ESSENTIAL DIMENSION OF FINITE *p*-GROUPS, MINI COURSE, LENS 2008

ALEXANDER S. MERKURJEV

We give a detailed proof of Theorem 5.1 below.

1. A LOWER BOUND FOR $ed_p(G)$

Theorem 1.1. (cf. [1]) Let $f : G \to H$ be a homomorphism of algebraic groups. Then for any H-torsor E over F, we have $\operatorname{ed}_p(G) \ge \operatorname{ed}_p(E/G) - \operatorname{dim}(H)$.

Proof. Let L/F be a field extension and $x = (E', \alpha)$ an object of (E/G)(L). Choose a field extension L'/L of degree prime to p and a subfield $L'' \subset L'$ over F such that tr. deg $(L'') = ed_p(E')$ and there is a G-torsor E'' over L'' with $E''_{L'} \simeq E'_{L'}$.

We shall write Z for the scheme of isomorphisms $\operatorname{Iso}_{L''}(f_*(E''), E_{L''})$ of Htorsors over L''. Clearly, Z is an H-torsor, so $\dim(Z) = \dim(H)$. The image of the morphism Spec $L' \to Z$ over L'' representing the isomorphism $\alpha_{L'}$ is a one point set $\{z\}$ of Z, hence

 $\operatorname{tr.} \deg(L''(z)) \le \operatorname{tr.} \deg(L'') + \dim(Z) = \operatorname{tr.} \deg(L'') + \dim(H).$

The isomorphism $\alpha_{L'}$ descends to an isomorphism of the *H*-torsors $f_*(E'')$ and *E* over L''(z). Hence the isomorphism class of $x_{L'}$ belongs to the image of the map of sets of isomorphism classes induced by the functor $(E/G)(L''(z)) \rightarrow (E/G)(L')$. Therefore,

 $\operatorname{ed}_p(G) \ge \operatorname{ed}_p(E') = \operatorname{tr.} \operatorname{deg}(L'') \ge \operatorname{tr.} \operatorname{deg}(L''(z)) - \dim(H) \ge \operatorname{ed}_p(x) - \dim(H).$ It follows that $\operatorname{ed}_p(G) \ge \operatorname{ed}_p(E/G) - \dim(H).$

2. Algebras and representations

2.1. Twisting. Let G be an algebraic group, $E \to \operatorname{Spec} F$ a (right) G-torsor and X_0 be an "algebraic object" over F (variety, vector space, algebra etc). Assume that the automorphism group $\operatorname{Aut}(X_0)$ has a structure of an algebraic group over F and we are given a homomorphism of algebraic groups $G \to \operatorname{Aut}(X_0)$, i.e., G acts algebraically on X_0 . We shall write $E \times_G X_0$ for the twist of X_0 by E that can be thought of either as the "factor object" of the "product" $E \times_G X_0$ by G (i.e., we identify "points" (eg, x) and (e, gx)), or the twisted form of X_0 given by the image of the class of E under the map

$$H^1(F,G) \to H^1(F,\operatorname{Aut}(X_0)).$$

Date: June, 2008.

Assume in addition that $G = \operatorname{Aut}(X_0)$. Then the map above is a bijection, so a twisted form X of X determines the G-torsor E via the formula $E := \operatorname{Iso}(X_0, X)$.

Example 2.1. Let $X_0 = \text{End}(V)$ be the endomorphism algebra of a vector space V of dimension n over F. Then $\mathbf{PGL}(V)$. A twisted form of X_0 is a central simple algebra A of degree n over F. The corresponding G-torsor is E = Iso(End(V), A). Conversely, if E is a $\mathbf{PGL}(V)$ -torsor, then A is reconstructed from E as follows: $A = E \times_{\mathbf{PGL}(V)} \text{End}(V)$.

2.2. The map β^E . Let

$$(1) 1 \to C \to G \to H \to 1$$

be a central extension of algebraic groups over F and E an H-torsor over F. Consider the homomorphism

$$\beta^E : C^* \to \operatorname{Br}(F)$$

taking a character $\chi: C \to {\mathbf G}_{\mathrm{m}}$ to the image of the class of E under the composition

$$H^1(F,H) \xrightarrow{\partial} H^2(F,C) \xrightarrow{\chi_*} H^2(F,\mathbf{G}_{\mathrm{m}}) = \mathrm{Br}(F),$$

where ∂ is the connecting map for the exact sequence (1).

Consider the exact sequence (1). Let $V \in \operatorname{Rep}^{(\chi)}(G)$ for a character $\chi \in C^*$. As C is central in G, it acts trivially on $\operatorname{End}(V)$, so the G-action on $\operatorname{End}(V)$ boils down to an H-action.

We'd like to compute β^E .

Lemma 2.2. Let $\chi \in C^*$ be a character and $V \in \operatorname{Rep}^{(\chi)}(G)$. Then the class $\beta^E(\chi)$ in $\operatorname{Br}(F)$ is represented by the central simple F-algebra $E \times_H \operatorname{End}(V)$.

Proof. Consider the diagram

The class $\beta^{E}(\chi)$ is equal to the image of $\rho^{*}(E)$ under the connecting map

 $\delta: H^1(F, \mathbf{PGL}(V)) \to H^2(F, \mathbf{G}_{\mathbf{m}}) = \mathrm{Br}(F).$

Note that $H^1(F, \mathbf{PGL}(V))$ classifies both $\mathbf{PGL}(V)$ -torsors and central simple F-algebras of degree dim(V), so that δ takes a central simple algebra to its class in $\mathrm{Br}(F)$.

The $\mathbf{PGL}(V)$ -torsor $\rho^*(E)$ is equal to $E \times_H \mathbf{PGL}(V)$ and the corresponding algebra is

$$A = (E \times_H \mathbf{PGL}(V)) \times_{\mathbf{PGL}(V)} \mathrm{End}(V) = E \times_H \mathrm{End}(V). \qquad \Box$$

 $\mathbf{2}$

2.3. Generic *H*-torsor. Let

$$1 \to C \to G \to H \to 1$$

be an exact sequence of finite groups. Let W be a faithful representation of H and W' an open subset of the affine space of W where H acts freely. Set Y := W'/H. Let E be the generic fiber of the H-torsor $\pi : W' \to Y$. It is a "generic" H-torsor over the function field L := F(Y).

Let $\chi : C \to \mathbf{G}_{\mathrm{m}}$ be a character and $\operatorname{Rep}^{(\chi)}(G)$ the category of all finite dimensional representations ρ of G such that $\rho(c)$ is multiplication by $\chi(c)$ for any $c \in C$.

Theorem 2.3. Let E be a generic H-torsor. Then for any character $\chi \in C^*$, we have ind $\beta^E(\chi) = \gcd \dim(V)$ over all representations V in $\operatorname{Rep}^{(\chi)}(G)$.

