
ROST’S DEGREE FORMULA

ALEXANDER MERKURJEV

Some parts of algebraic quadratic form theory and theory of simple algebras
(with involutions) can be translated into the language of algebraic geometry.

Example 0.1. Let (V, q) be a quadratic form over a field F , Q the associated
projective quadric in P(V ). Then q is isotropic iff Q(F ) ̸= ∅.

1. Numbers nX and nL

Notation: “scheme” = separated scheme of finite type over a field F .
“variety” = integral scheme over F , F (X) function field of X.

Let X be a scheme over F . For a closed point x ∈ X we define degree of x:
deg(x) = [F (x) : F ] and the number

nX = gcd deg(x),

where the gcd is taken over all closed points of X.

Example 1.1. For an anisotropic quadric Q, nQ = 2.

Example 1.2. For a Severi-Brauer variety S = SB(A), nS = ind(A).

Proposition 1.3. (i) If for a scheme X over F , X(F ) ̸= ∅, then nX = 1;
(ii) Let X and Y be two schemes. If there is a morphism f : Y → X, then nX

divides nY .

Proof. (ii) For a closed point y ∈ Y , the point x = f(y) is closed and deg(x)
divides deg(y). �

Let L/F be a field extension, v a valuation on L over F with residue field
F (v). We define degree of v: deg(v) = [F (v) : F ] and the number

nL = gcd deg(v),

where the gcd is taken over all valuations of finite degree.

Proposition 1.4. (i) Let X be a complete scheme over F . If X(L) ̸= ∅, then
nX divides nL.
(ii) Let X be a variety, L = F (X). If X is smooth, then nL divides nX .
(iii) If a variety X is complete and smooth, then nX = nL where L = F (X).
In particular, nX is a birational invariant of a complete smooth variety X.
(iv) If f : Y → X is a rational morphism of complete varieties with Y smooth,
then nX divides nY .

Date: June, 2001.
1



2 A. MERKURJEV

Proof. (i) Let O ⊂ L be the valuation ring. Since X is complete, a point in
X(L) factors as

SpecL → SpecO →f X.

Let m be the closed point in SpecO, x = f(m). Then F (x) ⊂ O/m = F (v)
and therefore, deg(x) divides deg(v).

(ii) Let x ∈ X. Since x is smooth, there is a valuation v on L with residue
field F (x), so that deg(v) = deg(x).

(iii) follows from (i) and (ii).
(iv) Let L = F (Y ). Since X(L) ̸= ∅, by (i), nX divides nL. Finally, by (ii),

nL divides nY . �

2. Vector bundles and Chern classes

A vector bundle over a schemes X is a morphism E → X which is locally
on X (in Zariski topology) is isomorphic to the projection X × An → X with
linear transition functions.

Let f : V → W be a dominant morphism of integral schemes. We define
degree of f by

deg(f) =

{
[F (V ) : F (W )] if dimV = dimW,

0 otherwise.

For a scheme X denote by CHn(X) the Chow group of classes of cycles in
X of dimension n. For a proper morphism f : Y → X there is push-forward
homomorphism

f∗ : CHn(Y ) → CHn(X)

defined by
f∗
(
[V ]

)
= deg

(
V → f(V )

)
· [f(V )].

The group CH0(X) is generated by classes [x] of closed points x ∈ X. If
X is complete, the push-forward homomorphism with respect to the structure
morphism X → SpecF is called the degree map

deg : CH0(X) → Z, [x] 7→ deg(x) = [F (x) : F ].

If X is a smooth scheme, the ring CH∗(X) is a commutative ring with the
identity 1 = [X].

For a vector bundle E → X there are operational Chern classes

ci(E) : CHn(X) → CHn−i(X), α 7→ ci(E) ∩ α.

If X is a smooth variety, CH∗(X) is a commutative ring and ci(E) is the
multiplication by ci(E)∩ [X]. The latter element we will also denote by ci(E)
Thus, ci(E) ∈ CHd−i(X) where d = dimX.

For a smooth X the Chern classes extend to a map

ci : K0(X) → CH∗(X).

In particular, for a vector bundle E → X, the classes ci(−E) ∈ CHd−i(X) are
defined.
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3. Definition of the invariant ηp(X)

Let p be a prime number, F a field. We assume that char(F ) ̸= p and
µp ⊂ F . We fix a primitive p-th root of unity ξ.

