ALGEBRAIC COBORDISM THEORY

ALEXANDER MERKURJEV

1. ORIENTED BOREL-MOORE FUNCTORS
We will follow the work of M. Levine and F. Morel.

Notation:

Scheme = quasi-projective scheme over a field F;
Variety = integral scheme;

Sch(F') = category of schemes over F;

Sm(F') = category of schemes over F’;

V is either Sm(F') or Sch(F);

)’ has the same objects as V and projective morphisms;
pt = Spec F'.

We will be considering pairs of functors (theories):
e A Borel-Moore homology functor
H, :V'(F) — Abx,
e A cohomology functor
H* : Sm(F)” — Rings”
together with the canonical isomorphism
H*(X) ~ Hy—.(X)
for every smooth variety X of dimension d (Poincaré duality).

1.1. Chow groups. Let X be a scheme over a field F' and let £ > 0 be an
integer. A cycle of dimension k on X is a formal finite sum with integer

coefficients
a= Z ny[V]

taken over closed subvarieties V' C X of dimension k. All cycles of dimension ¢
on X form a free abelian group Z(X). Let Ry (X) be the subgroup of Z;(X)
of rationally trivial cycles. The factor group

CHi(X) = Zp(X)/Ri(X)

is called the Chow group of X of dimension k.
Clearly, CH(X) =0 for £ > dim X or k£ < 0.

Example 1.1. CH,(pt) = Z - [pt].
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1.1.1. Push-forward. Let f :Y — X be a projective morphism of schemes over
F. Let V C X be a closed subvariety of dimension k. The image f(V) is a
closed subvariety of X. Clearly, dimW < k and dim W = k if and only if the
function field F'(V) is a finite field extension of F(W). We set

det () = { ([)Ii(V) S ioftﬁglw‘fs/e,: g

For every k > 0 we can define a homomorphism
fo: Ze(Y) — Zp(X)

by the rule
fu([V]) = degy (f) - W]
We have
fi(Ri(Y)) C Ri(X)

and therefore f, induces the push-forward homomorphism

If g : Z — Y be another projective morphism, then f o g is projective and
(fog)e = feog. Thus, the correspondence X +— CH,(X) gives rise to a
functor

CH, : Sch(F) — Ab,

that is an example of what will be called a Borel-Moore functor in what follows.

1.1.2. Flat pull-back. Let f :Y — X be a flat morphism of schemes of relative
dimension d. Then for a closed subvariety V' C X of dimension k the closed
subscheme f~!(V) is equidimensional of dimension &+ d. The homomorphism

fi CHY(X) = CHypa(Y),  [VI=[fH(V)]

is well-defined and is called the pull-back homomorphism.

If g: Z — Y is another flat morphism of relative dimension e, then the
composite f o g is flat of relative dimension d+ e and (f o g)* = g* o f*. Thus,
the correspondence X +— CH,(X) gives rise to a co-functor from the category
of schemes and flat morphisms of constant relative dimension to the category
of graded groups.

Let

y Lo x

gl lh
y I x

be a pull-back diagram of schemes such that the morphism f is flat of relative
dimension d and ¢ is proper. Then f’ is flat of relative dimension d and ¢ is
proper and we have

geo f* = f"oh..
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1.1.3. Homotopy Invariance (HI). Let p: E — X be a vector bundle of rank
r. Then p is flat of relative dimension r and therefore we have a pull-back
homomorphism

p* s CHy(X) — CHyy (E).

The homotopy invariance property asserts that map p* is an isomorphism. In
fact the homotopy invariance holds if p is just an affine bundle.

1.1.4. Chern classes. Let L — X be a line bundle with the zero section z :
X — L. We define the first Chern class of L as the homomorphism

er(L) : CHy(X) 25 CHu(L) % CH, (X)),

Let L and L' be two line bundles over X. We have
a(Le L) =c(L)+a(l) and  ¢(L)oci (L) =ci(L)ocr(L).

1.1.5. Projective bundle theorem (PBT). Let E — X be a vector bundle of
rank r and let ¢ : P(E) — X be the associated projective bundle. Denote by
L; — P(E) the tautological line bundle (with the sheaf of sections O(—1)). Let
¢ be the operator ¢;(L;) in CH, (P(E)). Then every element a € CH,_; (P(E))
can be written in the form

0= Y o))
i=1
for unique elements a; € CHy_;(X).
The PBT allows to define the higher Chern operations
¢i(E): CH(X) — CH,;(X), i>0
by the rules ¢y(E) = id and

T

D (-1 oq o (E) =0.
i=0
In the case rank(E) = 1 we have P(E) = X and L, = E so that the new
definition of ¢;(F) agrees with the old one.

1.1.6. Localization exact sequence (LOC). Let Z be a closed subscheme of a
scheme X and set U = X — Z. Denote by 7 : Z7 — X and j : U — X the
closed and open embeddings respectively. Then the localization sequence

CHy(Z) & CHy(X) L5 CHy(U) — 0

1s exact.