2.4. Galois *G*-algebras. Let *S* be a commutative ring and *H* a finite group acting on *S* by ring automorphisms $s \mapsto s^h$. Set

 $R := S^H := \{ s \in S \text{ such that } s^h = s \text{ for all } h \in H \}$

and denote by S * H the crossed product with trivial factors. Namely, S * H consists of formal sums $\sum_{h \in H} h s_h$ with $s_h \in S$. The product is given by the rule (hs)(h's') = (hh')(s's').

Let M be a right S-module. Suppose that H acts on M on the right such that $(ms)^h = m^h s^h$. Then M is a right S*H-module by $m(hs) = m^h s$. Conversely, a right S*H-module is a right S-module together with a right H-action as above. If M is a right S*H-module then the subset M^H of H-invariant elements in M is an R-module. We have a natural S-module homomorphism $M^H \otimes_R S \to M$, $m \otimes s \mapsto ms$.

We say that S is an H-Galois algebra over R is the morphism $\operatorname{Spec} S \to \operatorname{Spec} R$ is an H-torsor.

Proposition 2.4. [2] The following are equivalent:

- (1) S is an H-Galois algebra over R.
- (2) The morphism Spec $S \to \text{Spec } R$ is a H-torsor.
- (3) For any $h \in H$, $h \neq 1$, the elements $s^h s$ with $s \in S$ generate the unit ideal in S.
- (4) For every right S * H-module M, the natural map $M^H \otimes_R S \to M$ is an isomorphism.

Corollary 2.5. Let S be an H-Galois algebra over R. Then the functors between the categories of finitely generated right modules

$$M(R) \to M(S * H) \qquad N \mapsto N \otimes_R S$$
$$M(S * H) \to M(R), \qquad M \mapsto M^H$$

are equivalences inverse to each other.

Remark 2.6. If *H* is a finite group then E = Spec(K) for a Galois *H*-algebra K and $E \times_H \text{End}(V) = (K \otimes_F \text{End}(V))^H$ for a space $V \in \text{Rep}^{(\chi)}(G)$.

2.5. Proof of Theorem 2.3. Let

$$(2) 1 \to C \to G \to H \to 1$$

be an exact sequence of finite groups with C in the center of G. Choose a finite dimensional H-space W such that there is a vector $w \in W$ satisfying $w^h \neq w$ for all $h \in H$, $h \neq 1$. (For example, one can take for W the space of the group algebra FH and w = 1.) Let S denote the symmetric algebra of W. The group H acts on S and set $R = S^H$. We have Y = Spec(R) and L = F(R) the quotient field of R.

Set

$$r = \prod_{h \neq h'} (w^h - w^{h'}).$$

We have $r \in R$ and $r \neq 0$. By Proposition 2.4(3), the localization S_r is an *H*-Galois algebra over R_r .

Let $\chi : C \to F^{\times}$ be a character of C. Note that G acts upon S via the group homomorphism $G \to H$, so we have the ring S * G is defined. We write $\mathcal{M}^{(\chi)}(S * G)$ for the full subcategory of $\mathcal{M}(S * G)$ consisting of all modules M satisfying $m^g = \chi(g)m$ for all $m \in M$ and $g \in C$. We also write $K^{(\chi)}(S * G)$ for the Grothendieck group of $\mathcal{M}^{(\chi)}(S * G)$.

Set $\operatorname{Rep}^{(\chi)}(G) = M^{(\chi)}(FG)$. Let $V \in \operatorname{Rep}^{(\chi)}(G)$. The natural G-action of G on $\operatorname{End}_F(V)$ factors through an H-action. Set $V_{S_r} = V \otimes_F S_r$. We have

 $\operatorname{End}(V) \otimes_F S_r \simeq \operatorname{End}_{S_r}(V_{S_r}).$

Consider the following algebra over R_r :

$$\mathcal{A} = \operatorname{End}_{S_r} \left(V_{S_r} \right)^H.$$

By Proposition 2.4(4),

$$\mathcal{A} \otimes_{R_r} S_r \simeq \operatorname{End}_{S_r}(V_{S_r}),$$

hence \mathcal{A} is an Azumaya R_r -algebra (by descent as S_r is a faithfully flat R_r -algebra).

Recall that L = F(R) is the quotient field of R. Set

(3)
$$A = \mathcal{A} \otimes_{R_r} F(R).$$

Clearly, A is a central simple algebra over F(R) of degree dim V. We also have

$$A = \left(\operatorname{End}(V) \otimes_F F(S) \right)^H,$$

where F(S) is the quotient field of S. By Lemma 2.2, $[A] = \beta^{E}(\chi)$ in Br(L). The localization provides a surjective homomorphism

(4)
$$K(\mathcal{A}) \to K(\mathcal{A}).$$

By Corollary 2.5, the category of right \mathcal{A} -modules and right $\operatorname{End}_{S_r}(V_{S_r})*H$ modules are equivalent. Thus the functor $M \mapsto M^H$ induces an isomorphism

(5)
$$K(\operatorname{End}_{S_r}(V_{S_r}) * H) \xrightarrow{\sim} K(\mathcal{A}).$$

The category of right $\operatorname{End}_{S_r}(V_{S_r}) * H$ -modules is equivalent to the subcategory of right $\operatorname{End}_{S_r}(V_{S_r}) * G$ -modules with C acting trivially. Hence we have an isomorphism

(6)
$$K^{(1)}\left(\operatorname{End}_{S_r}(V_{S_r}) * G\right) \xrightarrow{\sim} K\left(\operatorname{End}_{S_r}(V_{S_r}) * H\right).$$

By Morita equivalence, the functors

$$M(S_r * G) \to M(\operatorname{End}_{S_r}(V_{S_r}) * G), \qquad N \mapsto N \otimes_F V^*$$

$$M(\operatorname{End}_{S_r}(V_{S_r}) * G) \to M(S_r * G), \qquad M \mapsto M \otimes_{\operatorname{End}(F)} V$$

are equivalences inverse to each other. Moreover, under these equivalences, the subcategory $M^{(\chi)}(S_r * G)$ corresponds to $M^{(1)}(\operatorname{End}_{S_r}(V_{S_r}) * G)$. Hence we get an isomorphism

(7)
$$K^{(\chi)}(S_r * G) \xrightarrow{\sim} K^{(1)}(\operatorname{End}_{S_r}(V_{S_r}) * G).$$

By localization, we have a surjection

(8)
$$K^{(\chi)}(S*G) \to K^{(\chi)}(S_r*G).$$

We will be using

Theorem 2.7. [5, Th. 7] Let $B = B_0 \oplus B_1 \oplus \ldots$ be a graded Noetherian ring. Suppose

(1) B is flat as a left B_0 -module,

(2) B_0 is of finite Tor-dimension as a left B-module.

