ROST'S DEGREE FORMULA

ALEXANDER MERKURJEV

Some parts of algebraic quadratic form theory and theory of simple algebras (with involutions) can be translated into the language of algebraic geometry.

Example 0.1. Let (V, q) be a quadratic form over a field F, Q the associated projective quadric in $\mathbb{P}(V)$. Then q is isotropic iff $Q(F) \neq \emptyset$.

1. Numbers n_X and n_L

Notation: "scheme" = separated scheme of finite type over a field F. "variety" = integral scheme over F, F(X) function field of X.

Let X be a scheme over F. For a closed point $x \in X$ we define *degree* of x: deg(x) = [F(x) : F] and the number

$$n_X = \gcd \deg(x)$$

where the gcd is taken over all closed points of X.

Example 1.1. For an anisotropic quadric Q, $n_Q = 2$.

Example 1.2. For a Severi-Brauer variety S = SB(A), $n_S = ind(A)$.

Proposition 1.3. (i) If for a scheme X over F, $X(F) \neq \emptyset$, then $n_X = 1$; (ii) Let X and Y be two schemes. If there is a morphism $f: Y \to X$, then n_X divides n_Y .

Proof. (ii) For a closed point $y \in Y$, the point x = f(y) is closed and deg(x) divides deg(y).

Let L/F be a field extension, v a valuation on L over F with residue field F(v). We define *degree* of v: deg(v) = [F(v) : F] and the number

$$n_L = \gcd \deg(v),$$

where the gcd is taken over all valuations of finite degree.

Proposition 1.4. (i) Let X be a complete scheme over F. If $X(L) \neq \emptyset$, then n_X divides n_L .

(ii) Let X be a variety, L = F(X). If X is smooth, then n_L divides n_X.
(iii) If a variety X is complete and smooth, then n_X = n_L where L = F(X). In particular, n_X is a birational invariant of a complete smooth variety X.
(iv) If f : Y → X is a rational morphism of complete varieties with Y smooth, then n_X divides n_Y.

Date: June, 2001.

Proof. (i) Let $\mathcal{O} \subset L$ be the valuation ring. Since X is complete, a point in X(L) factors as

$$\operatorname{Spec} L \to \operatorname{Spec} \mathcal{O} \to^f X.$$

Let m be the closed point in Spec \mathcal{O} , x = f(m). Then $F(x) \subset \mathcal{O}/m = F(v)$ and therefore, deg(x) divides deg(v).

(ii) Let $x \in X$. Since x is smooth, there is a valuation v on L with residue field F(x), so that $\deg(v) = \deg(x)$.

(iii) follows from (i) and (ii).

(iv) Let L = F(Y). Since $X(L) \neq \emptyset$, by (i), n_X divides n_L . Finally, by (ii), n_L divides n_Y .

2. Vector bundles and Chern classes

A vector bundle over a schemes X is a morphism $E \to X$ which is locally on X (in Zariski topology) is isomorphic to the projection $X \times \mathbb{A}^n \to X$ with linear transition functions.

Let $f: V \to W$ be a dominant morphism of integral schemes. We define *degree* of f by

$$\deg(f) = \begin{cases} [F(V) : F(W)] & \text{if } \dim V = \dim W, \\ 0 & \text{otherwise.} \end{cases}$$

For a scheme X denote by $\operatorname{CH}_n(X)$ the *Chow group* of classes of cycles in X of dimension n. For a proper morphism $f: Y \to X$ there is *push-forward* homomorphism

$$f_* : \operatorname{CH}_n(Y) \to \operatorname{CH}_n(X)$$

defined by

$$f_*([V]) = \deg(V \to f(V)) \cdot [f(V)].$$

The group $\operatorname{CH}_0(X)$ is generated by classes [x] of closed points $x \in X$. If X is complete, the push-forward homomorphism with respect to the structure morphism $X \to \operatorname{Spec} F$ is called the *degree map*

$$\deg: \operatorname{CH}_0(X) \to \mathbb{Z}, \quad [x] \mapsto \deg(x) = [F(x):F].$$

If X is a smooth scheme, the ring $CH_*(X)$ is a commutative ring with the identity 1 = [X].

For a vector bundle $E \to X$ there are operational Chern classes

$$c_i(E) : \operatorname{CH}_n(X) \to \operatorname{CH}_{n-i}(X), \quad \alpha \mapsto c_i(E) \cap \alpha.$$

If X is a smooth variety, $CH_*(X)$ is a commutative ring and $c_i(E)$ is the multiplication by $c_i(E) \cap [X]$. The latter element we will also denote by $c_i(E)$. Thus, $c_i(E) \in CH_{d-i}(X)$ where $d = \dim X$.

For a smooth X the Chern classes extend to a map

$$c_i: K_0(X) \to CH_*(X).$$

In particular, for a vector bundle $E \to X$, the classes $c_i(-E) \in CH_{d-i}(X)$ are defined.

3. Definition of the invariant $\eta_p(X)$

Let p be a prime number, F a field. We assume that $\operatorname{char}(F) \neq p$ and $\mu_p \subset F$. We fix a primitive p-th root of unity ξ .

Let X be quasi-projective scheme over F. The group $G = \mathbb{Z}/p\mathbb{Z}$ acts by cyclic permutations on the product

$$X^p = X \times X \times \dots \times X.$$

The factor scheme X^p/G we denote by C^pX . The image \overline{X} of the diagonal $X \subset X^p$ under the natural morphism $X^p \to C^pX$ is a closed subscheme in C^pX , isomorphic to X. In particular, $n_{\overline{X}} = n_X$.