1.1.7. Ezternal products. Let X and Y be two schemes. The assignment
([Z],[T]) = [Z x T) gives rise to the external product
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1.1.8. Pull-back homomorphisms with respect to reqular closed embeddings. A
sequence of elements aq, as, . ..ay of a commutative ring A is called a regular
sequence of length d is a; is not a zero divisor in A/(ay,...,a;—1) for all i =
1,...,d. A closed embedding ¢ : Y — X is called regular of codimension d if
the ideal of Y in X in a neighborhood of every point of Y is generated by a
regular sequence of length d.

Example 1.2. A regular closed embedding of codimension 1 is a locally prin-
cipal divisor.

If7:Y — X is a regular closed embedding of codimension d then there are
pull-back homomorphisms

Let i : Y — X be a regular closed embedding of codimension d and let
f: X' — X be a projective morphism. Suppose that in the fiber square

,L'/

YN ——
AR
Yy —— X
the morphism ¢’ is also a regular closed embedding of codimension d. Then
i*of,=1i"og,.

1.1.9. Smooth schemes. Let X be a smooth variety of dimension d. We write
CH'(X) for CHy_;(X). The diagonal embedding § : X — X x X is then
regular of codimension d. The composition

CH'(X) ® CH/(X) 228 cH™H (X x X) &5 CHY(X)

makes the graded group CH*(X) a commutative ring, called the Chow ring of
X.

In general, a smooth scheme X is a disjoint union of the components Xj;.
We define the ring CH*(X) as the product of the rings CH*(X,).

Every morphism f : Y — X of smooth schemes can be factored as

Y Ly xX & X

where g = (1y, f) and p is the projection. We have g a regular closed embed-
ding and therefore we have the pull-back ring homomorphism

f*: CH*(X) — CH*(Y)
well defined. We get a functor
Sm(F)? — Rings’, X — CH*(X).

This functor can be viewed as a cohomology functor.
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1.2. G-groups. Let X be a scheme. The group G(X) is defined by generators
and relations. The generators are the isomorphism classes [M] of coherent O x-
module M. Relations are of the forms [M'] + [M"] = [M] for every exact
sequence

0-M—->M-—=>M'—=0

of coherent O x-modules.

The theory X — G(X) is not graded. We force it to be graded by tensoring

with Z[3, 7]
G.(X) =G(X) @ Z[B, 7).

where we consider the Bott element [ of degree 1. In other words,
Gi(X)=G(X) -8, i€l

Example 1.3. If X = Spec F is the point, then G,(X) = Z[3, 37}].

1.2.1. Push-forward. Let f : Y — X be a projective morphism of schemes over
F. We define the push-forward homomorphisms

fe: Ge(Y) — G(X)
by
fo(IM] - %) = Z(—l)i[Rif*(Mn . p*

for a coherent Oy-module M. The we get a Borel-Moore functor

G, :Sch(F) — Ab,.

1.2.2. The Grothendieck ring. The Grothendieck ring K(X) is defined simi-
larly to G(X) using locally free Ox-modules instead of coherent Ox-modules.
Set

G*(X) = Ko(X) @ Z[8, B7'].
The functor
G* : Sm(F)” — Rings"
can be viewed as a cohomology functor.
Note that G.(X) is a module over the ring G*(X) and the canonical homo-
morphism G*(X) — G4_.(X) is an isomorphism if X is a smooth variety of
dimension d. This can be regarded as the Poincaré duality.

1.2.3. Flat pull-back. Let f:Y — X be a flat morphism of schemes of relative
dimension d. We define the pull-back homomorphisms

[P GHY) = Graa(X)
by
FAM] -85 = [ (M)] - g

for a coherent Ox-module M.
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1.2.4. Chern classes. The functor G, satisfies HI, hence the chern classes are
well defined. Let p : L — X be a line bundle. Recall that

L = Spec S*(LY)

where S*® is the symmetric algebra and £ is the sheaf of sections of L. Then
we have an exact sequence of coherent O -modules

0—=pLY =0, — 20x =0

where z is the zero section. Tensoring with p* M over O for an Ox-module
M we get an exact sequence

0—=p (LY @M)—=pM— 2M—0.
We have
ar((M]-8%) = ()2 (IM] - 5%)
= (p") " (" IM] - BF = p[LY @ M] - 5¥)
= (1 - [L])M]- g+

In other words, ¢;(L) is the multiplication by (1 — [£Y]) - 3
Let L and L’ be two line bundles over X. We have

1-[LeLl=1-[L)+@1-[L]) - (1-[L])(1-[L1)

—1

hence
a(L® L) =c(L)+a(l) - Be(L)er(L).

