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We give a detailed proof of Theorem 5.1 below.

1. A LOWER BOUND FOR ed,(G)

Theorem 1.1. (cf. [1]) Let f : G — H be a homomorphism of algebraic
groups. Then for any H-torsor E over F, we have ed,(G) > ed,(E/G) —
dim(H).

Proof. Let L/F be a field extension and x = (E’, @) an object of (E/G)(L).
Choose a field extension L'/ L of degree prime to p and a subfield L” C L' over
F such that tr.deg(L”) = ed,(E’) and there is a G-torsor E” over L” with
EY, ~ E},.

We shall write Z for the scheme of isomorphisms Isop (f.(E"), E») of H-
torsors over L”. Clearly, Z is an H-torsor, so dim(Z) = dim(H). The image
of the morphism Spec ' — Z over L” representing the isomorphism ay, is a
one point set {z} of Z, hence

tr.deg(L"(z)) < tr.deg(L") + dim(Z) = tr. deg(L") + dim(H).

The isomorphism ay, descends to an isomorphism of the H-torsors f.(E")
and F over L”(z). Hence the isomorphism class of x. belongs to the image of
the map of sets of isomorphism classes induced by the functor (E/G)(L"(z)) —
(E/G)(L'). Therefore,

ed,(G) > ed,(E') = tr.deg(L") > tr.deg(L"(z)) —dim(H) > ed,(z) —dim(H).
It follows that ed,(G) > ed,(E/G) — dim(H). O

2. ALGEBRAS AND REPRESENTATIONS

2.1. Twisting. Let G be an algebraic group, £ — Spec I a (right) G-torsor
and X, be an “algebraic object” over F' (variety, vector space, algebra etc).
Assume that the automorphism group Aut(Xy) has a structure of an algebraic
group over F' and we are given a homomorphism of algebraic groups G —
Aut(Xy), i.e., G acts algebraically on X,. We shall write F xg X for the
tunst of Xo by E that can be thought of either as the "factor object” of the
"product” E X X by G (i.e., we identify "points” (eg, x) and (e, gz)), or the
twisted form of X, given by the image of the class of ¥ under the map

H'(F,G) — H'(F,Aut(Xy)).
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Assume in addition that G = Aut(X,). Then the map above is a bijection,
so a twisted form X of X determines the G-torsor E via the formula E :=
Iso( Xy, X).

Example 2.1. Let Xy, = End(V) be the endomorphism algebra of a vector
space V' of dimension n over F. Then PGL(V). A twisted form of Xj is
a central simple algebra A of degree n over F'. The corresponding G-torsor
is E = Iso(End(V),A). Conversely, if E is a PGL(V)-torsor, then A is
reconstructed from E as follows: A = E xpgrv) End(V).

2.2. The map . Let
(1) l1-C—-G—H-—1

be a central extension of algebraic groups over F' and E an H-torsor over F'.
Consider the homomorphism
BE . C* — Br(F)

taking a character x : ' — Gy, to the image of the class of £ under the
composition

HY(F, H) % H2(F,C) X5 H(F,Gy,) = Br(F),

where 0 is the connecting map for the exact sequence (I).

Consider the exact sequence (I). Let V € Rep™ (G) for a character xy € C*.
As C'is central in G, it acts trivially on End(V'), so the G-action on End(V)
boils down to an H-action.

We'd like to compute S%.

Lemma 2.2. Let x € C* be a character and V € Rep™(G). Then the class
BE(x) in Br(F) is represented by the central simple F-algebra E x g End(V).

Proof. Consider the diagram

1 C G —_ H — 1
| | g
1 G GL(V) — PGL(V) —— 1

The class 3% () is equal to the image of p*(E) under the connecting map
§: HY(F,PGL(V)) — H*(F,Gy,) = Br(F).

Note that H!'(F, PGL(V)) classifies both PGL(V)-torsors and central simple
F-algebras of degree dim(V'), so that § takes a central simple algebra to its
class in Br(F).

The PGL(V)-torsor p*(E) is equal to E x y PGL(V') and the corresponding
algebra is

A= (E Xy PGL(V)) XPGL(V) EHd(V) =F XH El’ld(V) [
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2.3. Generic H-torsor. Let
1—-C—-G—H-—1

be an exact sequence of finite groups. Let W be a faithful representation of
H and W’ an open subset of the affine space of W where H acts freely. Set
Y := W’'/H. Let E be the generic fiber of the H-torsor 7 : W/ — Y. It is a
“generic” H-torsor over the function field L := F(Y).

