
INVARIANTS OF ALGEBRAIC GROUPS

ALEXANDER MERKURJEV

For a central simple algebra A of dimension 16 over a field F (charF ̸= 2)
and exponent 2 in the Brauer group of F (hence A is a biquaternion algebra,
i.e. the tensor product of two quaternion algebras by an old theorem of Albert
[1, p.369]), M. Rost has constructed an exact sequence (cf. [13])

0 −→ SK1(A)
r−→ H4(F,Z/2Z) −→ H4

(
F (X),Z/2Z

)
,

where X is the Albert quadric of A. This result has been used in [14] to show
that there is a field extension E/F such that SK1(A⊗F E) ̸= 0 provided A is
a division algebra and deduce that the variety of the algebraic group SL1(A)
is not rational. Since SK1(A) = SL1(A)/[A

∗, A∗], the map r can be viewed as
a natural (with respect to field extensions) collection of homomorphisms from
the group of points of the algebraic group SL1(A) over field extensions of F to
the fourth cohomology group with coefficients Z/2Z. The result quoted above
shows that if A is division, then r is a nontrivial collection of homomorphisms,
being considered for all field extensions (the group SK1(A) can be trivial over
the base field F even if A is a division algebra).

The aim of the present paper is to study natural with respect to field ex-
tensions group homomorphisms of a given algebraic group to cohomology-like
groups. More precisely, for an algebraic group G over a field F and a cy-
cle module M (cf. [24]; for example, M can be given by Galois cohomology
groups) we introduce a notion of invariant of G in M of dimension d as a
natural transformation of functors G→Md from the category F -fields of field
extensions of F to Groups. For example, the Rost’s map r can be considered
as an invariant of SL1(A) of dimension 4 in the cycle module H∗[Z/2Z].

All invariants of G in M of degree d form an abelian group, which we
denote Invd(G,M). We prove (Theorem 2.3) that if a cycle module M is of
bounded exponent, then the group Invd(G,M) is isomorphic to the subgroup
of multiplicative elements in the unramified group A0(G,Md).

In section 3 we consider cohomological invariants, i.e. invariants in the cycle
module H∗[N ] where N is a Galois module over F and compute the groups of
invariants of dimensions 0, 1 for any N and dimension 2 for N = µ⊗−1

n (Theo-
rems 3.1, 3.4 and 3.13). It turns out that for a simply connected groups all these
invariants are trivial. In section 4 we show that the group Inv3(G,H∗[µ⊗−1

n ])
is also trivial for a simply connected G (Proposition 4.9). Thus, the Rost’s
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2 A. MERKURJEV

invariant r is an example of a nontrivial cohomological invariant of SL1(A) of
the smallest dimension!

In section 5 we show that the group SL1(A) has no nontrivial invariants if
ind(A) ≤ 2. If ind(A) = 4 and exp(A) = 2 (i.e. A is a biquaternion division
algebra), the Rost’s invariant appears to be the only nontrivial invariant of
SL1(A) (Theorem 5.4).

In section 6 we generalize Rost’s theorem to the case of arbitrary central
simple algebra A of dimension 16 (without any restriction on the exponent).
It turns out that the Rost’s exact sequence does not exist if A is of exponent
4. Nevertheless, there exists an exact sequence (Theorem 6.6)

0 −→ SK1(A)
r−→ H4(F,Z/2Z)/

(
2[A] ∪H2(F,Z/2Z)

)
−→ H4

(
F (X),Z/2Z

)
,

where X is the generalized Severi-Brauer variety SB(2, A). The map r in this
sequence can be considered as an invariant of SL1(A) in the cycle module

Md(E) = Hd(E,Z/2Z)/
(
2[AE] ∪Hd−2(E,Z/2Z)

)
,

which is not a cohomological cycle module. This statement motivates the
definition of invariants in arbitrary cycle modules (not only cohomological
ones).

I would like to thank M. Rost and J.-P. Serre for useful discussions.

1. Notation and preliminary results

1.1. Algebraic groups. An algebraic group over a field F is a smooth affine
group scheme of finite type over F . The category of all algebraic groups over
F is denoted F -groups.

We write F -alg for the category of commutative F -algebras and Groups
for the category of groups. We consider an algebraic group G as a functor
G : F -alg → Groups, taking a commutative F -algebra A to the group of A-
points G(A) = Mor

(
Spec(A), G

)
. If A is an F -subalgebra of B, we identify

G(A) with a subgroup of G(B).
Denote F [G] the F -algebra of regular functions on G and F (G) the field of

rational functions if G is connected.
G∗ = Hom(G,Gm) is the character group of G over F .
Any point g of the scheme G defines an element of the group G

(
F (g)

)
,

which we also denote g. If G is connected, the generic element of G defines an
element ξ of G

(
F [G]

)
. We also write ξ for its image in G

(
F (G)

)
.

F -fields is the full subcategory of F -alg consisting of fields.
Ab is the category of abelian groups.
Let G be an algebraic group over a field F . Denote O the power series ring

F [[t]] and Om the factor ring O/tmO. For any element g of G(O) or G(Om),
m ≥ 1, we write g(0) for its image in G(O1) = G(F ).

Lemma 1.1. For any element g ∈ G(O) such that g(0) = 1 and any n ∈ N,
prime to charF , there exists f ∈ G(O) such that f(0) = 1 and g = fn.
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Proof. It suffices to show that any element h ∈ G(Om), m ≥ 1, such that
h(0) = 1 and the image of g in G(Om) equals h

n, can be lifted to an element
h1 ∈ G(Om+1) such that the image of g in G(Om+1) equals h

n
1 . Consider the

following exact sequence

1 −→ Lie(G) −→ G(Om+1) −→ G(Om) −→ 1.

The conjugation action of h on Lie(G) is given by the adjoint transformation
Ad

(
h(0)

)
, which is trivial since h(0) = 1. Hence any lifting of h to G(Om+1)

centralizes Lie(G), therefore the existence of the lifting we need follows from
the fact that the group Lie(G) is n-divisible (being a vector space over F ). �
1.2. Cycle modules. A cycle module over a field F is an object function
M : F -fields → Ab together with a Z-grading M =

⨿
n Mn and with some

data and rules (cf. [24]). The data includes a graded module structure on M
under the Milnor ring K∗(F ), a degree 0 homomorphism α∗ : M(E)→M(K)
for any α : E → K in F -fields and also a degree −1 residue homomorphism
∂v : M(E)→ M

(
κ(v)

)
for a valuation v on E (here κ(v) is the residue field).

We will always assume that Mn = 0 for n < 0.

Example 1.2. (cf. [24, Rem. 1.11]) Let N be a discrete torsion module over
the absolute Galois group of a field F . Set N [i] = lim

−→
(nN) ⊗ µ⊗i

n , where

µn is the group of n-th roots of unity. Define a cohomological cycle module
M∗ = H∗[N ] by

Md(L) = Hd[N ](L) = Hd(L,N [d]).

Let M be a cycle module over F and let K be a discrete valuation field
over F with valuation v trivial on F and residue field L. A choice of a prime
element π ∈ K determines a specialization homomorphism sπv : M(K)→M(L)
(cf. [24, p.329]).

Let X be an algebraic variety over F . For any i the homology group of the
complex⨿

x∈Xi−1

Md−i+1

(
F (x)

) ∂−→
⨿
x∈Xi

Md−i

(
F (x)

) ∂−→
⨿

x∈Xi+1

Md−i−1

(
F (x)

)
we denote Ai(X,Md). In particular, A0

(
Spec(F ),Md

)
= Md(F ).

A morphism f : X → Y of smooth varieties over F induces inverse image
homomorphism (pull-back)(cf. [24, Sec.12])

p∗ : Ai(Y,Md)→ Ai(X,Md).

Lemma 1.3. Let X be a smooth algebraic variety over a field F , having an
F -point. Then the natural homomorphism M(F )→M

(
F (X)

)
is an injection.

Proof. The homomorphism M(F )→M
(
F (X)

)
factors as

M(F ) −→ A0(X,Md) ↪→M
(
F (X)

)
.

The first homomorphism splits by the pull-back with respect to any F -rational
point of X. �
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1.3. The simplicial scheme BG. For an algebraic group G over a field F
we consider the simplicial scheme BG with BGn = Gn and the face maps
∂i : G

n → Gn−1, i = 0, 1, . . . , n, given by the formulae

∂i(g1, g2, . . . , gn) =


(g2, g3, . . . , gn) if i = 0,

(g1, . . . , gigi+1, . . . , gn) if 0 < i < n,

(g1, g2, . . . , gn−1) if i = n.

Let A be a full subcategory in F -groups closed under products (for example,
a subcategory of reductive groups) and let F : A → Ab be a contravariant
functor. The homology groups of the complex Cn = F(Gn) with the differen-
tials

dn−1 : C
n−1 → Cn, dn−1 =

i=n∑
i=0

(−1)iF(∂i)

we denote H∗(BG,F).
Clearly, H0(BG,F) = F(1). The group H1(BG,F) coincides with the

subgroup in F(G) consisting of all elements x such that

(1) F(p1)(x) + F(p2)(x) = F(m)(x),

where pi : G × G → G are two projections and m : G × G → G is the
multiplication morphism. We simply denote this subgroup F(G)mult and call
the multiplicative part of F(G).