1.2.5. External products. The external product
Ge(X) @ Gi(Y) = Gru(X xY)

is given by
([M] - 8% INT- BY) = [pr (M) @ p3(N)] - B
where p; and py are two projections of X x Y to X and Y respectively.

Note that the theory G, satisfies PBT, LOC a has pull-backs with respect
to regular closed embeddings.

1.3. Borel-Moore functors. The idea is weaken the assumption: we will
assume existence of the pull-back homomorphisms for smooth morphisms only,
not all flat ones.

Consider the category V'(F') where V(F) = Sch(F) or Sm(F'). A Borel-

Moore functor is a functor

H,:V'(F)— Ab-.
Thus for every projective morphism f : Y — X a (push-forward) homomor-
phism

fo: Ho(Y) = H.(X)

is given.
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A Borel-Moore functor is called additive if for any X1, X5, ..., X, in V'(F)
the natural homomorphism

n n

[[a.(x) - 7] x0)

i=1 =1

is an isomorphism. In particular, H,(0) = 0.
An additive Borel-Moore functor H, is called oriented (OBMTF) if there are
given:

(1) For each smooth morphism f :Y — X of relative dimension d a homo-
morphism of graded groups (pull-backs)

FHA(X) = HepalY).

(2) For each line bundle L — X a homomorphism of graded groups (first
Chern class)

Cl(L) : H*(X> — H*_l(X)
All these should satisfy the following axioms:

(A1) For any pair Z Sy L xof equidimensional smooth morphisms one
has (fog)* = g" o f*. Also Idy = Idy, (x).

(A2) For a fiber square
w2 X
| |7
Yy 2= Z
where f is projective and ¢ is smooth equidimensional one has
g ofe="Fog"
(A3) For a projective morphism f : Y — X and a line bundle L — X, one
has
fio Cl(f*L) = CI(L> o fu.

(A4) For a smooth equidimensional morphism f : Y — X and a line bundle
L — X, one has

a(f'L)of*=foal(l)
(A5) For any two line bundles L and L' on X one has
ci(L)ocy (L) =1 (L') oer(L).

Moreover, if L and L’ are isomorphic then ¢; (L) = ¢ (L).

A morphism H, — H/ of oriented Borel-Moore functors is a natural trans-
formation of functors which commutes with the smooth-pull-backs and the
first Chern classes.
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Remark 1.4. Consider the category A with the same objects as in V(F'). A

morphism X ~» Y is a “roof” X L X' 4 v where f is smooth of relative
dimension d and g is projective. The composition of X ~» Y and another

morphism Y ~» Z, represented by the roof Y Ly Ltz , is given by the roof
x % xm ¥y 7 defined by the fiber square

X" g Y’
hfl lh
X 25y

Every BM-functor H defines a functor A — Ab taking an object X to H(X)
and a morphism X ~» Y given by a roof X L X %Y to

gl Ho(X) = Hupa(Y).
The property (A2) shows that the functor is well defined.

1.3.1. Oriented Borel-Moore functor with product. An oriented Borel-Moore
functor with product is a OBMF together with the following data:

An element 1 € Hy(pt) and for every two schemes X and Y, a bilinear
graded pairing (called the external product)

H(X)®H.(Y) > H(X xY), a®B—ax}

which is commutative, associative and admits 1 as unit. The product satisfies:
(A6) For every projective morphisms f and g,

fox g = (f X g)s
(A7) For every smooth equidimensional morphisms f and g,
frxg =(fxg9)
(A8) For every two schemes X and Y and a line bundle L — X one has
(e1(L)(a) x B = er(pi(L)) (e x B)
for every v € H.(X) and 5 € H,(Y).

If H, is a OBMF with product then the axioms give H,(pt) a structure of a
commutative graded ring, and to each H,.(X) a structure of a H,(pt)-module
so that the operations f,, f* and ¢;(L) preserve the H,(pt)-module structure.

For X € Sm(F) the distinguished element p*(1) is denoted by 1x € H°(X)
(here p : X — pt is the structure morphisms).

Remark 1.5. If X is not smooth, the group H,(X) may have no distinguished
element.
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1.4. Formal group law. Let H, be a OBMF with products. Assume that
PBT holds. Let L, be the canonical line bundle on the projective space P".
For simplicity we write L, and L,, for the pull-backs of L,, and L,, on P* x P™
with respect to two projections. By PBT, applied twice, we have

c1(Ly, ® Ly,) = Z aij c1(Lyn)" e1(Li )
OOSSJ?EZ”L
for uniquely determined elements a;; € H;y;_1(pt). One shows that the ele-
ments a;; do not depend on n >4 and m > j.

Suppose now that H, has the pull-backs with respect to morphisms of
smooth schemes. Let L and M be line bundles over X € Sm(F') generated by
global sections. Then there are morphism f : X — P" and g : X — P™ such
that L ~ f*L,, and M ~ ¢*L,,. Pulling back the formula above we get

1 a(LeM) =Y ay (L) o(MY
i,j>0
on X.