Then the exact functor $M(B_0) \rightarrow M(B)$ taking an S to $S \otimes_{B_0} B$ yields an isomorphism

 $K(B_0) \xrightarrow{\sim} K(B).$

Example 2.8. Let *H* be finite group and $W \in \text{Rep}(H)$ over a field *F*. The (polynomial) ring S := S(W) is graded with the zero component *F*. Let

$$B := \mathbf{S}(W) * H.$$

We view *B* as a graded ring with $B_0 = F * H = FH$ (the group algebra). We claim that *B* satisfies the conditions of Theorem 2.7. Note that B_i is a free left B_0 -module for every *i*. It is known that the global dimension of the ring *S* is finite. Choose a finite projective resolution $P^{\bullet} \to F$ of *S*-modules. As *B* is a free right *S*-module, $B \otimes_S P^{\bullet} \to B \otimes_S F$ is a finite projective resolution of $B \otimes_S F = FH = B_0$. Hence B_0 is of finite Tor-dimension as a left *B*-module.

Finally, by Theorem 2.7 and Example 2.8, we have an isomorphism

(9)
$$K(\operatorname{Rep}^{(\chi)}(G)) = K^{(\chi)}(FG) \xrightarrow{\sim} K^{(\chi)}(S*G)$$

The surjective composition $K(\operatorname{Rep}^{(\chi)}(G)) \to K(A)$ of the maps (11)-(9) takes the class of a $U \in \operatorname{Rep}^{(\chi)}(G)$ to the class of the right A-module

$$\left(U\otimes_F V^*\otimes_F F(S)\right)^H$$

of dimension dim $U \cdot \dim V$ over the field F(R). On the other hand, the group K(A) is infinite cyclic group generated by the class of a simple module of dimension $\operatorname{ind}(A) \cdot \dim V$ over F(R). The result follows.

Remark 2.9. The surjective map $K(\operatorname{Rep}^{(\chi)}(G)) \to K(A)$ constructed in the proof depends on the choice of V and takes [V] to [A].

3. CANONICAL p-DIMENSION OF A PRODUCT OF SEVERI-BRAUER VARIETY

Let F be an arbitrary field and p a prime integer, $D \subset Br_p(F)$ be a subgroup. We write $ed_p(D)$ for the essential p-dimension of the class of splitting field extensions for D.

Theorem 3.1. Let $D \subset Br_p(F)$ be a finite subgroup of rank r. Then

$$\operatorname{ed}_p(D) = \min \sum_{i=1}^{\prime} \left(\operatorname{ind}(a_i) - 1 \right)$$

where the minimum is taken over all bases a_1, \ldots, a_r of D over $\mathbb{Z}/p\mathbb{Z}$.

Let $a = \{a_1, \ldots, a_r\}$ be a basis of D. For any i let A_i be a central division F-algebra (of degree $\operatorname{ind}(a_i)$) representing a_i and $P_i = SB(A_i)$. Set $P_a := P_1 \times P_2 \times \cdots \times P_r$. Note that P_a depends on the choice of the basis a.

The classes of splitting fields of P and D coincide, hence

$$\operatorname{cdim}_p(D) = \operatorname{cdim}_p(P) \le \operatorname{dim}(P) = \sum_{i=1}^r (\operatorname{ind}(a_i) - 1).$$

We shall produce a basis a_1, \ldots, a_r of D such that $\operatorname{cdim}_p(P_a) = \operatorname{dim}(P_a)$, i.e., P_a is not p-compressible.

We say that a basis $\{a_1, a_2, \ldots, a_r\}$ of D is minimal if for any $i = 1, \ldots, r$ and any element $d \in D$ outside of the subgroup generated by a_1, \ldots, a_{i-1} , we have ind $d \ge \text{ind } a_i$.

One can construct a minimal basis of D by induction as follows. Let a_1 be a nonzero element of D of minimal index. If the elements a_1, \ldots, a_{i-1} are already chosen for some $i \leq r$, we take for the a_i an element of D of the minimal index among the elements outside of the subgroup generated by a_1, \ldots, a_{i-1} .

Thus, it is suffices to prove the following

Proposition 3.2. Let $D \subset Br_p(F)$ a subgroup of dimension r and $a = \{a_1, a_2, \ldots, a_r\}$ a minimal basis of D. Then the variety P_a constructed above is not p-compressible.

Remark 3.3. It is not obvious that the sum $\sum_{i=1}^{r} \operatorname{ind} a_i$ is the smallest for a minimal basis $\{a_1, a_2, \ldots, a_r\}$. However, this fact is a consequence of Proposition 3.2.

Fix a minimal basis a of D and set $P := P_a$. Let $d = \dim P$ and $\alpha \in CH^d(P \times P)$. The first multiplicity $\operatorname{mult}_1(\alpha)$ of α is the image of α under the push-forward map $CH^d(P \times P) \to CH^0(P) = \mathbb{Z}$ given by the first projection $P \times P \to P$. Similarly, we define the second multiplicity $\operatorname{mult}_2(\alpha)$.

Proposition 3.4. Let $D \subset Br_p(F)$ a subgroup of dimension $r, a = \{a_1, a_2, \ldots, a_r\}$ a minimal basis of D and $P = P_a$. Then for any element $\alpha \in CH^d(P \times P)$, we have

$$\operatorname{mult}_1(\alpha) \equiv \operatorname{mult}_2(\alpha) \mod p.$$

Now we show that Proposition 3.4 implies Proposition 3.2.

As $\operatorname{cdim}_p P \leq \operatorname{cdim} P \leq \operatorname{dim} P$, it suffices to show that $\operatorname{cdim}_p P = \operatorname{dim} P$. Let $Z \subset P$ be a closed subvariety and $f : P' \dashrightarrow P$ and $g : P' \dashrightarrow Z$ dominant rational morphisms such that deg f is prime to p. Let α be the class in $\operatorname{CH}^d(P \times P)$ of the closure in $P \times P$ of the image of $f \times g : P' \dashrightarrow P \times Z$. As $\operatorname{mult}_1(\alpha) = \operatorname{deg} f$ is prime to p, by Proposition 3.4, we have $\operatorname{mult}_2(\alpha) \neq 0$, i.e., Z = P. It follows that P is not p-compressible.

Thus, it suffices to prove Proposition 3.4.

