
ALGEBRAIC COBORDISM THEORY

ALEXANDER MERKURJEV

1. Oriented Borel-Moore functors

We will follow the work of M. Levine and F. Morel.

Notation:
Scheme = quasi-projective scheme over a field F ;
Variety = integral scheme;
Sch(F ) = category of schemes over F ;
Sm(F ) = category of schemes over F ;
V is either Sm(F ) or Sch(F );
V ′ has the same objects as V and projective morphisms;
pt = SpecF .

We will be considering pairs of functors (theories):

• A Borel-Moore homology functor

H∗ : V ′(F )→ Ab*,

• A cohomology functor

H∗ : Sm(F )op → Rings∗

together with the canonical isomorphism

H∗(X) ≃ Hd−∗(X)

for every smooth variety X of dimension d (Poincaré duality).

1.1. Chow groups. Let X be a scheme over a field F and let k ≥ 0 be an
integer. A cycle of dimension k on X is a formal finite sum with integer
coefficients

α =
∑

nV [V ]

taken over closed subvarieties V ⊂ X of dimension k. All cycles of dimension i
on X form a free abelian group Zk(X). Let Rk(X) be the subgroup of Zk(X)
of rationally trivial cycles. The factor group

CHk(X) = Zk(X)/Rk(X)

is called the Chow group of X of dimension k.
Clearly, CHk(X) = 0 for k > dimX or k < 0.

Example 1.1. CH∗(pt) = Z · [pt].
1
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1.1.1. Push-forward. Let f : Y → X be a projective morphism of schemes over
F . Let V ⊂ X be a closed subvariety of dimension k. The image f(V ) is a
closed subvariety of X. Clearly, dimW ≤ k and dimW = k if and only if the
function field F (V ) is a finite field extension of F (W ). We set

degV (f) =

{
[F (V ) : F (W )], if dimW = k;
0, otherwise,

For every k ≥ 0 we can define a homomorphism

f∗ : Zk(Y )→ Zk(X)

by the rule

f∗([V ]) = degV (f) · [W ].

We have

f∗(Rk(Y )) ⊂ Rk(X)

and therefore f∗ induces the push-forward homomorphism

f∗ : CHk(Y )→ CHk(X).

If g : Z → Y be another projective morphism, then f ◦ g is projective and
(f ◦ g)∗ = f∗ ◦ g∗. Thus, the correspondence X 7→ CH∗(X) gives rise to a
functor

CH∗ : Sch(F )′ → Ab∗

that is an example of what will be called a Borel-Moore functor in what follows.

1.1.2. Flat pull-back. Let f : Y → X be a flat morphism of schemes of relative
dimension d. Then for a closed subvariety V ⊂ X of dimension k the closed
subscheme f−1(V ) is equidimensional of dimension k+d. The homomorphism

f ∗ : CHk(X)→ CHk+d(Y ), [V ] = [f−1(V )]

is well-defined and is called the pull-back homomorphism.
If g : Z → Y is another flat morphism of relative dimension e, then the

composite f ◦ g is flat of relative dimension d+ e and (f ◦ g)∗ = g∗ ◦ f ∗. Thus,
the correspondence X 7→ CH∗(X) gives rise to a co-functor from the category
of schemes and flat morphisms of constant relative dimension to the category
of graded groups.

Let

Y ′ f ′
−−−→ X ′

g

y yh

Y
f−−−→ X

be a pull-back diagram of schemes such that the morphism f is flat of relative
dimension d and g is proper. Then f ′ is flat of relative dimension d and g is
proper and we have

g∗ ◦ f ∗ = f ′∗ ◦ h∗.
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1.1.3. Homotopy Invariance (HI). Let p : E → X be a vector bundle of rank
r. Then p is flat of relative dimension r and therefore we have a pull-back
homomorphism

p∗ : CHk(X)→ CHk+r(E).

The homotopy invariance property asserts that map p∗ is an isomorphism. In
fact the homotopy invariance holds if p is just an affine bundle.

1.1.4. Chern classes. Let L → X be a line bundle with the zero section z :
X → L. We define the first Chern class of L as the homomorphism

c1(L) : CHk(X)
z∗−→ CHk(L)

(p∗)−1

−−−→ CHk−1(X).

Let L and L′ be two line bundles over X. We have

c1(L⊗ L′) = c1(L) + c1(L
′) and c1(L) ◦ c1(L′) = c1(L

′) ◦ c1(L).

1.1.5. Projective bundle theorem (PBT). Let E → X be a vector bundle of
rank r and let q : P(E) → X be the associated projective bundle. Denote by
Lt → P(E) the tautological line bundle (with the sheaf of sections O(−1)). Let
ξ be the operator c1(Lt) in CH∗

(
P(E)

)
. Then every element a ∈ CHk−1

(
P(E)

)
can be written in the form

a =
r∑

i=1

(
ξr−i ◦ q∗

)
(ai)

for unique elements ai ∈ CHk−i(X).
The PBT allows to define the higher Chern operations

ci(E) : CH∗(X)→ CH∗−i(X), i ≥ 0

by the rules c0(E) = id and

r∑
i=0

(−1)iξr−i ◦ q∗ ◦ ci(E) = 0.

In the case rank(E) = 1 we have P(E) = X and Lt = E so that the new
definition of c1(E) agrees with the old one.

1.1.6. Localization exact sequence (LOC). Let Z be a closed subscheme of a
scheme X and set U = X − Z. Denote by i : Z → X and j : U → X the
closed and open embeddings respectively. Then the localization sequence

CHk(Z)
i∗−→ CHk(X)

j∗−→ CHk(U)→ 0

is exact.