Suppose that L and M are arbitrary line bundles on X. By Jouanolou’s
trick, there is an affine bundle h : Y — X with an affine scheme Y. Since
every vector bundle over an affine scheme is generated by sections, the formula
(1) holds for h*L and h*M over Y. Assume that H, satisfies HI. Then (1)
holds for L and M over X.

Consider the power series
Sy (u,v) = Z a;; u' v € H,(pt)[[u,v]].
i,j>0

One shows that ® = &y satisfies:

(1) @(u,®(v,w)) = (P(u,v), w);

2) ®(u,v) = B(v, u); |

(3) ®(u,v) =u+v+ Y, 5 ai; u' v
Thus @y is a (commutative) formal group law over H,(pt). It is called the

formal group law of H,.
Consider the “universal” power series

O(u,v) =u+v+ Y Ay u' v € Hopt)[[u,v]]
ij>1
over the polynomial ring Z[A;;] where A;; are variables. Let I be the ideal in
Z]A;;] given by the conditions (1) and (2) above. The factor ring

is called the Lazard ring and the image ®, of F' in L is called the universal
formal group law. The coefficients a;; of ®, generate the Lazard ring L. For
every commutative ring R we have a canonical bijection
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Formal group

laws over R | — Hom pings (L, R).

We consider L. as a graded ring by dega;; = ¢ + j — 1. For any OBMF
considered in this section there is a canonical graded ring homomorphism L, —
H,(pt) giving the formal group law ®y.

Example 1.6. If H, = CH, then ®y(u,v) = u + v the additive groups law.
The ring homomorphism L, — H,(pt) = Z takes all a;; to 0.

Example 1.7. If H, = G, then ®y(u,v) = u + v — fuv the multiplicative
periodic groups law. The ring homomorphism L, — H,(pt) = Z[3, 371] takes
a1 to —3 and all other a;; to 0.

Let R, be a commutative graded ring. An OBMF over R, is OBMF H,
with product together with a graded ring homomorphism R, — H.(pt). For
such a functor, one gets the structure of an R,-module on H,(X) for every X.
All the operations in H, are R,-linear.

Example 1.8. The functors CH, and G, are OBMF over L,.

Given an OBMF over R, and a homomorphism of commutative graded
rings R, — S,, one can construct an OBMF H, ®p, S, over S, defined by
X — H.(X)®g, S..

1.5. OBMF of geometric type. Let H, be an OBMF H, over L,. Let
by € H,.(pt)|[u,v]] be the image by the homomorphism L, — H,(pt) (giving
the L,-structure) of the power series ®p,. Thus ®5 is a formal group law over
the ring H,(pt).

An OBMF H, over L, is said to be of geometric type is the following three
axioms hold:

Dimension _aziom (Dim): For any Y € Sm(F') and any family (L, ..., L,)
of line bundles on Y with » > dim Y one has
Cl(Ll) O---0 Cl(LT)(ly) =0e€ H*<Y)

Let L — Y be a line bundle over Y € Sm(F) and let s : ¥ — L be a
section. Let Z C Y be the closed subscheme of zeros of s. We say that s is
transverse to the zero section if Z is a smooth divisor in Y.

Section_aziom (Sect): For any Y € Sm(F'), any line bundle L — Y and
any section s of L which is transverse to the zero section of L, one has

ci(L)(ly) = i(1z)
where i : Z — X is the closed embedding of the scheme of the zeros of s.
Note that for every smooth divisor Z C Y there is a line bundle, namely,

L(Z) and a section having Z the scheme of zeros. If Z and Z’ are two rationally
equivalent smooth divisors on Y, then L(Z) ~ L(Z') and hence

ix(17) = al(L)(ly) = er(L)(1y) = i(1%).
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Formal Group Law aziom (FGL): For every Y € Sm(F) and every two line
bundles L and M on Y, one has

er(L® M) =y (er(L), ey (M) (1y) € Ho(Y).

Remark 1.9. Suppose that H, has pull-backs with respect to regular closed
embeddings. Let L — Y be a line bundle and let s be a section of L which is
transverse to the zero section of L with the scheme Z of the zeros of s. Then
in the fiber square

all morphisms are regular closed embeddings of codimension 1. We have
c(L)(ly) = s"z(ly) = i.i*(ly) = i.(1) = [Z = Y],
so that Sect follows.

Remark 1.10. The L.H.S. of FGL to make sense, we need the vanishing
stated in Dim and commutativity of Chern classes.

Example 1.11. The functors CH, and G, are of geometric type.
Let the power series x g (u) be such that ®x(u, xg(u)) = 0. Then

a(LY) = xu(a(L)).