Consider a G-action on the trivial linear bundle $X^p \times \mathbb{A}^1$ over X^p by

$$(x_1, x_2, \ldots, x_p, t) \mapsto (x_2, \ldots, x_p, x_1, \xi t).$$

The projection $X^p \setminus X \to C^p X \setminus \overline{X}$ is unramified, hence the restriction of the factor vector bundle $(X^p \times \mathbb{A}^1)/G$ to $C^p X \setminus \overline{X}$ is a linear bundle over $C^p X \setminus \overline{X}$. Denote it by L_X .

Let $d = \dim X$. Set

$$l_X = c_1(L_X)^{pd} \cap [C^p X \setminus \overline{X}] \in CH_0(C^p X \setminus \overline{X}).$$

Remark 3.1. The element l_X is known as the *Euler class* of the bundle $L_X^{\oplus pd}$, i.e. l_X is the image of [X] under the composition

$$\operatorname{CH}_{pd}(C^pX\setminus\overline{X})\to^{s_*}\operatorname{CH}_{pd}(L_X^{\oplus pd})\to^{p^*}\operatorname{CH}_0(C^pX\setminus\overline{X}),$$

where s is the zero section of the vector bundle $L_X^{\oplus pd}$ and p^* is the pull-back with respect to the (flat) morphism $p: L_X^{\oplus pd} \to C^p X \setminus \overline{X}$.

If X is projective, we have degree homomorphism

$$\deg: \operatorname{CH}_0(C^p X \setminus X) \to \mathbb{Z}/n_X \mathbb{Z}.$$

Thus, the degree of l_X defines an element $\eta_p(X) \in \mathbb{Z}/n_X\mathbb{Z}$.

Thus, for a projective scheme we have defined an invariant $\eta_p(X) \in \mathbb{Z}/n_X\mathbb{Z}$. Note that X is projective but not necessarily smooth scheme over F.

Lemma 3.2. $p \cdot l_X = 0 \in CH_0(C^pX \setminus \overline{X})$. In particular,

$$p \cdot \eta_p(X) = 0 \in \mathbb{Z}/n_X\mathbb{Z}.$$

Proof. Let

$$f: X^p \setminus X \to C^p X \setminus \overline{X}$$

be the projection (of degree p). Since the linear bundle $f^*(L_X)$ is trivial, by the projection formula,

$$0 = f_* \big(c_1 (f^* L_X)^{pd} \cap [X^p \setminus X] \big) = c_1 (L_X)^{pd} \cap f_* [X^p \setminus X] = p \cdot c_1 (L_X)^{pd} \cap [C^p X \setminus \overline{X}] = p \cdot l_X.$$

4. Degree formula

We prove two degree formulas due to M. Rost.

Theorem 4.1. (Regular Degree Formula) Let $f : Y \to X$ be a morphism of projective schemes of the same dimension d. Then n_X divides n_Y and

$$\eta_p(Y) = \deg(f) \cdot \eta_p(X) \in \mathbb{Z}/n_X\mathbb{Z}.$$

Proof. Denote by \widetilde{Y} the inverse image of \overline{X} under $C^p f : C^p Y \to C^p X$, so that $\overline{Y} \subset \widetilde{Y}$. In particular,

$$n_X = n_{\overline{X}} \mid n_{\widetilde{Y}} \mid n_{\overline{Y}} = n_Y.$$

We have open embedding

$$j: C^p(Y) \setminus \widetilde{Y} \hookrightarrow C^p(Y) \setminus \overline{Y}$$

and proper morphism

$$i: C^p(Y) \setminus \widetilde{Y} \to C^p(X) \setminus \overline{X}$$

of degree d^p .

Denote by L' the restriction of the vector bundle L_Y on $C^p Y \setminus \tilde{Y}$. Clearly, L' is the inverse image of L_X with respect to $i, L' = i^*(L_X)$. We have by projection formula,

$$i_*j^*(l_Y) = i_*j^*(c_1(L_Y)^{pd} \cap [C^pY \setminus \overline{Y}]) =$$
$$i_*(c_1(L')^{pd} \cap [C^pY \setminus \widetilde{Y}]) = i_*(c_1(i^*L_X)^{pd} \cap [C^pY \setminus \widetilde{Y}]) =$$
$$c_1(L_X)^{pd} \cap i_*[C^pY \setminus \widetilde{Y}] = \deg(i) \cdot (c_1(L_X)^{pd} \cap [C^pX \setminus \overline{X}]) = \deg(f)^p \cdot l_X.$$

Note, that by Lemma 3.2,

$$\deg(f)^p \cdot l_X = \deg(f) \cdot l_X.$$

Finally, taking degree,

$$\eta_p(Y) = \deg(l_Y) = \deg(i_*j^*(l_Y)) = \deg(f) \cdot \eta_p(X) \in \mathbb{Z}/n_X\mathbb{Z}.$$

Theorem 4.2. (Rational Degree Formula) Let $f : Y \to X$ be a rational morphism of projective varieties of dimension d with Y smooth. Then n_X divides n_Y and

$$\eta_p(Y) = \deg(f) \cdot \eta_p(X) \in \mathbb{Z}/n_X\mathbb{Z}.$$

Proof. By Proposition 1.4(iv), n_X divides n_Y . Let Y_1 be closure of the graph of f in $Y \times X$. Applying Theorem 4.1 to the birational isomorphism $Y_1 \to Y$ (of degree 1), we get

$$\eta_p(Y_1) = \eta_p(Y) \in \mathbb{Z}/n_Y\mathbb{Z}.$$

On the other hand, applying Theorem 4.1 to the projection $Y_1 \to X$ (of degree $= \deg(f)$), we get

$$\eta_p(Y_1) = \deg(f) \cdot \eta_p(X) \in \mathbb{Z}/n_X\mathbb{Z}.$$

Thus,

$$\eta_p(Y) = \deg(f) \cdot \eta_p(X) \in \mathbb{Z}/n_X\mathbb{Z}.$$

Corollary 4.3. The class $\eta_p(X) \in \mathbb{Z}/n_X\mathbb{Z}$ is a birational invariant of a smooth projective variety X.