1.1.7. External products. Let X and Y be two schemes. The assignment
([Z], [T ]) 7→ [Z × T ] gives rise to the external product

CHk(X)⊗ CHl(Y )→ CHk+l(X × Y ).
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1.1.8. Pull-back homomorphisms with respect to regular closed embeddings. A
sequence of elements a1, a2, . . . ad of a commutative ring A is called a regular
sequence of length d is ai is not a zero divisor in A/(a1, . . . , ai−1) for all i =
1, . . . , d. A closed embedding i : Y → X is called regular of codimension d if
the ideal of Y in X in a neighborhood of every point of Y is generated by a
regular sequence of length d.

Example 1.2. A regular closed embedding of codimension 1 is a locally prin-
cipal divisor.

If i : Y → X is a regular closed embedding of codimension d then there are
pull-back homomorphisms

i∗ : CHk(X)→ CHk−d(Y ).

Let i : Y → X be a regular closed embedding of codimension d and let
f : X ′ → X be a projective morphism. Suppose that in the fiber square

Y ′ i′−−−→ X

g

y yf

Y
i−−−→ X

the morphism i′ is also a regular closed embedding of codimension d. Then

i∗ ◦ f∗ = i′
∗ ◦ g∗.

1.1.9. Smooth schemes. Let X be a smooth variety of dimension d. We write
CHi(X) for CHd−i(X). The diagonal embedding δ : X → X × X is then
regular of codimension d. The composition

CHi(X)⊗ CHj(X)
product−−−−→ CHi+j(X ×X)

δ∗−→ CHi+j(X)

makes the graded group CH∗(X) a commutative ring, called the Chow ring of
X.

In general, a smooth scheme X is a disjoint union of the components Xi.
We define the ring CH∗(X) as the product of the rings CH∗(Xi).

Every morphism f : Y → X of smooth schemes can be factored as

Y
g−→ Y ×X

p−→ X

where g = (1Y , f) and p is the projection. We have g a regular closed embed-
ding and therefore we have the pull-back ring homomorphism

f ∗ : CH∗(X)→ CH∗(Y )

well defined. We get a functor

Sm(F )op → Rings*, X 7→ CH∗(X).

This functor can be viewed as a cohomology functor.
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1.2. G-groups. Let X be a scheme. The group G(X) is defined by generators
and relations. The generators are the isomorphism classes [M] of coherentOX-
module M. Relations are of the forms [M′] + [M′′] = [M] for every exact
sequence

0→M′ →M→M′′ → 0

of coherent OX-modules.
The theory X 7→ G(X) is not graded. We force it to be graded by tensoring

with Z[β, β−1]:

G∗(X) = G(X)⊗ Z[β, β−1].

where we consider the Bott element β of degree 1. In other words,

Gi(X) = G(X) · βi, i ∈ Z.

Example 1.3. If X = SpecF is the point, then G∗(X) = Z[β, β−1].

1.2.1. Push-forward. Let f : Y → X be a projective morphism of schemes over
F . We define the push-forward homomorphisms

f∗ : Gk(Y )→ Gk(X)

by

f∗([M] · βk) =
∑
i≥0

(−1)i[Rif∗(M)] · βk

for a coherent OY -moduleM. The we get a Borel-Moore functor

G∗ : Sch(F )′ → Ab∗.

1.2.2. The Grothendieck ring. The Grothendieck ring K(X) is defined simi-
larly to G(X) using locally free OX-modules instead of coherent OX-modules.
Set

G∗(X) = K0(X)⊗ Z[β, β−1].

The functor

G∗ : Sm(F )op → Rings∗

can be viewed as a cohomology functor.
Note that G∗(X) is a module over the ring G∗(X) and the canonical homo-

morphism G∗(X) → Gd−∗(X) is an isomorphism if X is a smooth variety of
dimension d. This can be regarded as the Poincaré duality.

1.2.3. Flat pull-back. Let f : Y → X be a flat morphism of schemes of relative
dimension d. We define the pull-back homomorphisms

f ∗ : Gk(Y )→ Gk+d(X)

by

f ∗([M] · βk) = [f ∗(M)] · βk+d.

for a coherent OX-moduleM.
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1.2.4. Chern classes. The functor G∗ satisfies HI, hence the chern classes are
well defined. Let p : L→ X be a line bundle. Recall that

L = SpecS•(L∨)

where S• is the symmetric algebra and L is the sheaf of sections of L. Then
we have an exact sequence of coherent OL-modules

0→ p∗L∨ → OL → z∗OX → 0

where z is the zero section. Tensoring with p∗M over OL for an OX-module
M we get an exact sequence

0→ p∗(L∨ ⊗M)→ p∗M→ z∗M→ 0.

We have

c1
(
[M] · βk

)
= (p∗)−1z∗([M] · βk

)
= (p∗)−1

(
p∗[M] · βk − p∗[L∨ ⊗M] · βk

)
= (1− [L∨])[M] · βk−1.

In other words, c1(L) is the multiplication by (1− [L∨]) · β−1
.

Let L and L′ be two line bundles over X. We have

1− [L⊗ L′] =
(
1− [L]

)
+
(
1− [L′]

)
−

(
1− [L]

)(
1− [L′]

)
hence

c1(L⊗ L′) = c1(L) + c1(L
′)− βc1(L)c1(L

′).

1.2.5. External products. The external product

Gk(X)⊗Gl(Y )→ Gk+l(X × Y )

is given by

([M] · βk, [N ] · βl) 7→ [p∗1(M)⊗ p∗2(N )] · βk+l

where p1 and p2 are two projections of X × Y to X and Y respectively.
Note that the theory G∗ satisfies PBT, LOC a has pull-backs with respect

to regular closed embeddings.

