ESSENTIAL \(p \)-DIMENSION OF SPLIT SIMPLE GROUPS OF TYPE \(A_n \)

VLADIMIR CHERNOUSOV AND ALEXANDER MERKURJEV

1. Introduction

Let \(F \) be a field and let \(\mathcal{F} : \text{Fields}/F \to \text{Sets} \) be a functor from the category \(\text{Fields}/F \) of field extensions over \(F \) to the category \(\text{Sets} \) of sets. Let \(E \in \text{Fields}/F \) and \(K \subset E \) a subfield over \(F \). We say that \(K \) is a field of definition of \(\alpha \in \mathcal{F}(E) \) if \(\alpha \) belongs to the image of the map \(\mathcal{F}(K) \to \mathcal{F}(E) \).

The essential dimension of \(\alpha \), denoted \(ed^{\mathcal{F}}(\alpha) \), is the least transcendence degree \(tr.\deg_{E}(K) \) over all fields of definition \(K \) of \(\alpha \). The essential dimension of the functor \(\mathcal{F} \) is

\[
\text{ed}(\mathcal{F}) = \sup \{ \text{ed}^{\mathcal{F}}(\alpha) \},
\]

where the supremum is taken over all fields \(E \in \text{Fields}/F \) and all \(\alpha \in \mathcal{F}(E) \) (see [3, Def. 1.2] or [1, Sec.1]). Informally, the essential dimension of \(\mathcal{F} \) is the smallest number of algebraically independent parameters required to define \(\mathcal{F} \) and may be thought of as a measure of complexity of \(\mathcal{F} \).

Let \(p \) be a prime integer. The essential \(p \)-dimension of \(\alpha \), denoted \(ed_{p}^{\mathcal{F}}(\alpha) \), is defined as the minimum of \(\text{ed}^{\mathcal{F}}(\alpha_{E'}) \), where \(E' \) ranges over all finite field extensions of \(E \) of degree prime to \(p \). The essential \(p \)-dimension of \(\mathcal{F} \) is

\[
\text{ed}_{p}(\mathcal{F}) = \sup \{ \text{ed}^{\mathcal{F}}_{p}(\alpha) \},
\]

where the supremum ranges over all fields \(E \in \text{Fields}/F \) and all \(\alpha \in \mathcal{F}(E) \).

By definition, \(\text{ed}(\mathcal{F}) \geq \text{ed}_{p}(\mathcal{F}) \) for all \(p \).

For every integer \(n \geq 1 \), a divisor \(m \) of \(n \) and any field extension \(E/F \), let \(\text{Alg}_{E}(n, m) \) denote the set of isomorphism classes of central simple \(E \)-algebras of degree \(n \) and exponent dividing \(m \). We can identify \(\text{Alg}_{E}(n, m) \) with the subset of the \(m \)-torsion part \(\text{Br}_{m}(E) \) of the Brauer group of \(E \) consisting of all elements \(a \) such that the index \(\text{ind}(a) \) of \(a \) divides \(n \). We view \(\text{Alg}(n, m) \) as a functor \(\text{Fields}/F \to \text{Sets} \). Upper and lower bounds for the essential \(p \)-dimension \(\text{ed}_{p}(\text{Alg}(n, m)) \) for a prime integer \(p \) different from \(\text{char}(F) \) can be found in [2].

Let \(G \) be an algebraic group scheme over \(F \). Write \(\mathcal{F}_{G} \) for the functor taking a field extension \(E/F \) to the set \(H^{1}(E, G) \) of isomorphism classes of principal homogeneous \(G \)-spaces (\(G \)-torsors) over \(E \). The essential (\(p \))-dimension of \(\mathcal{F}_{G} \) is called the essential (\(p \))-dimension of \(G \) and is denoted by \(\text{ed}(G) \) and \(\text{ed}_{p}(G) \).