Let x : C — Gy, be a character and Rep(X)(G) the category of all finite
dimensional representations p of G such that p(c) is multiplication by x(c) for
any c € C.

Theorem 2.3. Let E be a generic H-torsor. Then for any character x € C*,
we have ind 57 (y) = ged dim (V) over all representations V' in Rep™(G).

2.4. Galois G-algebras. Let S be a commutative ring and H a finite group
acting on S by ring automorphisms s — s”. Set

R:=8":={s€S suchthat s"=s forall hec H}

and denote by S*H the crossed product with trivial factors. Namely, S+ H
consists of formal sums ), _, hs, with s, € S. The product is given by the
rule (hs)(W's') = (hh')(s"' ).

Let M be aright S-module. Suppose that H acts on M on the right such that
(ms)® = m"s". Then M is a right SxH-module by m(hs) = m”s. Conversely, a
right SxH-module is a right S-module together with a right H-action as above.
If M is a right SxH-module then the subset M of H-invariant elements in M
is an R-module. We have a natural S-module homomorphism M# @ S — M,
m& s ms.

We say that S is an H-Galois algebra over R is the morphism SpecS —
Spec R is an H-torsor.

Proposition 2.4. [2] The following are equivalent:

(1) S is an H-Galois algebra over R.

(2) The morphism Spec S — Spec R is a H-torsor.

(3) Forany h € H, h # 1, the elements s" — s with s € S generate the unit
ideal in S

(4) For every right SxH-module M, the natural map M? @p S — M is
an tsomorphism.

Corollary 2.5. Let S be an H-Galois algebra over R. Then the functors
between the categories of finitely generated right modules

M(R) — M(SxH) N— N®grS
M(SxH) — M(R), M — MH
are equivalences inverse to each other.

Remark 2.6. If H is a finite group then E = Spec(K) for a Galois H-algebra
K and E xy End(V) = (K @ End(V))H for a space V' € Rep™(Q).
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2.5. Proof of Theorem 2.3 Let
(2) l1-C—-G—-H-—1

be an exact sequence of finite groups with C' in the center of G. Choose a
finite dimensional H-space W such that there is a vector w € W satistying
wh # w for all h € H, h # 1. (For example, one can take for W the space

of the group algebra FH and w = 1.) Let S denote the symmetric algebra
of W. The group H acts on S and set R = S¥. We have Y = Spec(R) and
L = F(R) the quotient field of R.

Set
r= H(wh — ).
h#h!
We have r € R and r # 0. By Proposition 2.4(3), the localization S, is an
H-Galois algebra over R,.

Let x : C — F* be a character of C. Note that G acts upon S via the
group homomorphism G — H, so we have the ring SxG is defined. We write
M) (Sx@G) for the full subcategory of M(S*G) consisting of all modules M
satisfying m? = x(g)m for all m € M and g € C. We also write K (S%GQ)
for the Grothendieck group of M®(Sx@Q).

Set Rep™(G) = MX(FQ). Let V € Rep™(G). The natural G-action of G
on Endp(V) factors through an H-action. Set Vs, =V ®@p S,. We have

End(V) @ S, ~ Endg, (Vs, ).
Consider the following algebra over R,.:
A= Endg, (Vs,)".
By Proposition 2.4(4),
A®pg, S, ~Endg, (Vs,),
hence A is an Azumaya R,-algebra (by descent as S, is a faithfully flat R,-

algebra).
Recall that L = F(R) is the quotient field of R. Set
(3) A=A®g, F(R).

Clearly, A is a central simple algebra over F/(R) of degree dim V. We also have
A= (End(V) @p F(5))",
where F'(S) is the quotient field of S. By Lemma 2.2, [A] = 3¥(x) in Br(L).
The localization provides a surjective homomorphism
(4) K(A) — K(A).
By Corollary 2.5, the category of right A-modules and right Endg, (VST) xH-
modules are equivalent. Thus the functor M +— M induces an isomorphism

(5) K (Ends, (Vs,)xH) = K(A).
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The category of right Endg, (VST) x H-modules is equivalent to the subcate-
gory of right Endg, (VS,«) xG-modules with C' acting trivially. Hence we have
an isomorphism

(6) KW (Endsg, (Vs,)*G) = K (Ends, (Vs,) *H).
By Morita equivalence, the functors

M(S,*G) — M(Ends, (Vs,)*G), N— N®pV*
M(EndST(VST)*G) — M(S,xQ), M — M Qgnar) V

are equivalences inverse to each other. Moreover, under these equivalences,
the subcategory M (S, *G) corresponds to MV (Endg, (Vs,)*G). Hence we
get an isomorphism

(7) K™ (S, +G) = KW (Ends, (Vs,) *G).
By localization, we have a surjection
(8) K®(SxG) — KW (S,%G).