1.3. Borel-Moore functors. The idea is weaken the assumption: we will
assume existence of the pull-back homomorphisms for smooth morphisms only,
not all flat ones.

Consider the category V ′(F ) where V(F ) = Sch(F ) or Sm(F ). A Borel-
Moore functor is a functor

H∗ : V ′(F )→ Ab* .

Thus for every projective morphism f : Y → X a (push-forward) homomor-
phism

f∗ : H∗(Y )→ H∗(X)

is given.
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A Borel-Moore functor is called additive if for any X1, X2, . . . , Xn in V ′(F )
the natural homomorphism

n⨿
i=1

H∗(Xi)→ H∗(
n⨿

i=1

Xi)

is an isomorphism. In particular, H∗(∅) = 0.
An additive Borel-Moore functor H∗ is called oriented (OBMF) if there are

given:

(1) For each smooth morphism f : Y → X of relative dimension d a homo-
morphism of graded groups (pull-backs)

f ∗ : H∗(X)→ H∗+d(Y ).

(2) For each line bundle L → X a homomorphism of graded groups (first
Chern class)

c1(L) : H∗(X)→ H∗−1(X).

All these should satisfy the following axioms:

(A1) For any pair Z
g−→ Y

f−→ X of equidimensional smooth morphisms one
has (f ◦ g)∗ = g∗ ◦ f ∗. Also Id∗

X = IdH∗(X).

(A2) For a fiber square

W
g′−−−→ X

f ′

y yf

Y
g−−−→ Z

where f is projective and g is smooth equidimensional one has

g∗ ◦ f∗ = f ′
∗ ◦ g

′∗.

(A3) For a projective morphism f : Y → X and a line bundle L→ X, one
has

f∗ ◦ c1(f ∗L) = c1(L) ◦ f∗.

(A4) For a smooth equidimensional morphism f : Y → X and a line bundle
L→ X, one has

c1(f
∗L) ◦ f ∗ = f ∗ ◦ c1(L).

(A5) For any two line bundles L and L′ on X one has

c1(L) ◦ c1(L′) = c1(L
′) ◦ c1(L).

Moreover, if L and L′ are isomorphic then c1(L) = c1(L
′).

A morphism H∗ → H ′
∗ of oriented Borel-Moore functors is a natural trans-

formation of functors which commutes with the smooth-pull-backs and the
first Chern classes.
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Remark 1.4. Consider the category A with the same objects as in V(F ). A

morphism X  Y is a “roof” X
f←− X ′ g−→ Y where f is smooth of relative

dimension d and g is projective. The composition of X  Y and another

morphism Y  Z, represented by the roof Y
h←− Y ′ k−→ Z, is given by the roof

X
fh′
←−− X ′′ kg′−→ Z defined by the fiber square

X ′′ g′−−−→ Y ′

h′

y yh

X ′ g−−−→ Y.

Every BM-functor H defines a functor A → Ab taking an object X to H(X)

and a morphism X  Y given by a roof X
f←− X ′ g−→ Y to

g∗f
∗ : H∗(X)→ H∗+d(Y ).

The property (A2) shows that the functor is well defined.

1.3.1. Oriented Borel-Moore functor with product. An oriented Borel-Moore
functor with product is a OBMF together with the following data:

An element 1 ∈ H0(pt) and for every two schemes X and Y , a bilinear
graded pairing (called the external product)

H∗(X)⊗H∗(Y )→ H∗(X × Y ), α⊗ β 7→ α× β

which is commutative, associative and admits 1 as unit. The product satisfies:
(A6) For every projective morphisms f and g,

f∗ × g∗ = (f × g)∗.

(A7) For every smooth equidimensional morphisms f and g,

f ∗ × g∗ = (f × g)∗.

(A8) For every two schemes X and Y and a line bundle L→ X one has

(c1(L)(α)× β = c1
(
p∗1(L)

)
(α× β)

for every α ∈ H∗(X) and β ∈ H∗(Y ).

If H∗ is a OBMF with product then the axioms give H∗(pt) a structure of a
commutative graded ring, and to each H∗(X) a structure of a H∗(pt)-module
so that the operations f∗, f

∗ and c1(L) preserve the H∗(pt)-module structure.
For X ∈ Sm(F ) the distinguished element p∗(1) is denoted by 1X ∈ H0(X)

(here p : X → pt is the structure morphisms).

Remark 1.5. If X is not smooth, the group H∗(X) may have no distinguished
element.
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1.4. Formal group law. Let H∗ be a OBMF with products. Assume that
PBT holds. Let Ln be the canonical line bundle on the projective space Pn.
For simplicity we write Ln and Lm for the pull-backs of Ln and Lm on Pn×Pm

with respect to two projections. By PBT, applied twice, we have

c1(Ln ⊗ Lm) =
∑
0≤i≤n
0≤j≤m

aij c1(Ln)
i c1(Lm)

j

for uniquely determined elements aij ∈ Hi+j−1(pt). One shows that the ele-
ments aij do not depend on n ≥ i and m ≥ j.

Suppose now that H∗ has the pull-backs with respect to morphisms of
smooth schemes. Let L and M be line bundles over X ∈ Sm(F ) generated by
global sections. Then there are morphism f : X → Pn and g : X → Pm such
that L ≃ f ∗Ln and M ≃ g∗Lm. Pulling back the formula above we get

(1) c1(L⊗M) =
∑
i,j≥0

aij c1(L)
i c1(M)j

on X.
Suppose that L and M are arbitrary line bundles on X. By Jouanolou’s

trick, there is an affine bundle h : Y → X with an affine scheme Y . Since
every vector bundle over an affine scheme is generated by sections, the formula
(1) holds for h∗L and h∗M over Y . Assume that H∗ satisfies HI. Then (1)
holds for L and M over X.