Example 1.4. Let A be an abelian group. Consider the functor F(G) =
Map

(
G(F ), A

)
. Then Hn(BG,F) = Hn

(
G(F ), A

)
the cohomology group of

G(F ) with coefficients in A considered as a trivial G(F )-module. In particular,
F(G)mult = Hom

(
G(F ), A

)
.

We write Fmult : A → Ab for the functor given by Fmult(G) = F(G)mult.
A contravariant functor F : A → Ab is called constant, if F(α) : F(H) →

F(G) is an isomorphism for any group homomorphism α : G → H in A
and called additive if for any pair of algebraic groups G and H in A, the
homomorphism

F(p1)⊕F(p2) : F(G)⊕F(H)→ F(G×H)

is an isomorphism.

Lemma 1.5. (i) The functor Fmult is additive for any F .
(ii) If F is additive, then Fmult = F .

Proof. (i) Let G and H be two groups in A. We have to show that the map

F(p1)⊕F(p2) : F(G)mult ⊕F(H)mult → F(G×H)mult

is an isomorphism.
Consider the embeddings i : G→ G×H, i(g) = (g, 1) and j : H → G×H,

j(h) = (1, h). The composites p2 ◦ i and p1 ◦ j factor through a trivial group.
Since F(1)mult = 0, it follows that F(i)◦F(p2) = 0 = F(j)◦F(p1). Hence the
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map F(p1)⊕F(p2) is a split injection. It remains to show that the restriction
of kerF(i) ∩ kerF(j) on F(G×H)mult is trivial.

Consider the following commutative diagram:

G×H
p1−−−→ Gyk

yi

G×H ×G×H
q1−−−→ G×H,

where q1 is the first projection and k(g, h) = (g, 1, 1, h). For any x ∈ kerF(i),
F(k) ◦ F(q1)(x) = F(p1) ◦ F(i)(x) = 0. Similarly, F(k) ◦ F(q2)(x) = 0, where
q2 is the second projection of G×H×G×H onto G×H. If x ∈ F(G×H)mult,
then F(q1)(x)+F(q2)(x) = F(m)(x), where m is the multiplication morphism
for G×H. Finally, m ◦ k = idG×H , hence

x = F(id)(x) = F(k) ◦ F(m)(x) = F(k) ◦ F(q1)(x) + F(k) ◦ F(q2)(x) = 0.

(ii) Now let F be additive. In the notation of the first part of the proof take
H = G. Since m ◦ i = idG = m ◦ j, the composite

(
F(i),F(j)

)
◦ F(m) is

the diagonal map F(G) → F(G) ⊕ F(G). But
(
F(i),F(j)

)
is the inverse

of F(p1) ⊕ F(p2). Hence F(p1) + F(p2) = F(m) and therefore F(G)mult =
F(G). �
Corollary 1.6. A functor F is additive if and only if Fmult = F . �
Lemma 1.7. [8, Lemma 4.5] Let F : A → Ab be a functor. Then for any G
in A,
(i) If F is constant, then

H i(BG,F) =

{
F(1) if i = 0,

0 if i ̸= 0.

(ii) If F is additive, then

H i(BG,F) =

{
F(G) if i = 1,

0 if i ̸= 1. �
Corollary 1.8. Let 0→ F1 → F2 → F3 → 0 be an exact sequence of functors.
If F1 and F3 are additive functors on A, then F2 is also additive on A. �

Let u : 1→ G be the unit morphism. For any functor F : A → Ab we write

F̃(G) for the kernel of F(u) : F(G)→ F(1).

Lemma 1.9. F(G)mult ⊂ F̃(G).

Proof. Let u′ : 1 → G × G be the unit morphism. Applying F(u′) to both
sides of (1), we get 2F(u)(x) = F(u)(x). �

2. Definition of an invariant

In this section we give definition of invariant of an algebraic group and
compute the group of invariants in simple cases.
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2.1. Definition. Let G be an algebraic group over a field F and M be a (Z-
graded) cycle module over F . For any d ∈ Z, we consider Md as a functor
from F -fields to Groups. An invariant of G in M of dimension d is a natural
transformation of functors G→Md from the category F -fields to Groups.

All invariants of G in M of degree d form an abelian group, which we denote
Invd(G,M). For any u ∈ Invd(G,M) and any L ∈ F -fields, we write uL for
the corresponding homomorphism G(L)→Md(L).

An algebraic group homomorphism G→ H induces a homomorphism

Invd(H,M)→ Invd(G,M)

making G 7→ Invd(G,M) a (contravariant) functor from F -groups to Ab.
Clearly, for two groups G and H over F there is a canonical isomorphism

Invd(G×H,M) ≃ Invd(G,M)⊕ Invd(H,M),

i.e. the functor Invd(∗,M) is additive.
Suppose that G is a connected group. Set K = F (G), the function field of G

and denote ξ ∈ G(K) the generic point ofG. For any invariant u ∈ Invd(G,M),
uK(ξ) is an element of Md(K), so that we have a homomorphism

θ : Invd(G,M)→Md(K), u 7→ uK(ξ).

Lemma 2.1. The image of θ is contained in A0(G,Md).

Proof. Let P = F (G × G) and let p̄1, p̄2 and m̄ be the F -homomorphisms of
fields K → P induced respectively by the first, the second projections and by
the multiplication morphism p1, p2,m : G × G → G. Consider the elements
ξ1 = G(p̄1)(ξ), ξ2 = G(p̄2)(ξ) and ξ′ = G(m̄)(ξ) in the group G(P ). Clearly,
ξ′ = ξ1 · ξ2.

Let u ∈ Invd(G,M) be any invariant. We have

uP (ξ
′) = uP (ξ1) + uP (ξ2) ∈Md(P ).

We need to show that ∂g
(
uL(ξ)

)
= 0 ∈ Md−1

(
F (g)

)
for any point g in G

of codimension 1. Let h be the point of codimension 1 in G × G such that
{h} = {g} × G. The projection p2 takes h to the generic point of G. Hence
by the rule R3c in [24, p.329], ∂h

(
uP (ξ2)

)
= 0 ∈ Md−1

(
F (h)

)
. By the same

reasoning, ∂h
(
uP (ξ

′)
)
= 0. Hence,

∂h
(
uP (ξ1)

)
= ∂h

(
uP (ξ

′)
)
− ∂h

(
uP (ξ2)

)
= 0 ∈Md−1

(
F (h)

)
.

Let k : F (g)→ F (h) be the field homomorphism induced by the projection
p1. By the rule R3a in [24, p.329], applied to the field extension p̄1 : K → P ,
we have

k∗
(
∂g(uK(ξ))

)
= ∂h

(
p1∗(uK(ξ))

)
= ∂h

(
uP (ξ1)

)
= 0 ∈Md−1

(
F (h)

)
.

The field F (h) is isomorphic to F (g)(G). By Lemma 1.3, the homomorphism
k∗ : Md−1

(
F (g)

)
→ Md−1

(
F (h)

)
is injective and hence ∂g

(
uL(ξ)

)
= 0 ∈

Md−1

(
F (g)

)
. �
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We say that a cycle module M is of bounded exponent, if there exists n ∈ N ,
prime to charF , such that nM = 0.

Lemma 2.2. Let M be a cycle module of bonded exponent and let g1 and g2 be
two points of G such that g2 is regular and of codimension 1 in {g1}. Suppose
that for an invariant u ∈ Invd(G,M) we have uF (g1)(g1) = 0 ∈ Md

(
F (g1)

)
.

Then uF (g2)(g2) = 0 ∈Md

(
F (g2)

)
.

Proof. Denote A the local ring of the point g2 in the variety {g1}. By as-
sumption, A is a discrete valuation ring with fraction field F (g1) and residue
field F (g2). Denote l : A → F (g2) the natural surjection. The image of the
generic element under G(F [G]) → G(A), induced by the natural ring homo-
morphism F [G] → A, equals g1 ∈ G(A) ⊂ G

(
F (g1)

)
. Clearly G(l)(g1) = g2.

We write Ã for the completion of A with respect to the natural discrete val-
uation. By a theorem of Cohen (cf. [30, Ch. VIII, Th.27]), there is a section

p : F (g2)→ Ã of the natural surjection q : Ã→ F (g2) and Ã ≃ F (g2)[[t]]. Set

g̃1 = G(p)(g2) ∈ G(Ã). Then

G(q)(g1) = G(l)(g1) = g2 = G(q)(g̃1),

hence g1 · g̃−1
1 belongs to the kernel of G(q).

Choose n ∈ N , prime to charF , such that nMd = 0. By Lemma 1.1,

g1 · g̃−1
1 = hn for some h ∈ G(Ã).

Let L be the fraction field of Ã and let i be the embedding of F (g2) into L.
We have

0 = uL(g1) = uL(h
n · g̃1) = uL(g̃1) = i∗

(
uF (g2)(g2)

)
∈Md(L).

Since L ≃ F (g2)((t)), the specialization homomorphism stv for the discrete
valuation v on L splits i∗, hence i∗ is injective and uF (g2)(g2) = 0. �

The following statement is useful for computations of invariants.

