STEENROD OPERATIONS IN ALGEBRAIC GEOMETRY

ALEXANDER MERKURJEV

1. INTRODUCTION

Let p be a prime integer. For a pair of topological spaces A C X we write
HY(X, A;Z/pZ) for the i-th singular cohomology group with coefficients in
Z/pZ. A cohomological operation of degree r is a collection of group homomor-
phisms

H'(X, A Z/pZ) — H™" (X, A Z/pZ)
satisfying certain naturality conditions. In particular, they commute with the
pull-back homomorphisms.

The operations form the Steenrod algebra A, modulo p. It is generated by
the reduced power operations P*, k > 1, of degree 2(p — 1)k and the Bockstein
operation of degree 1.

The idea of the definition of P* is as follows. Modulo p, the p-th power
operation « — of is additive. It can be described as follows. Let d : X — X?
be the diagonal embedding. The composition

H*(X;Z/pZ) — H*(X"; Z/pZ) > H*(X; Z/pl),
where the first map is the p-th exterior power, takes a class « to the power of.
Note that the composition is a homomorphism, although the first map is not.

Let G' be the symmetric group S,. It acts on X? and we can define the
composition

H*(X; Z/pZ) — HG(XP Z/pL) S Hy (X3 Z/pL) = H* (X Z/pL)@H (pt; Z/pZ).

The ring H{ (pt; Z/pZ) is isomorphic to the polynomial ring (Z/pZ)[t]. Thus,
the image of v is a polynomial with coefficient in H*(X;Z/pZ). The coefficients
are the reduced powers P*(a) of a.

Let a space X be embedable into R™. The group

HPY(X;2/pZ) = H (R, R" — X Z/pZ)
is independent on the embedding and is called the Borel-Moore homology group
with coefficients in Z/pZ. An operation S of degree r defines an operation

HPM(X;Z/pZ) = H' (R, X; Z/pZ) > H* ™" (R", X; Z/pZ) = HPY (X, Z/pZ)

on the Borel-Moore homology groups. These operations commute with push-
forward homomorphisms with respect to proper morphisms. We can them
operations of homological type.
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V. Voevodsky has defined operations on the motivic cohomology groups
H%(X,U;Z/pZ) for a smooth variety X and an open subset U C X. The
reduced power operation P* has bidegree (Q(p— Dk, (p— 1)k) and the Bockstein
operation has bidegree (1,0).

If d = dim X we have

H* (X, U:Z/pZ) ~ CHy_s(X — U)/p.

In particular, the reduced power operations (but not the Bockstein operation)
act on the Chow groups modulo p. Our aim is to give an “elementary” defini-
tion of these operations. We follows P. Brosnan’s approach.

Notation:
A scheme is a quasi-projective scheme over a field.
A wariety is an integral scheme.

2. CHOW GROUPS

2.1. Chow groups of homological type. Let X be a scheme over a field F’
and let ¢ be an integer. The Chow groups of i-dimensional cycles CH;(X) is
the factor group of the free group generated by dimension ¢ closed subvarieties
of X modulo rational equivalence. In particular, CH;(X) is trivial if ¢ < 0 or
1> dim X.

Properties:

1. For a projective morphism f : X — Y there is the push-forward homo-
morphism

2. For a flat morphism f : Y — X of relative dimension d there is the
pull-back homomorphism

3. (Homotopy invariance) For a vector bundle f : £ — X of rank r the
pull-back homomorphism f, : CH;(X) — CH,,(F) is an isomorphism.

4. For two schemes X and Y over F' there is an exterior product homomor-
phism
Remark 2.1. We can view Chow groups CH,(X) as a Borel-Moore type the-
ory associated to the motivic cohomology groups of bidegree (2i,7).

2.2. Chern classes. Let E — X be a vector bundle over a scheme X. For
every ¢ > ( there is a group homomorphism

¢(E) : CHi(X) = CHy(X), aw— ¢(F)Na

called the i-th Chern class of E. We can view ¢;(F) as an endomorphism of
CH.(X). The class ¢ = ¢g + ¢1 + ¢o + ... is called the total Chern class.

Properties:
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1. ¢o(F) is the identity.

2. ¢;(F) =0 for i > rank E.