Let A be a central simple algebra in $\operatorname{Br}_p(F)$ and P = SB(A). We shall need to study the Grothendieck group $K_0(P)$. In the split case, P is a projective space of dimension deg(A) - 1, hence

$$K_0(P) = \coprod_{0 \le j < \deg(A)} \mathbb{Z} x^j,$$

where x_i is the class of $\mathcal{O}(-1)$. Then h := 1 - x is the class of a hyperplane and $h^{\deg A} = 0$. Consider the polynomial ring $\mathbb{Z}[x]$. We have a ring isomorphism

$$K_0(P) = \mathbb{Z}[x]/(h^{\deg A}).$$

On the other hand, we can embed $K_0(P)$ into $\mathbb{Z}[x]$ as the subgroup generated by the monomials x^j with $j < \deg A$.

In the general case, by the theorem $[5, \S 9]$ of Quillen,

$$K_0(P) \simeq \coprod_{0 \le j < \deg(A)} K_0(A^{\otimes j}).$$

The image of the natural map $K_0(A^{\otimes j}) \to K_0(\overline{A}^{\otimes j}) = \mathbb{Z}$, (where the "bar" denote objects over a splitting field) is equal to $\operatorname{ind}(A^{\otimes j})\mathbb{Z}$. The image of the injective homomorphism $K_0(P) \to K_0(\overline{P})$ identifies $K_0(P)$ with the subgroup generated by $\operatorname{ind}(A^{\otimes j}) \mathbb{Z} \ x^j$ for all $j \geq 0$, more precisely,

$$K_0(P) = \prod_{0 \le j < \deg(A)} \operatorname{ind}(A^{\otimes j}) \mathbb{Z} x^j,$$

of $K_0(\overline{P})$. Let $\operatorname{ind}(A) = p^n$. Write for any $j \ge 0$:

$$e(j) = \begin{cases} n, & \text{if } p \text{ does not divide } j; \\ 1, & \text{otherwise.} \end{cases}$$

Thus, $\operatorname{ind}(A^{\otimes j}) = p^{e(j)}$ and the ring $K_0(P)$ depends only on n.

Denote by K(n) the subgroup of $\mathbb{Z}[x]$ generated by the monomials $p^n x^j$ if j is not divisible by p and x^j if j is divisible by p. Clearly, K(n) is a subring of $\mathbb{Z}[x]$.

We have a natural surjective ring homomorphism $K(n) \to K_0(P)$. Write h := 1 - x. As $p^n | \deg(A)$ we have $h^{\deg A} \in K(n)$. As the image of h in $K_0(\overline{P})$ is the class of a hyperplane, the image of $h^{\deg A}$ in $K_0(P)$ is zero.

Proposition 3.5. The induced homomorphism $K(m)/(h^{\deg A}) \to K_0(P)$ is an isomorphism.

Proof. Set $d = \deg A$. By induction on k we show that the quotient ring $K(m)/(h^d)$ is additively generated by $p^{e(j)}x^j$ with j < d. Indeed, the polynomial $x^d - (-h)^d = x^d - (x-1)^d$ is a linear combination with integer coefficients of $p^{e(j)}x^j$ with j < d. Consequently, for any $k \ge d$, multiplying the equality by $p^{e(k-d)}x^{k-d} = p^{e(k)}x^{k-d}$, we see that the polynomial $p^{e(k)}x^k = p^{e(k)}x^{i+k}$ modulo the ideal (h^d) is a linear combination with integer coefficients of the $p^{e(j)}x^j$ with j < k.

Corollary 3.6. Let g be a polynomial in h lying in K(n) for some $m \ge 0$. Let bh^{i-1} be a monomial of g such that i is divisible by p^n . Then b is divisible by p^n .

Proof. By Proposition 3.5, the factor ring $K(n)/(h^i)$ is isomorphism to $K_0(P)$ where P is the Severi-Brauer variety of an algebra of index p^n and degree i. Thus, $K(n)/(h^i)$ is additively generated by $p^{e(j)}(1-h)^j$ with j < i. Only the generator $p^{e(i-1)}(1-h)^{i-1} = p^n(1-h)^{i-1}$ has a nonzero h^{i-1} -coefficient and that coefficient is divisible by p^n .

Note that we have a canonical embedding of groups $K_0(P) \subset K(n)$.

Now consider a more general situation. Let A_1, A_2, \ldots, A_r be central simple algebras in $\operatorname{Br}_p(F)$, $P_i = SB(A_i)$ and $P = P_1 \times \cdots \times P_r$. We shall need to study the Grothendieck group $K_0(P)$. In the split case (when all the algebras A_i split), P is the product of r projective spaces of dimensions $\operatorname{deg}(A_1) 1, \ldots, \operatorname{deg}(A_r) - 1$ respectively. Write $x_i \in K(\overline{P})$ for the pullback of the class of $\mathcal{O}(-1)$ on the *i*-th component of the product and set

$$x^j = x_1^{j_1} \cdots x_r^j$$

for a multi-index $j = (j_1, \ldots, j_r)$. We also write $0 \le j < \deg A$ for a multiindex j such that $0 \le j_i < \deg A_i$ for all $i = 1, \ldots, r$.

We have

$$K_0(P) = \coprod_{0 \le j < \deg A} \mathbb{Z} x^j,$$

Then $h_i := 1 - x_i$ is the class of a hyperplane on the *i*-th component and $h_i^{\deg A_i} = 0$. Consider $x = (x_1, \ldots, x_r)$ as a tuple of variables and the polynomial ring $\mathbb{Z}[x]$. We have

$$K_0(P) = \mathbb{Z}[x]/(h_1^{\deg A_1}, \dots, h_r^{\deg A_r}).$$

In the general case, by Quillen's theorem,

$$K_0(P) \simeq \coprod_{0 \le j < \deg A} K_0(A^{\otimes j}),$$

where $A^{\otimes j} = A_1^{\otimes j_1} \otimes \cdots \otimes A_r^{\otimes j_r}$. The image of the injective homomorphism $K_0(P) \to K_0(\overline{P})$ identifies $K_0(P)$ with the subgroup

$$K_0(P) = \prod_{0 \le j < \deg A} \operatorname{ind}(A^{\otimes j}) \mathbb{Z} x^j,$$

of $K_0(\overline{P})$.

Suppose now that the algebras A_i represent a minimal basis $a = \{a_1, \ldots, a_r\}$ of the subgroup D. Set $\operatorname{ind}(a_i) = p^{n_i}$ and $a^j = a_1^{j_1} \cdots a_r^{j_r} \in \operatorname{Br}_p(F)$ for a multiindex $j = (j_1, \ldots, j_r) \ge 0$. Recall that by the definition of a minimal basis, $0 \le n_1 \le n_2 \le \cdots \le n_r$ and $\log_p \operatorname{ind}(a^j) \ge n_k$ with the largest k such that j_k is not divisible by p.

