lattices, we obtain a short exact sequence of G-modules

$$
\begin{equation*}
0 \rightarrow T_{*} \xrightarrow{\iota_{*}} P_{*} \xrightarrow{\pi_{*}} S_{*} \rightarrow 0 \tag{B.5}
\end{equation*}
$$

We tensor (B.1) with T_{*}, P_{*} and S_{*} respectively, and pass to group cohomology to obtain the following commutative diagram, where the columns are exact and the
rows are complexes:

Note that $\operatorname{Gal}(K(X) / F(X))=G$. Therefore $H^{1}(G, P(K(X)))$ is trivial, and hence $\partial: S(F(X)) \rightarrow H^{1}(G, T(K(X)))$ is surjective.

Let $\tau \in H^{1}(G, T(K(X)))_{\mathrm{nr}}$, choose $\sigma \in S(F(X))$ such that $\partial(\sigma)=\tau$. Then pick $\rho \in\left(\operatorname{Div}\left(X_{K}\right) \otimes P_{*}\right)^{G}$ such that $\pi_{*}(\rho)=\operatorname{div}(\sigma)$, and let t be the unique element in $\left(\operatorname{Pic}\left(X_{K}\right) \otimes T_{*}\right)^{G}$ such that $\lambda(\rho)=\iota_{*}(t)$. Lemma A. 2 implies

$$
\begin{equation*}
\theta(\tau)=-t \tag{B.7}
\end{equation*}
$$

Finally, suppose that $K=F_{s}$ is a separable closure of F, so that $G=\Gamma_{F}$, and write X_{s} for $X \times_{F} F_{s}$. The exact sequence (B.2) for $K=F_{s}$ takes the form

$$
\begin{equation*}
1 \rightarrow T\left(F_{s}\right) \rightarrow T\left(F_{s}(X)\right) \xrightarrow{\operatorname{div}} \operatorname{Div}\left(X_{s}\right) \otimes T_{*} \xrightarrow{\lambda} \operatorname{Pic}\left(X_{s}\right) \otimes T_{*} \rightarrow 0 . \tag{B.8}
\end{equation*}
$$

We have the inflation-restriction sequence

$$
0 \rightarrow H^{1}\left(F, T\left(F_{s}(X)\right)\right) \xrightarrow{\mathrm{Inf}} H^{1}(F(X), T) \xrightarrow{\text { Res }} H^{1}\left(F_{s}(X), T\right) .
$$

Since T is defined over F, it is split by F_{s}, and hence by Hilbert's Theorem 90 we have $H^{1}\left(F_{s}(X), T\right)=0$. Thus the inflation map $H^{1}\left(F, T\left(F_{s}(X)\right)\right) \rightarrow H^{1}(F(X), T)$ is an isomorphism. We identify $H^{1}\left(F, T\left(F_{s}(X)\right)\right)$ with $H^{1}(F(X), T)$ via the inflation map. If we define

$$
H^{1}(F(X), T)_{\mathrm{nr}}:=\operatorname{Ker}\left[H^{1}(F(X), T) \xrightarrow{\text { div }} H^{1}\left(F, \operatorname{Div}\left(X_{s}\right) \otimes T_{*}\right)\right],
$$

the map θ of (A.2) takes the form

$$
\theta: H^{1}(F(X), T)_{\mathrm{nr}} \rightarrow \operatorname{Coker}\left[\operatorname{Div}\left(X_{s}\right) \otimes T_{*} \rightarrow \operatorname{Pic}\left(X_{s}\right) \otimes T_{*}\right] .
$$

Corollary B.2. We have an exact sequence
$H^{1}(F, T) \rightarrow H^{1}(F(X), T)_{\mathrm{nr}} \xrightarrow{\theta} \operatorname{Coker}\left[\left(\operatorname{Div}\left(X_{s}\right) \otimes T_{*}\right)^{\Gamma_{F}} \xrightarrow{\lambda}\left(\operatorname{Pic}\left(X_{s}\right) \otimes T_{*}\right)^{\Gamma_{F}}\right] \rightarrow H^{2}(F, T)$, where the first and last map are induced by (B.8).
Proof. This is a special case of Proposition B.1.