3. (Cartan formula) For an exact sequence 0 — E' — E — E" — 0,
Ce(E) = co(E") 0 co(E").

4. The operation ¢;(L) for a line bundle L — X is the intersection with the
Cartier divisor associated with L.
The Chern classes uniquely determined by the properties 1-4.

If £ — X is a vector bundle of rank r, the class e(E) = ¢.(F) is called the
FEuler class of E. For an exact sequence as above we have
e(E) =e(E)oe(E").

Let A be a commutative ring. A characteristic class over A is a power series
w over A in the Chern classes ¢;. For a vector bundle £ — X the operation
w(E) on CH,(X) ® A is well defined.

Let f(z) =1+ a;xr + axx® + ... be a power series over A. A characteristic
class wy over A is called a multiplicative class associated with f if the following
holds:

1. For a line bundle L — X,

wy(L) = f(er(L)) = id 4+ arer (L) + ager (L) + ..
2. For an exact sequence 0 -+ F' — E — E” — 0 of vector bundles,
wy(E) = wy(E") 0wy (E").

The class wy exists and unique for every f. If E has a filtration by subbundles
with line factors L;. Then

wy(E) = [ F(e(L).

Example 2.2. If f =1+ x, the class wy coincides with the total Chern class
Ce-

Note that the operation w;(F) is invertible. We write w;(—F) for wy(E)~t

2.3. Chow groups of cohomological type. If X is a smooth variety of
dimension d we write

CH'(X) = CHg_;(X).
Properties:

1. For a morphism f : Y — X of smooth varieties there is the pull-back
homomorphism
f*: CHY(X) — CHY(Y).
2. For a smooth variety X, the graded group CH*(X) has a structure of

a graded ring with identity 1x = [X] via the pull-back with respect to the
diagonal morphism d: X — X x X: «a-f=d"(a x f).
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Remark 2.3. The group CH'(X) for a smooth X coincides with the motivic
cohomology group H*(X) = H?"*(X, () and the latter has obvious contravari-
ant properties. We can view the assignment X +— CH"(X) as a cohomology
theory.

Example 2.4. Let h € CH'(P") be the class of a hyperplane section of the
projective space P"*. Then
, Zht if0<i<
CH(P") = RUSTST
0 otherwise.

In other words,
CH*(IP’”) = Z[h]/(h"th).

2.4. Refined Gysin homomorphisms. Let ¢ : M < P be a closed embed-
ding of smooth varieties of codimension d. Let X be a closed subscheme of P
and set Y = M N X. Thus we have a pull-back diagram

Yy — X

A

M — P

The pull-back homomorphism i* (called also a Gysin homomorphism) has a
refinement, called the refined Gysin homomorphism

In the case X = P the homomorphism ' coincides with 7*.
Remark 2.5. The refined Gysin homomorphism coincide with the pull-back
homomorphism N N
H* (P P—X)— H*'(M,M-Y).
for : =dim P — k.
Suppose we are given two diagrams as above:
Yy — X

Lo ]

M, — P,

(I =1,2) with 4, : M; — P, closed embeddings of smooth varieties of codimen-
sion d;. Let N; be the normal bundle of the closed embedding 7; over M;. It is
a vector bundle on M;.

The following proposition is a variant of so-called excess formula.

Proposition 2.6. For an element o € CHy(X),
e(f3N2) Ny (@) = e(fi V1) Nig(a)
m CHk,d1,d2 (Y)
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3. EQUIVARIANT CHOW GROUPS

In topology: Let G be a group and X be a G-space. For a (co)homology
theory H we can define an equivariant (co)homology group

HY(X) = H((X x EG)/G)

where E'G is a contractible G-space with free G-action.

In algebra we don’t have a scheme representing F'G. Instead, we consider
certain approximations of FG.

Let G be an algebraic group of dimension dg over F' and let X be a G-
scheme. Let V' be a G-vector space (a representation of GG) of dimension dy
such that G acts regularly on a nonempty open subscheme U C V. Then for
every i € Z, the group

CHZG(X) = CHZ"FdV*dG((X X U)/G)

is independent of V' as long as V' — U has sufficiently large codimension in V.
This group is the i-th equivariant Chow group of X.