Let us introduce the following notation. Let $r \ge 1$ and $0 \le n_1 \le n_2 \le \cdots \le n_r$ be integers. For all $j = (j_1, \ldots, j_r) \ge 0$, we define the number e(j) as follows:

$$e(j) = \begin{cases} 0, & \text{if all the } j_1, \dots, j_r \text{ are divisible by } p; \\ n_k, & \text{with the largest } k \text{ such that } j_k \text{ is not divisible by } p. \end{cases}$$

Thus, we have

 $\log_p \operatorname{ind}(a^j) \ge e(j).$

Let $K = K(n_1, \ldots, n_r)$ be the subgroup of the polynomial ring $\mathbb{Z}[x]$ in r variables $x = (x_1, \ldots, x_r)$ generated by the monomials $p^{e(j)}x^j$ for all $j \ge 0$. In fact, K is a subring of $\mathbb{Z}[x]$. By construction, we have canonical embeddings of groups

$$K_0(P) \subset K \subset \mathbb{Z}[x].$$

We set $h = (h_1, \dots, h_r)$ with $h_i = 1 - x_i \in \mathbb{Z}[x]$. We have $\mathbb{Z}[x] = \mathbb{Z}[h].$

Proposition 3.7. Let $f = f(h) \in K$ be a nonzero polynomial and bh^i for a multi-index $i \geq 0$ be a monomial of the least degree of f. Assume that the integer b is not divisible by p. Then $p^{n_1} | i_1, \ldots, p^{n_r} | i_r$.

Proof. We proceed by induction on $m = r + n_1 + \cdots + n_r \ge 1$. The case m = 1 is trivial. If m > 1 and $n_1 = 0$, then

$$e(j) = e(j'),$$

where $j' = (j_2, \ldots, j_r)$. It follows that

$$K = K(n_2, \ldots, n_r)[x_1] = K(n_2, \ldots, n_r)[h_1].$$

Write f in the form

$$f = \sum_{i \ge 0} h_1^i \cdot g_i$$

with $g_i = g_i(h_2, \ldots, h_r) \in K(n_2, \ldots, n_r)$. Then $bh_2^{i_2} \ldots h_r^{i_r}$ is the monomial of the least degree of g_{i_1} . We can apply the induction to $g_{i_1} \in K(n_2, \ldots, n_r)$.

In what follows we assume that $n_1 \ge 1$.

Since $K(n_1, n_2, \ldots, n_r) \subset K(n_1 - 1, n_2, \ldots, n_r)$, by the induction hypothesis $p^{n_1-1} | i_1, p^{n_2} | i_2, \ldots, p^{n_r} | i_r$. It remains to show that i_1 is divisible by p^{n_1} .

Consider the additive operation $\varphi \colon \mathbb{Z}[x] \to \mathbb{Q}[x]$ defined by

$$\varphi(g) = \frac{1}{p} x_1 \cdot \frac{\partial g}{\partial x_1}$$

We have

$$\varphi(x^j) = \frac{j_1}{p} x^j.$$

It follows that

$$\varphi(K) \subset K(n_1 - 1, n_2 - 1, \dots, n_r - 1) \subset K(n_1 - 1)[x_2, \dots, x_r]$$

and

$$\varphi(h^j) = -\frac{j_1}{p} h_1^{j_1-1} h_2^{j_2} \cdots h_r^{j_r} + \frac{j_1}{p} j_1 h_1^{j_1} h_2^{j_2} \cdots h_r^{j_r}$$

Since $bh_1^{i_1} \cdots h_r^{i_r}$ is a monomial of the lowest total degree of the polynomial f, it follows that $-\frac{bi_1}{p} h_1^{i_1-1} h_2^{i_2} \cdots h_r^{i_r}$ is a monomial of $\varphi(f)$ considered as a polynomial in h. As

$$\varphi(f) \in K(n_1 - 1)[x_2, \dots, x_r] ,$$

we see that $-\frac{bi_1}{p} h_1^{i_1-1}$ is a monomial of a polynomial from $K(n_1-1)$. It follows that $\frac{i_1}{p}$ is an integer and by Corollary 3.6, this integer is divisible by p^{n_1-1} . Therefore $p^{n_1} | i_1$.

Let Y be a scheme over the field F. We write $\operatorname{CH}(Y)$ for the Chow group of Y and set $\operatorname{Ch}(Y) = \operatorname{CH}(Y)/p \operatorname{CH}(Y)$. We define $\operatorname{Ch}(\overline{Y})$ as the colimit of $\operatorname{Ch}(Y_L)$ where L runs over all field extensions of F. Thus for any field extension L/F, we have a canonical homomorphism $\operatorname{Ch}(Y_L) \to \operatorname{Ch}(\overline{Y})$. This homomorphism is an isomorphism if Y = P, the variety defined above, and L is a splitting field of P.

We define $\overline{\mathrm{Ch}}(Y)$ to be the image of the homomorphism $\mathrm{Ch}(Y) \to \mathrm{Ch}(\overline{Y})$.

Proposition 3.8. Let $P = P_a$ for a minimal basis *a*. Then we have $\overline{Ch}^j(P) = 0$ for any j > 0.

Proof. Let $K_0(P)$ be the Grothendieck group of P. We write $K_0(\overline{P})$ for the colimit of $K_0(P_L)$ taken over all field extensions L/F. The group $K_0(\overline{P})$ is canonically isomorphic to $K_0(P_L)$ for any splitting field L of P. Each of the groups $K_0(P)$ and $K_0(\overline{P})$ is endowed with the topological filtration. The subsequent factor groups $G^j K_0(P)$ and $G^j K_0(\overline{P})$ of these filtrations fit into the commutative square

$$CH^{j}(P) \longrightarrow G^{j}K_{0}(P)$$

$$\downarrow \qquad \qquad \downarrow$$

$$CH^{j}(\overline{P}) \longrightarrow G^{j}K_{0}(\overline{P})$$

where the bottom map is an isomorphism as \overline{P} is split. Therefore it suffices to show that the image of the homomorphism $G^j K_0(P) \to G^j K_0(\overline{P})$ is divisible by p for any j > 0.

The ring $K_0(P)$ is identified with the quotient of the polynomial ring $\mathbb{Z}[h]$ by the ideal generated by $h_1^{\operatorname{ind} a_1}, \ldots, h_r^{\operatorname{ind} a_r}$. Under this identification, the element h_i is the pull-back to P of the class of a hyperplane in P_i over a splitting field and the *j*-th term $K_0(\overline{P})^{(j)}$ of the filtration is generated by the classes of monomials of degree at least *j*. The group $G^j K_0(\overline{P})$ is identified with the group of all homogeneous polynomials of degree *j*.

Recall that

$$K_0(P) \subset K(n_1,\ldots,n_r) \subset \mathbb{Z}[x],$$

where $n_i = \log_p(ind(a_i))$.