Problem 4.4. How to define the invariant $\eta_p(X) \in \mathbb{Z}/n_X\mathbb{Z}$ out of the function field L = F(X)? (Note that $n_X = n_L$ by Proposition 1.4.)

Here is the main application:

Theorem 4.5. Let X and Y be two projective varieties with Y smooth. Assume that X has a rational point over the field F(Y). Then n_X divides n_Y and if $\eta_p(Y) \not\equiv 0 \pmod{n_X}$, the following holds: (i) $\dim(X) \ge \dim(Y)$. (ii) If $\dim(X) = \dim(Y)$, then Y has a closed point over F(X) of degree prime

(ii) If $\dim(X) = \dim(I)$, then I has a closed point over F(X) of degree prime to p.

Proof. By assumption, there exists a rational morphism $f: Y \to X$, hence n_X divides n_Y by Proposition 1.4(iv).

(i) Assume that $m = \dim(Y) - \dim(X) > 0$. Consider the composition $g: Y \to^f X \hookrightarrow X \times \mathbb{P}_F^m$.

Clearly, $\deg(g) = 0$ and $n_{X \times \mathbb{P}_{F}^{m}} = n_{X}$. By Theorem 4.2, applied to g,

$$\eta_p(Y) \equiv 0 \pmod{n_X},$$

a contradiction.

(ii) By the degree formula, applied to f, and Lemma 3.2, the degree deg(f) is not divisible by p. Hence the generic point of Y determines a point over F(X) of degree = deg(f).

Remark 4.6. The first statement of Theorem 4.5 shows that a variety Y cannot be "compressed" to a variety X of smaller dimension if

$$\eta_p(Y) \neq 0 \in \mathbb{Z}/n_X\mathbb{Z}.$$

5. Computation of η_2 for a quadric

Let Q = Q(V,q) be anisotropic smooth projective quadric of dimension d, so that $n_Q = 2$.

Proposition 5.1.

$$\eta_2(Q) = \begin{cases} 1+2\mathbb{Z}, & \text{if } d = 2^k - 1 \text{ for some } k, \\ 2\mathbb{Z}, & \text{otherwise.} \end{cases}$$

Proof. Each pair of distinct points in Q determines a line in $\mathbb{P}(V)$, i.e. a plane in V. Thus we have a rational morphism

$$\alpha: C^2 Q \to \operatorname{Gr}(2, V).$$

Clearly, α is a birational isomorphism! Indeed, let U be the open subvariety in C^2Q consisting of all pairs of points ([v], [u]) such that $[v] \neq [u]$ and the restriction of the quadratic form q on the 2-dimensional subspace generated by v and u is nondegenerate. Then the restriction $\alpha|_U$ is an open immersion identifying U with the open subvariety $U' \subset \operatorname{Gr}(2, V)$ consisting of all planes $W \subset V$ such that the restriction $q|_W$ is nondegenerate. The inverse rational morphism α^{-1} takes a plane $W \subset V$ to the intersection $\mathbb{P}(W) \cap Q$. If $q|_W$ is nondegenerate, this intersection is an effective 0-cycle of degree 2, i.e. is a point of C^2X .

Remark 5.2. If dim(Q) = 1, i.e. if Q is a conic, α is an isomorphism between C^2Q and $\operatorname{Gr}(2, V) = \mathbb{P}(V^*)$. In the split case this isomorphism looks as follows: $C^2\mathbb{P}^1_F \simeq \mathbb{P}^2_F$.

Let E be the tautological linear bundle over Gr(2, V) (the second exterior power of rank 2 tautological vector bundle). Denote by L' the restriction of the linear bundle L_Q to the open subvariety $U \subset C^2Q$.

Lemma 5.3. $(\alpha|_U)^*(E) \simeq L'$.

Proof. Let \widetilde{U} be the inverse image of U under the natural morphism $Q^2 \rightarrow C^2 Q$. We have the following morphism of vector bundles:

$$\beta: \widetilde{U} \times \mathbb{A}^1_F \to E, \quad ([v], [u], t) \mapsto (\langle v, u \rangle, t \ \frac{v \wedge u}{b(v, u)})$$

where b is the polar form of q. The action of $G = \mathbb{Z}/2\mathbb{Z}$ on $\widetilde{U} \times \mathbb{A}_F^1$ by $([v], [u], t) \mapsto ([u], [v], -t)$ commutes with the trivial action of G on E. Hence β induces an isomorphism $L' \to E$ over $\alpha|_U$.