Theorem 2.3. Let G be a connected algebraic group over F and M be a cycle
module over F of bounded exponent. Then the map θ induces an isomorphism

Invd(G,M)
∼→ A0(G,Md)mult.

Proof. It follows from the proof of Lemma 2.1 that the image of θ belongs to
A0(G,M)mult.

Injectivity. Assume that for u ∈ Invd(G,M) we have uF (G)(ξ) = 0. For a
field extension L/F take any h ∈ G(L), i.e. a morphism h : Spec(L) → G.
We have to show that uL(h) = 0. Denote g ∈ G the only point in the image
of h. There is a sequence of points ξ = g1, g2, . . . , gm = g such that gi+1 is

regular and of codimension 1 in {gi} for all i = 1, 2, . . . , n − 1. By Lemma
2.2, uF (g)(g) = 0. The element h is the image of g under G

(
F (g)

)
→ G(L),

induced by the natural homomorphism F (g)→ L, hence uL(h) = 0, being the
image of uF (g)(g) under Md

(
F (g)

)
→Md(L).
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Surjectivity. Let a ∈ A0(G,Md)mult. For any L ∈ F -fields we define a
homomorphism uL : G(L)→Md(L) by the formula uL(g) = g∗(a), where

g∗ : A0(G,Md)→ A0
(
Spec(L),Md

)
= Md(L)

is the inverse image map with respect to g : Spec(L)→ G.
We show first that uL is a homomorphism. Let g1, g2 ∈ G(L). Denote g the

morphism (g1, g2) : Spec(L) → G×G. We have pi ◦ g = gi and m ◦ g = g1g2.
By definition of the multiplicative part of A0(G,Md),

p∗1(a) + p∗2(a) = m∗(a) ∈ A0(G×G,Md).

Hence

uL(g1g2) = (g1g2)
∗(a) = g∗

(
m∗(a)

)
= g∗

(
p∗1(a) + p∗2(a)

)
=

g∗1(a) + g∗2(a) = uL(g1) + uL(g2),

i.e. uL is a homomorphism.
Let α : L → E be a F -homomorphism of fields. Denote f : Spec(E) →

Spec(F ) the corresponding morphism. Then for any g ∈ G(L) one has

(α∗ ◦ uL)(g) = α∗
(
g∗(a)

)
= f ∗(g∗(a)) = (gf)∗(a) = uE(gf) =

(
uE ◦G(α)

)
(g),

i.e. the following diagram is commutative:

G(L)
uL−−−→ M(L)yG(α)

yα∗

G(E)
uE−−−→ M(E).

Hence u is a functor from F -fields to Groups, i.e. u ∈ Invd(G,M).
Finally it suffices to show that θ(u) = a. By definition of θ, θ(u) =

uF (G)(ξ) = ξ∗(a) and the latter is equal to a, since the inverse image ho-
momorphism

ξ∗ : A0(G,Md)→ A0
(
Spec(F (G),Md

)
= Md

(
F (G)

)
is the natural inclusion by [24, Cor. 12.4]. �
2.2. Invariants of unipotent groups. We show that unipotent groups have
no nontrivial invariants.

Proposition 2.4. Let G be a unipotent group. Then Invd(G,M) = 0 for any
M of bounded exponent.

Proof. For the proof we may assume that G is connected, since G/G0 is a
p-group, p = charF and the cycle module M has exponent prime to p. If
F is a perfect field, then by [6, 15.13], the variety of G is isomorphic to an

affine space, hence H̃0(G,Md) = 0 and Invd(G,M) = 0 by Theorem 2.3 and
Lemma 1.9. In the general case consider the perfect field L = F p−∞

, where
p = charF . Since the natural map M(F )→M(L) is injective (exponent of M
is prime to p), and any invariant is trivial on G(L), it follows that it is trivial
on G(F ) ⊂ G(L). �
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Let G be a connected algebraic group over a perfect field F . The unipotent
radical U of G is then defined over F . Denote G the reductive factor group
G/U . For any L ∈ F -alg the natural homomorphism G(L)→ G(L) is surjec-
tive since H1(L,U) = 1 (cf. [29, 18.2]). Thus, by Proposition 2.4, the natural
homomorphism

Invd(G,M) −→ Invd(G,M)

is an isomorphism. This reduces computation of invariants to the case of
reductive groups.

2.3. Invariants of split reductive groups. Let G be a split reductive group
over a field F . A character χ ∈ G∗ and an element x ∈ Md−1(F ) define an
invariant uχ,x as follows. For any L ∈ F -fields and any g ∈ G(L), we set
uχ,x
L (g) = i∗(x) · {χ(g)} ∈ Md(L), where i : F → L is the natural homomor-

phism.

Proposition 2.5. Assume that the derived subgroup G′ in G is simply con-
nected. Then the map G∗ ⊗ Md−1(F ) → Invd(G,M), χ ⊗ x → uχ,x, is an
isomorphism.

Proof. Consider first the case G = Gm. By [24, Prop. 2.2],

A0(Gm,Md) = Md(F )⊕Md−1(F ) · {t},

hence Ã0(Gm,Md) = Md−1(F ) · {t}. The inclusion

Invd(G,M) ≃ A0(Gm,Md)mult ↪→ Ã0(Gm,Md) ≃Md−1(F )

is then the inverse to the homomorphism in question. Since the functor G 7→
Invd(G,M) is additive, the results holds for any split torus G.

Now consider an arbitrary split reductive group G over F with the simply
connected derived subgroup G′. Denote S the torus G/G′. By [8, 3.20], the
natural homomorphism

A0(S,Md) −→ A0(G,Md)

is an isomorphism. Hence the left vertical homomorphism in the diagram

A0(S,Md)mult
∼−−−→ Invd(S,M) ←−−− S∗ ⊗Md−1(F )y y y

A0(G,Md)mult
∼−−−→ Invd(G,M) ←−−− G∗ ⊗Md−1(F )

is an isomorphism. By Theorem 2.3, the middle vertical map is also an iso-
morphism. Then we are reduced to the considered case of a split algebraic
tori, since S∗ ≃ G∗. �
Corollary 2.6. Let G be a split simply connected semisimple group. Then
Invd(G,M) = 0, i.e. G has no nontrivial invariants. �
Example 2.7. The determinant map defines isomorphisms

Invd(GLn,M)
∼→ Invd(Gm,M) ≃Md−1(F ). �
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3. Cohomological invariants

A cohomological invariant of an algebraic group G defined over a filed F is
an invariant in a cycle module H∗[N ], where N is a torsion module over the
absolute Galois group Γ of F .

For a variety X over F and a torsion Galois module N we set

Ai
(
X,Hj(N)

)
= Ai

(
X,Hj[N [−j]]

)
.

There is a Bloch-Ogus spectral sequence (cf. [5])

(2) Ep,q
2 = Ap

(
X,Hq(N)

)
⇒ Hp+q

et (X,N).

3.1. Invariants of dimension 0. Let module N be of bounded exponent, i.e.
nN = 0 for some n prime to charF . The corresponding cycle module H∗[N ]
is also of bounded exponent.

We describe all invariants of dimension 0 of an algebraic group G. Denote
G0 the connected component of the unity in G and set Ĝ = G/G0, so that Ĝ is
an étale group (cf. [29]). The absolute Galois group Γ of F acts naturally on

the group Ĝ(Fsep). Let f : Ĝ(Fsep) → N be a homomorphism of Γ-modules.

We write uf
F for the composite

G(F )→ Ĝ(F ) = Ĝ(Fsep)
Γ f→ NΓ = H0(F,N).

Similarly, one defines uf
L for any L ∈ F -fields. Clearly, uf is an invariant of

dimension 0.

Theorem 3.1. For a Γ-module N of bounded exponent, the map

α : HomΓ

(
Ĝ(Fsep), N

)
→ Inv0(G,H∗[N ]),

α(f) = uf , is an isomorphism.

Proof. Injectivity. Assume that α(f) = uf = 0. If L = Fsep, then the map

G(L)→ Ĝ(L) is surjective, hence f = 0.
Surjectivity. Choose n ∈ N such that (n, charF ) = 1 and nN = 0. The

group G0 is connected, hence G0(L) is n-divisible for L = Fsep. Therefore, for
any invariant u ∈ Inv0(G,H∗[N ]), the map

uL : G(L)→ H0(L,N) = N

factors through a homomorphism f : Ĝ(L) = G(L)/G0(L)→ N . Clearly, f is
Γ-equivariant and α(f) = u. �
Corollary 3.2. If G is connected, then Inv0(G,H∗[N ]) = 0. �
3.2. Invariants of dimension 1. Let G be a connected group over F , and
let N be a Galois module of bounded exponent. The Bloch-Ogus spectral
sequence (2) for the module N [1] shows that the natural homomorphism

H1
et(G,N [1])→ A0

(
G,H1(N [1])

)
= A0(G,H1[N ])

is an isomorphism.
Theorem 2.3 can be then reformulated as follows.
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Proposition 3.3. There is a natural isomorphism

Inv1(G,H∗[N ])
∼→ H1

et(G,N [1])mult. �
The Hochschild-Serre spectral sequence

Hp
(
F,Hq(Gsep, N [1])

)
⇒ Hp+q(G,N [1])

induces an exact sequence

0 −→ H1(F,N [1]) −→ H1
et(G,N [1]) −→ H0

(
F,H1

et(Gsep, N [1])
)
−→

H2(F,N [1]) −→ H2
et(G,N [1]).