An element of $K_0(P)^{(j)}$ with j > 0 is a polynomial f in h of degree at least j. The image of f in $G^j K_0(\overline{P})$ is the j-th homogeneous part f_j of f. As the degree of f with respect to h_i is less than ind a_i , it follows from Proposition 3.7 that all the coefficients of f_j are divisible by p.

Now we prove Proposition 3.4. The homomorphism

$$f: \mathrm{CH}^d(P \times P) \to (\mathbb{Z}/p\mathbb{Z})^2,$$

taking an $\alpha \in \operatorname{CH}^d(P \times P)$ to $(\operatorname{mult}_1(\alpha), \operatorname{mult}_2(\alpha))$ modulo p, factors through the group $\overline{\operatorname{Ch}}^d(P \times P)$. Since for any i, any projection $P_i \times P_i \to P_i$ is a projective bundle, by the Projective Bundle Theorem, the Chow group $\overline{\operatorname{Ch}}^d(P \times P)$ is a direct some of several copies of $\overline{\operatorname{Ch}}^i(P)$ for some i's and the value i = 0appears once. By Proposition 3.8, the dimension over $\mathbb{Z}/p\mathbb{Z}$ of the vector space $\overline{\operatorname{Ch}}^d(P \times P)$ is equal to 1 and consequently the dimension of the image of f is at most 1. Since the image of the diagonal class under f is (1, 1), the image of f is generated by (1, 1).

4. Essential and canonical p-dimension of gerbes banded by $(\mu_p)^s$

If \mathcal{X} is a gerbe banded by C then we have pairings

$$BC \times \mathcal{X} \to \mathcal{X}, \quad (t, x) \mapsto t + x,$$

 $\mathcal{X} \times \mathcal{X} \to BC, \quad (x, x') \mapsto x - x'.$

We have the associativity property: (t + x) - x' = t + (x - x').

In this section we relate the essential and canonical *p*-dimensions of gerbes banded by $(\boldsymbol{\mu}_p)^s$ where $s \ge 0$.

Proposition 4.1. Let \mathcal{X} be a gerbe banded by C. Then

$$\operatorname{ed}_p(\mathcal{X}) \leq \operatorname{cdim}_p(\mathcal{X}) + \operatorname{ed}_p(\mathrm{B}C).$$

Proof. Let L/F be a field extension, $x \in \mathcal{X}(L)$, L'/L a finite field extension of degree prime to p and a subfield $K \subset L'$ such that $\mathcal{X}(K) \neq \emptyset$ and $\operatorname{cdim}_p(\mathcal{X}) = \operatorname{tr.deg}_F(K)$. Take any $y \in \mathcal{X}(K)$ and set $t := x_{L'} - y_{L'} \in \operatorname{BC}(L')$. Choose a field extension L''/L' of degree prime to p, a subfield $K' \subset L''$ over F and

 $t' \in BC(K')$ with $t'_{L''} = t_{L''}$ and tr. $\deg_F(K') = \operatorname{ed}_p(t)$. Then $x_{L''} = t'_{L''} + y_{L''}$ is defined over KK', hence

$$\operatorname{ed}_{p}(x) \leq \operatorname{tr.deg}_{F}(KK') \leq \operatorname{tr.deg}_{F}(K) + \operatorname{tr.deg}_{F}(K') = \operatorname{cdim}_{p}(\mathcal{X}) + \operatorname{ed}_{p}(t) \leq \operatorname{cdim}_{p}(\mathcal{X}) + \operatorname{ed}_{p}(BC). \quad \Box$$

Question 4.2. Let \mathcal{X} be a gerbe banded by C. Is it true that

$$\operatorname{ed}_p(\mathcal{X}) = \operatorname{cdim}_p(\mathcal{X}) + \operatorname{ed}_p(\mathrm{B}C)?$$

In the following theorem we show that the answer is "yes" is $C = (\boldsymbol{\mu}_p)^s$ when p is a prime integer.

Let \mathcal{X} a gerbe banded by $C = (\boldsymbol{\mu}_p)^s$ over F. The gerbe \mathcal{X} is given by an element in $H^2(F, C) = \operatorname{Br}_p(F)^s$, i.e., by an *s*-tuple of central simple algebras A_1, A_2, \ldots, A_s with $[A_i] \in \operatorname{Br}_p(F)$. Let P be the product of the Severi-Brauer varieties $P_i := \operatorname{SB}(A_i)$ and D the subgroup of $\operatorname{Br}_p(F)$ generated by the $[A_i]$, $i = 1, \ldots, s$. Note that the classes of splitting fields for \mathcal{X} , D and P coincide. Moreover, if R is a local commutative F-algebra then the following are equivalent:

1. $\mathcal{X}(R) \neq \emptyset$.

2. $P(R) \neq \emptyset$.

3. The algebras A_i are split by R.

Notation: an object $z \in BC(R)$ defines the isomorphism class in $H^1_{\acute{e}t}(R,C) = (R^{\times}/R^{\times p})^s$. We write $z_i \in R^{\times}$ for the components of z.

Theorem 4.3. Let p be a prime integer and \mathcal{X} a gerbe banded by $C = (\boldsymbol{\mu}_p)^s$ over F. Then

$$\operatorname{ed}_p(\mathcal{X}) = \operatorname{cdim}_p(\mathcal{X}) + s.$$

Proof. In view of Proposition 4.1, it suffices to prove the inequality $\operatorname{ed}_p(\mathcal{X}) \geq \operatorname{cdim}_p(P) + s$.

Let \mathcal{C} be the class of splitting fields for \mathcal{X} (and for P). Choose a minimal field in \mathcal{C} , i.e., a field $K \in \mathcal{C}$ satisfying tr. deg_F(K) = ed^{\mathcal{C}}_p(K) = cdim_p(\mathcal{X}). Choose also an object $x \in \mathcal{X}(K)$. Set $L := K(t_1, \ldots, t_s)$ and $x' := t + x_L \in \mathcal{X}(L)$, where $t := (t_1, \ldots, t_s) \in BC(L)$. It is sufficient to prove the inequality ed_p(x') \geq cdim_p(\mathcal{X}) + s.

Let L'/L be a finite field extension of degree prime to $p, L'' \subset L'$ a subfield over F and $y \in \mathcal{X}(L'')$ such that $y_{L'} = x'_{L'}$. It suffices to show that tr. $\deg_F(L'') \geq \operatorname{cdim}_p(\mathcal{X}) + s$.