At every point of "bad loci" $C^2Q\setminus U$ and $Gr(2,V)\setminus U'$ the form q is isotropic. Hence the numbers $n_{C^2Q\setminus U}$ and $n_{Gr(2,V)\setminus U'}$ are even. Lemma 5.3 implies that

$$\eta_2(Q) \equiv \deg(c_1(E))^{2d} \pmod{2}.$$

Let

$$i: \operatorname{Gr}(2, V) \hookrightarrow \mathbb{P}(\wedge^2 V)$$

be the canonical closed embedding. The vector bundle E on $\operatorname{Gr}(2, V)$ is the inverse image under i of the tautological vector bundle on $\mathbb{P}(\wedge^2 V)$. The first Chern class of the tautological vector bundle is negative of the class of a hyperplane section. Thus, the degree $\deg(c_1 E)^{2d}$ is equal to $(-1)^d$ times the degree of the subvariety $i(\operatorname{Gr}(2, V))$ in the projective space $\mathbb{P}(\wedge^2 V)$. The later degree is known as the Catalan number

$$\frac{1}{d+1}\binom{2d}{d}.$$

One easily checks that this number is odd iff $d = 2^k - 1$ for some k.

Theorem 5.4. Let Q = Q(V,q) be a smooth projective quadric of dimension $d \ge 2^k - 1$ and let X be a variety over F such that n_X is even and X has a point over F(Q). Then

(i) $\dim(X) \ge 2^k - 1.$

(ii) If $\dim(X) = 2^k - 1$, then Q has a point over F(X).

(

Proof. Let $Q \to X$ be a rational morphism. Choose a subquadric $Q' \subset Q$ of dimension $2^k - 1$ such that the composition $f: Q' \hookrightarrow Q \to X$ is defined.

(i) Since $\eta_2(Q') \neq 0 \in \mathbb{Z}/2\mathbb{Z}$ and hence in $\mathbb{Z}/n_X\mathbb{Z}$, by Theorem 4.5(1),

$$\dim(X) \ge \dim(Q') = 2^k - 1.$$

(ii) By Theorem 4.5(2), Q' has a point of odd degree over F(X). By Springer's Theorem, Q' and hence Q has a point over F(X).

Corollary 5.5. (Hoffmann) Let Q_1 and Q_2 be two anisotropic quadrics. If $\dim(Q_1) \geq 2^k - 1$ and Q_2 is isotropic over $F(Q_1)$, then $\dim(Q_2) \geq 2^k - 1$.

Corollary 5.6. (Izhboldin) Let Q_1 and Q_2 be two anisotropic quadrics. If $\dim(Q_1) = \dim(Q_2) = 2^k - 1$ and Q_2 is isotropic over $F(Q_1)$, then Q_1 is isotropic over $F(Q_2)$.

6. Computing η_2 for smooth varieties

For a smooth variety X let T_X be the tangent bundle over X.

Theorem 6.1. Let X be a proper smooth variety of dimension d > 0. Then the degree of the 0-cycle $c_d(-T_X)$ is even and

$$\eta_2(X) = \frac{\deg c_d(-T_X)}{2} \in \mathbb{Z}/n_X\mathbb{Z}.$$

Proof. We would like first to compactify smoothly $C^2X \setminus \overline{X}$ and extend the line bundle L_X to the compactification. Note that C^2X is smooth only if $\dim(X) = 1$.

Let W be the blow-up of X^2 along the diagonal $X \subset X^2$. The *G*-action on X^2 extends to one on W. The subvariety W^G coincides with the exceptional divisor

Since W^G is of codimension 1 in W, W/G is smooth and therefore can be taken as a smooth compactification of $C^2X \setminus \overline{X}$.

Now we would like to construct a canonical extension L' of L_X to the whole W/G. There is a canonical linear bundle L_{can} over the blow-up W with the induced G-action. The group G acts by -1 on the restriction of L_{can} on the exceptional divisor $\mathbb{P}(T_X)$. The restriction of L_{can} to the complement of the

exceptional divisor $W \setminus \mathbb{P}(T_X) \simeq X^2 \setminus X$ is the trivial vector bundle with the trivial *G*-action. Now we modify the *G*-action on L_{can} by -1. The new *G*-action of the restriction of L_{can} on the exceptional divisor $\mathbb{P}(T_X)$ is trivial, hence L_{can} descends to a linear vector bundle L' on W/G which is a desired extension of L_X on $C^2X \setminus \overline{X}$.

Now we compute deg $c_1(L')^{2d}$. At one hand, since L_X is the restriction of L' on $C^2X \setminus \overline{X}$, we have

$$\deg c_1(L')^{2d} = \deg c_1(L_X)^{2d} = \eta_2(X) \in \mathbb{Z}/n_X\mathbb{Z}.$$

On the other hand, consider morphisms

$$\mathbb{P}(T_X) \xrightarrow{i} W \xrightarrow{p} W/G$$

$$\downarrow^{q}$$

$$X.$$

We have

$$p^*c_1(L') = c_1(L_{can}) = [\mathbb{P}(T_X)] = i_*(1) \in CH^1(W).$$

In particular, $p^*c_1(L')^{2d} = c_1(L_{can})^{2d}$ and hence

$$2 \deg c_1(L')^{2d} = \deg c_1(L_{can})^{2d}.$$

The restriction of L_{can} on $\mathbb{P}(T_X)$ is the canonical line bundle E_{can} with the sheaf of sections $O_{\mathbb{P}(T_X)}(1)$. Hence, by the projection formula (note that d > 0),

$$c_1(L_{can})^{2d} = i_*(1) \cdot c_1(L_{can})^{2d-1} = i_*(c_1(E_{can})^{2d-1}) \in CH_0(W),$$

hence

$$\deg c_1(L_{can})^{2d} = \deg c_1(E_{can})^{2d-1}$$

The class

$$q_*(c_1(E_{can})^{2d-1}) \in \mathrm{CH}_0(X)$$

is known as the Segre class of T_X and coincides with $c_d(-T_X)$. (In general, $q_*(c_1(E_{can})^{i+d-1}) = c_i(-T_X)$.)