A closed G-equivariant subvariety Z C X has its class [Z]¢ in CHY(X)
defined as

[(Zx U)/G) € CHiygy—ae (X x U)/G) = CHE (X).
If G is the trivial group we have
CHY(X) = CH;(X).

If H is a subgroup of G, for a G-scheme X there is a natural restriction
homomorphism

resg/y : CHY (X) — CHY (X).
For a smooth G-variety X of dimension d we write
CHL(X) = CHY(X).

The equivariant Chow groups have similar functorial properties as the ordi-
nary ones (projective push-forwards, flat pull-backs, refined Gysin homomor-
phisms, homotopy invariance). In particular, the graded group CHf,(X) has a
structure of a commutative ring.

Example 3.1. Let G = G,, the multiplicative group. Consider the natural
G-action on the affine space A™*!. Clearly G acts regularly on A" — {0} with
the factor variety P". Hence

CHL(pt) = CHE,(pt) = CH,_;(P") = Zh'

and therefore, CHZ,(pt) = Z[h] is a polynomial ring over Z. Note that this
ring is a domain contrary to the ordinary Chow rings having only nilpotent
elements in positive degrees.

Let p be a prime integer. We introduce a new notation:

Ch,(X) = CH.(X)/p, Ch{(X) = CHI(X)/p.
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Example 3.2. Let H = p,,. We consider H as a subgroup of G = G,,. The
restriction ring homomorphism Chy,(pt) — Ch};(pt) is an isomorphism, so that

Chy (pt) = (Z/pZ)[h].
More generally, if H acts trivially on a scheme X, we have a canonical isomor-
phism
Ch¥(X) = Ch,(X) ® Z/pZ[h] = Ch,(X)[h].
Example 3.3. Let G be the semidirect product of u, and Aut(u,) = (Z/pZ)*.
Since the order of (Z/pZ)* is prime to p, we have for a G-scheme X:

ChO(X) = [Chts (X “02)"
A class i +pZ € (Z/pZ)* acts on h by h — h'. The restriction homomorphism
Che(pt) — Chy, (pt) = Z/pZ[h]

is injective and identifies the ring Chj,(pt) with Z/pZ[hP~']. More generally, if
G acts trivially on a scheme X, we have a canonical isomorphism

ChY(X) = [Chlr (XA ) = Ch, (X)[RP71].

3.1. Equivariant Chern classes. Let X be G-scheme and let £ — X be a
G-vector bundle over X. For every ¢ > 0 there is a group homomorphism

“(E): CHY(X) — CHY ,(X), a~ F(E)Na

called the equivariant i-th Chern class of E. The equivariant Chern classes
satisfy similar properties as the ordinary ones.

Example 3.4. If X = pt, a G-vector bundle over X is a representation V' of
G. Let G = Gy, or u,, and let V' be the canonical 1-dimensional representation
of G. Then ¢ (V) is the multiplication by h in Chg(pt). We will simply write
(V) = h.

Example 3.5. Let p be a prime integer. Let G be the semidirect product of
p, and Aut(p,) = (Z/pZ)*. Consider the algebra F, = Flz]/(2? —1). It is
an étale F-algebra of degree p. If I contains all p-th roots of unity, F}, is a
product of p copies of F. The group G acts naturally on F), by algebra auto-
morphisms: the group p, acts on z by multiplication and an automorphism
i+pZ € (Z/pZ)* by x — z'. In particular, F}, is a G-module having a (trivial)
submodule F'. We claim that the mod p equivariant Euler class eG(ﬁ ), where
F = F,/F, is the multiplication by —h?»~.

Indeed, since Chy(pt) is contained in Chy, (pt) it is sufficient to replace G
by p,. Then F is a direct sum of 1-dimensional modules Faf ~ V& for
1=1,2,...,p— 1. Hence

p—1 p—1
Y (F) =[] e(ve) =T](h) = (p— D! h*~ = P,
i=1 i=1

We set t = —h?~! so that CHX(pt)/p = Z/pZ[t] and t = ¢%(F) modulo p.
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4. DEFINITION OF REDUCED POWERS

We fix a prime integer p. We assume that char F' # p.

4.1. Scheme RP(X). Consider again the algebra F, = F[z|/(2P — 1). Let
X be a scheme over a field F'. Write RP(X) for the scheme Rp,/p(X ®p F})
representing the functor S — X (S®p F,). If I contains all p-th roots of unity,
X is a product of p copies of X. In particular, dim R?(X) = pdim X.