The latter homomorphism is a split injection, hence

(3) H̃1
et(G,N [1]) ≃ H0

(
F,H1

et(Gsep, N [1])
)
.

The Kummer exact sequence for n prime to charF ,

1 −→ µn −→ Gm
n−→ Gm −→ 1

gives rise to the following exact sequence:

0 −→ F [G]×/F [G]×n −→ H1
et(G,µn) −→ n Pic(G) −→ 0.

By [22], F [G]× = F× ⊕G∗. Hence we have the following exact sequence

(4) 0 −→ G∗/G∗n −→ H̃1
et(G, µn) −→ n Pic(G) −→ 0.

If G is reductive, by [25, Lemma 6.9(i)], the functor G 7→ Pic(Gsep) is
additive on the category of reductive groups. The functor G 7→ G∗

sep is clearly

also additive. Hence, by Corollary 1.8, the functor G 7→ H̃1
et(G,µn) is additive.

Over Fsep the module N [1] is isomorphic to a direct sum of µn’s for various n,

hence the functor H1
et(Gsep, N [1]) is also additive. By (3), H̃1

et(G,N [1]) is an
additive functor. Lemma 1.5 then gives

(5) H̃1
et(G,N [1]) = H̃1

et(G,N [1])mult = H1
et(G,N [1])mult.

Denote Pic∗(Gsep) the dual Galois module

Hom
(
Pic(Gsep), F

×
sep

)
.

Suppose that N is a free Z/nZ-module. Tensoring by N the sequence (4) over
Fsep, we get an exact sequence

0 −→ G∗
sep ⊗N −→ H̃1

et(Gsep, N [1]) −→ Hom
(
Pic∗(Gsep), N [1]

)
−→ 0.

Since any Galois module of bounded exponent is a direct sum of free Z/nZ-
modules for all n, this sequence exists for any N of bounded exponent. Taking
cohomology groups, we get in view of (3)

0 −→ H0(F,G∗
sep ⊗N) −→ H̃1

et(G,N [1]) −→
HomΓ

(
Pic∗(Gsep), N [1]

)
−→ H1(F,G∗

sep ⊗N).

Proposition 3.3 and (5) then give
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Theorem 3.4. Let G be a reductive group over F , N be a Galois module of
bounded exponent. Then there is an exact sequence

0 −→ H0(F,G∗
sep ⊗N) −→ Inv1(G,H∗[N ]) −→

HomΓ

(
Pic∗(Gsep), N [1]

)
−→ H1(F,G∗

sep ⊗N). �
Corollary 3.5. If G is a semisimple group, C is the kernel of the universal

cover G̃→ G, then

Inv1(G,H∗[N ]) ≃ HomΓ

(
C(Fsep), N [1]

)
.

In particular, Inv1(G,H∗[Z/nZ]) ≃ nC
∗.

Proof. There is a natural isomorphism Pic(Gsep) ≃ C∗
sep (cf. [25, Lemma

6.9(iii)]), so that Pic∗(Gsep) = C(Fsep). �
Remark 3.6. Assume that the order of C is prime to charF . Then Corollary
3.5 shows that the invariant G(L) → H1(L,C), induced by the connecting
homomorphism with respect to the exact sequence

1 −→ C −→ G̃ −→ G −→ 1,

is the universal one.

Corollary 3.7. If T is an algebraic torus, then

Inv1(T,H∗[N ]) ≃ H0
(
F, T ∗

sep ⊗N
)
.

In particular, Inv1(T,H∗[Z/nZ]) ≃ H0(F, T ∗
sep/nT

∗
sep). �

Remark 3.8. For a commutative algebraic group A the isomorphism classes
of all central extensions of G by A form an abelian group Ext(G,A). The
Kummer sequence induces the following exact sequence

0 −→ G∗/G∗n −→ Ext(G,µn) −→ n Ext(G,Gm) −→ 0.

By [16, Lemma 1.6], the natural homomorphism Ext(G,Gm) → Pic(G) is an

isomorphism. Hence, in view of (4), the natural map Ext(G,µn)→ H̃1
et(G,µn),

taking the class of an extension 1 → µn → G′ → G → 1 to the class of µn-
torsor G′ over G, is also an isomorphism. The extension G′ of G by µn induces
an invariant in Inv1(G,H∗[Z/nZ]) via the connecting homomorphism with
respect to the exact sequence. Hence

Inv1(G,H∗[Z/nZ]) ≃ Ext(G,µn).

Example 3.9. Let 2n be prime to charF and let G be an adjoint semisimple
group of type 2An−1, i.e. G is the projective unitary group PGU(B, τ), where
B is a central simple algebra of dimension n2 over a quadratic field extension
L/F with an involution τ on B of the second kind, trivial on F . The kernel
C of the universal covering of G is µn[L] (cf. [11]). The character group C∗

sep

is isomorphic to Z/nZ with the action of the absolute Galois group of F via
Gal(L/F ) taking i+nZ to −i+nZ. Hence, if n is odd, the group C∗ is trivial
and G has no nontrivial invariants in H∗[Z/kZ]) for any k prime to charF .



INVARIANTS 13

If n is even, n = 2m, the group C∗ is isomorphic to Z/2Z, so that there is only
one nontrivial invariant u ∈ Inv1(G,H∗[Z/2Z]) ≃ 2C

∗. The homomorphism
uF : G(F )→ H1(F, µ2) = F×/F×2 is defined as follows. An element of G(F )
is represented (modulo L×) by an element b ∈ B× such that b · τ(b) = µ ∈ F×

(cf. [11]). The reduced norm β = Nrd(b) ∈ L× satisfies NL/F (β) = µn. Hence
NL/F (µ

−mβ) = 1 and by Hilbert’s Theorem 90, µ−mβ = τ(α)α−1 for some α ∈
L× uniquely determined modulo F×. Hence, the class NL/F (α)F

×2 ∈ F×/F×2

is well defined and

uF (bL
×) = µm · NL/F (α)F

×2 ∈ F×/F×2 = H1(F, µ2).

3.3. Invariants of dimension 2. We compute the group Inv2(G,H∗[µ⊗−1
n ])

for any reductive group G and any n prime to charF . The direct limit of these
groups for all n prime to charF we denote Inv2(G,H∗[µ⊗−1]). Clearly,

Inv2(G,H∗[µ⊗−1
n ]) = n Inv

2(G,H∗[µ⊗−1]).

For a torsion abelian group A, we write A′ for the subgroup in A of all
elements of order prime to charF .

By Theorem 2.3, the group Inv2(G,H∗[µ⊗−1]) is isomorphic to

A0(G,H2[µ⊗−1])mult = A0
(
G,H2(µ)

)
mult

which, in its turn, can be identified with the subgroup Br(G)′mult of the Brauer
group Br(G) by [7, Prop. 4.2.3(a)].

Lemma 3.10. Let T be an algebraic torus over a separably closed field F .
Then Br(T )′mult = 0.

Proof. Since F is separably closed, by Tsen’s Theorem, Br
(
F (t)

)′
= 0, hence

Br(Gm)
′
mult = 0. In the general case, T ≃ Gn

m and the result follows by
additivity from Lemma 1.5 applied to the functor G 7→ Br(G)′. �

This Lemma and Lemma 1.5 then imply

Corollary 3.11. Let G be an algebraic group over a separably closed field F ,
T be an algebraic torus over F . Then the embedding G→ G× T , g 7→ (g, 1),

induces an isomorphism Br(G× T )′mult
∼→ Br(G)′mult. �

Proposition 3.12. Let G be a reductive group over a separably closed field F .
Then Br(G)′mult = 0.

Proof. Let T be the connected center of G, G = G/T . It follows from the
proof of Lemma 6.12 in [25], that there is an exact sequence

0 −→ Br(G)
α−→ Br(G)

β−→ Br(G× T ),

where α is induced by the natural epimorphism G→ G and β = β1 − β2 with
β1 induced by the projection G×T → G and β2 induced by the multiplication
morphism G×T → G. Since T is a torus, by Corollary 3.11, β1 and β2 coincide
on Br(G)′mult. Hence, it suffices to show that Br(G)′mult = 0, so that now we
may assume that G is a semisimple group.
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By [9, Th. 4.1], the group Br(G)′ is isomorphic to H3(C∗,Z)′ where C the

kernel of the universal cover G̃ → G. Thus, it suffices to show that for the
functor F(H) = H3(H,Z) the group F(H)mult is trivial for any finite abelian
(constant) group H. Since H is a product of cyclic groups and H3(H,Z) is
trivial for a cyclic group H, the result follows from Lemma 1.5. �

Consider hypercohomology groups Hn
et(BG,Gm) (cf. [8]). There is a spectral

sequence
Ep,q

2 = Hp
(
BG,Hq

et(∗,Gm)
)
⇒ Hp+q

et (BG,Gm).