Finally,

$$2\deg c_1(L')^{2d} = \deg c_1(L_{can})^{2d} = \deg c_1(E_{can})^{2d-1} = \deg c_d(-T_X).$$

Remark 6.2. The integer $\frac{\deg c_d(-T_X)}{2}$ does not change under field extensions and therefore can be computed over an algebraically closed field.

Remark 6.3. If p > 2, the blow up W of the diagonal in X^p does not have smooth orbit space W/G and the linear bundle L_X cannot be extended to a linear bundle on W/G.

Remark 6.4. The number deg $c_d(-T_X)$ does not change under field extensions and hence can be computed over algebraically closed fields.

Remark 6.5. The Theorem shows that the degree m of the cycle $c_d(-T_X)$ is always even. Hence this cycle defines a cycle on the symmetric square C^2X of degree $\frac{m}{2}$. In the proof we construct this class "canonically" (it is $c_1(L_X)^{2d}$). The degree formula follows from "canonical" nature of this class. One should study other cases of divisibility of characteristic numbers.

7. Computing η_2 for projective spaces

Proposition 7.1. Let $X = \mathbb{P}_F^d$. Then

$$\deg c_d(-T_X) = (-1)^d \binom{2d}{d}.$$

Proof. It is known that $[-T_X] = -(d+1)[E_{can}] + 1 \in K_0(X)$. We can compute the total Chern class:

$$c(-T_X) = \frac{1}{c(E_{can})^{d+1}} = \frac{1}{(1+t)^{d+1}}.$$

Hence

$$\deg c_d(-T_X) = \binom{-d-1}{d} = (-1)^d \binom{2d}{d}.$$

Let v_p be the *p*-adic discrete valuation and $s_p(a)$ be the sum of digits of *a* written in base *p*.

Corollary 7.2. Let Y be a Severi-Brauer variety of dimension d. Then

$$v_2(\deg c_d(-T_Y)) = s_2(d), \quad \eta_2(Y) = 2^{s_2(d)-1} + n_Y \mathbb{Z} \in \mathbb{Z}/n_Y \mathbb{Z}.$$

Corollary 7.3. (Karpenko) Let A be a division algebra with orthogonal involution σ , Y the Severi-Brauer variety of A. Then the involution σ is anisotropic over F(Y).

Proof. Let $X = I(A, \sigma) \subset Y$ be the involution variety, $\deg(A) = 2^k$. Then $2^k = n_Y$ divides n_X . If σ is isotropic over F(Y) then there is a rational morphism $Y \to X$. By Corollary 7.2, $\eta_2(Y) = 2^{k-1} + n_X \mathbb{Z}$ is nontrivial in $\mathbb{Z}/n_X \mathbb{Z}$. A contradiction by Theorem 4.5(1).

Remark 7.4. In fact, we proved that the Severi-Brauer variety of a division algebra of degree 2^k cannot be compressed to a variety X of smaller dimension with $I(X) = 2^k \mathbb{Z}$.

Remark 7.5. Let p be any prime integer. One can show that for a Severi-Brauer variety Y of dimension d divisible by p - 1,

$$\eta_p(X) = p^{\frac{s_p(d)}{p-1}-1} \in \mathbb{Z}/n_Y\mathbb{Z}.$$

As in Corollary 7.3 one can prove that the Severi-Brauer variety of a division algebra of degree p^k cannot be compressed to a variety X of smaller dimension with $n_X = p^k \mathbb{Z}$.

8. FUNDAMENTAL CLASS OF A SMOOTH VARIETY

A partition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ is a sequence of integers (possibly empty) $\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_k > 0$. The degree of α is the integer

 $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_k.$

Denote by $\pi(d)$ the set of all partitions α with $|\alpha| = d$ and by $|\pi(d)|$ the number of all partitions in $\pi(d)$.

Consider the polynomial ring $\mathbb{Z}[b_1, b_2, \dots] = \mathbb{Z}[\mathbf{b}]$ as a graded ring with deg $b_i = i$. For every partition α set

$$b_{\alpha} = b_{\alpha_1} b_{\alpha_2} \dots b_{\alpha_k}$$

The monomials b_{α} form a basis of the polynomial ring over \mathbb{Z} , and more precisely, the b_{α} with $|\alpha| = d$ form a basis of $\mathbb{Z}[\mathbf{b}]_d$.

Example 8.1. $\mathbb{Z}[\mathbf{b}]_0 = \mathbb{Z}, \mathbb{Z}[\mathbf{b}]_1 = \mathbb{Z}b_1, \mathbb{Z}[\mathbf{b}]_2 = \mathbb{Z}b_2 \oplus \mathbb{Z}b_1^2, \mathbb{Z}[\mathbf{b}]_3 = \mathbb{Z}b_3 \oplus \mathbb{Z}b_1b_2 \oplus \mathbb{Z}b_1^3.$

Consider another polynomial ring $\mathbb{Z}[c_1, c_2, ...] = \mathbb{Z}[\mathbf{c}]$ with similar grading deg $c_i = i$. The elements of $\mathbb{Z}[\mathbf{c}]$ we call *characteristic classes* and the c_n - the *Chern classes*.

