A LOWER BOUND ON THE ESSENTIAL DIMENSION OF SIMPLE ALGEBRAS

ALEXANDER S. MERKURJEV

ABSTRACT. Let p be a prime integer and F a field of characteristic different from p. We prove that the essential p-dimension $\operatorname{ed}_p(\operatorname{CSA}(p^r))$ of the class $\operatorname{CSA}(p^r)$ of central simple algebras of degree p^r is at least $(r-1)p^r+1$. The integer $\operatorname{ed}_p(\operatorname{CSA}(p^r))$ measures complexity of the class of central simple algebras of degree p^r over field extensions of F.

1. Introduction

The essential dimension of an "algebraic structure" is a numerical invariant that measures its complexity. Informally, the essential dimension of an algebraic structure over a field F is the smallest number of algebraically independent parameters required to define the structure over a field extension of F (see [2] or [11]).

Let $\mathcal{F}: Fields/F \to Sets$ be a functor (an "algebraic structure") from the category Fields/F of field extensions of F and field homomorphisms over F to the category of sets. Let $K \in Fields/F$, $\alpha \in \mathcal{F}(K)$ and K_0 a subfield of K over F. We say that α is defined over K_0 (and K_0 is called a field of definition of α) if there exists an element $\alpha_0 \in \mathcal{F}(K_0)$ such that the image $(\alpha_0)_K$ of α_0 under the map $\mathcal{F}(K_0) \to \mathcal{F}(K)$ coincides with α . The essential dimension of α , denoted $\operatorname{ed}^{\mathcal{F}}(\alpha)$, is the least transcendence degree tr. $\operatorname{deg}_F(K_0)$ over all fields of definition K_0 of α . The essential dimension of the functor \mathcal{F} is

$$\operatorname{ed}(\mathcal{F}) = \sup\{\operatorname{ed}^{\mathcal{F}}(\alpha)\},\$$

where the supremum is taken over fields $K \in Fields/F$ and all $\alpha \in \mathcal{F}(K)$.

Let p be a prime integer and $\alpha \in \mathcal{F}(K)$. The essential p-dimension $\operatorname{ed}_p^{\mathcal{F}}(\alpha)$ of α is the minimum of $\operatorname{ed}^{\mathcal{F}}(\alpha_{K'})$ over all finite field extensions K'/K of degree prime to p. The essential p-dimension $\operatorname{ed}_p(\mathcal{F})$ of \mathcal{F} is the supremum of $\operatorname{ed}_p^{\mathcal{F}}(\alpha)$ over all fields $K \in \operatorname{Fields}/F$ and all $\alpha \in \mathcal{F}(K)$ (see [17, §6]). Clearly, $\operatorname{ed}^{\mathcal{F}}(\alpha) \geq \operatorname{ed}_p^{\mathcal{F}}(\alpha)$ and $\operatorname{ed}(\mathcal{F}) \geq \operatorname{ed}_p(\mathcal{F})$ for all p.

Let CSA(n) be the functor taking a field extension K/F to the set of isomorphism classes $CSA_K(n)$ of central simple K-algebras of degree n. Let p be a prime integer and let p^r be the highest power of p dividing n. Then

Key words and phrases. Essential dimension, Brauer group, algebraic tori 2000 Mathematical Subject Classifications: 16K50, secondary 14L30, 20G15.

The work has been supported by the NSF grant DMS #0652316.

 $\operatorname{ed}_p(\operatorname{CSA}(n)) = \operatorname{ed}_p(\operatorname{CSA}(p^r))$ [17, Lemma 8.5.5]. Every central simple algebra of degree p is cyclic over a finite field extension of degree prime to p, hence $\operatorname{ed}_p(\operatorname{CSA}(p)) = 2$ [17, Lemma 8.5.7]. It was proven in [12] that $\operatorname{ed}_p(\operatorname{CSA}(p^2)) = p^2 + 1$ and in general, $2p^{2r-2} - p^r + 1 \ge \operatorname{ed}_p(\operatorname{CSA}(p^r)) \ge 2r$ for all $r \ge 2$ (see [14, Th. 1] and [17, Th. 8.6]).

We improve the lower bound for $\operatorname{ed}_p(\operatorname{CSA}(p^r))$ as follows (Theorem 6.1):

Theorem. Let F be a field and p a prime integer different from char(F). Then

$$\operatorname{ed}_p(\operatorname{CSA}(p^r)) \ge (r-1)p^r + 1.$$

Let G be an algebraic group over F. The essential dimension $\operatorname{ed}(G)$ (resp. essential p-dimension $\operatorname{ed}_p(G)$) of G is the essential dimension (resp. essential p-dimension) of the functor G-torsors taking a field K to the set of isomorphism classes of all G-torsors (principal homogeneous G-spaces) over K.

If $G = \mathbf{PGL}(n)$ is the projective linear group over F, the functor G-torsors is isomorphic to the functor CSA(n). Therefore, the theorem yields the following lower bound for the essential dimension of $\mathbf{PGL}(p^r)$:

$$\operatorname{ed}(\operatorname{\mathbf{\mathbf{PGL}}}(p^r)) \ge \operatorname{ed}_p(\operatorname{\mathbf{\mathbf{PGL}}}(p^r)) \ge (r-1)p^r + 1.$$

2. Preliminaries

2.1. Characters. Let F be a field, F_{sep} a separable closure of F and $\Gamma = \text{Gal}(F_{\text{sep}}/F)$ the absolute Galois group of F. For a Γ -module M we write $H^n(F, M)$ for the cohomology group $H^n(\Gamma, M)$.