1.6. Cohomology functors. A morphism f : Y — X is called a local com-

plete intersection (l.c.i.) if f factors Y £ X' " X where g is a regular closed
embedding and A is a smooth morphism.

Let H, be an OBMF with products that admits pull-backs with respect to
regular closed embedding. Therefore, H* admits pull-backs with respect to all
l.c.i. morphisms.

If X is smooth connected of dimension d we set

H*(X) = Hy—s(X)

In general, we write
H*(X) =) H(X;)
i=1

if X =T, X; disjoint union of connected components.

The pull-bach along the diagonal makes H*(X) a graded ring for every
X € Sm(F). Since every morphism of smooth schemes is l.c.i., we get a
functor

H* : Sm(F)” — Rings”

that is called the associated cohomology functor.
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2. DEFINITION OF ALGEBRAIC COBORDISM

We are going to construct the cobordism functor on the category V =
Sch(F). Fix a scheme X € Sch(F). A cobordism cycle over X is a fam-
ily

(f:Y = X;Lq,...,L,)
such that f is a projective morphism of a smooth integral scheme Y and the
L; are line bundles on Y, » > 0. The dimension of this cycle is dimY — r.
An isomorphism of two cobordism classes (f : Y — X;Lq,...,L,) and (f':

Y’ — X;Lj,...,L,) over X is an isomorphism g : Y = Y’ over X, a bijection
o:{1l,...,r} = {1,...,7'} (so that r = r’) and isomorphisms L; — 9L,
for every 1.

For every i € Z, let Z;(X) be the free abelian group on the set of isomor-
phism classes of cobordism cycles over X of dimension i. The class of the
cobordism cycle (f : Y — X; Ly,...L,) is denoted by [f : Y — X; Ly,..., L,].
If X is smooth, we write 1x for [Id : X — X].

By linearity, the definition of the cobordism cycle extends to the case of a
non-connected scheme Y.

For a projective morphism ¢ : X — X’ we define the push-forward homo-
morphism

gx: Z.(X) = Z.(X")
[f:Y = X;Ly,....L]—[gof:Y = X" L,.... L]

For a smooth morphism ¢ : X’ — X of relative dimension d we define the
pull-back homomorphism

gt Z.(X) = Zopu(X)
[f:Y = X;Ly,...., L]~ [p2: Y xx X' — X';p{Ly,...,pi L]
For a line bundle g : L — X we define the first Chern class operation
a(l): Z.(X) = Z.1(X)
f:Y—=>X;Ly,....L]—[f:Y = X;Ly,..., L, f*L].
We define an external product
Z(X)® Z,(X") = Z,(X x X')

f:Y = X;Ly,....L|[f Y = X;L,...., L] —
[fxf:YxY' = X;piLy,...,p{L.,p3L5, ..., 3L
Note that
(f:Y = XLy, L= fio[ld:Y = Y;Li,..., L]
= fioci(Ly)o---oci(Ly)(ly).

The functor Z, is an OBMF with products. Let H, be another OBMF
with products. We define a morphism 0 : Z, — H, as follows. We set

O(f:Y = X;Li,..., L)) = feoc (L) o---oc(L)(1y)
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One checks that 6 is well defined and unique. Thus the functor Z, is universal
in the class of all OBMF with products.

2.0.1. Imposing relations. Let H, be an OBMF and, for each X, let R.(X) C
H.(X) be a subset of homogeneous elements. We will construct a new OBMF
H,./R. together with a morphism of OBMF 7 : H, — H,/R, satisfying the
following universal property: a morphism of OBMF 6 : H, — H. such that
6(X) vanishes on R.(X) for any X, factors through 7.
For X € Sch(F)let R.(X) C H,(X) be the subgroup generated by elements
of the form
feoe(Ly)o---oe(ly)og(p)
where f : Y — X a projective morphism, Ly,..., L, a family of line bundles
onY, g:Y — Z asmooth equidimensional morphism and p € R,(Z). The
assignment X +— H,(X)/R.(X) has a structure of an OBMTF that solves our

problem. We denote this theory by H,/R..
Assume that for every a € H,(X) and § € H,(Y') one has

axfeR(XxY)
if either v € R,(X) or 5 € R.(Y). Then the OBMF H, /R, has products.

We construct the cobordism functor in four steps.

Step 1. For every X € Sm(F) let RP"™(X) be the subset of all cobordism
cycles of the form [f : Y — X;Lq,..., L,| where r > dimY. Set

By construction, for every X € Sch(F') and a line bundle L — X the
endomorphism ¢ (L) of Z,(X) is locally nilpotent, that is for each a € Z,,(X)
there is an m € N such that ¢;(L)™(a) = 0.

Step 2. Let Y € Sm(F). We let R%** C Z,(Y) be the subset of all
elements of the form

a(L)(ly) = [Z = Y],

where L — Y is a line bundle and Z is the scheme of zeros of a section
transverse to the zero section. Set

Q, = Z, /R
The OBMF 2, with products is called algebraic pre-cobordism.