We will be using

Theorem 2.7. [5, Th. 7] Let B= By® By @ ... be a graded Noetherian ring.
Suppose

(1) B is flat as a left By-module,
(2) By is of finite Tor-dimension as a left B-module.
Then the exact functor M(By) — M(B) taking an S to S ®p, B yields an
1somorphism
K(By) = K(B).
Example 2.8. Let H be finite group and W € Rep(H) over a field F. The
(polynomial) ring S := S(W) is graded with the zero component F'. Let

B :=S(W)*H.

We view B as a graded ring with By = FxH = FH (the group algebra). We
claim that B satisfies the conditions of Theorem 2.7. Note that B; is a free
left By-module for every i. It is known that the global dimension of the ring
S is finite. Choose a finite projective resolution P* — F' of S-modules. As B
is a free right S-module, B ®g P* — B ®g F' is a finite projective resolution of
B®s F'=FH = Bjy. Hence B, is of finite Tor-dimension as a left B-module.

Finally, by Theorem 2.7 and Example 2.8, we have an isomorphism
(9) K (Rep™(G)) = KW(FG) = KW (SxG).

The surjective composition K (Rep™(G)) — K(A) of the maps (11)-(9)
takes the class of a U € Rep™(G) to the class of the right A-module

(U RpV*Qp F(S))H
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of dimension dim U - dim V' over the field F'(R). On the other hand, the group
K(A) is infinite cyclic group generated by the class of a simple module of
dimension ind(A) - dim V" over F'(R). The result follows.

Remark 2.9. The surjective map K(Rep(X)(G)) — K(A) constructed in the
proof depends on the choice of V' and takes [V] to [A].

3. CANONICAL p-DIMENSION OF A PRODUCT OF SEVERI-BRAUER VARIETY

Let F' be an arbitrary field and p a prime integer, D C Br,(F") be a subgroup.
We write ed,(D) for the essential p-dimension of the class of splitting field
extensions for D.

Theorem 3.1. Let D C Br,(F) be a finite subgroup of rank r. Then
ed,(D) = minZ(ind(ai) —1)
i=1

where the minimum is taken over all bases ay, ..., a, of D over Z/pZ.

Let a = {aq,...,a,} be a basis of D. For any i let A; be a central division
F-algebra (of degree ind(a;)) representing a; and P, = SB(A;). Set P, :=
P, x P, x --- x P,.. Note that P, depends on the choice of the basis a.

The classes of splitting fields of P and D coincide, hence

cdim,, (D) = cdim,(P) < dim(P) =) _(ind(a;) — 1).
i=1

We shall produce a basis ay,...,a, of D such that cdim,(P,) = dim(FP,),
i.e., P, is not p-compressible.

We say that a basis {ai,as,...,a,} of D is minimal if for any i = 1,...,r
and any element d € D outside of the subgroup generated by aq,...,a;_1, we
have ind d > ind a;.

One can construct a minimal basis of D by induction as follows. Let a; be a
nonzero element of D of minimal index. If the elements aq,...,a;_; are already
chosen for some 7 < r, we take for the a; an element of D of the minimal index
among the elements outside of the subgroup generated by aq,...,a;_1.

Thus, it is suffices to prove the following

Proposition 3.2. Let D C Br,(F) a subgroup of dimension r and a =
{ai,as,...,a,} a minimal basis of D. Then the variety P, constructed above
1$ not p-compressible.

Remark 3.3. It is not obvious that the sum ) _, ind a; is the smallest for a
minimal basis {a, as, ..., a,}. However, this fact is a consequence of Proposi-
tion 3.2l

Fix a minimal basis a of D and set P := P,. Let d = dim P and o €
CHY(P x P). The first multiplicity mult,(a) of « is the image of a under the
push-forward map CH(P x P) — CH’(P) = Z given by the first projection
P x P — P. Similarly, we define the second multiplicity multy(cv).
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Proposition 3.4. Let D C Br,(F') a subgroup of dimensionr, a = {a1,as,...,a,}
a minimal basis of D and P = P,. Then for any element o € CHY(P x P),
we have

mult; (@) = multy(a)  modulo p.

Now we show that Proposition 3.4 implies Proposition 3.2.