The character group Ch(F) of F is defined as

$$\operatorname{Hom}_{cont}(\Gamma, \mathbb{Q}/\mathbb{Z}) = H^1(F, \mathbb{Q}/\mathbb{Z}) \simeq H^2(F, \mathbb{Z}).$$

For a character $\chi \in \operatorname{Ch}(F)$, set $F(\chi) = (F_{\operatorname{sep}})^{\operatorname{Ker}(\chi)}$. Then $F(\chi)/F$ is a cyclic field extension of degree $\operatorname{ord}(\chi)$. If $\Phi \subset \operatorname{Ch}(F)$ is a finite subgroup, we set

$$F(\Phi) = (F_{\text{sep}})^{\cap \text{Ker}(\chi)},$$

where the intersection is taken over all $\chi \in \Phi$. The Galois group $G = \operatorname{Gal}(F(\Phi)/F)$ is abelian and Φ is canonically isomorphic to the character group $\operatorname{Hom}(G,\mathbb{Q}/\mathbb{Z})$ of G.

If $F' \subset F$ is a subfield and $\chi \in \operatorname{Ch}(F')$, we write χ_F for the image of χ under the natural map $\operatorname{Ch}(F') \to \operatorname{Ch}(F)$ and $F(\chi)$ for $F(\chi_F)$. If $\Phi \subset \operatorname{Ch}(F)$ is a finite subgroup, then the character $\chi_{F(\Phi)}$ is trivial if and only if $\chi \in \Phi$.

Lemma 2.1. Let $\Phi, \Phi' \subset \operatorname{Ch}(F)$ be two finite subgroups. Suppose that for a field extension K/F, we have $\Phi_K = \Phi'_K$ in $\operatorname{Ch}(K)$. Then there is a finite subextension K'/F in K/F such that $\Phi_{K'} = \Phi'_{K'}$ in $\operatorname{Ch}(K')$.

Proof. Choose a set of characters $\{\chi_1, \ldots, \chi_m\}$ generating Φ and a set of characters $\{\chi'_1, \ldots, \chi'_m\}$ generating Φ' such that $(\chi_i)_K = (\chi'_i)_K$ for all i. Let $\eta_i = \chi_i - \chi'_i$. As all η_i vanish over K, the finite field extension $K' := F(\eta_1, \ldots, \eta_m)$ of F can be viewed as a subextension in K/F. As $(\chi_i)_{K'} = (\chi'_i)_{K'}$, we have $\Phi_{K'} = \Phi'_{K'}$.

2.2. **Brauer groups.** We write Br(F) for the Brauer group $H^2(F, F_{\text{sep}}^{\times})$ of a field F. If $a \in Br(F)$ and K/F is a field extension, then we write a_K for the image of a under the natural homomorphism $Br(F) \to Br(K)$. We write Br(K/F) for the relative Brauer group $Ker(Br(F) \to Br(K))$. We say that K is a splitting field of a if $a_K = 0$, i.e., $a \in Br(K/F)$. The index ind(a) of a is the smallest degree of a splitting field of a.

The cup-product

$$\operatorname{Ch}(F) \otimes F^{\times} = H^2(F, \mathbb{Z}) \otimes H^0(F, F_{\operatorname{sep}}^{\times}) \to H^2(F, F_{\operatorname{sep}}^{\times}) = \operatorname{Br}(F)$$

takes $\chi \otimes a$ to the class $\chi \cup (a)$ in Br(F) that is split by $F(\chi)$.

For a finite subgroup $\Phi \subset \operatorname{Ch}(F)$ write $\operatorname{Br}_{\operatorname{dec}}(F(\Phi)/F)$ for the subgroup of decomposable elements in $\operatorname{Br}(F(\Phi)/F)$ generated by the elements $\chi \cup (a)$ for all $\chi \in \Phi$ and $a \in F^{\times}$. The indecomposable relative Brauer group $\operatorname{Br}_{\operatorname{ind}}(F(\Phi)/F)$ is the factor group $\operatorname{Br}(F(\Phi)/F)/\operatorname{Br}_{\operatorname{dec}}(F(\Phi)/F)$.

2.3. Complete fields. Let E be a complete field with respect to a discrete valuation v and K its residue field.

Let p be a prime integer different from $\operatorname{char}(K)$. There is a natural injective homomorphism $\operatorname{Ch}(K)\{p\} \to \operatorname{Ch}(E)\{p\}$ of the p-primary components of the character groups that identifies $\operatorname{Ch}(K)\{p\}$ with the character group of an unramified field extension of E. For a character $\chi \in \operatorname{Ch}(K)\{p\}$, we write $\widehat{\chi}$ for the corresponding character in $\operatorname{Ch}(E)\{p\}$.

By $[5, \S7.9]$, there is an exact sequence

(1)
$$0 \to \operatorname{Br}(K)\{p\} \xrightarrow{i} \operatorname{Br}(E)\{p\} \xrightarrow{\partial_{v}} \operatorname{Ch}(K)\{p\} \to 0.$$

If $a \in Br(K)\{p\}$, then we write \widehat{a} for the element i(a) in $Br(E)\{p\}$. For example, if $a = \chi \cup (\overline{u})$ for some $\chi \in Ch(K)\{p\}$ and a unit $u \in E$, then $\widehat{a} = \widehat{\chi} \cup (u)$.

The following proposition was proved in [7, Th. 5.15(a)], [19, Prop. 2.4]) and [5, Prop. 8.2].