Consider the power series

ΦH(u, v) =
∑
i,j≥0

aij u
i vj ∈ H∗(pt)[[u, v]].

One shows that Φ = ΦH satisfies:

(1) Φ
(
u,Φ(v, w)

)
= Φ

(
Φ(u, v), w

)
;

(2) Φ(u, v) = Φ(v, u);
(3) Φ(u, v) = u+ v +

∑
i,j≥1 aij u

i vj.

Thus ΦH is a (commutative) formal group law over H∗(pt). It is called the
formal group law of H∗.

Consider the “universal” power series

Φ(u, v) = u+ v +
∑
i,j≥1

Aij u
i vj ∈ H∗(pt)[[u, v]]

over the polynomial ring Z[Aij] where Aij are variables. Let I be the ideal in
Z[Aij] given by the conditions (1) and (2) above. The factor ring

L = Z[Aij]/I

is called the Lazard ring and the image ΦL of F in L is called the universal
formal group law. The coefficients aij of ΦL generate the Lazard ring L. For
every commutative ring R we have a canonical bijection
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Formal group
laws over R

≃ HomRings(L, R).

We consider L as a graded ring by deg aij = i + j − 1. For any OBMF
considered in this section there is a canonical graded ring homomorphism L∗ →
H∗(pt) giving the formal group law ΦH .

Example 1.6. If H∗ = CH∗ then ΦH(u, v) = u + v the additive groups law.
The ring homomorphism L∗ → H∗(pt) = Z takes all aij to 0.

Example 1.7. If H∗ = G∗ then ΦH(u, v) = u + v − βuv the multiplicative
periodic groups law. The ring homomorphism L∗ → H∗(pt) = Z[β, β−1] takes
a11 to −β and all other aij to 0.

Let R∗ be a commutative graded ring. An OBMF over R∗ is OBMF H∗
with product together with a graded ring homomorphism R∗ → H∗(pt). For
such a functor, one gets the structure of an R∗-module on H∗(X) for every X.
All the operations in H∗ are R∗-linear.

Example 1.8. The functors CH∗ and G∗ are OBMF over L∗.

Given an OBMF over R∗ and a homomorphism of commutative graded
rings R∗ → S∗, one can construct an OBMF H∗ ⊗R∗ S∗ over S∗ defined by
X 7→ H∗(X)⊗R∗ S∗.

1.5. OBMF of geometric type. Let H∗ be an OBMF H∗ over L∗. Let
ΦH ∈ H∗(pt)[[u, v]] be the image by the homomorphism L∗ → H∗(pt) (giving
the L∗-structure) of the power series ΦL. Thus ΦH is a formal group law over
the ring H∗(pt).

An OBMF H∗ over L∗ is said to be of geometric type is the following three
axioms hold:

Dimension axiom (Dim): For any Y ∈ Sm(F ) and any family (L1, . . . , Lr)
of line bundles on Y with r > dimY one has

c1(L1) ◦ · · · ◦ c1(Lr)(1Y ) = 0 ∈ H∗(Y ).

Let L → Y be a line bundle over Y ∈ Sm(F ) and let s : Y → L be a
section. Let Z ⊂ Y be the closed subscheme of zeros of s. We say that s is
transverse to the zero section if Z is a smooth divisor in Y .

Section axiom (Sect): For any Y ∈ Sm(F ), any line bundle L → Y and
any section s of L which is transverse to the zero section of L, one has

c1(L)(1Y ) = i∗(1Z)

where i : Z → X is the closed embedding of the scheme of the zeros of s.
Note that for every smooth divisor Z ⊂ Y there is a line bundle, namely,

L(Z) and a section having Z the scheme of zeros. If Z and Z ′ are two rationally
equivalent smooth divisors on Y , then L(Z) ≃ L(Z ′) and hence

i∗(1Z) = c1(L)(1Y ) = c1(L
′)(1Y ) = i∗(1

′
Z).



11

Formal Group Law axiom (FGL): For every Y ∈ Sm(F ) and every two line
bundles L and M on Y , one has

c1(L⊗M) = ΦH

(
c1(L), c1(M)

)
(1Y ) ∈ H∗(Y ).

Remark 1.9. Suppose that H∗ has pull-backs with respect to regular closed
embeddings. Let L→ Y be a line bundle and let s be a section of L which is
transverse to the zero section of L with the scheme Z of the zeros of s. Then
in the fiber square

Z
i−−−→ Y

i

y ys

Y
z−−−→ L

all morphisms are regular closed embeddings of codimension 1. We have

c1(L)(1Y ) = s∗z∗(1Y ) = i∗i
∗(1Y ) = i∗(1Z) = [Z → Y ],

so that Sect follows.

Remark 1.10. The L.H.S. of FGL to make sense, we need the vanishing
stated in Dim and commutativity of Chern classes.

Example 1.11. The functors CH∗ and G∗ are of geometric type.

Let the power series χH(u) be such that ΦH(u, χH(u)) = 0. Then

c1(L
∨) = χH

(
c1(L)

)
.

1.6. Cohomology functors. A morphism f : Y → X is called a local com-

plete intersection (l.c.i.) if f factors Y
g−→ X ′ h−→ X where g is a regular closed

embedding and h is a smooth morphism.
Let H∗ be an OBMF with products that admits pull-backs with respect to

regular closed embedding. Therefore, H∗ admits pull-backs with respect to all
l.c.i. morphisms.