\text{The work of the first author has been supported in part by Canada Research Chairs Program and NSERC research grant.}

\text{The work of the second author has been supported by the NSF grant DMS #0652316.}
A split simple algebraic group G of type A_{n-1} is isomorphic to SL_n/μ_m for a divisor m of n. In the present paper we compute the essential p-dimension of G in terms of the integer $\text{ed}_p(\text{Alg}(n, m))$.

Theorem 1.1. Let n be a natural number, m a divisor of n and p a prime integer. Let p^r and p^s be the largest powers of p dividing n and m respectively and let $G = \text{SL}_n/\mu_m$ be the algebraic group defined over a field F of the characteristic not p. Then

\[
\text{ed}_p(G) = \begin{cases}
0, & \text{if } s = 0; \\
\text{ed}_p(\text{Alg}(p^r, p^s)), & \text{if } s = r; \\
\text{ed}_p(\text{Alg}(p^r, p^s)) + 1, & \text{if } 0 < s < r.
\end{cases}
\]

Using lower bounds for $\text{ed}_p(\text{Alg}(p^r, p^s))$ obtained in [1] and [2], we get:

Corollary 1.2. If p is a prime integer then

1. $p^{2r-2} + p^{s-r} + 1 \geq \text{ed}_p(\text{SL}_{p^r}/\mu_{p^s}) \geq (r-1)p^r + p^{s-r} + 1$ if $0 < s < r$ and p is odd in the case $s = 1$.
2. $2^{2r-4} + 2^{r-1} + 1 \geq \text{ed}_2(\text{SL}_{2^r}/\mu_2) \geq (r-1)2^{r-1} + 1$ if $r \geq 3$.
3. $\text{ed}_p(\text{SL}_{p^2}/\mu_p) = p^2 + p + 1$ if p is odd,
4. $\text{ed}_2(\text{SL}_4/\mu_2) = 5$,
5. $\text{ed}_2(\text{SL}_8/\mu_2) = 9$,
6. $\text{ed}_2(\text{SL}_8/\mu_4) = 19$,
7. $\text{ed}_2(\text{SL}_{16}/\mu_2) = 25$.

2. Unramified torsors

Let R be a commutative ring and let G be a group scheme defined over R. There is a bijection between the set of isomorphism classes of G-torsors over R and the pointed set $H^1(R, G)$ of the first cohomology of G for the flat topology (see [1, Exp. XXIV]). If G is smooth, one can use the étale topology instead of flat topology.

Let K be a discrete valued field with valuation ring $R \subset K$ and residue field \overline{K}. We write $H^1(K, G)_{nr}$ for the image of the map

\[H^1(R, G) \to H^1(K, G). \]

Let $\alpha \in H^1(K, G)$. If $\alpha \in H^1(K, G)_{nr}$ we say that α is unramified. Otherwise α is ramified.

If K is complete and G is smooth, the canonical map $H^1(R, G) \to H^1(\overline{K}, G)$ is a bijection [1, Exp. XXIV, Prop. 8.1], hence $H^1(K, G)_{nr} \simeq H^1(\overline{K}, G)$.

If G is commutative, then $H^1(K, G)_{nr}$ is a subgroup of $H^1(K, G)$. We write $H^1(K, G)_{ram}$ for the factor group.

Example 2.1. We have $H^1(K, \mu_k) = K^\times/K^{\times k}$, $H^1(K, \mu_k)_{nr} = R^\times/R^{\times k}$ and $H^1(K, \mu_k)_{ram} = \mathbb{Z}/k\mathbb{Z}$.

Suppose that K is complete. Let T' be a torus over R. We write T for $T' \otimes_R K$ and \overline{T} for $T' \otimes_R \overline{K}$. Clearly, T and \overline{T} are tori over K and \overline{K} respectively. The character group \overline{T}' of \overline{T} is a module over the absolute Galois group $\Gamma_{\overline{K}}$.
Let Γ_K acts on T^* via the canonical surjective homomorphism $\Gamma_K \to \Gamma_T$.