As cdim, P < c¢dim P < dim P, it suffices to show that cdim, P = dim P.
Let Z C P be a closed subvariety and f : P --» P and g : P --» Z
dominant rational morphisms such that deg f is prime to p. Let a be the class
in CHY(P x P) of the closure in P x P of the image of f x g: P' —-» P x Z.
As mult; () = deg f is prime to p, by Proposition [3.4, we have multy(a) # 0,
i.e., Z = P. It follows that P is not p-compressible.

Thus, it suffices to prove Proposition 3.4.

Let A be a central simple algebra in Br,(F") and P = SB(A). We shall need
to study the Grothendieck group Ko(P). In the split case, P is a projective
space of dimension deg(A) — 1, hence

0<j<deg(4)
where x; is the class of O(—1). Then h := 1—z is the class of a hyperplane and
hdee4 = (. Consider the polynomial ring Z[z]. We have a ring isomorphism
Ko(P) = Zlz]/ (h=?).

On the other hand, we can embed Ky(P) into Z[z] as the subgroup generated
by the monomials 27 with j < deg A.

In the general case, by the theorem [5, §9] of Quillen,
K()(P) ~ K()(A@])

0<j<deg(A)

The image of the natural map Ky(A®7) — KO(Z@) = Z, (where the "bar”
denote objects over a splitting field) is equal to ind(A®7)Z. The image of the

injective homomorphism Ky(P) — Ky(P) identifies Ko(P) with the subgroup
generated by ind(A%7) Z z7 for all j > 0, more precisely,

Ky(P)= [ ind(A¥)Z 2,
0<j<deg(A)
of Ko(P). Let ind(A) = p™. Write for any j > 0:
~ | m, if p does not divide j;
e(j) = { 1, otherwise.

Thus, ind(A®7) = p°U) and the ring Ko(P) depends only on n.

Denote by K (n) the subgroup of Z[z] generated by the monomials p"z7 if j
is not divisible by p and 7 if j is divisible by p. Clearly, K(n) is a subring of
Z[z).



8 A. MERKURJEV

We have a natural surjective ring homomorphism K(n) — Ko(P). Write
h:=1—xz. As p"| deg(A) we have hie4 € K(n). As the image of h in Ky(P)
is the class of a hyperplane, the image of h4°4 in Ky(P) is zero.

Proposition 3.5. The induced homomorphism K (m)/(h%e4) — Ky(P) is an
1somorphism.

Proof. Set d = deg A. By induction on k we show that the quotient ring
K(m)/(h?) is additively generated by p®/) 7 with j < d. Indeed, the polyno-
mial ¢ — (—h)? = 29— (z —1)? is a linear combination with integer coefficients
of pWzJ with j < d. Consequently, for any k > d, multiplying the equality by
pelh=d) gh—d — pe(k) ph=d e see that the polynomial p¢®zF = pe) ik modulo
the ideal (h?) is a linear combination with integer coefficients of the p°()z7
with j < k. O

Corollary 3.6. Let g be a polynomial in h lying in K(n) for some m > 0. Let
bhi=t be a monomial of g such that i is divisible by p™. Then b is divisible by

n

.
Proof. By Proposition 3.5, the factor ring K(n)/(h") is isomorphism to Ky(P)
where P is the Severi-Brauer variety of an algebra of index p™ and degree 1.
Thus, K (n)/(h') is additively generated by p®¥)(1 — h)? with j < i. Only the
generator p~Y(1 — h)"~' = p"(1 — h)""! has a nonzero h'~'-coefficient and
that coefficient is divisible by p". O

Note that we have a canonical embedding of groups Ko(P) C K(n).

Now consider a more general situation. Let Ay, As, ... A, be central simple
algebras in Br,(F), P, = SB(A;) and P = P, x --- x P,. We shall need to
study the Grothendieck group Ky(P). In the split case (when all the algebras
A; split), P is the product of r projective spaces of dimensions deg(A;) —

1,...,deg(A,) — 1 respectively. Write ; € K(P) for the pullback of the class
of O(—1) on the i-th component of the product and set

I] :l'{ll']T
for a multi-index j = (ji,...,Jr). We also write 0 < j < deg A for a multi-
index j such that 0 < j; < degA; foralli=1,... r.

We have
Ko(P) = H Z
0<j<deg A
Then h; := 1 — x; is the class of a hyperplane on the i-th component and
h?eg A — (. Consider z = (x1,...,2,) as a tuple of variables and the polyno-

mial ring Z[z]. We have
Ko(P) = Z[x]/(h{™M, ... b,
In the general case, by Quillen’s theorem,

Ko(P)~ [ Ko(A®),

0<j<deg A
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where A% = A?" @ ... @ A%, The image of the injective homomorphism

Ky(P) — Ky(P) identifies Ky(P) with the subgroup
Ky(P)= [ ndA®)Za/,

0<j<deg A

of Ko(P)

Suppose now that the algebras A; represent a minimal basis a = {a1,...,a,}
of the subgroup D. Set ind(a;) = p™ and o/ = al' - - - ar € Br,(F) for a multi-
index j = (j1,...,7,) = 0. Recall that by the definition of a minimal basis,
0<n; <ng <---<mn, and log, ind(a’) > ny, with the largest k such that jj
is not divisible by p.