Proposition 2.2. Let E be a complete field with respect to a discrete valuation v and K its residue field of characteristic different from p. Then

- (1) $\operatorname{ind}(\widehat{a}) = \operatorname{ind}(a)$ for any $a \in \operatorname{Br}(K)\{p\}$.
- (2) Let $b = \widehat{a} + (\widehat{\chi} \cup (x))$ for an element $a \in Br(K)\{p\}$, $\chi \in Ch(K)\{p\}$ and $x \in E^{\times}$. Then $\partial_v(b) = v(x)\chi$. If moreover, v(x) is not divisible by p, we have

$$\operatorname{ind}(b) = \operatorname{ind}(a_{K(\chi)}) \cdot \operatorname{ord}(\chi).$$

(3) Let E'/E be a finite field extension and v' the discrete valuation on E' extending v with residue field K'. Then for any $b \in Br(E)\{p\}$, we have

$$\partial_{v'}(b_{E'}) = e \cdot \partial_v(b)_{K'},$$

where e is the ramification index of E'/E.

The choice of a prime element π in E provides us with a splitting of the sequence (1) by sending a character χ to the class $\widehat{\chi} \cup (\pi)$ in $Br(E)\{p\}$. Thus, any $b \in Br(E)\{p\}$ can be written in the form:

$$(2) b = \widehat{a} + (\widehat{\chi} \cup (\pi))$$

for $\chi = \partial_v(b)$ and a unique $a \in Br(K)\{p\}$.

The homomorphism

$$s_{\pi}: \operatorname{Br}(E)\{p\} \to \operatorname{Br}(K)\{p\},$$

defined by $s_{\pi}(b) = a$, where a is given by (2), is called a *specialization* map. For example, $s_{\pi}(\widehat{a}) = a$ for any $a \in Br(K)\{p\}$ and $s_{\pi}(\widehat{\chi} \cup (x)) = \chi \cup (\overline{u})$, where $\chi \in Ch(K)\{p\}$, $x \in E^{\times}$ and u is the unit in E such that $x = u\pi^{v(x)}$.

Moreover, if v is trivial on a subfield $F \subset E$ and $\Phi \subset \operatorname{Ch}(F)\{p\}$ a finite subgroup, then

(3)
$$s_{\pi}(\operatorname{Br}_{\operatorname{dec}}(E(\Phi)/E)) \subset \operatorname{Br}_{\operatorname{dec}}(K(\Phi)/K).$$

We shall need the following technical Lemma. For an abelian group A we write $_{p}A$ for the subgroup of all elements in A of exponent dividing p.

- **Lemma 2.3.** Let (E, v) be a complete discrete valued field with the residue field K of characteristic different from p containing a primitive p^2 -th root of unity. Let $\eta \in \operatorname{Ch}(E)$ be a character of order p^2 such that $p \cdot \eta$ is unramified, i.e., $p \cdot \eta = \widehat{\nu}$ for some $\nu \in \operatorname{Ch}(K)$ of order p. Let $\chi \in_p \operatorname{Ch}(K)$ be a character linearly independent from ν . Let $a \in \operatorname{Br}(K)$ and set $b = \widehat{a} + (\widehat{\chi} \cup (x)) \in \operatorname{Br}(E)$, where $x \in E^{\times}$ is an element such that v(x) is not divisible by p. Then:
 - (1) If η is unramified, , i.e., $\eta = \widehat{\mu}$ for some $\mu \in Ch(K)$ of order p^2 , then $ind(b_{E(\eta)}) = p \cdot ind(a_{K(\mu,\chi)})$.
 - (2) If η is ramified, then there exists a unit $u \in E^{\times}$ such that $K(\nu) = K(\bar{u}^{1/p})$ and $\operatorname{ind}(b_{E(\eta)}) = \operatorname{ind}(a (\chi \cup (\bar{u}^{1/p})))_{K(\nu)}$.

Proof. (1) If $\eta = \widehat{\mu}$ for some $\mu \in Ch(K)$, then $K(\mu)$ is the residue field of $E(\eta)$ and we have

$$b_{E(\eta)} = \widehat{a}_{K(\mu)} + (\widehat{\chi}_{K(\mu)} \cup (x)).$$

As χ and ν are linearly independent, the character $\chi_{K(\mu)}$ is nontrivial. The first statement follows from Proposition 2.2(2).

(2) Since $p \cdot \eta$ is unramified, the ramification index of $E(\eta)/E$ is equal to p, hence $E(\eta) = E((ux^p)^{1/p^2})$ for some unit $u \in E$. Note that $K(\nu) = K(\bar{u}^{1/p})$ is the residue field of $E(\eta)$. As $u^{1/p}x$ is a p-th power in $E(\eta)$, the class

$$b_{E(\eta)} = \widehat{a}_{K(\nu)} - (\widehat{\chi}_{K(\nu)} \cup (u^{1/p})) = \widehat{a}_{K(\nu)} - (\widehat{\chi}_{K(\nu)} \cup (\overline{u}^{1/p}))$$

is unramified. It follows from Proposition 2.2(1) that the elements $b_{E(\eta)}$ in $Br(E(\eta))$ and $a_{K(\nu)} - (\chi_{K(\nu)} \cup (\bar{u}^{1/p}))$ in $Br(K(\nu))$ have the same indices. \square

3. Brauer group and algebraic tori

3.1. **Torsors.** Let G be an algebraic groups over F and let K/F be a field extension. The set of isomorphism classes of G-torsors (principal homogeneous spaces) over K is bijective to $H^1(K, G)$ (see [18]).