For any partition α we define the "smallest" symmetric polynomial

$$P_{\alpha}(x_1, x_2, \dots) = \sum_{(i_1, i_2, \dots, i_k)} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \dots x_{i_k}^{\alpha_k} = Q_{\alpha}(\sigma_1, \sigma_2, \dots),$$

containing the monomial $x_1^{\alpha_1} x_2^{\alpha_2} \dots x_k^{\alpha_k}$ where the σ_i are the standard symmetric functions, and set

$$c_{\alpha} = Q_{\alpha}(c_1, c_2, \dots).$$

Example 8.2. 1. $c_n = c_{(1,1,\dots,1)}$ (*n* units).

2. The classes $s_d = c_{(d)}$ are called the *additive* characteristic classes. Note that $Q_{(d)}$ is the Newton polynomial.

The characteristic classes c_{α} with $|\alpha| = d$ form a basis of $\mathbb{Z}[\mathbf{c}]_d$. We consider a pairing between $\mathbb{Z}[\mathbf{b}]_d$ and $\mathbb{Z}[\mathbf{c}]_d$ such that the b_{α} and c_{α} form dual bases. In particular, the additive class s_d corresponds to b_d .

For a smooth complete variety X of dimension d we define the *fundamental* class

$$[X] = \sum_{|\alpha|=d} \deg c_{\alpha}(-T_X)b_{\alpha} \in \mathbb{Z}[\mathbf{b}]_d.$$

Thus, [X] is a homogeneous polynomial in the b_i of degree d. Note that [X] does not change under field extensions. The numbers deg $c_{\alpha}(-T_X)$ are called *characteristic numbers*. They are well known in topology. The class $-T_X$ plays the role of the normal bundle of an embedding of X into \mathbb{R}^n .

Example 8.3. 1. [pt] = 1;

2. For a smooth projective curve X of genus g, $[X] = 2(g-1)b_1$. In particular, $[\mathbb{P}^1] = -2b_1$.

3. $[\mathbb{P}^2] = -3b_2 + 6b_1^2, \ [\mathbb{P}^1 \times \mathbb{P}^1] = 4b_1^2.$ 4. $[\mathbb{P}^3] = -4b_3 + 20b_1b_2 - 20b_1^3, \ [Q_3] = 6b_3 - 10b_1^3.$

Exercise 8.4. Show that $[X \times Y] = [X] \cdot [Y]$ for every smooth complete varieties X and Y.

9. Formal group laws

Let R be a commutative ring. A (one-dimensional, commutative) formal group law over R is a power series

$$\Phi(x,y) = x + y + \sum_{i,j \ge 1} r_{ij} x^i y^j,$$

with $r_{ij} \in R$ such that

(1) $\check{\Phi}(\Phi(x,y),z) = \Phi(x,\Phi(y,z)),$

(2) $\Phi(x,y) = \Phi(y,x).$

Example 9.1. $\Phi(x, y) = x + y$ (additive group law), $\Phi(x, y) = x + y + rxy$, $r \in R$.

Let $f : R \to S$ be a commutative ring homomorphism, Φ is a formal group law over R. Then $f(\Phi)$ is a formal group law over S. A formal group law Φ_{univ} over a ring L is called *universal* if for a any group law Φ over a ring R there is unique ring homomorphism $f : L \to R$ such that $\Phi = f(\Phi_{univ})$.

Proposition 9.2. A universal group law exists.

Proof. Consider the polynomial ring $\mathbb{Z}[a_{ij}]$, $i, j \geq 1$, and let L be the factor ring modulo the ideal generated by elements encoded in the definition of a formal group law.

The ring L is unique (up to canonical isomorphism) and it represents the functor

 $R \mapsto \{\text{formal group laws over } R\}$

from the category of commutative rings to the category of sets. The ring L is called the *Lazard ring*. Note that L is generated by the coefficients of Φ_{univ} .

We would like to find a convenient model for L.

Consider the power series

$$\exp t = t + b_1 t^2 + b_2 t^3 + \dots \in \mathbb{Z}[\mathbf{b}][[t]]$$

and its formal inverse

$$\log t = t + m_1 t^2 + m_2 t^3 + \dots \in \mathbb{Z}[\mathbf{b}][[t]].$$

Exercise 9.3. Prove that $m_d = [\mathbb{P}^d]/(d+1)$.

Consider the formal group law over $\mathbb{Z}[\mathbf{b}]$:

$$\Phi = \exp(\log x + \log y) = x + y + \sum_{i,j \ge 1} r_{ij} x^i y^j.$$

By the universal property, there is unique ring homomorphism $L \to \mathbb{Z}[\mathbf{b}]$ taking Φ_{univ} to Φ . The following algebraic result is well known.

Theorem 9.4. The homomorphism $L \to \mathbb{Z}[\mathbf{b}]$ is injective and its image is generated by the coefficients of Φ .

We shall identify the Lazard ring L with its image in $\mathbb{Z}[\mathbf{b}]$. Note that L is a graded subring in $\mathbb{Z}[\mathbf{b}]$ generated by the coefficients a_{ij} .

Example 9.5.

$$a_{11} = 2b_1 = -[\mathbb{P}^1],$$

$$a_{12} = 3b_2 - 2b_1^2 = -[\mathbb{P}^2] - 2[\mathbb{P}^1 \times \mathbb{P}^1],$$

$$a_{13} = 4b_3 - 8b_1b_2 + 4b_1^3,$$

$$a_{22} = 6b_3 - 6b_1b_2 + 2b_1^3, \dots$$

Remark 9.6. The power series log is called the *logarithm* of the formal group law Φ .