Let X be quasi-projective scheme over F . The group G = Z/pZ acts by
cyclic permutations on the product

Xp = X ×X × · · · ×X.

The factor scheme Xp/G we denote by CpX. The image X of the diagonal
X ⊂ Xp under the natural morphism Xp → CpX is a closed subscheme in
CpX, isomorphic to X. In particular, nX = nX .

Consider a G-action on the trivial linear bundle Xp × A1 over Xp by

(x1, x2, . . . , xp, t) 7→ (x2, . . . , xp, x1, ξt).

The projection Xp \X → CpX \X is unramified, hence the restriction of the
factor vector bundle (Xp×A1)/G to CpX \X is a linear bundle over CpX \X.
Denote it by LX .

Let d = dimX. Set

lX = c1(LX)
pd ∩ [CpX \X] ∈ CH0(C

pX \X).

Remark 3.1. The element lX is known as the Euler class of the bundle L⊕pd
X ,

i.e. lX is the image of [X] under the composition

CHpd(C
pX \X) →s∗ CHpd

(
L⊕pd

X

)
→p∗ CH0(C

pX \X),

where s is the zero section of the vector bundle L⊕pd
X and p∗ is the pull-back

with respect to the (flat) morphism p : L⊕pd
X → CpX \X.

If X is projective, we have degree homomorphism

deg : CH0(C
pX \X) → Z/nXZ.

Thus, the degree of lX defines an element ηp(X) ∈ Z/nXZ.
Thus, for a projective scheme we have defined an invariant ηp(X) ∈ Z/nXZ.

Note that X is projective but not necessarily smooth scheme over F .

Lemma 3.2. p · lX = 0 ∈ CH0(C
pX \X). In particular,

p · ηp(X) = 0 ∈ Z/nXZ.

Proof. Let

f : Xp \X → CpX \X
be the projection (of degree p). Since the linear bundle f ∗(LX) is trivial, by
the projection formula,

0 = f∗
(
c1(f

∗LX)
pd ∩ [Xp \X]

)
= c1(LX)

pd ∩ f∗[X
p \X] =

p · c1(LX)
pd ∩ [CpX \X] = p · lX .

�



4 A. MERKURJEV

4. Degree formula

We prove two degree formulas due to M. Rost.

Theorem 4.1. (Regular Degree Formula) Let f : Y → X be a morphism of
projective schemes of the same dimension d. Then nX divides nY and

ηp(Y ) = deg(f) · ηp(X) ∈ Z/nXZ.

Proof. Denote by Ỹ the inverse image of X under Cpf : CpY → CpX, so that

Y ⊂ Ỹ . In particular,

nX = nX | nỸ | nY = nY .

We have open embedding

j : Cp(Y ) \ Ỹ ↪→ Cp(Y ) \ Y
and proper morphism

i : Cp(Y ) \ Ỹ → Cp(X) \X
of degree dp.

Denote by L′ the restriction of the vector bundle LY on CpY \ Ỹ . Clearly,
L′ is the inverse image of LX with respect to i, L′ = i∗(LX). We have by
projection formula,

i∗j
∗(lY ) = i∗j

∗(c1(LY )
pd ∩ [CpY \ Y ]

)
=

i∗
(
c1(L

′)pd ∩ [CpY \ Ỹ ]
)
= i∗

(
c1(i

∗LX)
pd ∩ [CpY \ Ỹ ]

)
=

c1(LX)
pd ∩ i∗[C

pY \ Ỹ ] = deg(i) ·
(
c1(LX)

pd ∩ [CpX \X]
)
= deg(f)p · lX .

Note, that by Lemma 3.2,

deg(f)p · lX = deg(f) · lX .
Finally, taking degree,

ηp(Y ) = deg(lY ) = deg
(
i∗j

∗(lY )
)
= deg(f) · ηp(X) ∈ Z/nXZ.

�
Theorem 4.2. (Rational Degree Formula) Let f : Y → X be a rational
morphism of projective varieties of dimension d with Y smooth. Then nX

divides nY and
ηp(Y ) = deg(f) · ηp(X) ∈ Z/nXZ.