Example 3.1. Let A be a central simple F-algebra of degree n and $G = \operatorname{Aut}(A)$. Then $H^1(K,G)$ is the set of isomorphism classes of central simple K-algebras of degree n, or equivalently, the set of elements in $\operatorname{Br}(K)$ of index dividing n. If $A = M_n(F)$ is the split algebra, then $G = \operatorname{\mathbf{PGL}}(n)$.

Example 3.2. Let L be an étale F-algebra of dimension n. Consider the algebraic torus $U = R_{L/F}(\mathbb{G}_{m,L})/\mathbb{G}_m$ over F. The exact sequence

$$1 \to \mathbb{G}_m \to R_{L/F}(\mathbb{G}_{m,L}) \to U \to 1$$

and Hilbert Theorem 90 yield an isomorphism $\theta: H^1(F,U) \xrightarrow{\sim} \operatorname{Br}(L/F)$. Note that if L is a subalgebra of a central simple F-algebra A of degree n, then U is a maximal torus in the group $\operatorname{Aut}(A)$.

Let $\alpha: G \to \mathbf{GL}(W)$ be a finite dimensional representation over F. Suppose that α is generically free, i.e., there is a non-empty open subset $W' \subset W$ and a G-torsor $\beta: W' \to X$ for a variety X over F. The torsor β is versal, i.e., every G-torsor over a field extension K/F is the pull-back of β with respect to a K-point of K. The generic fiber of K is called a generic K-torsor. It is a torsor over the function field K (see [5] and [16]).

Example 3.3. Let S be an algebraic torus over F. We embed S into the quasi-trivial torus $P = R_{L/F}(\mathbb{G}_{m,L})$, where L is an étale F-algebra (see [4]). Then S acts on the vector space L by multiplication, so that the action on the open subset P is regular. If T is the factor torus P/S, then the S-torsor $P \to T$ is versal.

3.2. The tori P^{Φ} , S^{Φ} , T^{Φ} , U^{Φ} and V^{Φ} . Let F be a field, Φ a subgroup of ${}_{p}\operatorname{Ch}(F)$ of rank r and $L = F(\Phi)$. Let $G = \operatorname{Gal}(L/F)$. Choose a basis $\chi_1, \chi_2, \ldots, \chi_r$ for Φ . We can view each χ_i as a character of G, i.e., as a homomorphism $\chi_i: G \to \mathbb{Q}/\mathbb{Z}$. Let $\sigma_1, \sigma_2, \ldots, \sigma_r$ be the dual basis for G, i.e.,

$$\chi_i(\sigma_j) = \begin{cases} (1/p) + \mathbb{Z}, & \text{if } i = j; \\ 0, & \text{otherwise.} \end{cases}$$

Let R be the group ring $\mathbb{Z}[G]$. Consider the surjective homomorphism of G-modules $k: R^r \to R$ taking the i-th basis element e_i of R^r to $\sigma_i - 1$. The image of k is the augmentation ideal $I = \operatorname{Ker}(\varepsilon)$ in R, where $\varepsilon: R \to \mathbb{Z}$ is defined by $\varepsilon(\rho) = 1$ for all $\rho \in G$.

Write $N_i = 1 + \sigma_i + \sigma_i^2 + \dots + \sigma_i^{p-1} \in R$.

Set N := Ker(k). Consider the following elements in N:

$$e_{ij} := (\sigma_i - 1)e_j - (\sigma_j - 1)e_i$$
 and $f_i = N_i e_i$, $i, j = 1, \dots r$.

Lemma 3.4. The G-module N is generated by e_{ij} and f_i .

Proof. Let $\overline{R} = \mathbb{Z}[t_1, \ldots, t_r]$ be the polynomial ring. Acyclicity of the Koszul complex for the homomorphism $\overline{k} : (\overline{R})^r \to \overline{R}$, taking the *i*-th basis element \overline{e}_i to $t_i - 1$ (see [10, Th. 43]) implies that $\operatorname{Ker}(\overline{k})$ is generated by $\overline{e}_{ij} := (t_i - 1)\overline{e}_i - (t_j - 1)\overline{e}_i$.

The kernel J of the surjective homomorphism $\overline{R} \to R$, taking t_i to σ_i , is generated by $t_i^p - 1$.

Let $x := \sum x_i e_i \in \text{Ker}(k)$. Lift every x_i to a polynomial $\bar{x}_i \in \overline{R}$ and consider $\bar{x} := \sum \bar{x}_i \bar{e}_i \in (\overline{R})^r$. We have $\bar{k}(\bar{x}) \in J$, hence

$$\bar{k}(\bar{x}) = \sum (t_i - 1)\bar{x}_i = \sum (t_i^p - 1)h_i = \sum (t_i - 1)\overline{N}_i h_i$$

for some polynomials $h_i \in \overline{R}$, where $\overline{N}_i = 1 + t_i + t_i^2 + \dots + t_i^{p-1} \in R$. Hence the element $\sum (\bar{x}_i - h_i \overline{N}_i) \bar{e}_i$ belongs to the kernel of \bar{k} and therefore is a linear combination of \bar{e}_{ij} . It follows that \bar{x} is a linear combination of \bar{e}_{ij} and $\overline{N}_i \bar{e}_i$, hence x is a linear combination of e_{ij} and f_i .

Let $\varepsilon_i: R^r \to \mathbb{Z}$ be the *i*-th projection followed by the augmentation map ε . It follows from Lemma 3.4 that $\varepsilon_i(N) = p\mathbb{Z}$ for every *i*. Moreover, the *G*-homomorphism

$$l: N \to \mathbb{Z}^r, \quad m \mapsto (\varepsilon_1(m)/p, \dots, \varepsilon_r(m)/p)$$

is surjective. Set M = Ker(l) and $Q = R^r/M$.