Since H0
et(G,Gm) = F× ⊕G∗, by Lemma 1.7,

Ep,0
2 =


F× if p = 0,

G∗ if p = 1,

0 if p ≥ 2.

Since H1
et(G,Gm) = Pic(G) is an additive functor on the category of reductive

groups, again by Lemma 1.7,

Ep,1
2 =


0 if p = 0,

Pic(G) if p = 1,

0 if p ≥ 2.

The group H2
et(G,Gm) is the Brauer group Br(G), hence

Ep,2
2 =

{
Br(F ) if p = 0,

Br(G)mult if p = 1.

Then the spectral sequence gives

H̃n
et(BG,Gm) =


0 if n = 0,

G∗ if n = 1,

Pic(G) if n = 2,

Br(G)mult if n = 3.

Theorem 3.13. Let G be a reductive group over a field F . Then there is an
exact sequence

H0
(
F,Pic(Gsep)

)′ −→ H2(F,G∗
sep)

′ −→ Inv2(G,H∗[µ⊗−1]) −→

H1
(
F,Pic(Gsep)

)′ −→ H3(F,G∗
sep)

′.

Proof. Consider the Hochschild-Serre spectral sequence

Ep,q
2 = Hp

(
F, H̃n

et(BGsep,Gm)
)
⇒ H̃n

et(BG,Gm).

We have

Ep,q
2 =


0 if q = 0,

Hp(F,G∗
sep) if q = 1,

Hp
(
F,Pic(Gsep)

)
if q = 2.
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By Proposition 3.12, (E0,3
2 )′ ⊂ Br(Gsep)

′
mult = 0, so the desired exact se-

quence is induced by the spectral sequence and the isomorphisms

Inv2(G,H∗[µ⊗−1
n ]) ≃ Br(G)′mult = H̃3

et(BG,Gm)
′. �

Corollary 3.14. If G is a semisimple group, C is the kernel of the universal

cover G̃→ G, then

Inv2(G,H∗[µ⊗−1]) ≃ H1(F,C∗
sep)

′. �

Corollary 3.15. Let T be an algebraic torus. The pairing

T (F )⊗H2(F, T ∗
sep)→ H2(F,Gm) = Br(F )

induces an isomorphism

H2(F, T ∗
sep)

′ ∼→ Inv2(T,H∗[µ⊗−1]). �

Example 3.16. Assume that charF ̸= 2. Let G be the special orthogonal
group of type B or D over F , i.e. G = O+(A, σ), where A is a central
simple algebra over F with an orthogonal involution σ. (If A splits, A ≃
End(V ), the involution σ is adjoint with respect to a quadratic form q on
V , so that G is the special orthogonal group O+(V, q), cf. [11].) The kernel
C of the universal covering of G is µ2, so that C∗ is isomorphic to Z/2Z.
Hence, Inv2(G,H∗[Z/2Z]) ≃ H1(F,Z/2Z) ≃ F×/F×2. Let u be the invariant
corresponding to an element a ∈ F×. Then for any g ∈ G(F ), uF (g) =(
Sn(g), a

)
is the class of quaternion algebra, where Sn is the spinor norm

homomorphism G(F )→ F×/F×2 (cf. [11]).

4. Invariants of simply connected groups

We show in this section that a simply connected group has no nontrivial
invariants in Hd[µ⊗−1

n ] for d ≤ 3.

4.1. Chow groups with coefficients. Let G be a simply connected group
defined over a field F . Denote D(G) the free abelian group generated by the
connected component of the Dynkin diagram of G. In particular, D(G) = Z
if G is absolutely simple. There is a natural Galois action on D(Gsep).

Let G be a split simply connected group over a field F , T a split maximal
torus in G, W the Weyl group of G. Let G = G1 × · · · × Gk be a product
of simple subgroups. Then T ∗ = T ∗

1 ⊕ · · · ⊕ T ∗
k where Ti is a maximal torus

in Gi. There is a positive definite W -invariant quadratic form on T ∗, unique
up to a multiple on each direct summand T ∗

i . Hence the group S2(T ∗)W of
W -invariant quadratic forms on T ∗ is canonically isomorphic to D(G).

Proposition 4.1. Let G be a split simply connected group over a field F , and
M a cycle module over F . Then
(i) H0(G,Mj) = Mj(F );
(ii) H1(G,Mj) = D(G)⊗Mj−2(F ).



16 A. MERKURJEV

Proof. The first part and the case j ≤ 2 of (ii) is proved in [8]. Let d = dimG
and X = G/T . Consider a spectral sequence (cf. [8])

E1
p,q = ΛpT ∗ ⊗ CHd−p−qX ⊗Mj+q−d(F )⇒ Ad−p−q(G,Mj).

It suffices to show that E2
k,d−k−1 is trivial for all k ̸= 1 and equals D(G) ⊗

Mj−2(F ) if k = 1. This statement is proved for k = 0, 1 in [8] (with D(G)
replaced by S2(T ∗)W ), so we can assume that k ≥ 2.

The group E2
k,d−k−1 is the homology of the complex

E1
k+1,d−k−1 −→ E1

k,d−k−1 −→ E1
k−1,d−k−1.

Consider Koszul complex

Ci = ΛiT ∗ ⊗ Sk+1−iT ∗.

The first Chern class defines an isomorphism T ∗ ∼→ CH1(X) and therefore a
homomorphism Sl(T ∗) → CH l(X) for any l. Thus, we have a commutative
diagram

Ck+1 ⊗ P −−−→ Ck ⊗ P −−−→ Ck−1 ⊗ P
d−−−→ Ck−2 ⊗ Pyαk+1

yαk

yαk−1

E1
k+1,d−k−1 −−−→ E1

k,d−k−1 −−−→ E1
k−1,d−k−1,

where P = Mj−k−1(F ) with αk and αk+1 being isomorphisms. Since the top
row in the diagram is exact, in order to prove that the bottom row is also exact,
it suffices to show that the restriction of d on the kernel of αk−1 is injective.

Denote H the kernel of the natural (split) surjection S2T ∗ → CH2(X).
Clearly, kerαk−1 = Λk−1T ∗ ⊗ H ⊗ P . Hence it amounts to show that the
composite

(6) Λk−1T ∗ ⊗H ↪→ Λk−1T ∗ ⊗ S2T ∗ d′−→ Λk−2T ∗ ⊗ S3T ∗

is a split injection. The map d′ factors as the following composite

Λk−1T ∗ ⊗ S2T ∗ f−→ Λk−2T ∗ ⊗ T ∗ ⊗ S2T ∗ g−→ Λk−2T ∗ ⊗ S3T ∗,

where f is the identity on S2T ∗ and g is the identity on Λk−2T ∗. Hence the
composite (6) factors as follows:

Λk−1T ∗⊗H −→ Λk−2T ∗⊗T ∗⊗H ↪→ Λk−2T ∗⊗T ∗⊗S2T ∗ g−→ Λk−2T ∗⊗S3T ∗.

The first homomorphism is a split injection, hence it suffices to show that the
restriction of g on Λk−2T ∗⊗T ∗⊗H is also a split injection. But g is the identity
on Λk−2T ∗, hence we need to show that the restriction h of T ∗⊗S2T ∗ → S3T ∗

on T ∗ ⊗H is a split injection.
By [8, 4.8], the group H coincides with (S2T ∗)W . Clearly, H = H1⊕· · ·⊕Hk

where Hi = (S2T ∗
i )

Wi for the Weyl group Wi of Gi. The problem reduces to
showing that the restriction of T ∗

i ⊗S2T ∗
i → S3T ∗

i on T ∗
i ⊗Hi is a split injection,

so we can assume that G is a simple group. In this case H is a cyclic group,
generated by an integral quadratic form q ∈ S2T ∗. Then h is the multiplication
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by q and it is an injection since the symmetric algebra S∗T ∗ is a domain and h
splits since q is not zero modulo any prime number and therefore the cokernel
of the restriction of h has no torsion. �

Now assume that G is a simply connected (not necessarily split) group over
F . By [8, Cor. B.3],

A1(G,K2) ≃ H0
(
F,A1(Gsep, K2)

)
.

Proposition 4.1 then gives

Corollary 4.2. A1(G,K2) ≃ H0
(
F,D(Gsep)

)
�.

By [12],K0(G) = Z, hence the first termK0(G)(1) of the topological filtration
is trivial. The natural homomorphisms CHi(G) → K0(G)(i/i+1) are split by
the Chern classes up to multiplication by (i−1)!. Hence, (i−1)! ·CHi(G) = 0.
In particular, Pic(G) = CH1(G) = 0 = CH2(G) and 2 · CH3(G) = 0.

The only possibly nontrivial differential in the Brown-Gersten-Quillen spec-
tral sequence (cf. [21, Prop. 5.8])

Ep,q
2 = Ap(G,K−q)⇒ K−p−q(G)

arriving to CH3(G) is a surjective homomorphism

A1(G,K2) −→ CH3(G),

hence CH3(G) is a cyclic group of at most two elements, if G is absolutely
simple, since in this case D(Gsep) = Z and A1(G,K2) = Z.