Step 3. We consider first the tensor product L, ® .. This is an OBMF
over L, satisfying Dim and Sect.

Step 4. Let Y € Sm(F). We let RFGCE ¢ Z_(Y) be the subset of all
elements of the form

O, (c1(L),c1(M))(1y) — er(L @ M)(1y)
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for all line bundles L and M on Y. We define algebraic cobordism:
Q, = (L, ®9Q,)/L,RFCE,
Thus, €2, is an OBMF of geometric type.

Recall all steps in the definition:
Z,—Z, -0 —->L,®Q, —Q,.

Theorem 2.1. Algebraic cobordism is the universal OBMF of geometric type.
More precisely, giwven an OBMF of geometric type, H,, there is a unique
morphism of OBMF owver L, :

Remark 2.2. For every X, the homomorphism Q,(X) — H,(X) factors
through
Q. (X) @ Hi(pt) = H.(X).

Example 2.3. We have canonical morphisms
CH., + Q, — G..

Let L,, be the canonical line bundle on P*. The linear subscheme P! C P»
is the zero scheme of a section of L,. By Sect,

c1(Ly)(1pn) = [P* 1 — P,
and more generally,
c1(Ly) (1pn) = [P"7" — P].

For every n,m € N consider the line bundle L,,,,, = L, ® L,, on P" x
P™. Choose a section of L, ,, transverse to the zero section and let M,, ,, be
the scheme of zeros of that section. In the homogeneous coordinates (X,Y),
M,, ., can be given by one equation ). X;Y; = 0 (provided m < n). The
hypersurface M, ,,, C P" x P™ is called Milnor hypersurface.

Proposition 2.4. We have in Q. (P" x P™):
[Mn,m — P x P = Z Zaij [Pn_i x P P x P™,
i=0 j=0
where a;; are the coefficients of the universal formal group law.
Proof. By the axiom Sect,
[Mn’m — ]P)n X Pm] - Cl(Ln7m>(1PnXPm)
= 01<Ln (29 Lm)

=3 aij e1(La) 1 (L) (Lpnpm).

i>0 >0
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By the axiom Sect applied repeatedly,
c1(Ln)icr(Ly) (1pnypm) = [P x P77 — P x P™].

For a X € Sm(F) set
[X] = [X — pt] € Qu(pt).

Corollary 2.5.

n m

(Mym] =D > aig [P"7]- [P 7] € Qu(pt).

i=0 j=0
This gives an inductive formula for a, ,, in terms of the classes [M, ;] and

[P*].

Example 2.6. Since M;; ~ P! we have [P'] = [P!] + [P!] + ay1, hence [P'] =

—daiy.

Corollary 2.7. The image of L, in Q.(pt) is contained in the subring gener-
ated by the classes [M; ;] and [P¥].

Lemma 2.8. For every X € Sch(F), the group Q(X) is generated by the
standard cobordism cycles

Y = X:Li,...L,).
In other words, the canonical homomorphism Q,(X) — Q.(X) is surjective.
Proof. The L,-module Q,(X) is generated by standard cobordism cycles. Since
The L,-action factors through the canonical homomorphism L, — Q,(pt), via

the external product Q. (pt) ® Q.(X) — Q.(X), it is sufficient to show that
the ring homomorphism

Z.(pt) = Qu(pt)
is surjective. Since the ring homomorphism

L. ® Z.(pt) — Q.(pt)

is surjective by definition, it is sufficient to prove that the image of L, — Q. (pt)
is contained in the image of Z,(pt) — Q.(pt). Since the ring L, is generated
by the coefficient a;;, the result follows from Corollary 2.7. O

Lemma 2.9. Let X € Sch(F). Then the Q(X) is generated by the standard
cobordism cycles

Y = X:Li,...L,]
such that all line bundles L; are very ample.
Proof. By Lemma 2.8, Q(X) is generated by the standard cobordism cycles
f Y = X5 L, L] = fuoa(Ly) o+ oer(Ly)(Ly)
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Write L; = M; ® N;” where M; and N; are very ample line bundles and use
the formula

c1(Li) = @p(er(My), x(c1(N:))).
]

Proposition 2.10. For every X € Sch(F'), the group Q.(X) is generated by
the classes Y — X of projective morphisms with Y smooth irreducible.

Proof. By Lemma 2.9, Q(X) is generated by the standard cobordism cycles
Y = X:Li,...L,]

such that all line bundles L; are very ample. By Bertini theorem, there is a
section s of Ly transverse to the zero section. Let Z be the scheme of zeros of
s. By the axiom Sect,

Idy, L] = c1(ly) = [Z = Y.
Applying the Chern classes and the push-forward f,, we get
Y = XLy, Lo, ... L) =[Z — X; Lo, ... L,]
and we proceed by induction. O

Remark 2.11. The Bertini theorem holds over infinite fields. Over a finite
field one considers infinite pro-p-extensions for two different prime values p.