If X is smooth connected of dimension d we set

Hs(X) = Hd−s(X)

In general, we write

Hs(X) =
n∑

i=1

Hs(Xi)

if X =
⨿n

i=1Xi disjoint union of connected components.
The pull-bach along the diagonal makes H∗(X) a graded ring for every

X ∈ Sm(F ). Since every morphism of smooth schemes is l.c.i., we get a
functor

H∗ : Sm(F )op → Rings∗

that is called the associated cohomology functor.
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2. Definition of algebraic cobordism

We are going to construct the cobordism functor on the category V =
Sch(F ). Fix a scheme X ∈ Sch(F ). A cobordism cycle over X is a fam-
ily

(f : Y → X;L1, . . . , Lr)

such that f is a projective morphism of a smooth integral scheme Y and the
Li are line bundles on Y , r ≥ 0. The dimension of this cycle is dimY − r.
An isomorphism of two cobordism classes (f : Y → X;L1, . . . , Lr) and (f ′ :

Y ′ → X;L′
1, . . . , L

′
r′) over X is an isomorphism g : Y

∼→ Y ′ over X, a bijection

σ : {1, . . . , r} ∼→ {1, . . . , r′} (so that r = r′) and isomorphisms Li
∼→ g∗L′

σ(i)

for every i.
For every i ∈ Z, let Zi(X) be the free abelian group on the set of isomor-

phism classes of cobordism cycles over X of dimension i. The class of the
cobordism cycle (f : Y → X;L1, . . . Lr) is denoted by [f : Y → X;L1, . . . , Lr].
If X is smooth, we write 1X for [Id : X → X].

By linearity, the definition of the cobordism cycle extends to the case of a
non-connected scheme Y .

For a projective morphism g : X → X ′ we define the push-forward homo-
morphism

g∗ : Z∗(X)→ Z∗(X
′)

[f : Y → X;L1, . . . , Lr] 7→ [g ◦ f : Y → X ′;L1, . . . , Lr].

For a smooth morphism g : X ′ → X of relative dimension d we define the
pull-back homomorphism

g∗ : Z∗(X)→ Z∗+d(X
′)

[f : Y → X;L1, . . . , Lr] 7→ [p2 : Y ×X X ′ → X ′; p∗1L1, . . . , p
∗
1Lr].

For a line bundle g : L→ X we define the first Chern class operation

c1(L) : Z∗(X)→ Z∗−1(X)

[f : Y → X;L1, . . . , Lr] 7→ [f : Y → X;L1, . . . , Lr, f
∗L].

We define an external product

Z∗(X)⊗Z∗(X
′)→ Z∗(X ×X ′)

[f : Y → X;L1, . . . , Lr]⊗ [f ′ : Y ′ → X;L′
1, . . . , L

′
r′ ] 7→

[f × f ′ : Y × Y ′ → X; p∗1L1, . . . , p
∗
1Lr, p

∗
2L

′
1, . . . , p

∗
2L

′
r′ ].

Note that

[f : Y → X;L1, . . . , Lr] = f∗ ◦ [Id : Y → Y ;L1, . . . , Lr]

= f∗ ◦ c1(Lr) ◦ · · · ◦ c1(L1)(1Y ).

The functor Z∗ is an OBMF with products. Let H∗ be another OBMF
with products. We define a morphism θ : Z∗ → H∗ as follows. We set

θ([f : Y → X;L1, . . . , Lr]) = f∗ ◦ cH1 (Lr) ◦ · · · ◦ cH1 (L1)(1Y )
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One checks that θ is well defined and unique. Thus the functor Z∗ is universal
in the class of all OBMF with products.

2.0.1. Imposing relations. Let H∗ be an OBMF and, for each X, let R∗(X) ⊂
H∗(X) be a subset of homogeneous elements. We will construct a new OBMF
H∗/R∗ together with a morphism of OBMF π : H∗ → H∗/R∗ satisfying the
following universal property: a morphism of OBMF θ : H∗ → H ′

∗ such that
θ(X) vanishes on R∗(X) for any X, factors through π.

ForX ∈ Sch(F ) let R∗(X) ⊂ H∗(X) be the subgroup generated by elements
of the form

f∗ ◦ c1(L1) ◦ · · · ◦ c1(Lr) ◦ g∗(ρ)
where f : Y → X a projective morphism, L1, . . . , Lr a family of line bundles
on Y , g : Y → Z a smooth equidimensional morphism and ρ ∈ R∗(Z). The
assignment X 7→ H∗(X)/R∗(X) has a structure of an OBMF that solves our
problem. We denote this theory by H∗/R∗.

Assume that for every α ∈ H∗(X) and β ∈ H∗(Y ) one has

α× β ∈ R∗(X × Y )

if either α ∈ R∗(X) or β ∈ R∗(Y ). Then the OBMF H∗/R∗ has products.
We construct the cobordism functor in four steps.

—————————————————————————————————–
Step 1. For every X ∈ Sm(F ) let RDim

∗ (X) be the subset of all cobordism
cycles of the form [f : Y → X;L1, . . . , Lr] where r > dimY . Set

Z∗ = Z∗/R
Dim
∗ .

By construction, for every X ∈ Sch(F ) and a line bundle L → X the
endomorphism c1(L) of Zn(X) is locally nilpotent, that is for each a ∈ Zn(X)
there is an m ∈ N such that c1(L)

m(a) = 0.
—————————————————————————————————–

Step 2. Let Y ∈ Sm(F ). We let RSect
∗ ⊂ Z∗(Y ) be the subset of all

elements of the form

c1(L)(1Y )− [Z → Y ],

where L → Y is a line bundle and Z is the scheme of zeros of a section
transverse to the zero section. Set

Ω∗ = Z∗/R
Sect
∗ .