Consider the semidirect product G of p, with Aut(p,) = (Z/pZ)*. The
action of G on F, extends to an action of G on RP(X).

The embedding X (S) — X (S ®p F,) gives rise to the closed embedding
of X into RP(X). In fact, X is identified with the subscheme of G-invariant
elements of RP(X). We have a well defined map (not a homomorphism!)

Py : CHy(X) — CHS, (RP(X)), [Z] = [RP(2)]°.

Now assume that X is a smooth variety. We would like to compute the
normal cone N of the closed embedding X — RP(X). One checks that

Tre(x)lx = Tx ®F F),

hence
N =Tx ®pF,
where as above F = F,/F. The group G acts on N via F. Let us compute
the Euler class e“(N).
Consider the multiplicative characteristic class w = wy corresponding to the

power series f(z) = 1+ zP~1. Recall that for every line bundle L, we have
w(L) =1+ ¢ (L)P~'. We write

w(y) =1+ wp_1y + wap-ny* + ...,
so that for a line bundle L,
w(L,y) =1+ c (L)' y.
Proposition 4.1. For a vector bundle E — X of rank r we have
¢“(E®p F) = t"w(E,1/t) € Ch%(X) = Ch,(X)]1].

Proof. Since Ch%(X) injects into Chi”(X) we may replace G by w,. We also
may assume that F = L is a line bundle. Then
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(L opF) = ﬁ (Lo V)
= H(c?(L) + (V)

= [[ (< (L) +in)

= (L =t
=t(1+ (L) /t)
=t-w(L,1/t).
O

Remark 4.2. It follows from the proposition that the Euler class e“(E ®r 13)
is invertible if we invert ¢.

4.2. Reduced power operations. Let X be a scheme over F'. We embed X
as a closed subscheme into a smooth variety M of dimension d. The commu-
tative diagram

X —— Rr(X)

l !

M — Rr(M)
gives rise to a refined Gysin homomorphism
i CHY (RP(X)) — CHY ,_1y4(X),
where G be the semidirect product of p,, and (Z/pZ)*.
Note that the composition
P !
DY+ Chy(X) =5 Chf, (RP(X)) = Chly_(, 1y4(X)

is a group homomorphism.
Since G acts trivially on X, we have

ChY(X) = Ch(X)[t] = [ ] Ch.(X)t".

The map DY changes the degree by a multiple of p — 1. Therefore, for an
element o € Chy(X) we can then write

DY(@)(t) = 3 S (@)t

for some elements

SZJV[(OZ) S Chk—(p—l)i(X>-
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In other words,
SM(a)(t) Z SM(a)t' = 4 * DM (a)(1/t).

Thus, for any scheme X over F' and a smooth variety M containing X as a
closed subscheme we get the reduced power operations for the pair (M, X):

SM: Chy(X) = Chy—po1i(X).

Note that SM lowers the dimension by (p — 1)i.
We also have the total reduced power operation

S =SV ()= =D SM 1 Chy(X) = Chy(X).
Remark 4.3. On the motivic cohomology groups the operation S coincides
with the reduced power
S' H*MF(M, M — X) — H*7 20 DRh=-Diy A — X)),

Properties:

1. Let Y % X — M be closed embeddings with M smooth. Then
SJ'(ixa) = i.(8) a)
for every o € Ch,(Y').

2. (Cartan formula) Let X — M and Y — N be closed embeddings with
M and N smooth. Then

SMN (o x B) = SMa x SVp
for o € Ch,(X) and 5 € Ch,(Y).

4.3. Steenrod operations of cohomological type. Let X be a smooth
variety over F. Set S®* = SX. Thus, S’ is an operation

S': Ch¥*(X) — ChFr=Di(x),
called the reduced power of cohomological type.
Properties:
1. Let f:Y — X be a morphism of smooth varieties over F'. Then
F18*(@) = $°f*(a)
for every a € Ch*(X).
2. (Cartan formula) S*(af) = S*(a)-S*(B) fora,f € Ch"(X), S*(1x) =

ly, i.e., S is a ring endomorphism of Ch*(X).