Proposition 4.3. Let A be a central simple algebra over F , G = SL1(A).
Then

CH3(G) =

{
0 if ind(A) is odd,

Z/2Z if ind(A) is even.

Proof. Assume first that index of A is odd. Choose a splitting field extension
L/F of A of odd degree. In the split case the group CH3(GL) is trivial by
[27, Th. 2.7]. Since CH3(G) is a 2-torsion group, the natural homomorphism
CH3(G)→ CH3(GL) is injective, hence CH3(G) = 0.

Now let ind(A) be even number. Assume first that A is a quaternion (and
hence division) algebra. The variety of G is an affine quadric. Let X be a
projective quadric containing G as an open subset, Z = X \ G. We have an
exact sequence

CH2(Z) −→ CH3(X) −→ CH3(G) −→ 0.

Since X has a rational point, CH3(X) = Z. By assumption, the quadric Z
has no rational point, hence CH2(Z) = 2Z (cf. [10] and [28]) and therefore
CH3(G) = Z/2Z.

Assume now that ind(A) = 2, i.e. A = Mn(Q), where Q is quaternion
division algebra. Consider H = SL1(Q) as a subgroup in G = SLn(Q)
and the variety X = G/H = GLn(Q)/GL1(Q). By Hilbert Theorem 90,
X(L) = GLn(QL)/GL1(QL) for any field extension L/F , hence the natural
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map G(L) → X(L) is surjective and therefore the fiber of π : G → X over
any geometric point is isomorphic to SL1(Q). In particular, the generic fiber
Y of π is isomorphic to HE, where E = F (X). Since X is a smooth variety
having a rational point, we have ind(QE) = ind(Q) = 2. The surjectivity of
the natural homomorphism

CH3(G) −→ CH3(Y ) ≃ CH3(HE) = Z/2Z

shows that CH3(G) ̸= 0, hence CH3(G) = Z/2Z.
Consider the general case. Find a field extension L/F such that ind(AL) = 2.

For example, L can be taken as the function field of the generalized Severi-
Brauer variety SB(2, A) (cf. [4]). In the commutative diagram

H1(G,K2) −−−→ CH3(G)yi

yj

H1(GL, K2) −−−→ CH3(GL)

the horizontal homomorphisms are surjective and i is an isomorphism, hence j
is surjective. By the case considered above, CH3(GL) = Z/2Z, hence CH3(G)
is not trivial, and therefore CH3(G) = Z/2Z. �

Remark 4.4. The proof shows that if L/F is a field extension such that
the algebra AL is of even index, then the natural homomorphism CH3(G) →
CH3(GL) is an isomorphism of groups of order 2.

Lemma 4.5. Let n be prime to charF . For any i ≥ 0 there exists an exact
sequence

Ai(G,Ki+1)
n−→ Ai(G,Ki+1) −→ Ai

(
G,Hi+1(µ⊗i+1

n )
)
−→ n CH

i+1(G) −→ 0.

In particular,

Ai
(
G,Hi+1(µ⊗i+1

n )
)
= Ai(G,Ki+1)/nA

i(G,Ki+1)

for i = 0 and 1.

Proof. Follows by diagram chase in⨿
Xi−1 K2F (x) −−−→

⨿
Xi K1F (x) −−−→

⨿
Xi+1 K0F (x)yn

yn

yn⨿
Xi−1 K2F (x) −−−→

⨿
Xi K1F (x) −−−→

⨿
Xi+1 K0F (x)yh2

yh1

yh0⨿
Xi−1 H2F (x) −−−→

⨿
Xi H1F (x) −−−→

⨿
Xi+1 H0F (x)

where the cohomology groups are taken with coefficients µ⊗2
n , µn and Z/nZ

respectively, and surjectivity of h2 (cf. [17]). �
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4.2. Étale cohomology. Let G be a simply connected group defined over a
field F and let N be a Galois module of bounded exponent. We have the
following computation of étale cohomology groups over Fsep.

Lemma 4.6. There are following isomorphisms of Galois modules:

Hm
et (Gsep, N) ≃


N if m = 0,

0 if m = 1, 2, 4,

D(Gsep)⊗N [−2] if m = 3.

Proof. The case m = 0 is trivial. Since G∗
sep = 0 and Pic(Gsep) = 0, it

follows from (4), that H1
et(Gsep, µn) = 0 for any n prime to charF and hence

H1
et(Gsep, N) = 0 for any N of bounded exponent.
The Kummer sequence induces an exact sequence

0 −→ Pic(Gsep)/n −→ H2
et(Gsep, µn)→ n Br(Gsep).

Since n Br(Gsep) = 0 by [9, Th. 4.1], H2
et(Gsep, µn) = 0 for any n prime to

charF and hence H2
et(Gsep, N) = 0 for any N of bounded exponent.

The Bloch-Ogus spectral sequence (2) for N gives an exact sequence

0 −→ A1
(
Gsep,H2(N)

)
−→ H3

et(Gsep, N) −→ A0
(
Gsep,H3(N)

)
.

By Proposition 4.1, the last group in this sequence is trivial and the first is
isomorphic to D(Gsep)⊗N [−2].

In order to show that H4
et(Gsep, N) is trivial, it suffices to prove that the

groups A2
(
Gsep,H2(N)

)
, A1

(
Gsep,H3(N)

)
and A0

(
Gsep,H4(N)

)
staying on

the corresponding diagonal in the Bloch-Ogus spectral sequence (2), are trivial.
The first group is isomorphic to CH2(Gsep) ⊗ N [−2] and hence trivial. The
last two groups are trivial by Proposition 4.1. �

Since the natural homomorphisms Hp(F,N) → Hp
et(G,N) are injective, all

the differentials in the Hochschild-Serre spectral sequence

Ep,q
2 = Hp

(
F,Hq

et(Gsep, N)
)
⇒ Hp+q

et (G,N),

arriving to Ep,0
∗ , are trivial. By Lemma 4.6, Ep,q

2 = 0 if q = 1 or 2 and
Ep,3

2 = Hp
(
F,D(Gsep)⊗N [−2]

)
.

Thus, we have proved

Proposition 4.7. Let G be a simply connected group defined over a field F
and let N be a Galois module of bounded exponent. Then

H̃m
et (G,N) =


0 if m = 0, 1, 2,

H0
(
F,D(Gsep)⊗N [−2]

)
if m = 3

H1
(
F,D(Gsep)⊗N [−2]

)
if m = 4. �

Let n ∈ N be prime to charF . The Bloch-Ogus spectral sequence for the
Galois module µ⊗2

n gives the following exact sequence

0 −→ A1
(
G,H2(µ⊗2

n )
) e2−→ H̃3

et

(
G,µ⊗2

n ) −→ Ã0
(
G,H3(µ⊗2

n )
) d2−→ A2

(
G,H2(µ⊗2

n )
)
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Lemma 4.8. Let G be a simply connected group. Then e2 is an isomorphism

and Ã0
(
G,H3(µ⊗2

n )
)
= 0.

Proof. In the commutative diagram

A1(G,K2) −−−→ A1
(
G,H2(µ⊗2

n )
) e2−−−→ H̃3

et

(
G,µ⊗2

n )y≀
y≀

H0
(
F,D(Gsep)

)
−→ H0

(
F,D(Gsep)/n

)
the vertical isomorphisms are given by Corollary 4.2 and by Proposition 4.7.
The group H0

(
F,D(Gsep)/n

)
is isomorphic to H0

(
F,D(Gsep)

)
/n since the

Galois module D(Gsep) is permutation. Hence the bottom homomorphism

and therefore e2 are surjective. Thus, d2 is injective and Ã0
(
G,H3(µ⊗2

n )
)
= 0

since A2
(
G,H2(µ⊗2

n )
)
= CH2(G)/n = 0. �

An application of Lemma 4.8 is the following

Proposition 4.9. For a simply connected group G, Invd(G,H∗[N ]) = 0 for
any Galois module N of bounded exponent, d = 0, 1, and for N = µ⊗−1

n (n
prime to charF ), d ≤ 3.

Proof. The case d = 0 has been considered in Corollary 3.2. The cases d = 1
and d = 2 follow from Corollaries 3.5 and 3.14. Finally, if d = 3, by Lemmas
1.9, 4.8 and Theorem 2.3, Inv3(G,H∗[µ⊗−1

n ]) = 0. �

5. Cohomological invariants of SL1(A)

It is proved in section 4 that simply connected groups have no nonzero
invariants in H∗[µ⊗−1

n ] of dimension at most 3 and split simply connected
groups have no nontrivial invariants at all. We show that the group SL1(A)
still has no invariant if index of A is 2. For a biquaternion algebra A of index
4 we prove that there is the only nontrivial invariant in H4[Z/2Z], namely the
Rost’s invariant.

5.1. Invariants of SL1(A) with ind(A) = 2.

Lemma 5.1. Let G = SL1(Q), where Q is a quaternion algebra over F . Then
A0(G,M) = M(F ) for any cycle module M over F .