Let us introduce the following notation. Let » > 1 and 0 < n; < ny <
-+- < n, be integers. For all j = (ji,...,7,) > 0, we define the number e(j) as
follows:

. 0, if all the jy,...,j, are divisible by p;
e(j) = { ng, with the largest k such that j; is not divisible by p.

Thus, we have
log, ind(a’) > e(j).

Let K = K(nq,...,n,) be the subgroup of the polynomial ring Z[z| in r
variables = (1,...,x,) generated by the monomials p*@z7 for all j > 0. In
fact, K is a subring of Z[x]. By construction, we have canonical embeddings
of groups

Ky(P) C K C Zlz].

We set h = (hy,...,h,) with h; =1 — x; € Z[z]. We have Z[z]| = Z[h].

Proposition 3.7. Let f = f(h) € K be a nonzero polynomial and bh' for a

multi-index © > 0 be a monomial of the least degree of f. Assume that the
integer b is not divisible by p. Then p™ | iy, ..., p" | i,.

Proof. We proceed by induction on m =r+n;+---+n, > 1. The case m =1
is trivial. If m > 1 and n; = 0, then

e(j) = e(j"),
where j' = (ja, ..., ). It follows that
K= K(n27 s 7”1“)[371] = K(”Za cee 7n7‘>[h’1]'

Write f in the form
f= Z hzi " Gi

>0
with ¢; = gi(ha, ..., h,) € K(ng,...,n,). Then bR ... hir is the monomial of
the least degree of g;,. We can apply the induction to g;, € K(na,...,n,).

In what follows we assume that n; > 1.

Since K (ni,ng,...,n,) C K(ny—1,ns,...,n,), by the induction hypothesis
p" iy, p™ |idg, ..., p™ |i,. It remains to show that 4, is divisible by p™.
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Consider the additive operation ¢: Z[zx] — Q|x] defined by

1 dg
©(g) = ; Ty - 8_9/:1
We have
o(a) = 2L 3
p

It follows that
o(K)C K(ny—1,ng—1,...,n,—1) C K(ny — 1)[xo,...,2,]

and , ‘
g@(hj) - _]_1 hjl'1—1h%‘2___hzr+£ jlhjl'lhgz'__hzr.
p p

Since bhY! - hir is a monomial of the lowest total degree of the polynomial
f, it follows that —%1 R ~'h .- - Rl is a monomial of o(f) considered as a
polynomial in h. As

o(f) € K(ny — D)[za,...,x,],

we see that —b% h*~! is a monomial of a polynomial from K (n, —1). It follows
nyp—1

that % is an integer and by Corollary 3.6, this integer is divisible by p
Therefore p™ | 4. O

Let Y be a scheme over the field F. We write CH(Y") for the Chow group of Y
and set Ch(Y) = CH(Y)/p CH(Y). We define Ch(Y) as the colimit of Ch(YZ)
where L runs over all field extensions of F'. Thus for any field extension L/F,
we have a canonical homomorphism Ch(Yz) — Ch(Y). This homomorphism
is an isomorphism if Y = P, the variety defined above, and L is a splitting
field of P.

We define Ch(Y) to be the image of the homomorphism Ch(Y) — Ch(Y).

Proposition 3.8. Let P = P, for a minimal basis a. Then we have @j(P) =
0 for any j > 0.

Proof. Let Ko(P) be the Grothendieck group of P. We write Ky(P) for the
colimit of Ky(P;) taken over all field extensions L/F. The group Ky(P) is
canonically isomorphic to Ky(Pp) for any splitting field L of P. Each of the
groups Ko(P) and Ky(P) is endowed with the topological filtration. The sub-
sequent factor groups G7Ky(P) and G7Ky(P) of these filtrations fit into the
commutative square

CH/(P) —— GI/Ky(P)

l l

CH/(P) —— G'Ky(P)
where the bottom map is an isomorphism as P is split. Therefore it suffices to
show that the image of the homomorphism G’ Ky(P) — G’ Ky(P) is divisible
by p for any 7 > 0.
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The ring Ko (P) is identified with the quotient of the polynomial ring Z[h] by
the ideal generated by A%, ... hi*der Under this identification, the element
h; is the pull-back to P of the class of a hyperplane in P; over a splitting
field and the j-th term Ky(P)") of the filtration is generated by the classes
of monomials of degree at least j. The group G’ Ky(P) is identified with the
group of all homogeneous polynomials of degree j.