Lemma 3.5. The G-module M is generated by e_{ij} .

Proof. Let M' be the submodule of N generated by e_{ij} . Clearly, $M' \subset M$. Note also that $(\sigma_j - 1)f_i = N_i e_{ij} \in M'$, hence $If_i \subset M'$.

Suppose that $m \in M$. By Lemma 3.4, modifying m by an element in M' we can assume that $m = \sum_{i=1}^r x_i f_i$ for some $x_i \in R$. As l(m) = 0, we have $\varepsilon(x_i) = 0$, i.e., $x_i \in I$ for all i, hence $m \in \sum I f_i \subset M'$.

Let P^{Φ} , S^{Φ} , T^{Φ} , U^{Φ} and V^{Φ} be the algebraic tori over F with the character G-modules R^r , Q, M, I and N, respectively. The diagram of homomorphisms of G-modules with exact columns and rows

$$\begin{array}{cccc}
M & \longrightarrow & M \\
\downarrow & & \downarrow & \downarrow \\
N & \longrightarrow & R^r & \xrightarrow{k} & I \\
\downarrow & & \downarrow & & \parallel \\
\mathbb{Z}^r & \longrightarrow & Q & \longrightarrow & I
\end{array}$$

yields the following diagram of homomorphisms of the tori

Let K/F be a field extension. Set $KL := K \otimes_F L$. The exact sequence of G-modules

$$(6) 0 \to I \to R \to \mathbb{Z} \to 0$$

gives an exact sequence of the tori

$$1 \to \mathbb{G}_m \to R_{L/F}(\mathbb{G}_{m,L}) \to U \to 1$$

and then an exact sequence

$$0 \to H^1(K, U^{\Phi}) \to H^2(K, \mathbb{G}_m) \to H^2(KL, \mathbb{G}_m).$$

Hence

(7)
$$H^{1}(K, U^{\Phi}) \simeq \operatorname{Br}(KL/K).$$

Lemma 3.6. The homomorphism $(K^{\times})^r \to H^1(K, U^{\Phi}) \simeq \operatorname{Br}(KL/K)$ induced by the first row of the diagram (5) takes (x_1, \ldots, x_r) to $\sum_{i=1}^r ((\chi_i)_K \cup (x_i))$.

Proof. Consider the composition

(8)
$$h: \operatorname{Hom}_G(\mathbb{Z}^r, \mathbb{Z}) \to \operatorname{Ext}_G^1(I, \mathbb{Z}) \to \operatorname{Ext}_G^2(\mathbb{Z}, \mathbb{Z}) = H^2(G, \mathbb{Z}) = \operatorname{Ch}(G),$$

where the first homomorphism is induced by the bottom row of the diagram (4) and the second one - by the exact sequence (6).

We claim that for any k, the image of the k-th projection $p_k : \mathbb{Z}^r \to \mathbb{Z}$ under the composition (8) coincides with χ_k . Consider the G-homomorphism $R^r \to \mathbb{Q}$, taking e_k to 1/p and e_i to 0 for all $i \neq k$. By Lemma 3.5, this homomorphism vanishes on M and hence it factors through a map $Q \to \mathbb{Q}$. Thus, we have a commutative diagram

for the map f_k defined by $f_k(\sigma_k - 1) = 1/p + \mathbb{Z}$ and $f_k(\sigma_i - 1) = 0$ for all $i \neq k$. Let α be the image of the class of the top row of (9) under the map $p_k^* : \operatorname{Ext}_G^1(I, \mathbb{Z}^r) \to \operatorname{Ext}_G^1(I, \mathbb{Z})$. Then $h(p_k)$ is the image of α under the second map in the composition (8). Hence $h(p_k)$ is also the image of the class β of the sequence (6) under the connecting map $H^1(G, I) = \operatorname{Ext}_G^1(\mathbb{Z}, I) \to \operatorname{Ext}_G^2(\mathbb{Z}, \mathbb{Z}) = H^2(G, \mathbb{Z})$ induced by the exact sequence representing the class The diagram (9) yields a commutative diagram

$$\begin{array}{ccc} H^1(G,I) & \stackrel{\partial}{\longrightarrow} & H^2(G,\mathbb{Z}^r) \\ f_k^* & & & p_k^* \downarrow \\ H^1(G,\mathbb{Q}/\mathbb{Z}) & = & & H^2(G,\mathbb{Z}) \end{array}$$

As we have shown, $p_k^*(\partial(\beta)) = h(p_k)$. Therefore, it suffices to prove that $f_k^*(\beta) = \chi_k$. The cocycle β satisfies $\beta(\sigma_i) = \sigma_i - 1$. It follows that $f_k^*(\beta)(\sigma_k) = f_k(\sigma_k - 1) = 1/p + \mathbb{Z}$ and $f_k^*(\beta)(\sigma_i) = 0$ for all $i \neq k$. This proves the claim. Consider the commutative diagram

$$(K^{\times})^{r} = \operatorname{Hom}_{G}(\mathbb{Z}^{r}, \mathbb{Z}) \otimes K^{\times} \longrightarrow \operatorname{Ext}_{G}^{1}(I, \mathbb{Z}) \otimes K^{\times} \longrightarrow \operatorname{Ext}_{G}^{2}(\mathbb{Z}, \mathbb{Z}) \otimes K^{\times}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where the vertical homomorphisms are given by the cup-products. By the claim, the image of the tuple (x_1, \ldots, x_r) under the diagonal composition is equal to $\sum_{i=1}^r ((\chi_i)_K \cup (x_i))$. On the other hand, the bottom composition coincides with $(K^{\times})^r \to H^1(K, U^{\Phi}) \simeq \operatorname{Br}(KL/K)$.