We have the split exact sequence of Galois Γ_T-modules

$$1 \to R_{nr}^\times \to K_{nr}^\times \to \mathbb{Z} \to 0,$$

where R_{nr} and K_{nr} are maximal unramified extensions of R and K respectively. Tensoring this sequence with the Γ_T-module of co-characters \mathcal{T}_*, the dual of T^*, and taking cohomology groups yields exact sequences

$$1 \to T(R) \to T(K) \to \mathcal{T}_*(\overline{K}) \to 0,$$

$$0 \to H^1_{\text{et}}(R, T) \to H^1(K, T) \xrightarrow{\alpha} H^1(K, \mathcal{T}_*) \to 0.$$

In particular, the group $H^1(K, T)_{\text{ram}}$ is canonically isomorphic to $H^1(K, \mathcal{T}_*)$.

3. Azumaya algebras and torsors

Let $n = km$ and $G = \text{SL}_n / \mu_m$ over a field F, so we have an exact sequence

$$(1) \quad 1 \to \mu_k \to G \to \text{PGL}_n \to 1.$$

Let R be a commutative local F-algebra. The exact sequence (1) yields an exact sequence of pointed sets

$$H^1(R, G) \to H^1(R, \text{PGL}_n) \xrightarrow{\text{Br}} H^2(R, \mu_k).$$

Moreover, the group $H^1(R, \mu_k) = R^\times / R^{\times k}$ acts on the set $H^1(R, G)$ transitively in the fibers of the map α. For an element $r \in R^\times$ and $\xi \in H^1(R, G)$ we write $r\xi$ for the result of the action of $rR^{\times k}$ on ξ.

Recall that there is a canonical bijection between $H^1(R, \text{PGL}_n)$ and the set of isomorphism classes $\text{Alg}_R(n)$ of Azumaya R-algebras of degree n, so we have the map $H^1(R, G) \to \text{Alg}_R(n)$ [1, Ch. IV].

The group $H^2(R, \mu_k)$ is identified with the subgroup Br$_k(R)$ of the Brauer group Br$(R) = H^2(R, G_m)$ of R and the map ∂ takes an algebra A to the class of $A^\otimes m$ in Br(R). Therefore, the image of an element $\xi \in H^1(R, G)$ in $H^1(R, \text{PGL}_n)$ yields a class A_ξ in $\text{Alg}_R(n, m) \subset \text{Alg}_R(n)$ of algebras of exponent dividing m. Moreover, every class $A \in \text{Alg}_R(n, m)$ is of the form $A = A_\xi$ for some $\xi \in H^1(R, G)$.

Twisting (1) by the class of an algebra $A \in \text{Alg}_R(n)$ yields an exact sequence

$$1 \to \mu_k \to G' \to \text{PGL}_1(A') \to 1.$$

The connecting homomorphism

$$A^\times / R^\times = \text{PGL}_1(A)(R) \to H^1(R, \mu_k) = R^\times / R^{\times k}$$

takes the class aR^\times to Nrd$(a)R^{\times k}$, where Nrd : $A^\times \to R^\times$ is the reduced norm homomorphism. This yields:

Lemma 3.1. Let R be a commutative local F-algebra and $A \in \text{Alg}_R(n, m)$. Then the factor group $R^\times / (R^{\times k} \cdot \text{Nrd}(A))$ acts simply transitively on the fiber of the surjective maps $H^1(R, G) \to \text{Alg}_R(n, m)$ over A.

Let \(K/F \) be a field extension with a discrete valuation \(v \) over \(F \) and a prime element \(\pi \).

Lemma 3.2. Let \(\xi \in H^1(K, G) \) be an unramified element such that \(A_\xi \neq 0 \) in \(\text{Br}(K) \). If \(\pi \xi \) is unramified then \(k \) and \(\text{ind}(A_\xi) \) are relatively prime.