Proof. By Proposition 1.4(iv), nX divides nY . Let Y1 be closure of the graph
of f in Y ×X. Applying Theorem 4.1 to the birational isomorphism Y1 → Y
(of degree 1), we get

ηp(Y1) = ηp(Y ) ∈ Z/nYZ.
On the other hand, applying Theorem 4.1 to the projection Y1 → X(of degree
= deg(f)), we get

ηp(Y1) = deg(f) · ηp(X) ∈ Z/nXZ.
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Thus,
ηp(Y ) = deg(f) · ηp(X) ∈ Z/nXZ.

�
Corollary 4.3. The class ηp(X) ∈ Z/nXZ is a birational invariant of a smooth
projective variety X.

Problem 4.4. How to define the invariant ηp(X) ∈ Z/nXZ out of the function
field L = F (X)? (Note that nX = nL by Proposition 1.4.)

Here is the main application:

Theorem 4.5. Let X and Y be two projective varieties with Y smooth. As-
sume that X has a rational point over the field F (Y ). Then nX divides nY

and if ηp(Y ) ̸≡ 0 (mod nX), the following holds:
(i) dim(X) ≥ dim(Y ).
(ii) If dim(X) = dim(Y ), then Y has a closed point over F (X) of degree prime
to p.

Proof. By assumption, there exists a rational morphism f : Y → X, hence nX

divides nY by Proposition 1.4(iv).
(i) Assume that m = dim(Y )− dim(X) > 0. Consider the composition

g : Y →f X ↪→ X × Pm
F .

Clearly, deg(g) = 0 and nX×Pm
F
= nX . By Theorem 4.2, applied to g,

ηp(Y ) ≡ 0 (mod nX),

a contradiction.
(ii) By the degree formula, applied to f , and Lemma 3.2, the degree deg(f)

is not divisible by p. Hence the generic point of Y determines a point over
F (X) of degree = deg(f). �
Remark 4.6. The first statement of Theorem 4.5 shows that a variety Y
cannot be “compressed” to a variety X of smaller dimension if

ηp(Y ) ̸= 0 ∈ Z/nXZ.

5. Computation of η2 for a quadric

Let Q = Q(V, q) be anisotropic smooth projective quadric of dimension d,
so that nQ = 2.

Proposition 5.1.

η2(Q) =

{
1 + 2Z, if d = 2k − 1 for some k,

2Z, otherwise.

Proof. Each pair of distinct points in Q determines a line in P(V ), i.e. a plane
in V . Thus we have a rational morphism

α : C2Q → Gr(2, V ).
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Clearly, α is a birational isomorphism! Indeed, let U be the open subvariety
in C2Q consisting of all pairs of points ([v], [u]) such that [v] ̸= [u] and the
restriction of the quadratic form q on the 2-dimensional subspace generated
by v and u is nondegenerate. Then the restriction α|U is an open immersion
identifying U with the open subvariety U ′ ⊂ Gr(2, V ) consisting of all planes
W ⊂ V such that the restriction q|W is nondegenerate. The inverse rational
morphism α−1 takes a plane W ⊂ V to the intersection P(W ) ∩ Q. If q|W
is nondegenerate, this intersection is an effective 0-cycle of degree 2, i.e. is a
point of C2X.

Remark 5.2. If dim(Q) = 1, i.e. if Q is a conic, α is an isomorphism between
C2Q and Gr(2, V ) = P(V ∗). In the split case this isomorphism looks as follows:
C2P1

F ≃ P2
F .

Let E be the tautological linear bundle over Gr(2, V ) (the second exterior
power of rank 2 tautological vector bundle). Denote by L′ the restriction of
the linear bundle LQ to the open subvariety U ⊂ C2Q.

Lemma 5.3. (α|U)∗(E) ≃ L′.

Proof. Let Ũ be the inverse image of U under the natural morphism Q2 →
C2Q. We have the following morphism of vector bundles:

β : Ũ × A1
F → E, ([v], [u], t) 7→ (⟨v, u⟩, t v ∧ u

b(v, u)
)

where b is the polar form of q. The action of G = Z/2Z on Ũ × A1
F by

([v], [u], t) 7→ ([u], [v],−t) commutes with the trivial action of G on E. Hence
β induces an isomorphism L′ → E over α|U . �

At every point of “bad loci” C2Q\U and Gr(2, V )\U ′ the form q is isotropic.
Hence the numbers nC2Q\U and nGr(2,V )\U ′ are even. Lemma 5.3 implies that

η2(Q) ≡ deg
(
c1(E)

)2d
(mod 2).