Let $L_i := K(t_i, \ldots, t_s)$ and v_i be the discrete valuation of L_i corresponding to the variable t_i for $i = 1, \ldots, s$. We construct a sequence of field extensions L'_i/L_i of degree prime to p and discrete valuations v'_i of L'_i for $i = 1, \ldots, s$ by induction on i as follows. Set $L'_1 = L'$. Suppose the fields L'_1, \ldots, L'_i and the valuations v'_1, \ldots, v'_{i-1} are constructed. By Lemma 7.1, there is a valuation v'_i of L'_i with residue field L'_{i+1} extending the discrete valuation v_i of L'_i with the ramification index e_i and the degree $[L'_{i+1}: L_{i+1}]$ prime to p.

The composition v' of the discrete valuations v'_i is a valuation of L' with residue field K' of degree over K prime to p. A choice of prime elements in all the L'_i identifies the group of values of v' with \mathbb{Z}^s . Moreover, for every $i = 1, \ldots, s$, we have

$$v'(t_i) = e_i \varepsilon_i + \sum_{j > i} a_{ij} \varepsilon_j$$

where the ε_i 's denote the standard basis elements of \mathbb{Z}^s and $a_{ij} \in \mathbb{Z}$. It follows that the columns $v'(t_i)$ are linearly independent modulo p.

Write v'' for the restriction of v' on L''. Claim: rank(v'') = s.

To prove the claim let $R'' \subset L''$ be the valuation ring of v''. As $P(L'') \neq \emptyset$ and P is complete then $P(R'') \neq \emptyset$. It follows that $\mathcal{X}(R'') \neq \emptyset$. Choose any $x'' \in \mathcal{X}(R'')$ and set $z := y - x''_{L''} \in BC(L'')$. Hence

$$z_{L'} = y_{L'} - x_{L'}'' = (t_{L'} + x_{L'}) - x_{L'}'' = t_{L'} + (x_{L'} - x_{L'}'').$$

Note that the element $x_{L'} - x''_{L'}$ is in the image of $BC(R') \to BC(L')$, where $R' \subset L'$ is the valuation ring of v'. Thus, there exist $r_i \in R'^{\times}$ and $v_i \in L'^{\times}$ such that

$$z_i = t_i \cdot r_i \cdot v_i^p$$

and hence $v''(z_i) \equiv v'(t_i)$ modulo p for all $i = 1, \ldots, s$. It follows that the columns $v''(z_i)$ are linearly independent modulo p and hence generate a submodule of rank s in \mathbb{Z}^s . This means that $\operatorname{rank}(v'') = s$, proving the claim.

Let K'' be the residue field of v''. As $K \in \mathcal{C}$, $K'' \subset K'$, [K':K] is prime to p and K is minimal, we have tr. $\deg_F(K'') = \operatorname{tr.} \deg_F(K)$. It follows that

tr.
$$\deg_F(L'') \ge \operatorname{tr.} \deg_F(K'') + \operatorname{rank}(v'') = \operatorname{tr.} \deg_F(K) + s = \operatorname{cdim}_p(\mathcal{X}) + s.$$

5. Main Theorem

Theorem 5.1. (cf. [4]) Let G be a finite group, p be prime integer and F a field of characteristic different from p. Then $ed_p(G)$ is equal to the least dimension of a faithful H-space of a Sylow p-subgroup H of G over the field $F(\xi_p)$.

We have $\operatorname{ed}_p(G) = \operatorname{ed}_p(H) = \operatorname{ed}_p(H_{F(\xi_p)})$. Hence $\operatorname{ed}_p(G)$ is at most the dimension of a faithful *H*-space of a Sylow *p*-subgroup *H* of *G* over the field $F(\xi_p)$. Thus we may suppose that *G* is a *p*-group, *F* contains *p*-th roots of unity, and we need to show that there is a faithful representation *V* of *G* with $\operatorname{ed}_p(G) \geq \dim(V)$.

Denote by C the subgroup of all central elements of G of exponent p and set H = G/C, so we have an exact sequence

(10)
$$1 \to C \to G \to H \to 1.$$

Let $E \to \operatorname{Spec} F$ be an *H*-torsor over *F*. Let $C^* := \operatorname{Hom}(C, \mathbf{G}_m)$ denote the character group of *C*. The *H*-torsor *E* over *F* yields a homomorphism

$$\beta^E : C^* \to \operatorname{Br}(F)$$

as in Section 2.2. Note that as $\mu_p \subset F^{\times}$, so we can identify C with $(\boldsymbol{\mu}_p)^s$.

Consider the gerbe $\mathcal{X}^E := E/G$ banded by C. The classes of splitting fields of the gerbe \mathcal{X}^E and the subgroup $\operatorname{Im}(\beta^E)$ coincide.

By Theorem 6.3, applied to the subgroup $\operatorname{Im}(\beta^E) \subset \operatorname{Br}(F)$, we can complete any basis of $\operatorname{Ker}(\beta^E)$ to a basis $\chi_1, \chi_2, \ldots, \chi_s$ of C^* over $\mathbb{Z}/p\mathbb{Z}$ such that

$$\operatorname{cdim}_p(\mathcal{X}^E) = \operatorname{cdim}_p(\operatorname{Im}(\beta^E)) = \sum_{i=1}^s (\operatorname{ind} \beta^E(\chi_i) - 1).$$

It follows from Theorem 4.3 that

(11)
$$\operatorname{ed}_{p}(\mathcal{X}^{E}) = \operatorname{cdim}_{p}(\mathcal{X}^{E}) + s = \sum_{i=1}^{s} \operatorname{ind} \beta^{E}(\chi_{i}).$$

Now we choose specific E, namely a generic H-torsor over a field extension L of F.

Note that dimension of every irreducible representation of G is a power of p. Indeed, let q be the order of G. It is known that every irreducible representation of G is defined over the field $K := F(\mu_q)$. Since F contains p-th roots of unity, the degree [K : F] is a power of p. Let V be an irreducible G-space. Write V as a direct sum of V_i over K. As each V_i is absolutely irreducible, dim (V_i) divides |G| and hence is a power of p. The group $\Gamma := \text{Gal}(K/F)$ permutes transitively the V_i . As $|\Gamma|$ is a power of p, the number of the V_i 's is also a power of p.

Hence gcd in Theorem 2.3 can be replaced by min. By Theorem 2.3, for any character $\chi \in C^*$, there is representation $V_{\chi} \in \operatorname{Rep}^{(\chi)}(G)$ such that $\operatorname{ind} \beta^E(\chi) = \dim(V_{\chi})$. Let V be the direct sum of V_{χ_i} , $i = 1, \ldots, s$. It follows from (11) that

$$\operatorname{ed}_p(\mathcal{X}^E) = \dim(V).$$

Applying Theorem 1.1 for the gerbe \mathcal{X} over the field L, we get the inequality

$$\operatorname{ed}_p(G) \ge \operatorname{ed}_p(G_L) \ge \operatorname{ed}_p(\mathcal{X}^E) = \dim(V).$$

It suffices to show that V is a faithful G-space. Since the χ_i 's form a basis of C^* , the C-space V is faithful. Let N be the kernel of V. As every nontrivial normal subgroup of G intersects C nontrivially, we have $N = \{1\}$, i.e., the G-space V is faithful.