Proof. Let \(R \subset K \) be the valuation ring. By assumption, there are \(\zeta, \zeta' \in H^1(R, G) \) such that \(\xi = \zeta_K \) and \(\pi \xi = \zeta'_K \). We have \((A_\zeta)_K = A_\zeta = A_{\pi \xi} = (A_{\zeta'})_K \). As the map \(\text{Br}(R) \to \text{Br}(K) \) is injective by [3, Ch. IV, Cor. 2.6], we have \(A_\zeta = A_{\zeta'} \). It follows from Lemma 3.1 that \(\zeta' = \lambda \zeta \) for some \(\lambda \in R^\times \). Then \(\pi \xi = \zeta'_K = \lambda \zeta_K = \lambda \xi \), therefore by Lemma 3.2 again, \(\pi \in \lambda(K^\times k \cdot \text{Nrd}(A_\xi)) \). Therefore, \(1 = v(\pi) \in k\mathbb{Z} + \text{ind}(A_\xi)\mathbb{Z} \) as \(v(\text{Nrd}(A_\xi)) \subset \text{ind}(A_\xi)\mathbb{Z} \) by [3, Ch. XII, §2]. \(\square \)

4. TORI

Let \(L/F \) be a separable field extension of degree \(n = p^e \), where \(p \) is a prime integer and \(m = p^f \) a divisor of \(n \). Consider the torus of norm one elements \(R_{L/F}^{(1)}(G_{m, L}) \) for the extension \(L/F \), the factor torus \(T = R_{L/F}^{(1)}(G_{m, L})/\mu_m \) and \(S = R_{L/F}^{(1)}(G_{m, L})/G_m \). Then \(T \) and \(S \) can be viewed as maximal tori of \(G \) and \(\text{PGL}_n \) respectively and we have an exact sequence

\[
1 \to \mu_k \to T \to S \to 1.
\]

Let \(R \) be a commutative local \(F \)-algebra. The group \(H^1(R, S) \) is identified with the relative Brauer group \(\text{Br}(LR/R) := \text{Ker}(\text{Br}(R) \to \text{Br}(LR)) \), where we write \(LR \) for \(L \otimes_F R \). The composition \(H^1(R, S) \to H^1(R, \text{PGL}_n) \to \text{Br}(R) \) is identified with the inclusion of \(\text{Br}(LR/R) \) into \(\text{Br}(R) \). Comparing the exact sequences (1) and (2) we have:

Lemma 4.1. The image of \(H^1(R, T) \to H^1(R, G) \) coincides with the set of all \(\xi \) such that \(A_\xi \in \text{Br}_m(LR/R) \).

Let \(\Gamma \) be the Galois group of a normal closure \(L'/F \) of \(L/F \), so \(\Gamma \) is the decomposition group of the tori \(T \) and \(S \). Let \(X \) be the \(\Gamma \)-set of all \(F \)-homomorphisms \(L \to L' \). We have \(|X| = n \) and \(R_{L/K}(G_{m, L})^* = \mathbb{Z}[X] \).

Choose a point \(x_0 \in X \) and let \(\Gamma_0 \) be the stabilizer of \(x_0 \) in \(\Gamma \). As \(\Gamma \) acts transitively on \(X \), we have, \(X = \Gamma/\Gamma_0 \) and \(\Gamma: \Gamma_0 = n \).

Let \(I \) be the augmentation ideal in \(\mathbb{Z}[\Gamma] \). Write \(I_X \) for the kernel of the augmentation map \(\varepsilon : \mathbb{Z}[X] \to \mathbb{Z} \). We have \(I_X = I \cdot \mathbb{Z}[X] \).

Write \(N_X = \sum_{x \in X} x \in \mathbb{Z}[X] \), so \(\varepsilon(N_X) = n \).