3. For every o € Ch¥(X),

; aof, ifi =k,
S'a = . .
0, ife>kore<0.
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4.4. Steenrod operations of homological type.

Proposition 4.4. Let X be a scheme and let My and M, be two smooth
varieties containing X. Then

w(Ta,|x) NS = w(Thy | x) N SM2.

Proof. The normal bundle N; of the closed embedding M; — R? (M;) is equal
to Ty |x ®F F, (I = 1,2). Let d; = dim M;. For an element o € Chy(X), we
have

w(Ta,|x, 1/t) N SM(1/t) = 7% . % (Ny) N tF~ 1 DY (a)(t)  (Prop. 4.1)
= th=hd . G (Ny) Ny (Px(a)).

It follows from Proposition 2.6 that the latter is equal to
th=di=d2 % (Ny) N iy (Px(a)).
The result follows. O
Let X be a subscheme of a smooth variety M. For every o € Chy(X) set
So(a) = w(Ty|x) " N SY(a).
By Proposition 4.4, S,(«) is independent of M. The operations
Si + Chy(X) — Chy_p—1)i(X)
are called the reduced powers of homological type.
Properties:
1. If i : Y — X is a projective morphism of schemes over F', then
Se(isa) = 1,(Sex)

for every a € Ch,(Y). In fact, this is a variant of a Riemann-Roch theorem
by I. Panin and A. Smirnov.

2. Sy is the identity.

3. Let a scheme X be embedable in a smooth scheme of dimension d and
let w € Chy(X). Then S;(a) =0 for i ¢ [0,d — k.

If X is smooth, we have the operations S°® and S, on the Chow groups of X
modulo p. For every a € Chy(X) we have

Se(a) = w(Tx) ' NS*(a) =w(-Tx)NS*(a).
In particular,
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Remark 4.5. The homological operation S; is a special case of the cohomo-
logical operation SM if X is affine. Let i : X < A" be a closed embedding.
Since the tangent bundle of A" is trivial, we have

S; = Sﬁ".
5. REDUCED STEENROD ALGEBRA

We fix a prime integer p in this section. Consider the polynomial ring
H = (Z/pZ)[b] = (Z/pZ)[b1, b, . . .]
in infinitely many variables by, by, ... as a graded ring with degb; = p* — 1.
The monomials
b =0
where R ranges over all sequences (r1,rs,...) of non-negative integers such
that almost all of the r;’s are zero, form a basis of H over Z/pZ. We set

7= r - 1),
i>1

Clearly, deg b® = |R].

Denote the scheme SpecH by G. For a commutative Z/pZ-algebra A the
set of A-points

g<A) = Homrings (H7 A)

can be identified with the set of sequences (aq,as,...) of the elements of A
and, therefore, with the set of power series of the form

T+ aya? + azr” + asa? + - € All]].
The composition law (f; * fo)(x) = fo(fi(x)) makes G a group scheme over

Z/pZ and H a graded Hopf Z/pZ-algebra. The co-multiplication morphism
c:H — H ®H is given by the rule

c(by) = > B @b,
i+j=k

We write A, for the graded Hopf Z/pZ-algebra dual to H. Thus, A, is
the graded Hopf algebra such that the d-component of .,Tlp is the Z/pZ-space
dual to the d-component of H. The algebra A, is the reduced Steenrod Z/pZ-
algebra, i.e., the Steenrod Z/pZ-algebra modulo the ideal generated by the
Bockstein element. It can be also considered as the subalgebra of the Steenrod
algebra A, generated by the reduced power operations.

Let {Pf} be the basis of A, dual to the basis {b/'} of H.

We write P’ for the basis element P with R = (4,0,...). The element P°
is the identity of A, and the algebra A, is generated by the P', i > 1. These
generators are subject to the set of defining Adem relations:

[b/p] .
((p—1)(c—1)—1 o
Pb . pP¢ — -1 b+1i (p . Pb+c i, pt
S (1) ( "

i=0 o
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P. Brosnan proved that the power operations S° and S; satisfy the Adem
relations respectively. Hence, for any smooth variety X, the group Ch*(X)
has a structure of a left A,-module (the generator P! acts as S%)), and for
every scheme X, the group Ch,(X) has a structure of a left A,-module (the
generator P acts as S;)). Denote by ST (resp. Sg) the operation induced by
PR on CH,(X) if X is smooth (resp. arbitrary scheme). The operations S%
commute with the pull-back homomorphisms and the operations Sz commute
with the push-forward homomorphisms.