References

[BD01] Daniel K. Biss and Samit Dasgupta. A presentation for the unipotent group over rings with identity. J. Algebra, 237(2):691-707, 2001. 7
[Dwy75] William G. Dwyer. Homology, Massey products and maps between groups. J. Pure Appl. Algebra, 6(2):177-190, 1975. 7, 8
[Efr14] Ido Efrat. The Zassenhaus filtration, Massey products, and representations of profinite groups. Adv. Math., 263:389-411, 2014. 8
[EM17] Ido Efrat and Eliyahu Matzri. Triple Massey products and absolute Galois groups. J. Eur. Math. Soc. (JEMS), 19(12):3629-3640, 2017. 2
[GMT18] Pierre Guillot, Ján Mináč, and Adam Topaz. Four-fold Massey products in Galois cohomology. Compos. Math., 154(9):1921-1959, 2018. With an appendix by Olivier Wittenberg. 2
[GS17] Philippe Gille and Tamás Szamuely. Central simple algebras and Galois cohomology, volume 165 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017. Second edition. 17, 18, 23
[HW15] Michael J. Hopkins and Kirsten G. Wickelgren. Splitting varieties for triple Massey products. J. Pure Appl. Algebra, 219(5):1304-1319, 2015. 1, 2
[HW19] Christian Haesemeyer and Charles A. Weibel. The norm residue theorem in motivic cohomology, volume 200 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2019. 1
[HW23] Yonatan Harpaz and Olivier Wittenberg. The Massey vanishing conjecture for number fields. Duke Math. J., 172(1):1-41, 2023. 2, 8
[KMRT98] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol. The book of involutions, volume 44 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. 4
[Mat18] Eliyahu Matzri. Triple Massey products of weight ($1, n, 1$) in Galois cohomology. J. Algebra, 499:272-280, 2018. 2
[MS22] Alexander Merkurjev and Federico Scavia. Degenerate fourfold Massey products over arbitrary fields. arXiv:2208.13011, 2022. 1, 2, 3, 6, 8
[MS23] Alexander Merkurjev and Federico Scavia. The Massey vanishing conjecture for fourfold Massey products modulo 2. arXiv:2301.09290, 2023. 2
[MT16] Ján Mináč and Nguyen Duy Tân. Triple Massey products vanish over all fields. J. Lond. Math. Soc. (2), 94(3):909-932, 2016. 2, 15
[MT17a] Ján Mináč and Nguyen Duy Tân. Counting Galois $\mathbb{U}_{4}\left(\mathbb{F}_{p}\right)$-extensions using Massey products. J. Number Theory, 176:76-112, 2017. 2
[MT17b] Ján Mináč and Nguyen Duy Tân. Triple Massey products and Galois theory. J. Eur. Math. Soc. (JEMS), 19(1):255-284, 2017. 2
[PS18] Ambrus Pál and Endre Szabó. The strong Massey vanishing conjecture for fields with virtual cohomological dimension at most 1. arXiv:1811.06192 (2018). 2
[Pos17] Leonid Positselski. Koszulity of cohomology $=K(\pi, 1)$-ness + quasi-formality. J. Algebra, 483:188-229, 2017. 1
[Ser79] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. SpringerVerlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. 6, 23
[Ser97] Jean-Pierre Serre. Galois cohomology. Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. 15

Department of Mathematics, University of California, Los Angeles, CA 90095, United States of America

Email address: merkurev@math.ucla.edu
Email address: scavia@math.ucla.edu

[^0]: Date: September 2023.
 2020 Mathematics Subject Classification. 12G05; 55S30, 16K50.