The OBMF Ω∗ with products is called algebraic pre-cobordism.
—————————————————————————————————–

Step 3. We consider first the tensor product L∗ ⊗ Ω∗. This is an OBMF
over L∗ satisfying Dim and Sect.
—————————————————————————————————–

Step 4. Let Y ∈ Sm(F ). We let RFGL
∗ ⊂ Z∗(Y ) be the subset of all

elements of the form

ΦL∗

(
c1(L), c1(M)

)
(1Y )− c1(L⊗M)(1Y )
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for all line bundles L and M on Y . We define algebraic cobordism:

Ω∗ = (L∗ ⊗ Ω∗)/L∗R
FGL
∗ .

Thus, Ω∗ is an OBMF of geometric type.
—————————————————————————————————–

Recall all steps in the definition:

Z∗ → Z∗ → Ω∗ → L∗ ⊗ Ω∗ → Ω∗.

Theorem 2.1. Algebraic cobordism is the universal OBMF of geometric type.
More precisely, given an OBMF of geometric type, H∗, there is a unique
morphism of OBMF over L∗:

θH : Ω∗ → H∗.

Remark 2.2. For every X, the homomorphism Ω∗(X) → H∗(X) factors
through

Ω∗(X)⊗L H∗(pt)→ H∗(X).

Example 2.3. We have canonical morphisms

CH∗ ← Ω∗ → G∗.

Let Ln be the canonical line bundle on Pn. The linear subscheme Pn−1 ⊂ Pn

is the zero scheme of a section of Ln. By Sect,

c1(Ln)(1Pn) = [Pn−1 → Pn],

and more generally,
c1(Ln)

i(1Pn) = [Pn−i → Pn].

For every n,m ∈ N consider the line bundle Ln,m = Ln ⊗ Lm on Pn ×
Pm. Choose a section of Ln,m transverse to the zero section and let Mn,m be
the scheme of zeros of that section. In the homogeneous coordinates (X, Y ),
Mn,m can be given by one equation

∑m
i=0XiYi = 0 (provided m ≤ n). The

hypersurface Mn,m ⊂ Pn × Pm is called Milnor hypersurface.

Proposition 2.4. We have in Ω∗(Pn × Pm):

[Mn,m → Pn × Pm] =
n∑

i=0

m∑
j=0

aij [Pn−i × Pm−j → Pn × Pm],

where aij are the coefficients of the universal formal group law.

Proof. By the axiom Sect,

[Mn,m → Pn × Pm] = c1(Ln,m)(1Pn×Pm)

= c1(Ln ⊗ Lm)

=
∑
i≥0

∑
j≥0

aij c1(Ln)
ic1(Lm)

j(1Pn×Pm).
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By the axiom Sect applied repeatedly,

c1(Ln)
ic1(Lm)

j(1Pn×Pm) = [Pn−i × Pm−j → Pn × Pm].

�

For a X ∈ Sm(F ) set

[X] = [X → pt] ∈ Ω∗(pt).

Corollary 2.5.

[Mn,m] =
n∑

i=0

m∑
j=0

aij [Pn−i] · [Pm−j] ∈ Ωn+m(pt).

This gives an inductive formula for an,m in terms of the classes [Mi,j] and
[Pk].

Example 2.6. Since M1,1 ≃ P1 we have [P1] = [P1] + [P1] + a11, hence [P1] =
−a11.

Corollary 2.7. The image of L∗ in Ω∗(pt) is contained in the subring gener-
ated by the classes [Mi,j] and [Pk].

Lemma 2.8. For every X ∈ Sch(F ), the group Ω(X) is generated by the
standard cobordism cycles

[Y → X;L1, . . . Lr].

In other words, the canonical homomorphism Ω∗(X)→ Ω∗(X) is surjective.

Proof. The L∗-module Ω∗(X) is generated by standard cobordism cycles. Since
The L∗-action factors through the canonical homomorphism L∗ → Ω∗(pt), via
the external product Ω∗(pt) ⊗ Ω∗(X) → Ω∗(X), it is sufficient to show that
the ring homomorphism

Z∗(pt)→ Ω∗(pt)

is surjective. Since the ring homomorphism

L∗ ⊗Z∗(pt)→ Ω∗(pt)

is surjective by definition, it is sufficient to prove that the image of L∗ → Ω∗(pt)
is contained in the image of Z∗(pt) → Ω∗(pt). Since the ring L∗ is generated
by the coefficient aij, the result follows from Corollary 2.7. �

Lemma 2.9. Let X ∈ Sch(F ). Then the Ω(X) is generated by the standard
cobordism cycles

[Y → X;L1, . . . Lr]

such that all line bundles Li are very ample.

Proof. By Lemma 2.8, Ω(X) is generated by the standard cobordism cycles

[f : Y → X;L1, . . . , Lr] = f∗ ◦ c1(Lr) ◦ · · · ◦ c1(L1)(1Y )
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Write Li = Mi ⊗ N∨
i where Mi and Ni are very ample line bundles and use

the formula

c1(Li) = ΦL
(
c1(Mi), χ(c1(Ni))

)
.

�
Proposition 2.10. For every X ∈ Sch(F ), the group Ω∗(X) is generated by
the classes Y → X of projective morphisms with Y smooth irreducible.

Proof. By Lemma 2.9, Ω(X) is generated by the standard cobordism cycles

[Y → X;L1, . . . Lr]

such that all line bundles Li are very ample. By Bertini theorem, there is a
section s of L1 transverse to the zero section. Let Z be the scheme of zeros of
s. By the axiom Sect,

[IdY , L1] = c1(1Y ) = [Z → Y ].