Corollary 3.7. The map $H^1(K, U^{\Phi}) \to H^1(K, S^{\Phi})$ induces an isomorphism $H^1(K, S^{\Phi}) \simeq \operatorname{Br}_{\operatorname{ind}}(KL/K)$.

It follows from Corollary 3.7 and the triviality of the group $H^1(K, P^{\Phi})$ that we have a commutative diagram

(10)
$$V^{\Phi}(K) \longrightarrow H^{1}(K, U^{\Phi}) = \operatorname{Br}(KL/K)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T^{\Phi}(K) \longrightarrow H^{1}(K, S^{\Phi}) = \operatorname{Br}_{\operatorname{ind}}(KL/K)$$

with surjective homomorphisms.

3.3. The element a. Let a' be the image of the generic point of V^{Φ} over $K = F(V^{\Phi})$ in $\operatorname{Br}(L(V^{\Phi})/F(V^{\Phi}))$ in the diagram (10). Choose also an element $a \in \operatorname{Br}(L(T^{\Phi})/F(T^{\Phi}))$ corresponding to the generic point of T^{Φ} over $F(T^{\Phi})$. The field $F(T^{\Phi})$ is a subfield of $F(V^{\Phi})$ and the classes $a_{F(V^{\Phi})}$ and a' are equal in $\operatorname{Br}_{\operatorname{ind}}(L(V^{\Phi})/F(V^{\Phi}))$. It follows that $pa_{F(V^{\Phi})} = pa'$ in $\operatorname{Br} F(V^{\Phi})$.

The exact sequence of G-modules

$$0 \to L^{\times} \oplus N \to L(V^{\Phi})^{\times} \to \operatorname{Div}(V_L^{\Phi}) \to 0$$

induces an exact sequence

$$H^1(G, \operatorname{Div}(V_L^{\Phi})) \to H^2(G, L^{\times}) \oplus H^2(G, N) \to H^2(G, L(V^{\Phi})^{\times}).$$

As $\mathrm{Div}(V_L^\Phi)$ is a permutation G-module, the first term in the sequence is trivial. Therefore, we get an injective homomorphism

$$\varphi: H^2(G, N) \to \operatorname{Br} F(V^{\Phi}) / \operatorname{Br}(F).$$

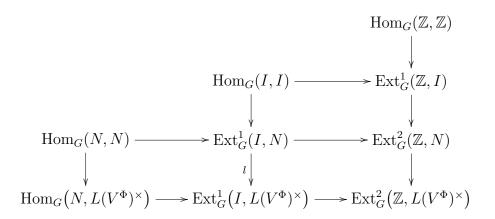
Then (4) and (6) yield

$$H^2(G,N) \simeq H^1(G,I) \simeq \hat{H}^0(G,\mathbb{Z}) = \mathbb{Z}/p^r\mathbb{Z},$$

thus, $H^2(G, N)$ has a canonical generator ξ of order p^r .

Lemma 3.8. (cf., [12, Lemma 2.4]) We have $\varphi(\xi) = -a' + \text{Br}(F)$.

Proof. Consider the following diagram



By [3, Ch. XIV], the images of $1_{\mathbb{Z}}$ and -1_I agree in $\operatorname{Ext}^1_G(\mathbb{Z}, I)$ and the images of 1_N and -1_I agree in $\operatorname{Ext}^1_G(I, N)$. It follows from [3, Ch. V, Prop. 4.1] that the upper square is anticommutative. The image of $1_{\mathbb{Z}}$ is equal to $\varphi(\xi)$ and the image of 1_N is equal to $a' + \operatorname{Br}(F)$ in the right bottom corner.

Corollary 3.9. If $r \geq 2$, then the class $p^{r-1}a$ in $\operatorname{Br} F(T^{\Phi})$ does not belong to the image of $\operatorname{Br}(F) \to \operatorname{Br} F(T^{\Phi})$.

Proof. The image of $p^{r-1}a$ in $\operatorname{Br} F(V^{\Phi})$ coincides with $p^{r-1}a'$. Modulo the image of the map $\operatorname{Br}(F) \to \operatorname{Br} F(V^{\Phi})$, the class $p^{r-1}a'$ is equal to $-\varphi(p^{r-1}\xi)$ and therefore, is nonzero as φ is injective.

4. Essential dimension of algebraic tori

Let S be an algebraic torus over F with the splitting group G. We assume that G is a p-group of order p^r . Let X be the G-module of characters of S. A p-presentation of X is a G-homomorphism $f: P \to X$ with P a permutation G-module and finite cokernel of order prime to p. A p-presentation with the smallest rank(P) is called minimal.

Essential p-dimension of algebraic tori was determined in [9, Th. 1.4]:

Theorem 4.1. Let S be an algebraic torus over F with the (finite) splitting group G, X the G-module of characters of S and $f: P \to X$ a minimal p-presentation of X. Then $\operatorname{ed}_p(S) = \operatorname{rank}(\operatorname{Ker}(f))$.

Corollary 4.2. Suppose that X admits a surjective minimal p-presentation $f: P \to X$. Then $\operatorname{ed}(S) = \operatorname{ed}_p(S) = \operatorname{rank}(\operatorname{Ker}(f))$.