Let

i : Gr(2, V ) ↪→ P(∧2V )

be the canonical closed embedding. The vector bundle E on Gr(2, V ) is the
inverse image under i of the tautological vector bundle on P(∧2V ). The first
Chern class of the tautological vector bundle is negative of the class of a hyper-
plane section. Thus, the degree deg(c1E)2d is equal to (−1)d times the degree
of the subvariety i(Gr(2, V )) in the projective space P(∧2V ). The later degree
is known as the Catalan number

1

d+ 1

(
2d

d

)
.

One easily checks that this number is odd iff d = 2k − 1 for some k. �
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Theorem 5.4. Let Q = Q(V, q) be a smooth projective quadric of dimension
d ≥ 2k − 1 and let X be a variety over F such that nX is even and X has a
point over F (Q). Then
(i) dim(X) ≥ 2k − 1.
(ii) If dim(X) = 2k − 1, then Q has a point over F (X).

Proof. Let Q → X be a rational morphism. Choose a subquadric Q′ ⊂ Q of
dimension 2k − 1 such that the composition f : Q′ ↪→ Q → X is defined.

(i) Since η2(Q
′) ̸= 0 ∈ Z/2Z and hence in Z/nXZ, by Theorem 4.5(1),

dim(X) ≥ dim(Q′) = 2k − 1.

(ii) By Theorem 4.5(2), Q′ has a point of odd degree over F (X). By
Springer’s Theorem, Q′ and hence Q has a point over F (X). �
Corollary 5.5. (Hoffmann) Let Q1 and Q2 be two anisotropic quadrics. If
dim(Q1) ≥ 2k − 1 and Q2 is isotropic over F (Q1), then dim(Q2) ≥ 2k − 1.

Corollary 5.6. (Izhboldin) Let Q1 and Q2 be two anisotropic quadrics. If
dim(Q1) = dim(Q2) = 2k − 1 and Q2 is isotropic over F (Q1), then Q1 is
isotropic over F (Q2).

6. Computing η2 for smooth varieties

For a smooth variety X let TX be the tangent bundle over X.

Theorem 6.1. Let X be a proper smooth variety of dimension d > 0. Then
the degree of the 0-cycle cd(−TX) is even and

η2(X) =
deg cd(−TX)

2
∈ Z/nXZ.

Proof. We would like first to compactify smoothly C2X \ X and extend the
line bundle LX to the compactification. Note that C2X is smooth only if
dim(X) = 1.

Let W be the blow-up of X2 along the diagonal X ⊂ X2. The G-action on
X2 extends to one on W . The subvariety WG coincides with the exceptional
divisor

P
(
(TX ⊕ TX)/TX

)
= P(TX) :

P(TX) //

��

W

��

W \ P(TX)

��

oo

X // X2 X2 \Xoo

Since WG is of codimension 1 in W , W/G is smooth and therefore can be
taken as a smooth compactification of C2X \X.

Now we would like to construct a canonical extension L′ of LX to the whole
W/G. There is a canonical linear bundle Lcan over the blow-up W with the
induced G-action. The group G acts by −1 on the restriction of Lcan on the
exceptional divisor P(TX). The restriction of Lcan to the complement of the
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exceptional divisor W \ P(TX) ≃ X2 \ X is the trivial vector bundle with
the trivial G-action. Now we modify the G-action on Lcan by −1. The new
G-action of the restriction of Lcan on the exceptional divisor P(TX) is trivial,
hence Lcan descends to a linear vector bundle L′ on W/G which is a desired
extension of LX on C2X \X.

Now we compute deg c1(L
′)2d. At one hand, since LX is the restriction of L′

on C2X \X, we have

deg c1(L
′)2d = deg c1(LX)

2d = η2(X) ∈ Z/nXZ.
On the other hand, consider morphisms

P(TX)
i //

q

��

W
p // W/G

X.

We have

p∗c1(L
′) = c1(Lcan) = [P(TX)] = i∗(1) ∈ CH1(W ).