Theorem 2.12. (LOC) Let X € Sch(F), Z % X be a closed subscheme
and j : U — X the open complement. Assume that F admits resolution of
singularities. Then the sequence

3

0(2) 2 Q.(X) L5 Q. (U) = 0
1S exact.

Proof. Surjectivity. Let f : Y — U be a cobordism class. Since f is projective,

if factors Y & U x P* & U where k is a closed embedding and p is the
projection. Let Y be the closure of k(Y) in X x P* and let g : Y — Y be a

birational closed morphism with ¥~ smooth and such that g|,-1yy: g~ '(Y) —
Y is an isomorphism. If A is the composition

Y57 o X xP" = X
then obviously 7*([V 2 X)) = [Y L 1), 0

Theorem 2.13. (HI) Let p: E — X be an affine bundle of rank r. Assume
that F' admits resolution of singularities. Then the pull-back homomorphism

P (X)) = Qe (B).
s an isomorphism.

The following moving lemma is used in the proof:



17

Lemma 2.14. Let W be in Sm(F) and let i : Z — W be a smooth closed
subscheme. Then Q. (W) is generated by standard cobordism cycles of the form
[f 1Y — W] with f transverse to i.

It is sufficient to prove HI for the morphism p : X x Al — X. By Lemma,
the group Q. (X x A!) is generated by the cobordism classes f: Y — X x Al
such that Z = f~1(X x 0) is smooth of codimension 1 in Y. Then one proves
that

[f: Y = X x A'] =p"([Z — X)]).
Theorem 2.15. (PBT) Let E — X be a vector bundle of rank r + 1 and
let q : P(E) — X be the associated projective bundle. Assume that F' admits

resolution of singularities. Then every element a € (IP’(E)) can be written

in the form

a= Z(Q(Lt)rii o q")(a;)

i=1

for unique elements a; € Qp_;(X).

One reduces to the case of the projection X x P* — X and proceeds by
induction on n using HI.

3. THE RING Q. (pt)
Theorem 3.1. Let char F' = 0. Then the canonical homomorphism
L, — Q.(pt)
1S an isomorphism.

To prove injectivity, we will construct a “large” OBMF H, of geometric
type such that the canonical composition

L, — Q.(pt) — H.(pt)
is injective.
A partition a = (aq,ag, ..., q) is a sequence of integers (possibly empty)
a1 > ag > -+ > ap > 0. The degree of « is the integer
‘Oé‘ =1+ + -+ Q.
The integer k is called the length [(«) of the partition «.

We consider the polynomial ring Z[by,be,...] = Z[b| in infinitely many
variables by, bo, ... as a graded ring with degb; = . For every partition « set

bo = ba,bay - - - ba, -
The monomials b, form a basis of the polynomial ring over Z.
Let Z[cy, ¢a, . . .| = Z]c] be another polynomial ring with the grading deg ¢; =

i. The elements of Z|c| are called the characteristic classes and the ¢, - the
Chern classes.
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For every partition o we define the “smallest” symmetric polynomial

P.(xy,29,...) = Z witwyy gk = Qalo1, 09, ),

(11,82, ik)

containing the monomial " z5? ... 2%, where the o; are the standard sym-

metric functions, and set

Co = Qulcr,ca,..0).

For example, ¢, = ¢ 1,1y (n units).

For every element (characteristic class) ¢ € Z|c| and every vector bundle £
over a variety X € Sm(F') there is a well defined operation ¢(F) on CH,(X). In
particular, for every partition « there are generalized Chern operations c,(E).

We consider a new OBMF H, on Sm(F') defined by
H.(X) = CH,(X) ® Z[b] = CH,.(X)[b].
We define the characteristic polynomial operation of E by the formula

P(E) =) ca(E)by € H(X).

Note that the polynomial P(FE) is invertible in H,(X).
Example 3.2. If L is a line bundle, then P4(L) = D im0 Ci(L)'h;.

The pull-back homomorphism f7; : H.(X) — H.(Y) associated to a smooth
morphism f : Y — X is equal to f* ® idgp). The push-forward map fJ

associated to a projective morphism f : Y — X is defined by
fH=P(Tx) o f, oP(Ty).

*

where T; is the tangent bundle of a smooth scheme Z. The first Chern is
defined by the formula

(L) = ei(L) - P(L) =) er(L)*'bs.
i>0
Consider the power series
expt =t + byt* + byt + - - € Z[[b, 1]].
and its formal inverse
logt =t +myt> + mot® + - -+ € Z[[b,1]]
where m; € Z[b]. Clearly,
(L) = expei(L) and ¢ (L) =logel (L).
For any two line bundles L and L' on X we have
ALRL)=expe(L® L)
= exp(c1(L) + (L))
= exp(log ¢’ (L) + log ¢t (L')).
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Thus
Oy (u,v) = exp(logu + logv).
It is known that the corresponding ring homomorphisms
L — Z[b] = H.(pt)
injective, hence so is
L — Q.(pt).