Proof. Let X and Z be projective quadrics as in the proof of Proposition 4.3
and let C be projective conic curve, corresponding to Q. Then Z ≃ C × C
and X (being a projective quadric with a rational point) contains a hyperplane
section Y , such that X \ Y is isomorphic to an affine space A3

F . We have the
localization exact sequence (cf. [24, Sec. 5])

0 −→ A0(X,Md) −→ A0(G,Md) −→ A0(Z,Md−1) −→ A1(X,Md).

Another localization sequence for the pair (X,Y ) immediately gives

A0(X,Md) = A0(A3
F ,Md) = Md(F ) and A1(X,Md) ≃ A1(Y,Md−1).
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A spectral sequence ([24, Cor. 8.2]) associated to a projection Z → C identifies
A0(Z,Md−1) with A0(C,Md−1).

On the other hand, Y − pt is a vector bundle over C. Hence, by [24, Prop.
8.6],

A1(X,Md) ≃ A0(Y,Md−1) = A0(Y − pt,Md−1) ≃ A0(C,Md−1).

Therefore, it suffices to show commutativity of the diagram

A0(Z,Md−1) −−−→ A1(X,Md)y≀
y≀

A0(C,Md−1) A0(C,Md−1).

Since all homomorphisms in the diagram are natural (given by four basic maps
in [24]), it is sufficient to prove the statement in the case d = 1 and M is given
by Milnor K-groups. In other words, we have to check that the classes of
Z and Y coincide in A1(X,K1) = CH1(X). But these subvarieties in X are
hyperplane sections, hence are rationally equivalent. �

Theorem 5.2. Let G = SL1(A), where A is a central simple algebra of index
at most 2. Then Invd(G,M) = 0 for any d and a cycle module M .

Proof. The case of a split algebra A was considered in Corollary 2.6. Hence
we may assume that G = SLn(Q), where Q is a quaternion division algebra.
The case n = 1 follows from Theorem 2.3 and Lemma 5.1. In the general
case the group of F -points of G is generated by SL1(Q), embedded to G by
a 7→ diag(a, 1, . . . , 1) and unipotent subgroups of elementary matrices. By
Proposition 2.4, the restriction of any invariant of G on all there subgroups is
trivial, hence so is the invariant. �

5.2. Invariants of dimension 4. Let A be a biquaternion algebra (tensor
product of two quaternion algebras) over a field F of characteristic different
from 2. There is a 6-dimensional quadratic form q associated to A (unique
up to a scalar multiple), called an Albert form (cf. [11, 16.A]). This form de-
fines a 4-dimensional projective quadric hypersurface, which we call the Albert
quadric of A. The Albert quadric is the only 4-dimensional projective homo-
geneous variety of the spinor group Spin(q) (cf. [19]). This simply connected
absolutely simple group of type D3 is naturally isomorphic to SL1(A), the one
of type A3 (cf. [11, 26.B]). The only 4-dimensional projective homogeneous
variety of SL1(A) is the generalized Severi-Brauer variety SB(2, A) of right
8-dimensional ideals in A, so that the Albert quadric of A is isomorphic to
SB(2, A).

M. Rost (cf. [13]) has constructed an invariant of G = SL1(A) in H4[Z/2Z].
He also computed the kernel and the image of the invariant. More precisely,
the following holds (with SK1(A) = SL1(A)/[A

×, A×]).
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Theorem 5.3. (Rost) Let X be an Albert quadric of A. Then there is an
exact sequence

0 −→ SK1(A) −→ H4(F,Z/2Z) −→ H4
(
F (X),Z/2Z

)
. �

An elementary construction of Rost’s invariant is given in [11, §17].
If A is not a division algebra, then Rost’s invariant is trivial by Theorem

5.2. If A is division, then it is shown in [14] that the group SK1(AF (G)) is not
trivial, hence the Rost’s invariant is not trivial.

Our aim is to prove that Rost’s invariant is the only nontrivial degree 4
invariant of G. More precisely, we prove

Theorem 5.4. Let G = SL1(A), where A is a biquaternion division algebra.
Then Inv4(G,H∗[Z/2Z]) = Z/2Z is generated by the Rost’s invariant.

Since A2(G,H2) = CH2(G)/2 = 0 (cohomology groups are taken with coef-
ficients Z/2Z), the Bloch-Ogus spectral sequence for Z/2Z gives the following
exact sequence

0 −→ A1(G,H3)
e3−→ H̃4

et(G) −→ Ã0(G,H4)
d3−→ A2(G,H3).

Lemma 5.5. e3 is an isomorphism. In particular, d3 : Ã
0(G,H4)→ A2(G,H3)

is injective.

Proof. In the commutative diagram

A1(G,H2)⊗ F× e2⊗id−−−→ H̃3
et(G)⊗ F× ∼−−−→ H0

(
F,D(Gsep)/2

)
⊗ F×ym

y y
A1(G,H3)

e3−−−→ H̃4
et(G)

∼−−−→ H1(F,D(Gsep)/2)

the vertical homomorphisms are the natural product maps and the right hori-
zontal isomorphisms are given by Proposition 4.7. Since G is absolutely simple,
D(Gsep) = Z and hence the right vertical homomorphism is an isomorphism.
By Lemma 4.8, e2 is an isomorphism, hence e3 is surjective and therefore is an
isomorphism. Note that m is also an isomorphism. �
Corollary 5.6. The natural homomorphism A1(G,K3) → A1(G,H3) is sur-
jective.

Proof. In the commutative diagram

A1(G,K2)⊗ F× −−−→ A1(G,H2)⊗ F×y ym

A1(G,K3) −−−→ A1(G,H3)

the upper horizontal homomorphism is surjective by Lemma 4.5 and m is an
isomorphism (cf. the proof of Lemma 5.5), hence the result. �
Lemma 5.7. A2(G,K3) is an infinite cyclic group.
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Proof. By [27, Th. 2.7], A2(G,K3) = Z in the split case. Hence, it suffices
to show that in the general case A2(G,K3) has no torsion. Since there is a
splitting field of A of degree 4, it is sufficient to prove that 2A

2(G,K3) = 0.
Consider the following diagram with exact columns (cf. [17])

µ2 ⊗
⨿

G(1) K1F (g)
d−−−→ µ2 ⊗

⨿
G(2) K0F (g)y y⨿

G(1) K2F (g) −−−→
⨿

G(2) K1F (g) −−−→
⨿

G(3) K0F (g)y2

y2

y2

K3F (G) −−−→
⨿

G(1) K2F (g) −−−→
⨿

G(2) K1F (g) −−−→
⨿

G(3) K0F (g)yh3

yh2

yh1

H3F (G) −−−→
⨿

G(1) H2F (g) −−−→
⨿

G(2) H1F (g).

The homomophism d is surjective since CH2(G) = 0. The surjectivity of h3 is
proved in [18] and [23]. Now the result follows from Corollary 5.6 by diagram
chase . �

Proof of Theorem 5.4. By Lemma 5.5,

d3 : Ã
0(G,H4) −→ A2(G,H3)

is injective. Denote j the injective composite

Inv4(G,H∗[Z/2Z]) ↪→ Ã0(G,H4)
d3−→ A2(G,H3).

Let L/F be a field extension such that ind(AL) = 2. Consider the following
commutative diagram

Inv4(G,H∗[Z/2Z]) j−−−→ A2(G,H3)
k−−−→ 2 CH

3(G)y yi

yl

Inv4(GL, H
∗[Z/2Z]) jL−−−→ A2(GL,H3)

kL−−−→ 2CH
3(GL).

where k is defined in Lemma 4.5. The group Inv4(GL, H
∗[Z/2Z]) is trivial by

Theorem 5.2, hence i ◦ j = 0. Lemma 4.5 shows that k is surjective and l is
an isomorphism of groups of order 2 by Remark 4.4. Therefore, i ̸= 0 and j is
not surjective.

By Lemma 4.5, the sequence

0 −→ A2(G,K3)/2A
2(G,K3) −→ A2(G,H3)

k−→ 2CH
3(G) −→ 0

is exact. Proposition 4.3 and Lemma 5.7 show that A2(G,H3) is a group
of order 4. Since j is not surjective, the group Inv4(G,H∗[Z/2Z]) is of at
most 2 elements. On the other hand, the Rost invariant is not trivial, hence
Inv4(G,H∗[Z/2Z]) = Z/2Z. �
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Remark 5.8. It follows from Lemma 5.5 that the homomorphism H̃4
et(G)→

Ã0(G,H4) is trivial. This implies that the Rost’s invariant is not “global”, i.e.
cannot be extended to a natural transformation of functors G and H4(∗,Z/2Z)
from the category F -alg to Groups. That is why we define an invariant as a
natural transformation of functors defined on a smaller category F -fields.

6. Degree four algebras

The aim of this section is to generalize Theorem 5.3 to the case of arbitrary
central simple algebra of dimension 16. We assume that charF ̸= 2 for the
base field F .

Let A and B be two central simple algebras over F . If they are similar
(determine the same element in the Brauer group Br(F )), then the groups
K1(A) and K1(B) are canonically isomorphic.

Any anti-automorphism φ of A induces the identity automorphism onK1(A)
since for any a ∈ A× the elements a and φ(a) have the same minimal polyno-
mials and therefore are conjugate. Hence, if A and B are anti-similar (i.e. A
is similar to Bop), then K1(A) and K1(B) are also canonically isomorphic.