Consider the “generic” power series fye,(z) = 1+bja? ™t + boz?’ =1+ ... over
the ring Z[b]. Write the corresponding multiplicative class wge, = wy,,, in the

form
R
Wyen, = E wprb
R

for unique characteristic classes wg over Z. In particular, if R = (4,0,...), we
have wg = w(,-1); in the old notation.

If X is a smooth variety, the equality S;(1x) = w(—1y:(—Tx)N1x generalizes
as follows: Sg(lx) = wr(—Tx) N 1x for every sequence R.

6. DEGREE FORMULAS

Let X be a scheme over F'. For a closed point x € X we define its degree as
the integer deg(x) = [F(x) : F| and set

nx = ng deg(m),

where the ged is taken over all closed points of X.

Fix a prime integer p # char F. Let X be a projective variety of dimension
d > 0 and let ¢ : X — Spec F' be the structure morphism. For every sequence
R with |R| = d, the group Chy(Spec F') in the commutative diagram

Chy(X) —2%  Chy(X)

qx l lq* =deg

Chy(Spec F') /N Chy(Spec F) —— Z/p

is trivial. Hence the degree of a cycle as € CHy(X) representing the element
Sr([X]) € Cho(X) is divisible by p. The class of the integer deg(ap )/p modulo
nx is independent on the choice of a 7; we denote it by

UR(X) S Z/nXZ

Clearly, p - ug(X) = 0.
If X is a smooth variety, Sr(ly) =

w ( ) N 1x, hence we can take
Oé)Rg = U)R(—Tx) N 1)(. ThUS, deg(wR( ) Nl
x)N1lx

is divisible by p and

v\—/ix:

deg(wn(~T

UR(X) = —|—an

]
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Remark 6.1. The degree of the 0-cycle wr(—Tx)N1x does not change under

field extensions. In particular, it can be computed over an algebraic closure of
F.

Let f: X — Y be a morphism of varieties over F' of the same dimension.

We set
_J [F(X): F(Y)], if fis dominant;
deg(f) = { 0, otherwise.
Thus, if f is projective, then f,(1x) = deg(f) - 1y.
Theorem 6.2. (Degree formula) Let f : X — Y be a morphism of projective

varieties over F of dimension d > 0. Then ny divides nx and for every
sequence R with |R| = d, and for any prime integer p # char F', we have

up(X) =deg(f) - ur(Y) € Z/nyZ.
In particular, if X and Y are smooth, then
deg U}R(—Tx) N 1X deg wR(—Ty) N 1X
(P01 _ ) )11

Proof. 1t follows from the commutativity of the diagram

Chy(X) —225 Chy(X)

a |

Chy(Y) —2%5 Chy(Y)
and the equality f.(1x) = deg(f) - 1y that
f+Sr(1x) = deg(f) - Sr(ly) € Cho(Y)

(mod ny) )

and therefore,
feapy =deg(f) - oy, (mod pCHo(Y)).
Applying the degree homomorphism, we get

deg(ayy) = deg(fuan) = deg(f) - deg(ag)  (mod pny),

whence the result. O

Remark 6.3. The case of sequences R = (i,0,0,...) was considered by
M. Rost.

7. APPLICATIONS

Let X and Y be varieties over a field F', d = dim(X). A correspondence
from X to Y, denoted a: X ~~ Y, is a dimension d algebraic cycle on X x Y.
A correspondence « is called prime if « is given by a prime (irreducible) cycle.
Any correspondence is a linear combination with integer coefficients of prime
correspondences.

Let a: X ~» Y be a prime correspondence. Suppose that « is given by
a closed subvariety Z C X x Y. We define multiplicity of o as the degree
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of the projection Z — X. We extend the notion of multiplicity to arbitrary
correspondences by linearity.

A rational morphism X — Y defines a multiplicity 1 prime correspondence
X ~~ Y given by the closure of its graph. One can think of a correspondence
of multiplicity m as a “generically m-valued morphism”.

We fix a prime integer p and a field F' such that char F' # p. Let R be a
nonzero sequence and let X be a projective variety over F' of dimension |R].
The variety X is called RP-rigid if ug(X) # 0 € Z/nxZ.