In particular, p∗c1(L
′)2d = c1(Lcan)

2d and hence

2 deg c1(L
′)2d = deg c1(Lcan)

2d.

The restriction of Lcan on P(TX) is the canonical line bundle Ecan with the
sheaf of sections OP(TX)(1). Hence, by the projection formula (note that d > 0),

c1(Lcan)
2d = i∗(1) · c1(Lcan)

2d−1 = i∗
(
c1(Ecan)

2d−1
)
∈ CH0(W ),

hence

deg c1(Lcan)
2d = deg c1(Ecan)

2d−1

The class

q∗
(
c1(Ecan)

2d−1
)
∈ CH0(X)

is known as the Segre class of TX and coincides with cd(−TX). (In general,
q∗
(
c1(Ecan)

i+d−1
)
= ci(−TX).)

Finally,

2 deg c1(L
′)2d = deg c1(Lcan)

2d = deg c1(Ecan)
2d−1 = deg cd(−TX).

�
Remark 6.2. The integer deg cd(−TX)

2
does not change under field extensions

and therefore can be computed over an algebraically closed field.

Remark 6.3. If p > 2, the blow up W of the diagonal in Xp does not have
smooth orbit space W/G and the linear bundle LX cannot be extended to a
linear bundle on W/G.

Remark 6.4. The number deg cd(−TX) does not change under field extensions
and hence can be computed over algebraically closed fields.
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Remark 6.5. The Theorem shows that the degree m of the cycle cd(−TX) is
always even. Hence this cycle defines a cycle on the symmetric square C2X of
degree m

2
. In the proof we construct this class “canonically” (it is c1(LX)

2d).
The degree formula follows from “canonical” nature of this class. One should
study other cases of divisibility of characteristic numbers.

7. Computing η2 for projective spaces

Proposition 7.1. Let X = Pd
F . Then

deg cd(−TX) = (−1)d
(
2d

d

)
.

Proof. It is known that [−TX ] = −(d+1)[Ecan]+1 ∈ K0(X). We can compute
the total Chern class:

c(−TX) =
1

c(Ecan)d+1
=

1

(1 + t)d+1
.

Hence

deg cd(−TX) =

(
−d− 1

d

)
= (−1)d

(
2d

d

)
.

�
Let vp be the p-adic discrete valuation and sp(a) be the sum of digits of a

written in base p.

Corollary 7.2. Let Y be a Severi-Brauer variety of dimension d. Then

v2
(
deg cd(−TY )

)
= s2(d), η2(Y ) = 2s2(d)−1 + nYZ ∈ Z/nYZ.

Corollary 7.3. (Karpenko) Let A be a division algebra with orthogonal involu-
tion σ, Y the Severi-Brauer variety of A. Then the involution σ is anisotropic
over F (Y ).

Proof. Let X = I(A, σ) ⊂ Y be the involution variety, deg(A) = 2k. Then
2k = nY divides nX . If σ is isotropic over F (Y ) then there is a rational
morphism Y → X. By Corollary 7.2, η2(Y ) = 2k−1 + nXZ is nontrivial in
Z/nXZ. A contradiction by Theorem 4.5(1). �
Remark 7.4. In fact, we proved that the Severi-Brauer variety of a division
algebra of degree 2k cannot be compressed to a variety X of smaller dimension
with I(X) = 2kZ.

Remark 7.5. Let p be any prime integer. One can show that for a Severi-
Brauer variety Y of dimension d divisible by p− 1,

ηp(X) = p
sp(d)

p−1
−1 ∈ Z/nYZ.

As in Corollary 7.3 one can prove that the Severi-Brauer variety of a division
algebra of degree pk cannot be compressed to a variety X of smaller dimension
with nX = pkZ.
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8. Fundamental class of a smooth variety

A partition α = (α1, α2, . . . , αk) is a sequence of integers (possibly empty)
α1 ≥ α2 ≥ · · · ≥ αk > 0. The degree of α is the integer

|α| = α1 + α2 + · · ·+ αk.

Denote by π(d) the set of all partitions α with |α| = d and by |π(d)| the
number of all partitions in π(d).

Consider the polynomial ring Z[b1, b2, . . . ] = Z[b] as a graded ring with
deg bi = i. For every partition α set

bα = bα1bα2 . . . bαk
.