Let A be a central simple algebra of degree 4. The algebra A⊗F A is then
similar to a quaternion algebra Q. Denote C the corresponding conic curve.
Since A is of exponent dividing 4, the algebra A ⊗F Q is similar to Aop and
hence is anti-similar to A. Denote i the canonical isomorphism

K1(A⊗F Q)
∼→ K1(A).

For a variety X over F we write K∗(X,A) for the K-groups of the category
of locally free right OX ⊗F A-modules of finite rank.

By a computation of K-theory of Severi-Brauer varieties (cf. [21], [20]),

(7) K1(C,A)
∼→ K1(A)⊕K1(A⊗Q)

∼→ K1(A)⊕K1(A).

Consider the case when Q splits, i.e. C is a projective line. The inverse
isomorphism to (7) is given by the inverse image with respect to the structure
morphism p : C → Spec(F ) on the first component and on the second compo-
nent by u 7→ p∗

(
u⊗O(−1)

)
. Since the class of a rational point in K0(C) equals

[O]− [O(−1)], for any rational point x ∈ C the direct image homomorphism

K1(A) = K1(SpecF (x), A)→ K1(C,A)
∼→ K1(A)⊕K1(A)

takes a to ([a],−[a]).
In the general case (when Q is not necessarily split) consider any closed

point x ∈ C. The direct image homomorphism

K1(AF (x))
ix∗−→ K1(C,A)

∼→ K1(A)⊕K1(A)

factors as follows:

K1(AF (x)) −→ K1(CF (x), AF (x))
NF (x)/F−→ K1(C,A)

∼→ K1(A)⊕K1(A).

Hence the computation above proves the following
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Lemma 6.1. For any closed point x ∈ C, the sum of K1(A)-coordinates in
the image of ix∗ is zero. �

Consider the inverse image homomorphism with respect to the generic point
q : SpecF (C)→ C of C:

K1(A)⊕K1(A⊗Q) = K1(C,A)
q∗−→ K1

(
AF (C)

)
.

The restriction of q∗ on the first component K1(A) is the field extension ho-
momorphism. The restriction of q∗ on the second component K1(A ⊗ Q) is
given by the following composite of natural homomorphisms (we use the fact
that Q splits over F (C)):

K1(A⊗Q) −→ K1(AF (C) ⊗QF (C))
∼→ K1(AF (C)).

Hence the composite of the second restriction with the natural identification
K1(A⊗Q) = K1(A) is also the field extension homomorphism. Thus, we have
proved

Lemma 6.2. The image of q∗ coincides with the image of the natural field
extension homomorphism K1(A) −→ K1(AF (C)). �

Now consider the localization sequence (cf. [21]):⨿
x∈C

K1(AF (x))
ix∗−→ K1(C,A)

q∗−→ K1

(
AF (C)

)
−→

⨿
x∈C

K0(AF (x)).

Proposition 6.3. The natural homomorphism SK1(A) → SK1(AF (C)) is an
isomorphism.

Proof. By 6.1 and 6.2, the rows of the following diagram with reduced norm
homomorphisms

0 −−−→ K1(A) −−−→ K1

(
AF (C)

)
−−−→

⨿
x∈C K0(AF (x))yNrd

yNrd

yNrd

0 −−−→ K1(F ) −−−→ K1

(
F (C)

)
−−−→

⨿
x∈C K0 (F (x)

)
.

are exact. The result follows from the injectivity of the right vertical homo-
morphism and the snake lemma. �

The Bloch-Ogus spectral sequence for C becomes a long exact sequence of
cohomology groups with coefficients Z/2Z:

(8) · · · →
⨿
x∈C

Hn−2F (x) −→ Hn
etC −→ HnF (C)

d−→
⨿
x∈C

Hn−1F (x)→ . . .

Since Q splits over F (C), the class of AF (C) belongs to H2F (C). It follows
from d(AF (C)) = 0 that there is θ ∈ H2

etC such that θF (C) = AF (C).
Assume that Q is a division algebra. Then θ is not in the image of H2F .

By [26], there is an exact sequence

(9) . . . −→ HnF −→ Hn
etC −→ Hn−2F

∂−→ Hn+1F −→ . . . ,
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where ∂ is the multiplication by (−1)∪ [Q] ∈ H3F . In our case the class of Q
is divisible by 2 in the Brauer group, hence (−1) ∪ [Q] = 0. Thus, for any n
there is an exact sequence

0 −→ HnF −→ Hn
etC −→ Hn−2F −→ 0.

Since the class θ does not come from H2F , its image in H0F is not trivial.
Hence any element in Hn

etC can be written in the form vC+uC∪θ for v ∈ HnF
and u ∈ Hn−2F .

It follows from exactness of (8) that the natural map

Hn
etC −→ A0(C,Hn)

is surjective. We have proved

Lemma 6.4. Any element in A0(C,Hn) is of the form vF (C) + uF (C) ∪ AF (C)

for v ∈ HnF and u ∈ Hn−2F . �
Let X be the generalized Severi-Brauer variety SB(2, A). For any point

x ∈ X, the index of A over F (x) is at most 2. Hence the algebra Q splits over
F (x) and therefore CF (x) is a projective line.

By [2, Ch.XI, Th.9], there is a quadratic subfield L ⊂ A. Since ind(AL) = 2,
there is an L-rational point in XL. The image of this point to X gives a closed
point of degree 2.

Lemma 6.5.

Ker
(
A0(C,H4)→ A0(CF (X),H4)

)
⊂ Im

(
H4F → H4F (C)

)
.

Proof. Let w be in the kernel. By Lemma 6.4, w = vF (C) + uF (C) ∪ AF (C) for
some v ∈ H4F and u ∈ H2F . Choose a closed point x ∈ X of degree 2. The
element t = vF (x)+uF (x) ∪AF (x) ∈ H4F (x) is split by the extension F (x)(C ×
X). Since C ×X has a point over F (x), the map H4F (x)→ H4F (x)(C ×X)
is injective and hence t = 0 ∈ H4F (x), i.e. uF (x) ∪ AF (x) = vF (x).

Choose an element u′ ∈ H2(F, µ⊗2
4 ) in the inverse image of u under the

surjection H2(F, µ⊗2
4 ) → H2F (cf. [17]) and consider the cup-product s =

u′ ∪ [A] with respect to the pairing

H2(F, µ⊗2
4 )⊗H2(F, µ4) −→ H4(F, µ⊗3

4 ).

We know that sF (x) = vF (x) and v is an element of order 2. Hence

0 = 2v = NF (x)/F (vF (x)) = NF (x)/F (sF (x)) = 2s = u′ ∪ [Q] ∈ H4(F, µ⊗3
4 ).

Since the natural homomorphism H4(F ) → H4(F, µ⊗3
4 ) is injective (cf. [18],

[23]), we have u ∪ [Q] = 0 ∈ H4F . By [15, Prop.3.15], u belongs to the image
of the norm map

⨿
x∈C H2F (x) → H2F . The exactness of the sequences

(8) and (9) shows then that uF (C) ∪ AF (C) ∈ Im
(
H4F → H4F (C)

)
, hence

w ∈ Im
(
H4F → H4F (C)

)
. �

Theorem 6.6. Let A be a central simple algebra of dimension 16 over F ,
X = SB(2, A). Then there exists an exact sequence

0 −→ SK1(A) −→ H4F/(2[A] ∪H2F ) −→ H4F (X).
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Proof. By Theorem 5.3 such a sequence exists if 2[A] = 0 ∈ Br(F ). In the
general case, A is a division algebra and 2[AF (C)] = 0 ∈ Br

(
F (C)

)
, hence

there is a sequence

0 −→ SK1(AF (C)) −→ H4F (C) −→ H4F (C ×X).

Proposition 6.3 shows that the first term of this sequence if isomorphic to
SK1(A). Hence it suffices to prove the exactness of the sequence

H2F
∪2[A]−→ Ker

(
H4F → H4F (X)

)
−→ Ker

(
H4F (C) −→ H4F (C ×X)

)
−→ 0.

By [15, Prop.3.15], the kernel of H4F → H4F (C) equals 2[A] ∪H2F , whence
the exactness in the second term. Finally take any w ∈ Ker

(
H4F (C) −→

H4F (C×X)
)
. For any closed point x ∈ C consider the following commutative

diagram
H4F (C) −−−→ H4F (C ×X)y∂x

y∂y

H3F (x) −−−→ H3F (x)(X)

where {y} = x ×X. Since Q is split over F (x), X is an Albert quadric over
F (x). Anisotropic Albert form cannot be a subform of a 3-fold Pfister form,
hence by a theorem of Arason [3], the bottom homomorphism is injective;
therefore ∂x(w) = 0 for any closed x ∈ C, i.e. w ∈ A0(C,H4). By Lemma 6.5,
w = vF (C) for some v ∈ H4F . It remains to notice that, since C has a point
over F (X), the natural homomorphism H4F (X) → H4F (C ×X) is injective
and therefore v ∈ ker

(
H4F → H4F (X)

)
. �
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