It turns out that the Lazard ring is a polynomial ring $\mathbb{Z}[M_1, M_2, ...]$ with deg $M_i = i$, where the $M_i \in \mathbb{Z}[\mathbf{b}]$ can be chosen as follows:

 $M_{i} = \begin{cases} pb_{i} + \{\text{decomposable terms}\}, & \text{if } i = p^{k} - 1\\ & \text{for some prime } p \text{ and integer } k > 0,\\ b_{i} + \{\text{decomposable terms}\}, & \text{otherwise.} \end{cases}$

Example 9.7.

$$M_1 = 2b_1 = -[\mathbb{P}^1],$$

$$M_2 = 3b_2 - 2b_1^2 = -[\mathbb{P}^2],$$

$$M_3 = 2b_3 + 10b_1b_2 - 204b_1^3 = -[\mathbb{P}^3] + [Q_3],$$

Set

$$r_i = \begin{cases} p, & \text{if } i = p^k - 1\\ & \text{for some prime } p \text{ and integer } k > 0,\\ 1, & \text{otherwise.} \end{cases}$$

For any partition α of degree d set

$$r_{\alpha} = r_{\alpha_1} r_{\alpha_2} \dots r_{\alpha_k} \in \mathbb{Z}.$$

Proposition 9.8. The factor group $\mathbb{Z}[\mathbf{b}]_d/L_d$ is finite and isomorphic to $\coprod_{\alpha} \mathbb{Z}/r_{\alpha}\mathbb{Z}$, where the coproduct is taken over all partitions α of degree d. In particular, L_d is a free group of rank $|\pi(d)|$.

Thus, $\mathbb{Z}[\mathbf{b}]_d/L_d$ is a finite group of order

$$r = \prod_{|\alpha|=d} r_{\alpha} = \prod_{p \text{ prime}} p^{\left[\frac{d}{p-1}\right]}.$$

This number coincides with the denominator of the Todd class td_d .

Example 9.9.

 $r_1 = 2,$ $r_2 = 12,$ $r_3 = 24,$ $r_4 = 720.$

10. FUNDAMENTAL CLASSES AND LAZARD RING

Let L' be the subgroup in $\mathbb{Z}[\mathbf{b}]$ generated by the classes [X] for all smooth varieties X over F. Clearly, L' is a graded subring in $\mathbb{Z}[\mathbf{b}]$.

Theorem 10.1. If the base field F is infinite, L' = L.

Remark 10.2. In topology the fundamental class of a manifold takes values in L, the cobordism group of the point.

We first prove that $L \subset L'$. The Lazard ring L is generated by the coefficients a_{ij} of the universal group law Φ . Hence it is sufficient to prove that $a_{ij} \in L'$. Let $H_{n,m}$ be a smooth hypersurface of type (1, 1) in $\mathbb{P}^n \times \mathbb{P}^m$.

Proposition 10.3.

$$[H_{n,m}] = \sum_{i,j\geq 0} a_{ij} [\mathbb{P}^{n-i}] [\mathbb{P}^{m-j}].$$

It follows from the formula by induction on n + m that $a_{nm} \in L'$.

We need to show now that $L \subset L'$. The idea (due to Stong) is to construct a fundamental class of a smooth complete variety in K-theory. We define the first Chern class of a linear bundle L over X by

$$c_1^K(L) = 1 - [L^{\vee}] \in K_0(X)$$

and then extend the definition to get classes $c_{\alpha}^{K}(E) \in K_{0}(X)$ for arbitrary partition α and vector bundle E over X.

We define the fundamental class in K-theory for a smooth projective variety X of dimension d by

$$[X]^K = \sum_{\alpha} f_* \big(c_{\alpha}^K (-T_X) \big) b_{\alpha} \in \mathbb{Z}[\mathbf{b}],$$

where $f_*: K_0(X) \to K_0(pt) = \mathbb{Z}$ is the push-forward homomorphism with respect to $f: X \to pt$. The class $[X]^K$ is a polynomial over \mathbb{Z} of degree at most d.

Example 10.4.

$$[\mathbb{P}^1]^K = 1 - 2b_1,$$

$$[\mathbb{P}^2]^K = 1 - 3b_1 + (-3b_2 + 6b_1b_2).$$

We compare two fundamental classes of X using the Chern character

$$ch: K_0(X) \to CH_*(X) \otimes \mathbb{Q}$$

The Riemann-Roch theorem gives

Proposition 10.5. For a smooth projective variety X,

$$f_*(c^K_\alpha(-T_X)) = \left(\operatorname{ch}(c^K_\alpha)td^{-1}\right)(-T_X)$$

for all α . In particular, $[X] = ([X]^K)_d$.

Denote by L_d^K the subgroup of $\mathbb{Z}[\mathbf{b}]$ generated by the classes $[X]^K$ for all projective smooth varieties X of dimension d. By Proposition 10.5, the restriction on L_d^K of the projection $\mathbb{Z}[\mathbf{b}] \to \mathbb{Z}[\mathbf{b}]_d$ is injective with image L'_d . Hence L_d^K is a free abelian group of rank at most $|\pi(d)|$.

Proposition 10.6. For every prime p and every integer d, there are varieties M^p_{α} for $\alpha \in \pi(d)$ such that the classes $[M^p_{\alpha}]^K$ in $\mathbb{Z}[\mathbf{b}]/p\mathbb{Z}[\mathbf{b}]$ are linearly independent.