Recall that

Ko(P) C K(ny,...,n,) C Zlx],
where n; = log, (ind(a;)).

An element of Ko(P)Y) with j > 0 is a polynomial f in h of degree at least
j. The image of f in G/ Ky(P) is the j-th homogeneous part f; of f. As the
degree of f with respect to h; is less than ind a;, it follows from Proposition
3.7 that all the coefficients of f; are divisible by p. 0

Now we prove Proposition 3.4. The homomorphism
f: CHYP x P) — (Z/pZ)?,
taking an a € CHY(P x P) to (mult;(a), mults(cr)) modulo p, factors through
the group @d(P x P). Since for any 4, any projection P; x P; — P; is a projec-
tive bundle, by the Projective Bundle Theorem, the Chow group @d(P x P)

is a direct some of several copies of W(P) for some ¢’s and the value i = 0
appears once. By Proposition 3.8, the dimension over Z/pZ of the vector space

@d(P X P) is equal to 1 and consequently the dimension of the image of f is
at most 1. Since the image of the diagonal class under f is (1, 1), the image
of f is generated by (1,1).

4. ESSENTIAL AND CANONICAL p-DIMENSION OF GERBES BANDED BY (u,,)°
If X is a gerbe banded by C' then we have pairings
BOCxX—X, (t,z)—t+zx,

XxX—BC, (r,2))—z-—2.

We have the associativity property: (¢t +x) —a’ =t + (x — ).
In this section we relate the essential and canonical p-dimensions of gerbes
banded by (,)® where s > 0.

Proposition 4.1. Let X be a gerbe banded by C'. Then
ed,(X) < cdim,(X) 4 ed,(BC).

Proof. Let L/F be a field extension, x € X' (L), L'/L a finite field extension of
degree prime to p and a subfield K C L’ such that X'(K) # () and cdim,(X) =
tr. degp(K). Take any y € X(K) and set t := z;, — yr, € BC(L'). Choose
a field extension L”/L’ of degree prime to p, a subfield K’ C L” over F and
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t' € BCO(K') with ¢, =ty and tr.degp(K') = ed,(t). Then xp» =t} + yr»
is defined over K K’, hence

ed,y(x) < tr.degp(KK') < tr.degp(K) + tr. degp(K') =
cdim, (X) + ed,(t) < edim,(X) + ed,(BC). O

Question 4.2. Let X be a gerbe banded by C'. Is it true that
ed,(X) = cdim,(X) + ed,(BC)?

In the following theorem we show that the answer is "yes” is C' = (m,)°
when p is a prime integer.

Let X a gerbe banded by C' = (u,)* over F'. The gerbe & is given by an
element in H%(F,C) = Br,(F)*, i.e., by an s-tuple of central simple algebras
Ay, Ay, Ag with [A;] € Bry(F). Let P be the product of the Severi-Brauer
varieties P; := SB(A;) and D the subgroup of Br,(F') generated by the [4;],
1 = 1,...,s. Note that the classes of splitting fields for X, D and P coin-
cide. Moreover, if R is a local commutative F-algebra then the following are
equivalent:

1. X(R) #0.

2. P(R) # 0.

3. The algebras A; are split by R.

Notation: an object 2 € BC'(R) defines the isomorphism class in H (R, C) =
(R*/R*P)*. We write z; € R* for the components of z.

Theorem 4.3. Let p be a prime integer and X a gerbe banded by C' = (p,)*
over F'. Then

ed,(X) = cdim,(X) + s.

Proof. In view of Proposition 4.1, it suffices to prove the inequality ed,(X’) >
cdim,(P) + s.

Let C be the class of splitting fields for X (and for P). Choose a minimal
field in C, ie., a field K € C satistying tr.degp(K) = edg(K) = cdim,(X).
Choose also an object v € X(K). Set L := K(t1,...,ts) and 2/ ==t + 2 €
X (L), where t := (t1,...,ts) € BC(L). It is sufficient to prove the inequality
ed,(2') > cdim,(X) + s.

Let L'/L be a finite field extension of degree prime to p, L” C L' a sub-
field over ' and y € X(L") such that y,, = 2,. It suffices to show that
tr. degp (L") > cdim,(X) + s.