The monomials bα form a basis of the polynomial ring over Z, and more pre-
cisely, the bα with |α| = d form a basis of Z[b]d.

Example 8.1. Z[b]0 = Z, Z[b]1 = Zb1, Z[b]2 = Zb2 ⊕ Zb21, Z[b]3 = Zb3 ⊕
Zb1b2 ⊕ Zb31.

Consider another polynomial ring Z[c1, c2, . . . ] = Z[c] with similar grading
deg ci = i. The elements of Z[c] we call characteristic classes and the cn - the
Chern classes.

For any partition α we define the “smallest” symmetric polynomial

Pα(x1, x2, . . . ) =
∑

(i1,i2,...,ik)

xα1
i1
xα2
i2

. . . xαk
ik

= Qα(σ1, σ2, . . . ),

containing the monomial xα1
1 xα2

2 . . . xαk
k where the σi are the standard symmet-

ric functions, and set
cα = Qα(c1, c2, . . . ).

Example 8.2. 1. cn = c(1,1,...,1) (n units).
2. The classes sd = c(d) are called the additive characteristic classes. Note

that Q(d) is the Newton polynomial.

The characteristic classes cα with |α| = d form a basis of Z[c]d. We consider
a pairing between Z[b]d and Z[c]d such that the bα and cα form dual bases. In
particular, the additive class sd corresponds to bd.

For a smooth complete variety X of dimension d we define the fundamental
class

[X] =
∑
|α|=d

deg cα(−TX)bα ∈ Z[b]d.

Thus, [X] is a homogeneous polynomial in the bi of degree d. Note that [X]
does not change under field extensions. The numbers deg cα(−TX) are called
characteristic numbers. They are well known in topology. The class −TX plays
the role of the normal bundle of an embedding of X into Rn.

Example 8.3. 1. [pt] = 1;
2. For a smooth projective curve X of genus g, [X] = 2(g − 1)b1. In

particular, [P1] = −2b1.
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3. [P2] = −3b2 + 6b21, [P1 × P1] = 4b21.
4. [P3] = −4b3 + 20b1b2 − 20b31, [Q3] = 6b3 − 10b31.

Exercise 8.4. Show that [X × Y ] = [X] · [Y ] for every smooth complete
varieties X and Y .

9. Formal group laws

Let R be a commutative ring. A (one-dimensional, commutative) formal
group law over R is a power series

Φ(x, y) = x+ y +
∑
i,j≥1

rijx
iyj,

with rij ∈ R such that
(1) Φ

(
Φ(x, y), z

)
= Φ

(
x,Φ(y, z)

)
,

(2) Φ(x, y) = Φ(y, x).

Example 9.1. Φ(x, y) = x + y (additive group law), Φ(x, y) = x + y + rxy,
r ∈ R.

Let f : R → S be a commutative ring homomorphism, Φ is a formal group
law over R. Then f(Φ) is a formal group law over S. A formal group law Φuniv

over a ring L is called universal if for a any group law Φ over a ring R there is
unique ring homomorphism f : L → R such that Φ = f(Φuniv).

Proposition 9.2. A universal group law exists.

Proof. Consider the polynomial ring Z[aij], i, j ≥ 1, and let L be the factor
ring modulo the ideal generated by elements encoded in the definition of a
formal group law. �

The ring L is unique (up to canonical isomorphism) and it represents the
functor

R 7→ {formal group laws over R}
from the category of commutative rings to the category of sets. The ring L is
called the Lazard ring. Note that L is generated by the coefficients of Φuniv.

We would like to find a convenient model for L.
Consider the power series

exp t = t+ b1t
2 + b2t

3 + · · · ∈ Z[b][[t]]
and its formal inverse

log t = t+m1t
2 +m2t

3 + · · · ∈ Z[b][[t]].
Exercise 9.3. Prove that md = [Pd]/(d+ 1).

Consider the formal group law over Z[b]:

Φ = exp(log x+ log y) = x+ y +
∑
i,j≥1

rijx
iyj.

By the universal property, there is unique ring homomorphism L → Z[b] taking
Φuniv to Φ. The following algebraic result is well known.
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Theorem 9.4. The homomorphism L → Z[b] is injective and its image is
generated by the coefficients of Φ.