Let \(V = R_{L/K}(G_{m, L})/\mu_m \). The character group \(J_X \) of \(V \) is identified with the subgroup of elements \(w \in \mathbb{Z}[X] \) with \(\varepsilon(w) \in m\mathbb{Z} \). Note that \(I_X \subset J_X \).

Lemma 4.2. Suppose that \(r > s \). Then \(N_X \in pJ_X + I \cdot J_X \).

Proof. The map

\[
\Gamma \to I/I^2, \quad \gamma \mapsto (\gamma - 1) + I^2
\]
is a group homomorphism. It follows that if γ belongs to the commutator subgroup $[\Gamma, \Gamma]$ of Γ, then

\[(3) \quad \gamma - 1 \in I^2.\]

Set $\Delta := [\Gamma, \Gamma]/\Gamma_0$. Suppose first that Δ contains Γ_0 properly. Consider the sum u in $\mathbb{Z}[\Gamma]$ of all representatives of the set of left cosets Δ/Γ_0 chosen in $[\Gamma, \Gamma]$. It follows from (3) that u is congruent to $[\Delta : \Gamma_0]$ modulo I^2.

The element N_X is divisible by u, i.e., there is $M \in \mathbb{Z}[X]$ such that $N_X = uM$. It follows that N_X is congruent to $[\Delta : \Gamma_0]M$ modulo $I \cdot I_X$. As $[\Delta : \Gamma_0]$ is divisible by p, we have $[\Delta : \Gamma_0]M = pR$ for some $R \in \mathbb{Z}[X]$ with $\varepsilon(R) = n/p$. Since $r > s$, n/p is divisible by m, hence we have $R \in J_X$. Overall $N_X \in pJ_X + I \cdot J_X \subset pJ_X + I \cdot J_X$.

Now suppose that $\Delta = \Gamma_0$, i.e., Γ_0 is normal in Γ. It follows that $\Gamma_0 = 1$ and Γ is an abelian p-group of order n. Let Γ' be a subgroup of Γ of order p and $v = \sum_{\gamma \in \Gamma'} \gamma$ in $\mathbb{Z}[\Gamma]$. Then N_X is divisible by v, i.e., there is $M' \in \mathbb{Z}[X]$ such that $N_X = vM'$. Since $\varepsilon(M') = n/p$, we have $M' \in J_X$. As v is congruent to p modulo I, N_X is congruent to pM' modulo $I \cdot J_X$, hence $N_X \in pJ_X + I \cdot J_X$.

The exact sequence of tori

\[1 \to T \to V \to G_m \to 1\]

yields an exact sequence of Γ-modules of co-characters

\[(4) \quad 0 \to T_* \to V_* \to \mathbb{Z} \to 0.\]

Write θ_T for the image of 1 under the connecting homomorphism $\mathbb{Z} \to H^1(\Gamma, T_*) = H^1(F, T_*)$.

Proposition 4.3. Suppose that $r > s$. Then θ_T is not divisible by p in $H^1(F, T_*)$.

Proof. Consider the exact sequence of Γ-modules

\[(5) \quad 0 \to \mathbb{Z} \overset{f}{\to} J_X \to T^* \to 0\]
dual to (3). The image ν of θ_T under the canonical isomorphisms

\[H^1(F, T_*) \simeq \text{Ext}^1_{\Gamma}(\mathbb{Z}, T_*) \simeq \text{Ext}^1_{\Gamma}(T^*, \mathbb{Z})\]

is the class of the sequence (5).

Suppose that ν is divisible by p. Then the image of ν under the map $\text{Ext}^1_{\Gamma}(T^*, \mathbb{Z}) \to \text{Ext}^1_{\Gamma}(T^*, \mathbb{Z}/p\mathbb{Z})$ is trivial, i.e, the canonical homomorphism $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ factors as $\mathbb{Z} \overset{f}{\to} J_X \overset{h}{\to} \mathbb{Z}/p\mathbb{Z}$ for a Γ-homomorphism h. Note that $f(1) = N_X$, hence $h(N_X) = 1 + p\mathbb{Z}$.