We illustrate the proof of surjectivity on Q(pt). Let D = D; + D, be
a normal crossing divisor on a smooth surface S and let L = L(D) be the
corresponding line bundle. By FGL and Sect,

Cl(L) = ClL(Dl) + ClL(Dg) + allclL(Dl)clL(Dg),
Cl(L)(ls) = [Dl — S] + [DQ — S] + an[pt — S] € Ql(S)
and hence in Q(pt):
C1(L)[S] = [Dl] + [DQ] + a1 = [Dl] + [DQ] (mod Ll)
More generally, if D = Y n;D; and D' = » n/;D are two normal crossing
divisors on S such that L(D) ~ L(D') then in ;(pt):
(2) Z ni[D;] = Z n;[D}]  (mod Ly).

Let Y be a smooth projective curve over F and let Y C P2 be a projection of
Y on the projective plane. By resolution of singularities, there is a projective
morphism f : S — P? of a smooth projective surface S and a smooth projective
curve Y C S such that the restriction of f on Y is a birational equivalence of
Y and Y. Clearly, Y ~ Y Moreover, we may assume that

is a normal crossing divisor. N
Let D C P? be a smooth divisor rationally equivalent to Y such that D =
f~YD) is isomorphic to D. Thus, D is a smooth divisor on S rationally
equivalent to Y + > n;D;. Hence, by (2), in € (pt),
Y]+ ) m[Di]=[D].
Since D; ~ P! and [P!] = —ay;, we get
[Y]=[Y]=I[D] = [D].
Let H C IP? be a projective line. We have D ~ nH for some n and again by

(2),
[D] = n[H] = n[P'] =0,

ie., [Y] = [D] € L,. In fact, one derives from the proof that
Y]=(1-g)P']=(g-1an
where ¢ is the genus of Y.
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In the general case the factorization theorem is used (that is why we assume
char F' = 0).

4. COMPARISON WITH CH, AND THE DEGREE FORMULA

Let X be a reduced scheme over F' that has RS property. For every closed
integral subscheme Z C X, choose a projective birational morphism Z — Z
with Z € Sm(F).

Theorem 4.1. The L,-module Q(X) is generated by the classes Z — X.

Proof. Induction on dim X. Let X;, 7 =1,...,r be the irreducible components
of X. Let [f : Y — X] be a class in Q,(X) and let Y; = f~!(x;) where z; € X;
is the generic point. Every Y; is a smooth scheme over k(z;). The class
[Yi] € Q.(Speck(x;)) = L will be viewed as an element of L,.

The element

a=[Y = X]=) [Vi] [X; = X]
i=1
vanishes when restricted to a neighborhood U C X of all generic points. Let
Z = X —U be the reduced complement. By LOC, there is 5 € €,(Z) such that
a =i.(8) where i : Z — X is the closed embedding. Since dim Z < dim X we
can apply the induction hypothesis to Z. U

Let f: Y — X be a projective morphism with ¥ smooth and X irreducible.
The generic fiber Y — Spec F'(X) represents an elements

deg(f) € Q.(Spec F(X)) =L,.
In particular, if f is finite, deg(f) € Ly = Z is the standard degree.

Corollary 4.2. (General degree formula) There are elements ay € L., almost
all zero, such that

YV = X]=deg(f) - Ix+ Y az-[Z—X].
Z, codimyx Z>0
Let I, = L be the kernel of the canonical ring homomorphism L, — Z.
Corollary 4.3. Let d =dim X. Then Q-4(X) C I-Q(X).

This corollary can be generalized:

Theorem 4.4. Let F be a field of characteristic zero. Then for every X €
Sch(F), the canonical homomorphism

Qu(X)@LZ = Q(X) /I - Q2.(X) - CH.(X)
s an isomorphism.

Corollary 4.5. The Chow functor CH, is the universal OBMF of geometric
type with the additive formal group law.
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5. COMPARISON WITH K-THEORY

Theorem 5.1. Let F' admits RS. Then for every X € Sm(F) the canonical
homomorphism

0.(X) ®L Z[B, 871] = Ko(X)[8, 87

s an isomorphism.
Corollary 5.2. The K-theory functor Ko(X)[3,87] on Sm(F) is the uni-

versal OBMF of geometric type with the multiplicative periodic formal group
law.

6. PULL-BACKS WITH RESPECT TO CLOSED EMBEDDINGS
The functor €2, admits pull-backs with respect to regular closed embeddings.
In particular, we get the associated cobordism cohomology functor
Q" : Sm(F)” — Rings".
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