We shall identify the Lazard ring L with its image in Z[b]. Note that L is
a graded subring in Z[b] generated by the coefficients aij.

Example 9.5.

a11 = 2b1 = −[P1],

a12 = 3b2 − 2b21 = −[P2]− 2[P1 × P1],

a13 = 4b3 − 8b1b2 + 4b31,

a22 = 6b3 − 6b1b2 + 2b31, . . .

Remark 9.6. The power series log is called the logarithm of the formal group
law Φ.

It turns out that the Lazard ring is a polynomial ring Z[M1,M2, . . . ] with
degMi = i, where the Mi ∈ Z[b] can be chosen as follows:

Mi =


pbi + {decomposable terms}, if i = pk − 1

for some prime p and integer k > 0,

bi + {decomposable terms}, otherwise.

Example 9.7.

M1 = 2b1 = −[P1],

M2 = 3b2 − 2b21 = −[P2],

M3 = 2b3 + 10b1b2 − 204b31 = −[P3] + [Q3],

Set

ri =


p, if i = pk − 1

for some prime p and integer k > 0,

1, otherwise.

For any partition α of degree d set

rα = rα1rα2 . . . rαk
∈ Z.

Proposition 9.8. The factor group Z[b]d/Ld is finite and isomorphic to
⨿

α Z/rαZ,
where the coproduct is taken over all partitions α of degree d. In particular,
Ld is a free group of rank |π(d)|.

Thus, Z[b]d/Ld is a finite group of order

r =
∏
|α|=d

rα =
∏

p prime

p[
d

p−1
].

This number coincides with the denominator of the Todd class tdd.
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Example 9.9.

r1 = 2,

r2 = 12,

r3 = 24,

r4 = 720.

10. Fundamental classes and Lazard ring

Let L′ be the subgroup in Z[b] generated by the classes [X] for all smooth
varieties X over F . Clearly, L′ is a graded subring in Z[b].
Theorem 10.1. If the base field F is infinite, L′ = L.

Remark 10.2. In topology the fundamental class of a manifold takes values
in L, the cobordism group of the point.

We first prove that L ⊂ L′. The Lazard ring L is generated by the coefficients
aij of the universal group law Φ. Hence it is sufficient to prove that aij ∈ L′.

Let Hn,m be a smooth hypersurface of type (1, 1) in Pn × Pm.

Proposition 10.3.

[Hn,m] =
∑
i,j≥0

aij[Pn−i][Pm−j].

It follows from the formula by induction on n+m that anm ∈ L′.
We need to show now that L ⊂ L′. The idea (due to Stong) is to construct

a fundamental class of a smooth complete variety in K-theory. We define the
first Chern class of a linear bundle L over X by

cK1 (L) = 1− [L∨] ∈ K0(X)

and then extend the definition to get classes cKα (E) ∈ K0(X) for arbitrary
partition α and vector bundle E over X.

We define the fundamental class in K-theory for a smooth projective variety
X of dimension d by

[X]K =
∑
α

f∗
(
cKα (−TX)

)
bα ∈ Z[b],

where f∗ : K0(X) → K0(pt) = Z is the push-forward homomorphism with
respect to f : X → pt. The class [X]K is a polynomial over Z of degree at
most d.

Example 10.4.

[P1]K = 1− 2b1,

[P2]K = 1− 3b1 + (−3b2 + 6b1b2).

We compare two fundamental classes of X using the Chern character

ch : K0(X) → CH∗(X)⊗Q
The Riemann-Roch theorem gives
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Proposition 10.5. For a smooth projective variety X,

f∗
(
cKα (−TX)

)
=

(
ch(cKα )td

−1
)
(−TX)

for all α. In particular, [X] =
(
[X]K

)
d
.

Denote by LK
d the subgroup of Z[b] generated by the classes [X]K for all

projective smooth varieties X of dimension d. By Proposition 10.5, the restric-
tion on LK

d of the projection Z[b] → Z[b]d is injective with image L′
d. Hence

LK
d is a free abelian group of rank at most |π(d)|.

Proposition 10.6. For every prime p and every integer d, there are vari-
eties Mp

α for α ∈ π(d) such that the classes [Mp
α]

K in Z[b]/pZ[b] are linearly
independent.