Applying the Chern classes and the push-forward f∗, we get

[Y → X;L1, L2, . . . Lr] = [Z → X;L2, . . . Lr]

and we proceed by induction. �
Remark 2.11. The Bertini theorem holds over infinite fields. Over a finite
field one considers infinite pro-p-extensions for two different prime values p.

Theorem 2.12. (LOC) Let X ∈ Sch(F ), Z
i−→ X be a closed subscheme

and j : U → X the open complement. Assume that F admits resolution of
singularities. Then the sequence

Ω∗(Z)
i∗−→ Ω∗(X)

j∗−→ Ω∗(U)→ 0

is exact.

Proof. Surjectivity. Let f : Y → U be a cobordism class. Since f is projective,

if factors Y
k−→ U × Pn p−→ U where k is a closed embedding and p is the

projection. Let Y be the closure of k(Y ) in X × Pn and let g : Ỹ → Y be a

birational closed morphism with Ỹ smooth and such that g|g−1(Y ) : g
−1(Y )→

Y is an isomorphism. If h is the composition

Ỹ
g−→ Y ↪→ X × Pn → X

then obviously j∗([Ỹ
h−→ X]) = [Y

f−→ U ]. �
Theorem 2.13. (HI) Let p : E → X be an affine bundle of rank r. Assume
that F admits resolution of singularities. Then the pull-back homomorphism

p∗ : Ω∗(X)→ Ω∗+r(E).

is an isomorphism.

The following moving lemma is used in the proof:
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Lemma 2.14. Let W be in Sm(F ) and let i : Z → W be a smooth closed
subscheme. Then Ω∗(W ) is generated by standard cobordism cycles of the form
[f : Y →W ] with f transverse to i.

It is sufficient to prove HI for the morphism p : X × A1 → X. By Lemma,
the group Ω∗(X × A1) is generated by the cobordism classes f : Y → X × A1

such that Z = f−1(X × 0) is smooth of codimension 1 in Y . Then one proves
that

[f : Y → X × A1] = p∗([Z → X]).

Theorem 2.15. (PBT) Let E → X be a vector bundle of rank r + 1 and
let q : P(E) → X be the associated projective bundle. Assume that F admits
resolution of singularities. Then every element a ∈ Ωk−1

(
P(E)

)
can be written

in the form

a =
r∑

i=1

(c1(Lt)
r−i ◦ q∗)(ai)

for unique elements ai ∈ Ωk−i(X).

One reduces to the case of the projection X × Pn → X and proceeds by
induction on n using HI.

3. The ring Ω∗(pt)

Theorem 3.1. Let charF = 0. Then the canonical homomorphism

L∗ → Ω∗(pt)

is an isomorphism.

To prove injectivity, we will construct a “large” OBMF H∗ of geometric
type such that the canonical composition

L∗ → Ω∗(pt)→ H∗(pt)

is injective.
A partition α = (α1, α2, . . . , αk) is a sequence of integers (possibly empty)

α1 ≥ α2 ≥ · · · ≥ αk > 0. The degree of α is the integer

|α| = α1 + α2 + · · ·+ αk.

The integer k is called the length l(α) of the partition α.
We consider the polynomial ring Z[b1, b2, . . . ] = Z[b] in infinitely many

variables b1, b2, . . . as a graded ring with deg bi = i. For every partition α set

bα = bα1bα2 . . . bαk
.

The monomials bα form a basis of the polynomial ring over Z.
Let Z[c1, c2, . . . ] = Z[c] be another polynomial ring with the grading deg ci =

i. The elements of Z[c] are called the characteristic classes and the cn - the
Chern classes.
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For every partition α we define the “smallest” symmetric polynomial

Pα(x1, x2, . . . ) =
∑

(i1,i2,...,ik)

xα1
i1
xα2
i2

. . . xαk
ik

= Qα(σ1, σ2, . . . ),

containing the monomial xα1
1 xα2

2 . . . xαk
k , where the σi are the standard sym-

metric functions, and set

cα = Qα(c1, c2, . . . ).

For example, cn = c(1,1,...,1) (n units).
For every element (characteristic class) c ∈ Z[c] and every vector bundle E

over a varietyX ∈ Sm(F ) there is a well defined operation c(E) on CH∗(X). In
particular, for every partition α there are generalized Chern operations cα(E).

We consider a new OBMF H∗ on Sm(F ) defined by

H∗(X) = CH∗(X)⊗ Z[b] = CH∗(X)[b].

We define the characteristic polynomial operation of E by the formula

P(E) =
∑
α

cα(E)bα ∈ H∗(X).

Note that the polynomial P(E) is invertible in H∗(X).

Example 3.2. If L is a line bundle, then PA(L) =
∑

i≥0 c
A
1 (L)

ibi.

The pull-back homomorphism f ∗
H : H∗(X)→ H∗(Y ) associated to a smooth

morphism f : Y → X is equal to f ∗ ⊗ idZ[b]. The push-forward map fH
∗

associated to a projective morphism f : Y → X is defined by

fH
∗ = P(TX)

−1 ◦ f∗ ◦P(TY ).

where TZ is the tangent bundle of a smooth scheme Z. The first Chern is
defined by the formula

cH1 (L) = c1(L) ·P(L) =
∑
i≥0

c1(L)
i+1bi.

Consider the power series

exp t = t+ b1t
2 + b2t

3 + · · · ∈ Z[[b, t]].
and its formal inverse

log t = t+m1t
2 +m2t

3 + · · · ∈ Z[[b, t]]
where mi ∈ Z[b]. Clearly,

cH1 (L) = exp c1(L) and c1(L) = log cH1 (L).