Let L; := K(t;,...,ts) and v; be the discrete valuation of L; corresponding
to the variable t; for i = 1,...,s. We construct a sequence of field extensions
L/ L; of degree prime to p and discrete valuations v, of L} for i =1,...,s by
induction on i as follows. Set L} = L’. Suppose the fields L}, ..., L, and the
valuations vj, ..., v,_; are constructed. By Lemma 7.1, there is a valuation v
of L} with residue field L;_ , extending the discrete valuation v; of L; with the

7
ramification index e; and the degree [L] ; : L;11] prime to p.
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The composition v’ of the discrete valuations v is a valuation of L’ with
residue field K’ of degree over K prime to p. A choice of prime elements in
all the L. identifies the group of values of v' with Z*. Moreover, for every
1=1,...,s, we have

’U/(ti) = €& + Z aijaj
j>i
where the €;’s denote the standard basis elements of Z° and a;; € Z. It follows
that the columns v/(¢;) are linearly independent modulo p.
Write v” for the restriction of v' on L.
Claim: rank(v") = s.

To prove the claim let R” C L” be the valuation ring of v". As P(L") # ()
and P is complete then P(R") # (). It follows that X'(R”) # (. Choose any
2" € X(R") and set z .=y — 2/, € BC(L"). Hence

2 =Y — LU,I// = (tL’ + mL’) - x,[// - tL, + (I’L/ - xl[/’/)

Note that the element x;, — 2/, is in the image of BC(R') — BC(L'), where
R’ C L' is the valuation ring of v'. Thus, there exist , € R’ and v; € L'~
such that
Z; = tz T ’Uf

and hence v”(z;) = v/(¢;) modulo p for all i = 1,...,s. It follows that the
columns v"(z;) are linearly independent modulo p and hence generate a sub-
module of rank s in Z®. This means that rank(v”) = s, proving the claim.

Let K" be the residue field of v". As K € C, K" C K', [K’ : K] is prime to

p and K is minimal, we have tr. degz(K") = tr.degp(K). It follows that
tr. degp (L") > tr. degp(K") +rank(v”) = tr.degp(K) + s = cdim,(X) +s. O

5. MAIN THEOREM

Theorem 5.1. (cf. [4]) Let G be a finite group, p be prime integer and F
a field of characteristic different from p. Then ed,(G) is equal to the least
dimension of a faithful H-space of a Sylow p-subgroup H of G over the field
F(&).

We have ed,(G) = edy(H) = edy(Hp,)). Hence ed,(G) is at most the
dimension of a faithful H-space of a Sylow p-subgroup H of G over the field
F(&,). Thus we may suppose that G is a p-group, F' contains p-th roots of
unity, and we need to show that there is a faithful representation V' of G with
ed,(G) > dim(V).

Denote by C' the subgroup of all central elements of G of exponent p and
set H = G/C, so we have an exact sequence

(10) 1-C—-G—H—1

Let £ — Spec F' be an H-torsor over F. Let C* := Hom(C, G,,) denote the
character group of C'. The H-torsor E over F' yields a homomorphism

BE C* — Br(F)
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as in Section 2.2. Note that as p, C F'*, so we can identify C' with (p,,)°.

Consider the gerbe X := E/G banded by C. The classes of splitting fields
of the gerbe X and the subgroup Im(3%) coincide.

By Theorem 6.3, applied to the subgroup Im(5%) C Br(F), we can complete
any basis of Ker(3%) to a basis x1, X2, . . ., Xs of C* over Z/pZ such that

cdim, (X”) = cdim, (Im(87)) = Z(ind B (x:) —1).
i=1
It follows from Theorem 4.3 that

(11) ed,(X") = cdim,(X”) + s = " ind 87 (x:).
i=1

Now we choose specific I/, namely a generic H-torsor over a field extension
Lof F.

Note that dimension of every irreducible representation of GG is a power of p.
Indeed, let g be the order of GG. It is known that every irreducible representation
of G is defined over the field K := F'(p,). Since F' contains p-th roots of unity,
the degree [K : F] is a power of p. Let V' be an irreducible G-space. Write
V as a direct sum of V; over K. As each Vj is absolutely irreducible, dim(V})
divides |G| and hence is a power of p. The group I' := Gal(K/F) permutes
transitively the V;. As || is a power of p, the number of the V;’s is also a
power of p.

Hence ged in Theorem 2.3 can be replaced by min. By Theorem 2.3, for
any character x € C*, there is representation V, € Rep(X)(G) such that
ind 3% (x) = dim(V,). Let V be the direct sum of V,,, i = 1,...,s. It fol-
lows from (11) that

ed,(X") = dim(V).
Applying Theorem [1.1/ for the gerbe X over the field L, we get the inequality
ed,(G) > ed,(GL) > ed,(XF) = dim(V).