Remark 5.2. The proof of Theorem 5.1 shows how to construct a faithful G-space for a p-group G over a field F containing p-th roots of unity. For every character $\chi \in C^*$ choose a representation $V_{\chi} \in \text{Rep}^{(\chi)}(G)$ of the least dimension. It appears as an irreducible component of the least dimension of the induced representation $\text{Ind}_{C}^{G}(\chi)$. We construct a basis χ_1, \ldots, χ_s of C^* by induction as follows. Let χ_1 be a nonzero character with the least $\dim(V_{\chi_1})$. If the characters $\chi_1, \ldots, \chi_{i-1}$ are already constructed for some $i \leq s$, then we take for χ_i a character with minimal $\dim(V_{\chi_i})$ among all the characters outside of the subgroup generated by $\chi_1, \ldots, \chi_{i-1}$. Then $V = \coprod V_{\chi_i}$ is a faithful G-space of the least dimension and $ed_p(G) = \dim(V)$.

6. Applications

Theorem 6.1. Let G be a p-group and F a field containing p-th roots of unity. Then $ed(G) = ed_p(G)$ is equal to the least dimension of a faithful G-space over F.

Proof. Let V be a faithful G-space of the least dimension. Then by Theorem 5.1,

$$\dim(V) = \operatorname{ed}_p(G) \le \operatorname{ed}(G) \le \dim(V).$$

Corollary 6.2. [3] Let G be a cyclic group of primary order p^n and F a field containing p-th roots of unity. Then $ed(G) = ed_p(G) = [F(\xi_{p^n}) : F]$.

Proof. The G-space $F(\xi_{p^n})$ is faithful irreducible of the smallest dimension. \Box

Theorem 6.3. Let G_1 and G_2 be two p-groups and F a field of characteristic different from p containing p-th roots of unity. Then

$$\mathrm{ed}(G_1 \times G_2) = \mathrm{ed}(G_1) + \mathrm{ed}(G_2).$$

Proof. The index j in the proof takes the values 1 and 2. If V_j is a faithful representation of G_j then $V_1 \oplus V_2$ is a faithful representation of $G_1 \times G_2$. Hence $\operatorname{ed}(G_1 \times G_2) \leq \operatorname{ed}(G_1) + \operatorname{ed}(G_2)$.

Denote by C_j the subgroup of all central elements of G_j of exponent p. Set $C = C_1 \times C_2$. We identify C^* with $C_1^* \oplus C_2^*$.

For every character $\chi \in C^*$ choose a representation $\rho_{\chi} : G_1 \times G_2 \to \mathbf{GL}(V_{\chi})$ in $\operatorname{Rep}^{(\chi)}(G_1 \times G_2)$ of the smallest dimension. We construct a basis $\{\chi_1, \chi_2, \ldots, \chi_s\}$ of C^* following Remark 5.2. We claim that all the χ_i can be chosen in one of the C_j^* . Indeed, suppose the characters $\chi_1, \ldots, \chi_{i-1}$ are already constructed, and let χ_i be a character with minimal $\dim(V_{\chi_i})$ among the characters outside of the subgroup generated by $\chi_1, \ldots, \chi_{i-1}$. Let $\chi_i = \chi_i^{(1)} + \chi_i^{(2)}$ with $\chi_i^{(j)} \in C_j^*$. Denote by ε_1 and ε_2 the endomorphisms of $G_1 \times G_2$ taking (g_1, g_2) to $(g_1, 1)$ and $(1, g_2)$ respectively. The restriction of the representation $\rho_{\chi_i} \circ \varepsilon_j$ on C is given by the character $\chi_i^{(j)}$. We replace χ_i by $\chi_i^{(j)}$ with j such that $\chi_i^{(j)}$ does not belong to the subgroup generated by $\chi_1, \ldots, \chi_{i-1}$. The claim is proved.

Let W_j be the direct sum of all the V_{χ_i} with $\chi_i \in C_j^*$. Then the restriction of W_j on C_j is faithful, hence so is the restriction of W_j on G_j . It follows that $\operatorname{ed}(G_j) \leq \dim(W_j)$. As $W_1 \oplus W_2 = V$, we have

$$\operatorname{ed}(G_1) + \operatorname{ed}(G_2) \le \dim(W_1) + \dim(W_2) = \dim(V) = \operatorname{ed}(G_1 \times G_2). \quad \Box$$

The following corollary is a generalization of Corollary 6.2.

Corollary 6.4. Let F be a field containing p-th roots of unity. Then

$$\operatorname{ed}(\mathbb{Z}/p^{n_1}\mathbb{Z}\times\mathbb{Z}/p^{n_2}\mathbb{Z}\times\cdots\times\mathbb{Z}/p^{n_s}\mathbb{Z})=\sum_{i=1}^{s}\left[F(\xi_{p^{n_i}}):F\right].$$

7. Appendix

Lemma 7.1. Let $L \in Fields/F$, v a discrete valuation of L over F and L'/La finite field extension of degree prime to p. Then there exists a geometric valuation v' of L' extending v such that the ramification index and the degree of the residue field extension F(v')/F(v) are prime to p.

Proof. If L'/L is separable and v_1, \ldots, v_k are all the extensions of v on L' then $[L':L] = \sum e_i[F(v_i):F(v)]$ where e_i is the ramification index (cf. [6, Ch. VI, Th. 20 and p. 63]). It follows that the integer $[F(v_i):F(v)]$ is prime to p for some i.

If L'/L is purely inseparable of degree q then the valuation v' of L' defined by $v'(x) = v(x^q)$ satisfies the desired properties. The general case follows. \Box

References

- [1] P. Brosnan, Z. Reichstein, and A. Vistoli, *Essential dimension and algebraic stacks I*, LAGRS preprint server, http://www.math.uni-bielefeld.de/LAG/ (n. 275, 2007).
- [2] S. U. Chase, D. K. Harrison, and A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 15–33.
- [3] M. Florence, On the essential dimension of cyclic p-groups, Invent. Math. * (2008), no. *, *_*.
- [4] N. A. Karpenko and A. S. Merkurjev, Essential dimension of finite p-groups, Invent. Math. * (2008), no. *, *-*.
- [5] D. Quillen, Higher algebraic K-theory. I, (1973), 85–147. Lecture Notes in Math., Vol. 341.
- [6] O. Zariski and P. Samuel, *Commutative algebra. Vol. II*, Springer-Verlag, New York, 1975, Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1555, USA

 $E\text{-}mail\ address: \texttt{merkurev@math.ucla.edu}$