For any two line bundles L and L′ on X we have

cH1 (L⊗ L′) = exp c1(L⊗ L′)

= exp(c1(L) + c1(L
′)
)

= exp
(
log cH1 (L) + log cH1 (L

′)
)
.
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Thus

ΦH(u, v) = exp(log u+ log v).

It is known that the corresponding ring homomorphisms

L→ Z[b] = H∗(pt)

injective, hence so is

L→ Ω∗(pt).

We illustrate the proof of surjectivity on Ω1(pt). Let D = D1 + D2 be
a normal crossing divisor on a smooth surface S and let L = L(D) be the
corresponding line bundle. By FGL and Sect,

c1(L) = c1L(D1) + c1L(D2) + a11c1L(D1)c1L(D2),

c1(L)(1S) = [D1 → S] + [D2 → S] + a11[pt→ S] ∈ Ω1(S)

and hence in Ω1(pt):

c1(L)[S] = [D1] + [D2] + a11 ≡ [D1] + [D2] (mod L1).

More generally, if D =
∑

niDi and D′ =
∑

n′
jD

′
j are two normal crossing

divisors on S such that L(D) ≃ L(D′) then in Ω1(pt):

(2)
∑

ni[Di] ≡
∑

n′
j[D

′
j] (mod L1).

Let Y be a smooth projective curve over F and let Y ⊂ P2 be a projection of
Y on the projective plane. By resolution of singularities, there is a projective
morphism f : S → P2 of a smooth projective surface S and a smooth projective

curve Ỹ ⊂ S such that the restriction of f on Ỹ is a birational equivalence of

Ỹ and Y . Clearly, Ỹ ≃ Y Moreover, we may assume that

f−1(Y ) = Ỹ +
∑

niDi

is a normal crossing divisor.

Let D ⊂ P2 be a smooth divisor rationally equivalent to Y such that D̃ =

f−1(D) is isomorphic to D. Thus, D̃ is a smooth divisor on S rationally

equivalent to Ỹ +
∑

niDi. Hence, by (2), in Ω1(pt),

[Ỹ ] +
∑

ni[Di] ≡ [D̃].

Since Di ≃ P1 and [P1] = −a11, we get

[Y ] = [Ỹ ] ≡ [D̃] = [D].

Let H ⊂ P2 be a projective line. We have D ∼ nH for some n and again by
(2),

[D] ≡ n[H] = n[P1] ≡ 0,

i.e., [Y ] = [D] ∈ L1. In fact, one derives from the proof that

[Y ] = (1− g)[P1] = (g − 1)a11

where g is the genus of Y .
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In the general case the factorization theorem is used (that is why we assume
charF = 0).

4. Comparison with CH∗ and the degree formula

Let X be a reduced scheme over F that has RS property. For every closed

integral subscheme Z ⊂ X, choose a projective birational morphism Z̃ → Z

with Z̃ ∈ Sm(F ).

Theorem 4.1. The L∗-module Ω(X) is generated by the classes Z̃ → X.

Proof. Induction on dimX. Let Xi, i = 1, . . . , r be the irreducible components
of X. Let [f : Y → X] be a class in Ω∗(X) and let Yi = f−1(xi) where xi ∈ Xi

is the generic point. Every Yi is a smooth scheme over k(xi). The class
[Yi] ∈ Ω∗(Spec k(xi)) = L will be viewed as an element of L∗.

The element

α = [Y → X]−
r∑

i=1

[Yi] · [X̃i → X]

vanishes when restricted to a neighborhood U ⊂ X of all generic points. Let
Z = X−U be the reduced complement. By LOC, there is β ∈ Ω∗(Z) such that
α = i∗(β) where i : Z → X is the closed embedding. Since dimZ < dimX we
can apply the induction hypothesis to Z. �

Let f : Y → X be a projective morphism with Y smooth and X irreducible.
The generic fiber Y ′ → SpecF (X) represents an elements

deg(f) ∈ Ω∗
(
SpecF (X)

)
= L∗.

In particular, if f is finite, deg(f) ∈ L0 = Z is the standard degree.

Corollary 4.2. (General degree formula) There are elements αZ ∈ L∗, almost
all zero, such that

[Y → X] = deg(f) · 1X +
∑

Z, codimX Z>0

αZ · [Z̃ → X].

Let I∗ = L>0 be the kernel of the canonical ring homomorphism L∗ → Z.

Corollary 4.3. Let d = dimX. Then Ω>d(X) ⊂ I · Ω(X).

This corollary can be generalized:

Theorem 4.4. Let F be a field of characteristic zero. Then for every X ∈
Sch(F ), the canonical homomorphism

Ω∗(X)⊗L Z = Ω∗(X)/I∗ · Ω∗(X)→ CH∗(X)

is an isomorphism.

Corollary 4.5. The Chow functor CH∗ is the universal OBMF of geometric
type with the additive formal group law.
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5. Comparison with K-theory

Theorem 5.1. Let F admits RS. Then for every X ∈ Sm(F ) the canonical
homomorphism

Ω∗(X)⊗L Z[β, β−1]→ K0(X)[β, β−1]

is an isomorphism.

Corollary 5.2. The K-theory functor K0(X)[β, β−1] on Sm(F ) is the uni-
versal OBMF of geometric type with the multiplicative periodic formal group
law.

6. Pull-backs with respect to closed embeddings

The functor Ω∗ admits pull-backs with respect to regular closed embeddings.
In particular, we get the associated cobordism cohomology functor

Ω∗ : Sm(F )op → Rings∗.
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