It follows from Proposition that dimension of the image of LK
d in Z[b]/pZ[b]

is at least |π(d)|. Hence, LK
d is a free abelian group of rank exactly |π(d)| and

hence LK
d is generated by [Mp

α]
K for all p and α. Also, the map

LK
d /pL

K
d → Z[b]/pZ[b]

is an isomorphism, hence LK
d is a direct summand of Z[b] (Hattori-Stong the-

orem).
Note that [Mp

α] generate L′. Computing classes [Pn]K and [Hn,m]
K in terms

of the classes of generators [Mp
α]

K we get

Corollary 10.7. The ring L′ is generated by the classes [Pn] and [Hn,m] for
all n and m.

Finally one shows that the classes [Pn] and [Hn,m] can be expressed in terms
of the coefficients aij of the formal group law Φ, hence L′ ⊂ L.

Proposition 10.8. Let X be a smooth projective variety of dimension d =
pk − 1 where p is prime. Then deg sd(−TX) is divisible by p.

11. General degree formulas

Let X be an algebraic proper smooth variety over F of dimension d. We
define the (graded) ideal M(X) in L generated by the classes [Y ] ∈ L for
all smooth proper varieties Y with dim(Y ) < d and such that there exists a
morphism Y → X. Thus, as an abelian group, M(X) is generated by the
classes [Y × Z] of varieties of dimension d, where dimZ > 0 and there is a
morphism Y → X.

Conjecture 11.1. (General Degree Formula) For any morphism f : Y → X
of proper smooth varieties of dimension d,

[Y ] = deg(f) · [X] ∈ Ld/M(X)d.

Remark 11.2. If f : Y → X is étale morphism, then TY = f ∗(TX) and hence

[Y ] = deg(f) · [X] ∈ Ld,

i.e. the degree formula holds in a stronger form. In general, the difference
[Y ]− deg(f) · [X] can be non-trivial and is caused by the ramification of f .
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Remark 11.3. In topology the statement of the conjecture is known as Quillen’s
theorem.

The group Ld is a subgroup in Z[b]d of finite index. Hence, the inclusion of
dual groups

Z[c]d =
(
Z[b]d

)∗ ⊂ (
Ld

)∗
= Hom(Ld,Z)

is an equality after tensoring with Q. Thus, the group
(
Ld

)∗
can be identified

with the group of rational characteristic classes c ∈ Z[c]d⊗Q such that c(Ld) ⊂
Z, i.e. c(−TX) ∈ Z for every smooth complete X of dimension d. We call such
rational characteristic classes c special.

Example 11.4. By Riemann-Roch theorem, for a smooth complete variety
X,

deg td(TX) =
∑
i≥0

(−1)i dimH i(X,OX),

thus, the inverse Todd class td−1 is special.

Let c ∈ Z[c]d ⊗ Q be a special characteristic class. We can consider c as a
homomorphism c : Ld → Z. Applying c to both sides of the degree formula,
we get a degree formula

c[Y ] = deg(f) · c[X] ∈ Z/c(M(X)d).

Thus, to every special characteristic class c we have associated special degree
formula.

Example 11.5. Let c = 1
2
cd (c is the Chern class). The group M(X)d is

generated by the classes [Y ×Z] of varieties of dimension d, where k = dimZ >
0 and there is a morphism Y → X. Let p and q be two projections of Y × Z
on Y and Z respectively. Then

TY×Z = p∗(TY )⊗ q∗(TZ).

The highest Chern class (the Euler class) is multiplicative, hence

1

2
deg cd(−TY×Z) = deg cd−k(−TY ) ·

1

2
deg ck(−TZ).

Note that the second factor is integer by Theorem 6.1. Clearly, deg ck(−TY )
is divisible by nY . Since there is a morphism Y → X, nX | nY by Proposition
1.4 and hence deg ck(−TY ) is divisible by nX . Thus c(M(X)d) = nXZ) and we
get the degree formula (4.1) in the case of smooth varieties and p = 2.

Example 11.6. The additive integral class sd = c(d) vanishes on decomposable
elements in Ld. Hence if d = pk − 1, we get

sd(Y )

p
≡ deg(f)

sd(X)

p
mod I(X).

Recently, F. Morel and M. Levine prove the conjecture over fields of char-
acteristic zero. They used heavily resolution of singularities.
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