It follows from Proposition that dimension of the image of L_d^K in $\mathbb{Z}[\mathbf{b}]/p\mathbb{Z}[\mathbf{b}]$ is at least $|\pi(d)|$. Hence, L_d^K is a free abelian group of rank exactly $|\pi(d)|$ and hence L_d^K is generated by $[M_{\alpha}^p]^K$ for all p and α . Also, the map

$$L_d^K/pL_d^K \to \mathbb{Z}[\mathbf{b}]/p\mathbb{Z}[\mathbf{b}]$$

is an isomorphism, hence L_d^K is a direct summand of $\mathbb{Z}[\mathbf{b}]$ (Hattori-Stong theorem).

Note that $[M^p_{\alpha}]$ generate L'. Computing classes $[\mathbb{P}^n]^K$ and $[H_{n,m}]^K$ in terms of the classes of generators $[M^p_{\alpha}]^K$ we get

Corollary 10.7. The ring L' is generated by the classes $[\mathbb{P}^n]$ and $[H_{n,m}]$ for all n and m.

Finally one shows that the classes $[\mathbb{P}^n]$ and $[H_{n,m}]$ can be expressed in terms of the coefficients a_{ij} of the formal group law Φ , hence $L' \subset L$.

Proposition 10.8. Let X be a smooth projective variety of dimension $d = p^k - 1$ where p is prime. Then $\deg s_d(-T_X)$ is divisible by p.

11. General degree formulas

Let X be an algebraic proper smooth variety over F of dimension d. We define the (graded) ideal M(X) in L generated by the classes $[Y] \in L$ for all smooth proper varieties Y with $\dim(Y) < d$ and such that there exists a morphism $Y \to X$. Thus, as an abelian group, M(X) is generated by the classes $[Y \times Z]$ of varieties of dimension d, where $\dim Z > 0$ and there is a morphism $Y \to X$.

Conjecture 11.1. (General Degree Formula) For any morphism $f: Y \to X$ of proper smooth varieties of dimension d,

$$[Y] = \deg(f) \cdot [X] \in L_d/M(X)_d.$$

Remark 11.2. If $f: Y \to X$ is étale morphism, then $T_Y = f^*(T_X)$ and hence $[Y] = \deg(f) \cdot [X] \in L_d,$

i.e. the degree formula holds in a stronger form. In general, the difference $[Y] - \deg(f) \cdot [X]$ can be non-trivial and is caused by the ramification of f.

Remark 11.3. In topology the statement of the conjecture is known as Quillen's theorem.

The group L_d is a subgroup in $\mathbb{Z}[\mathbf{b}]_d$ of finite index. Hence, the inclusion of dual groups

$$\mathbb{Z}[\mathbf{c}]_d = \left(\mathbb{Z}[\mathbf{b}]_d\right)^* \subset \left(L_d\right)^* = \operatorname{Hom}(L_d, \mathbb{Z})$$

is an equality after tensoring with \mathbb{Q} . Thus, the group $(L_d)^*$ can be identified with the group of rational characteristic classes $c \in \mathbb{Z}[\mathbf{c}]_d \otimes \mathbb{Q}$ such that $c(L_d) \subset \mathbb{Z}$, i.e. $c(-T_X) \in \mathbb{Z}$ for every smooth complete X of dimension d. We call such rational characteristic classes c special.

Example 11.4. By Riemann-Roch theorem, for a smooth complete variety X,

$$\deg td(T_X) = \sum_{i\geq 0} (-1)^i \dim H^i(X, \mathcal{O}_X),$$

thus, the inverse Todd class td^{-1} is special.

Let $c \in \mathbb{Z}[\mathbf{c}]_d \otimes \mathbb{Q}$ be a special characteristic class. We can consider c as a homomorphism $c : L_d \to \mathbb{Z}$. Applying c to both sides of the degree formula, we get a degree formula

$$c[Y] = \deg(f) \cdot c[X] \in \mathbb{Z}/c(M(X)_d).$$

Thus, to every special characteristic class c we have associated special degree formula.

Example 11.5. Let $c = \frac{1}{2}c_d$ (*c* is the Chern class). The group $M(X)_d$ is generated by the classes $[Y \times Z]$ of varieties of dimension *d*, where $k = \dim Z > 0$ and there is a morphism $Y \to X$. Let *p* and *q* be two projections of $Y \times Z$ on *Y* and *Z* respectively. Then

$$T_{Y \times Z} = p^*(T_Y) \otimes q^*(T_Z)$$

The highest Chern class (the Euler class) is multiplicative, hence

$$\frac{1}{2}\deg c_d(-T_{Y\times Z}) = \deg c_{d-k}(-T_Y) \cdot \frac{1}{2}\deg c_k(-T_Z).$$

Note that the second factor is integer by Theorem 6.1. Clearly, deg $c_k(-T_Y)$ is divisible by n_Y . Since there is a morphism $Y \to X$, $n_X \mid n_Y$ by Proposition 1.4 and hence deg $c_k(-T_Y)$ is divisible by n_X . Thus $c(M(X)_d) = n_X \mathbb{Z})$ and we get the degree formula (4.1) in the case of smooth varieties and p = 2.

Example 11.6. The additive integral class $s_d = c_{(d)}$ vanishes on decomposable elements in L_d . Hence if $d = p^k - 1$, we get

$$\frac{s_d(Y)}{p} \equiv \deg(f) \frac{s_d(X)}{p} \mod I(X).$$

Recently, F. Morel and M. Levine prove the conjecture over fields of characteristic zero. They used heavily resolution of singularities.

References