The map h vanishes on $pJ_X + I \cdot J_X$, hence by Lemma 4.2, $h(N_X) = 0$, a contradiction. \square
5. The Key Proposition

Let K/F be a complete field with discrete valuation v over F and residue field \overline{K}. Let $\xi \in H^1(K, G)$ be an element and L/K an unramified (separable) field extension of degree n splitting A_ξ. Let $T = R^{(1)}_{L/K}(G_m, L)/\mu_m$ be the torus as defined in Section \[. Note that T is actually defined over the valuation ring, so the residue torus \overline{T} is defined over \overline{K}. As $A_\xi \in \text{Br}_m(L/K)$, the element ξ has a lifting to $H^1(K, T)$ by Lemma \[.

Lemma 5.1. The image of the class $xK^{\times k}$ under the composition

$$K^{\times}/K^{\times k} = H^1(K, \mu_k) \to H^1(K, T) \xrightarrow{v_*} H^1(\overline{K}, \overline{T})$$

is equal to $v(x)\theta_T$.

Proof. The commutativity of the diagram

$$
\begin{array}{ccccccc}
1 & \longrightarrow & \mu_k & \longrightarrow & G_m & \xrightarrow{k} & G_m & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \| & & \| & & \\
1 & \longrightarrow & T & \longrightarrow & V & \longrightarrow & G_m & \longrightarrow & 1 \\
\end{array}
$$

shows that the image of $xK^{\times k}$ in $H^1(K, T)$ coincides with the image of $xK^{\times k}$ under the connecting homomorphism induced by the bottom sequence in the diagram.

The result follows from the commutativity of the diagram

$$
\begin{array}{cccc}
K^{\times} & \longrightarrow & H^1(K, T) \\
v & & \downarrow v_* \\
\mathbb{Z} & \longrightarrow & H^1(\overline{K}, \overline{T})
\end{array}
$$

where the bottom map in the connecting homomorphism for the exact sequence (\[).

Lemma 5.2. Suppose that ξ is unramified and $\text{ind}(A_\xi) \in k\mathbb{Z}$. Then every $\rho \in H^1(K, T)$ over ξ is unramified.

Proof. By assumption, the class $A_\xi \in \text{Alg}_K(n, m)$ is unramified. By Lemma 4.1, there is an unramified element $\eta \in H^1(K, T)$ over ξ. In view of Lemma 3.1, $\rho = x\eta$ for some $x \in K^{\times}$. It follows that $\xi = x\xi$.

By Lemma 4.1, $x \in \text{Nrd}(A_\xi)K^{\times k}$. As $v(\text{Nrd}(A_\xi)) \subset \text{ind}(A)\mathbb{Z}$, by assumption, $v(x) \in k\mathbb{Z}$. Multiplying x by a kth power in K^{\times} we may assume that x is a unit. Therefore, ρ is unramified.

Let M be a field extension of K and let w be an extension on M of the discrete valuation v. We assume that M is complete. Write e for the ramification index of M/K and \overline{M} for the residue field of M.

Lemma 5.3. Suppose that $\text{ind}(A_\xi)_M \in k\mathbb{Z}$ and $\xi_M = x\xi'$, where $x \in M^{\times}$ and ξ' is an unramified element in $H^1(M, G)$. Then the element $w(x)\theta_T$ in $H^1(\overline{M}, \overline{T})$ is divisible by e.

Choose an element $\rho \in H^1(K, T)$ over ξ. The image of $\rho' := x^{-1} \rho_M$ in $H^1(M, G)$ is equal to ξ' and hence is unramified. By Lemma 5.2, applied to the field M, ρ' is unramified.