Proof. As explained in Example 3.3, a surjective G-homomorphism f yields a generically free representation of S of dimension rank(P). By [16, §3],

$$\operatorname{ed}_p(S) \le \operatorname{ed}(S) \le \operatorname{rank}(P) - \dim(S) = \operatorname{rank}(\operatorname{Ker}(f)).$$

In this section we derive from Theorem 4.1 an explicit formula for the essential p-dimension of algebraic tori.

Define the group $\overline{X} := X/(pX + IX)$, where I is the augmentation ideal in $R = \mathbb{Z}[G]$. For any subgroup $H \subset G$, consider the composition $X^H \hookrightarrow X \to G$ \overline{X} . For every k, let V_k denote the image of the homomorphism

$$\coprod_{H\subset G}X^H\to \overline{X},$$

where the coproduct is taken over all subgroups H with $[G:H] \leq p^k$. We have the sequence of subgroups

$$(11) 0 = V_{-1} \subset V_0 \subset \cdots \subset V_r = \overline{X}.$$

Theorem 4.3. We have the following explicit formula for the essential pdimension of S:

$$\operatorname{ed}_p(S) = \sum_{k=0}^r (\operatorname{rank} V_k - \operatorname{rank} V_{k-1}) p^k - \dim(S).$$

Proof. Set $b_k = \text{rank}(V_k)$. By Theorem 4.1, it suffices to prove that the smallest rank of the G-module P is a p-presentation of X is equal to $\sum_{k=0}^{r} (b_k - b_{k-1}) p^k$.

Let $f: P \to X$ be a p-presentation of X and A a G-invariant basis of P. The set A is the disjoint union of the G-orbits A_j , so that P is the direct sum of the permutation G-modules $\mathbb{Z}[A_i]$.

The composition $\overline{f}: P \to X \to \overline{X}$ is surjective. As G acts trivially on \overline{X} , the rank of the group $\bar{f}(\mathbb{Z}[A_i])$ is at most 1 for all j and $\bar{f}(\mathbb{Z}[A_i]) \subset V_k$ if $|A_i| \leq p^k$. It follows that the group \overline{X}/V_k is generated by the images under the composition $P \xrightarrow{f} \overline{X} \to \overline{X}/V_k$ of all $\mathbb{Z}[A_j]$ with $|A_j| > p^k$. Denote by c_k the number of such orbits A_i , so we have

$$c_k \ge \operatorname{rank}(\overline{X}/V_k) = b_r - b_k.$$

Set $c'_k = b_r - c_k$, so that $b_k \ge c'_k$ for all k and $b_r = c'_r$. Since the number of orbits A_j with $|A_j| = p^k$ is equal to $c_{k-1} - c_k$, we have

$$\operatorname{rank}(P) = \sum_{k=0}^{r} (c_{k-1} - c_k) p^k = \sum_{k=0}^{r} (c'_k - c'_{k-1}) p^k =$$

$$c'_r p^r + \sum_{k=0}^{r-1} c'_k (p^k - p^{k+1}) \ge b_r p^r + \sum_{k=0}^{r-1} b_k (p^k - p^{k+1}) = \sum_{k=0}^{r} (b_k - b_{k-1}) p^k.$$

It remains to construct a p-presentation with P of rank $\sum_{k=0}^{r} (b_k - b_{k-1}) p^k$. For every $k \geq 0$ choose a subset X_k in X of the pre-image of V_k under the canonical map $X \to \overline{X}$ with the property that for any $x \in X_k$ there is a subgroup $H_x \subset G$ with $x \in X^{H_x}$ and $[G: H_x] = p^k$ such that the composition

$$X_k \to V_k \to V_k/V_{k-1}$$

yields a bijection between X_k and a basis of V_k/V_{k-1} . In particular, $|X_k| = b_k - b_{k-1}$. Consider the G-homomorphism

$$f: P := \coprod_{k=0}^{r} \coprod_{x \in X_{k}} \mathbb{Z}[G/H_{x}] \to X,$$

taking 1 in $\mathbb{Z}[G/H_x]$ to x in X.

By construction, the composition of f with the canonical map $X \to \overline{X}$ is surjective. As G is a p-group, the ideal $pR_{(p)} + I$ of $R_{(p)}$ is the Jacobson radical of the ring $R_{(p)} := R \otimes \mathbb{Z}_{(p)}$. By the Nakayama Lemma, $f_{(p)}$ is surjective. Hence the cokernel of f is finite of order prime to p. The rank of the permutation G-module P is equal to

$$\sum_{k=0}^{r} \sum_{x \in X_k} p^k = \sum_{k=0}^{r} |X_k| p^k = \sum_{k=0}^{r} (b_k - b_{k-1}) p^k.$$

Remark 4.4. In the context of finite p-groups, Theorem 4.3 was proved in [15, Th. 1.2].

Example 4.5. Let F be a field, Φ a subgroup of $_p\operatorname{Ch}(F)$ of rank $r, L = F(\Phi)$ and $G = \operatorname{Gal}(L/F)$. Consider the torus U^{Φ} with the character group the augmentation ideal I defined in Section 3.2.

The middle row of (4) yields an exact sequence

$$\overline{N} \to (\overline{R})^r \to \overline{I} \to 0.$$

It follows from Lemma 3.4 that $N \subset pR^r + I^r$, hence the first homomorphism in the sequence is trivial. The middle group is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^r$, hence $\operatorname{rank}(\overline{I}) = r$.