We write v, for the p-adic valuation of Q.

Theorem 7.1. Let X and Y be projective varieties over F' and let R be a
sequence such that dim(X) = |R| > 0. Suppose that

(1) There is a correspondence o : X ~~'Y of multiplicity not divisible by p;
(2) X is RP-rigid;
(3) vp(nx) < vp(ny).
Then
(1) dim(X) < dim(Y);
(2) If dim(X) = dim(Y),
(2a) There is a correspondence 5 :Y ~» X of multiplicity not divisible
by p;
(2b) Y is RP-rigid;
(2¢) vp(nx) = vp(ny).
Proof. Suppose that m = dim(X) —dim(Y) > 0 and set Y’ =Y xP%. Clearly,
ny: = ny. We embed Y into Y’ as Y X z where z is a rational point of P}.
We may assume that « is a prime correspondence, replacing if necessary,
a by one of its prime components. Let Z C X X Y be the closed subvariety
representing . We have two natural morphisms f: Z — X and g : Z —
Y — Y’. By assumption, deg(f) is not divisible by p.
We write the degree formulas of Theorem 6.2 for the morphisms f and g¢:

(1) ur(Z) = deg(f) - ur(X) € Z/nxZ,

(2) ur(Z) = deg(g) - ur(Y') € Z/nyZ.

The variety X is RP-rigid and the degree deg(f) is not divisible by p, hence
it follows from (1) that ur(Z) # 0 in Z/nxZ. Since vy(nx) < v,(ny) and p -
ur(Z) = 0, we have ur(Z) # 0in Z/nyZ and it follows from the degree formula
(2) that deg(g) is not divisible by p, so that g is surjective, and ug(Y”’) # 0 in
Z/nyZ. The image of g is contained in Y, therefore Y =Y’ i.e., m = 0 and
dim(X) = dim(Y).

The variety Z defines a correspondence 8 : Y ~~ X of multiplicity deg(g)
not divisible by p. Since ug(Y) = ug(Y’) # 0 in Z/nyZ, it follows that Y
is RP-rigid. Finally, p - ug(Z) = 0 and ug(Z) is nonzero in both Z/nx7 and
Z/nyZ, therefore, we must have v,(nx) = v,(ny). O

Corollary 7.2. The classes ur(X) € Z/nxZ are birational invariants of a
smooth projective variety X .
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8. EXAMPLES

Let X be a complete intersection in P” of m smooth hypersurfaces of degrees
di,ds, ..., d,,. Let L = L., be the restriction on X of the canonical line bundle
on P". Then

[Tx] = [T |x] = > _[L8%] X).
=1
We have
[Ten|x] = (n+ 1)[L] — 1x € Ko(X).
and

Waen(L) = 1+ BP by + WP "oy + ...,
where h = ¢;(L) € Ch'(X) is the class of a hyperplane section. Therefore,

[Twgen(L2%)  TT(L+ (d;h)P~ by + (d;h)P " 'by + . )

Woen(=Tx) =

Ween (L) o (14 hp=1by + hP*~1by + ... )"l
Let R be a sequence such that |R| = dim X =n —m. Since
degh" ™™ =[] d:,
we have
[T+ & o+ d b
degwg(— Hd i Lt 2+

(L+bitbo o) |

Example 8.1. Let X be the Severi-Brauer variety of a central simple algebra
A of degree p". Then X is a twisted form of the projective space PP"~1. For

R= (O,...,O,?,O,...) we have
degwr(—Tx) = —p".
Thus, X is RP-rigid if ny = p”, i.e., A is a division algebra.

Example 8.2. Let X be a smooth hypersurface of degree p in PP". For a
sequence R as above we have

degwr(—Tx) = p(”" ' —p" —1).
Thus, X is RP-rigid if nx = p.
Example 8.3. Let X be a smooth intersection of two quadrics in P4, Then
for R = (2,0,0,...) and p = 2 we have
degwR(—TX) = —4.
Thus, X is R%rigid if ny = 4.
ALEXANDER MERKURJEV, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFOR-

NIA, Los ANGELES, CA 90095-1555, USA
FE-mail address: merkurev@math.ucla.edu