Consider the following commutative diagram:

$$
\begin{array}{ccc}
H^1(K, T) & \xrightarrow{w} & H^1(K, \overline{T}_*) \\
\downarrow & & \downarrow e \\
H^1(M, T) & \xrightarrow{w_*} & H^1(M, \overline{T}_*)
\end{array}
$$

where the right vertical map is e times the canonical map. Hence the image of ρ in $H^1(M, \overline{T}_*)$ is divisible by e. On the other hand, $\rho_M = x\rho'$ and ρ' is unramified. Hence by Lemma 5.1, the image of ρ in $H^1(M, \overline{T}_*)$ coincides with $w(x)\theta_T$. □

Proposition 5.4. Let M/K be an extension of complete fields with discrete valuations, let $\xi \in H^1(K, G)$ be such that $\text{ind}(A_\xi, M) = n = p^r$. Suppose that $\xi_M = \pi\xi'$ for a prime element $\pi \in M$ and an unramified element $\xi' \in H^1(M, G)$. If $s < r$ then the ramification index of the extension M/K is not divisible by p.

Proof. Let L/K be an unramified splitting field for A_ξ of degree n and let T be the torus as above. By Lemma 5.3, θ_T in $H^1(M, \overline{T}_*)$ is divisible by the ramification index e and by Proposition 4.3 applied to the torus T_M over M, θ_T is not divisible by p in $H^1(M, \overline{T}_*)$. Hence, p does not divide e. □

6. PROOF OF THE THEOREM

We prove Theorem 4.4. Write $n = p^r n'$, $m = p^m m'$ and $k = n'/m'$. Consider the groups $H = \text{SL}_{np} / \mu_{p^r}$ and $G' = \text{SL}_{n'} / \mu_{m'}$. We have a natural group homomorphism $H \times G' \rightarrow G$. For a field extension E/F take algebras $B \in \text{Alg}_E(p^r, p^s)$, $A' \in \text{Alg}_E(n', m')$ and $A := B \otimes A' \in \text{Alg}_E(n, m)$. By Lemma 4.4, the fiber of the natural surjection $H^1(F, H) \rightarrow \text{Alg}_R(p^r, p^s)$ over B is a principal homogeneous space under $C := E^x/(E^{x, p^{r-s}} \cdot \text{Nrd}(B))$. Similarly, the fibers of the natural surjections $H^1(E, G') \rightarrow \text{Alg}_E(n', m')$ and $H^1(E, G) \rightarrow \text{Alg}_E(n, m)$ over A' and A are principal homogeneous spaces under $D' := E^x/(E^{x, k'} \cdot \text{Nrd}(A'))$ and $D := E^x/(E^{x, k} \cdot \text{Nrd}(A))$ respectively.

The tensor product yields a bijection $\text{Alg}_R(p^r, p^s) \times \text{Alg}_R(n', m') \rightarrow \text{Alg}_R(n, m)$. There is a natural isomorphism $C \times D' \rightarrow D$. It follows that the natural map

$$H^1(E, H) \times H^1(E, G') \rightarrow H^1(E, G)$$

is a bijection.

This bijection yields a surjection $\mathcal{F}_G \rightarrow \mathcal{F}_H$ and a p-surjective map $\mathcal{F}_H \rightarrow \mathcal{F}_G$. By [3, Sec. 1.3], $\text{ed}_p(G) = \text{ed}_p(H)$.

Replacing G by H we may assume that $n = p^r$ and $m = p^s$. If $s = 0$ then $G = \text{SL}_n$ and $\text{ed}_p(G) = 0$ as G is special, i.e., all G-torsors over fields are trivial. If $s = r$, $G = \text{PGL}_n$ and $\mathcal{F}_G = \text{Alg}(p^r, p^r)$, hence $\text{ed}_p(G) = \text{ed}_p(\text{Alg}(p^r, p^r))$.