It suffices to show that V' is a faithful G-space. Since the y;’s form a basis of
C*, the C-space V is faithful. Let N be the kernel of V. As every nontrivial
normal subgroup of G intersects C' nontrivially, we have N = {1}, i.e., the
G-space V is faithful.

Remark 5.2. The proof of Theorem 5.1/ shows how to construct a faithful
G-space for a p-group G over a field F' containing p-th roots of unity. For
every character xy € C* choose a representation V, € Rep(X)(G) of the least
dimension. It appears as an irreducible component of the least dimension of
the induced representation Indg(x). We construct a basis xi, ..., xs of C* by
induction as follows. Let x; be a nonzero character with the least dim(V,,). If
the characters x1, ..., x;_1 are already constructed for some i < s, then we take
for x; a character with minimal dim(V,,) among all the characters outside of
the subgroup generated by x1,. .., xi—1. Then V' =[]V, is a faithful G-space
of the least dimension and ed,(G) = dim(V').
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6. APPLICATIONS

Theorem 6.1. Let G be a p-group and F' a field containing p-th roots of unity.
Then ed(G) = ed,(G) is equal to the least dimension of a faithful G-space over
F.

Proof. Let V' be a faithful G-space of the least dimension. Then by Theorem
5.1,

dim(V) = ed,(G) < ed(G) < dim(V). O

Corollary 6.2. [3] Let G be a cyclic group of primary order p™ and F a field
containing p-th roots of unity. Then ed(G) = ed,(G) = [F(&n) : F].

Proof. The G-space F'(&,n) is faithful irreducible of the smallest dimension. [J

Theorem 6.3. Let Gy and Gy be two p-groups and F' a field of characteristic
different from p containing p-th roots of unity. Then

ed(G1 X Gg) = ed<G1) + ed(GQ)

Proof. The index j in the proof takes the values 1 and 2. If V; is a faithful
representation of G; then Vi @ V5 is a faithful representation of G x G5. Hence
ed(G1 X Gz) < ed(G1> + ed(Gg)

Denote by C; the subgroup of all central elements of G; of exponent p. Set
C = () x Cy. We identity C* with C} & C5.

For every character x € C* choose a representation p, : G x Gy —
GL(V,) in Rep™ (G} x Gy) of the smallest dimension. We construct a basis
{x1,Xx2,---,Xxs} of C* following Remark 5.2. We claim that all the y; can be
chosen in one of the C7. Indeed, suppose the characters x1, ..., x;—1 are already
constructed, and let x; be a character with minimal dim(V,,) among the char-

acters outside of the subgroup generated by x1,...,xi—1. Let x; = Xz(‘ )+ XZ(Q)

with ng ) € C7. Denote by &1 and €3 the endomorphisms of G; x Gy taking
(91, 92) to (gl, 1) and (1, g2) respectively. The restriction of the representatlon
Py, © €] on C' is given by the character XE We replace x; by Xz ) with J such

that Xz ) does not belong to the subgroup generated by x1, ..., x;—1. The claim
is proved.

Let W; be the direct sum of all the V,, with x; € C}. Then the restriction
of W, on C} is faithful, hence so is the restriction of W; on G;. It follows that
ed(G;) < dim(W;). As Wy & Wy =V, we have

ed(Gy) + ed(Gy) < dim(W;) + dim(Ws) = dim(V) = ed(G; x Gg). O
The following corollary is a generalization of Corollary 6.2.

Corollary 6.4. Let F' be a field containing p-th roots of unity. Then

s

ed(Z/p"Z x LIp"™L x -+ x L/p"Z) =Y [F(&n:) : F].

=1
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7. APPENDIX

Lemma 7.1. Let L € Fields/F, v a discrete valuation of L over F and L'/L
a finite field extension of degree prime to p. Then there exists a geometric
valuation v' of L' extending v such that the ramification index and the degree
of the residue field extension F(v')/F(v) are prime to p.

Proof. 1f L' / L is separable and vy, ..., vy are all the extensions of v on L’ then
[L': L] = > e[F(v;) : F(v)] where e; is the ramification index (cf. [6, Ch. VI,
Th. 20 and p. 63]). It follows that the integer [F'(v;) : F'(v)] is prime to p for
some 1.

If L'/L is purely inseparable of degree ¢ then the valuation v’ of L’ defined
by v'(x) = v(x?) satisfies the desired properties. The general case follows. [
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