We may assume that $0 < s < r$. By Lemma 3.1, for any field E, the natural map $H^1(E, G) \to \text{Alg}(p^r, p^s)(E)$ is surjective and the fibers are homogeneous sets under E^\times. It follows that

$$\text{ed}_p(G) \leq \text{ed}_p(\text{Alg}(p^r, p^s)) + 1.$$

To prove the opposite inequality choose a field E/F and a (generic) algebra A in $\text{Alg}(p^r, p^s)(E)$ such that

$$\text{ed}_p(\text{Alg}(p^r, p^s)) = \text{ed}_p(A).$$

Note that as $s > 0$, the index of A is equal to p^r. Choose an element $\eta \in H^1(E, G)$ with $A_\eta = A$.

Consider the field of formal Laurent series $E((t))$ and set $\xi' := \eta_{E((t))} \in H^1(E((t)), G)$. We have $A_{\xi'} = A_{E((t))}$. Choose a finite field extension $M/E((t))$ of degree prime to p and a subfield $K \subset M$ over F such that $\text{tr. deg}_F(K) = \text{ed}_p(t\xi')$ and there is an element $\xi \in H^1(K, G)$ with $K = t\xi M$.

Let w be the extension of the discrete valuation of $E((t))$ on M. The ramification index of $M/E((t))$ is not divisible by p. The degree of the residue field \overline{M} over E is also not divisible by p.

Note that the element ξ_M is ramified by Lemma 3.2, hence the restriction on K of the discrete valuation of M is nontrivial. We have $\text{tr. deg}_F(K) \geq \text{tr. deg}_F(\overline{K}) + 1$, therefore,

$$\text{ed}_p(t\xi') \geq \text{tr. deg}_F(\overline{K}) + 1.$$

Write \hat{K} for the completion of K. As M is complete we may assume that \hat{K} is a subfield of M. Since $0 < s < r$, by Proposition 3.1, the ramification index e of M/\hat{K} is not divisible by p.

As char(F) is not equal to p, there is the residue homomorphism [1, Ch. XII]

$$\partial : \text{Br}_n(\hat{K}) \to H^1(\overline{K}, \mathbb{Z}/n\mathbb{Z}).$$

Let $\overline{\chi} = \partial(A_\chi) \in H^1(\overline{K}, \mathbb{Z}/n\mathbb{Z})$. As $(A_\chi)_M = A_{\xi'} = A_{\xi'} = A_M$ is unramified, we have $e \cdot \overline{\chi}_M = 0$ and hence $\overline{\chi}_M = 0$ as e is not divisible by p. Hence we can view the cyclic extension $\overline{K}(\overline{\chi})$ of \overline{K} given by $\overline{\chi}$ as a subfield of \overline{M}.

Let $\chi \in H^1(\hat{K}, \mathbb{Z}/n\mathbb{Z})$ be the lift of $\overline{\chi}$. The field $\hat{K}(\chi)$ is a subfield of M. Therefore, the algebra $B := (A_\chi)_{\hat{K}(\chi)}$ is unramified and its residue \overline{B} satisfies $\overline{B} \in \text{Alg}(p^r, p^s)(\overline{K}(\overline{\chi}))$ and $(\overline{B})_{\overline{M}} = A_{\overline{M}}$.

Thus, the algebra $A_{\overline{M}}$ is defined over $\overline{K}(\overline{\chi})$, hence

$$\text{tr. deg}_F(\overline{K}) = \text{tr. deg}_F(\overline{K}(\overline{\chi})) \geq \text{ed}_p(A).$$

We have by (8), (7) and (5):

$$\text{ed}_p(G) \geq \text{ed}_p(t\xi') \geq \text{tr. deg}_F(\overline{K}) + 1 \geq \text{ed}_p(A) + 1 = \text{ed}_p(\text{Alg}(p^r, p^s)) + 1.$$
REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA T6G 2G1
E-mail address: chernous@math.ualberta.ca

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1555, USA
E-mail address: merkurev@math.ucla.edu