For any subgroup $H \subset G$, the Tate cohomology group $\hat{H}^0(H, I) \simeq \hat{H}^{-1}(H, \mathbb{Z})$ is trivial. It follows that the group I^H is generated by $N_H x$ for all $x \in I$, where $N_H = \sum_{h \in H} h \in R$. Since \overline{I} is of period p with trivial G-action, the classes of the elements $N_H x$ in \overline{I} are trivial if H is a nontrivial subgroup of G. It follows that the maps $I^H \to \overline{I}$ are trivial for all $H \neq 1$. In the notation of $(11), V_0 = \cdots = V_{r-1} = 0$ and $V_r = \overline{I}$. By Theorem 4.3,

$$\operatorname{ed}_p(U^{\Phi}) = rp^r - \dim(U^{\Phi}) = rp^r - p^r + 1 = (r-1)p^r + 1$$

and the rank of the permutation module in a minimal p-presentation of I is equal to rp^r . Therefore, $k: R^r \to I$ is a minimal p-presentation of I that appears to be surjective. Therefore, by Corollary 4.2,

(12)
$$\operatorname{ed}(U^{\Phi}) = \operatorname{ed}_{p}(U^{\Phi}) = (r-1)p^{r} + 1.$$

Let S^{Φ} be the torus with the character group Q defined in Section 3.2. As in (4), the homomorphism k factors through a surjective map $R^r \to Q$ that is then necessarily a minimal p-presentation of Q. According to Theorem 4.3 and Corollary 4.2,

(13)
$$\operatorname{ed}(S^{\Phi}) = \operatorname{ed}_{p}(S^{\Phi}) = rp^{r} - \dim(S^{\Phi}) = (r-1)p^{r} - r + 1.$$

5. Degeneration

In this section we study the behavior of the essential p-dimension under degeneration, i.e. we compare the essential p-dimension of an object over a complete discrete valued field and its specialization over the residue field (Proposition 5.2). The iterated degeneration (Corollary 5.4) connects a class in the Brauer group degree p^r over some (large) field and the elements of the indecomposable relative Brauer group that are torsors for a certain torus.

5.1. A simple degeneration. Let F be a field, p a prime integer different from $\operatorname{char}(F)$ and $\Phi \subset {}_{p}\operatorname{Ch}(F)$ a finite subgroup. For an integer $k \geq 0$ and a field extension K/F, let

$$\mathcal{B}_k^{\Phi}(K) = \{ a \in \operatorname{Br}(K)\{p\} \text{ such that } \operatorname{ind} a_{K(\Phi)} \le p^k \}.$$

Two elements a and a' in $\mathcal{B}_k^{\Phi}(K)$ are equivalent if $a - a' \in \operatorname{Br}_{\operatorname{dec}}(K(\Phi)/K)$. Write $\mathcal{F}_k^{\Phi}(K)$ for the set of equivalence classes in $\mathcal{B}_k^{\Phi}(K)$. Abusing notation we shall write a for the equivalence class of an element $a \in \mathcal{B}_k^{\Phi}(K)$ in $\mathcal{F}_k^{\Phi}(K)$. We view \mathcal{B}_k^{Φ} and \mathcal{F}_k^{Φ} as functors from Fields/F to Sets.

Example 5.1. (1) If Φ is the zero subgroup, then $\mathcal{F}_r^{\Phi} = \mathcal{B}_r^{\Phi} \simeq \mathit{CSA}(p^r) \simeq \mathbf{PGL}(p^r)$ -torsors.

(2) The set $\mathcal{B}_0^{\Phi}(K)$ is naturally bijective to $\operatorname{Br}(K(\Phi)/K)$ and $\mathcal{F}_0^{\Phi}(K) \simeq \operatorname{Br}_{\operatorname{ind}}(K(\Phi)/K)$. By Corollary 3.7, the latter group is naturally isomorphic to $H^1(K, S^{\Phi})$, where S^{Φ} is the torus defined in Section 3.2, thus, $\mathcal{F}_0^{\Phi} \simeq S^{\Phi}$ - torsors.

Let $\Phi' \subset \Phi$ be a subgroup of index p and $\eta \in \Phi \setminus \Phi'$, hence $\Phi = \langle \Phi', \eta \rangle$. Let E/F be a field extension such that $\eta_E \notin \Phi'_E$ in Ch(E). Choose an element $a \in \mathcal{B}_k^{\Phi}(E)$, i.e., $a \in Br(E)\{p\}$ and $ind(a_{E(\Phi)}) \leq p^k$.

Let E' be a field extension of F that is complete with respect to a discrete valuation v' over F with residue field E and set

(14)
$$a' = \widehat{a} + (\widehat{\eta}_E \cup (x)) \in Br(E'),$$

for some $x \in E'^{\times}$ such that v'(x) is not divisible by p. By Proposition 2.2(2), $\operatorname{ind}(a'_{E'(\Phi')}) = p \cdot \operatorname{ind}(a_{E(\Phi)}) \leq p^{k+1}$, hence $a' \in \mathcal{B}_{k+1}^{\Phi'}(E')$.

Proposition 5.2. Suppose that for any finite field extension N/E of degree prime to p and any character $\rho \in Ch(N)$ of order p^2 such that $p \cdot \rho \in \Phi_N \setminus \Phi'_N$, we have ind $a_{N(\Phi',\rho)} > p^{k-1}$. Then

$$\operatorname{ed}_{p}^{\mathcal{F}_{k+1}^{\Phi'}}(a') \ge \operatorname{ed}_{p}^{\mathcal{F}_{k}^{\Phi}}(a) + 1.$$

Proof. Let M/E' be a finite field extension of degree prime to $p, M_0 \subset M$ a subfield over F and $a'_0 \in \mathcal{B}_{k+1}^{\Phi'}(M_0)$ such that $(a'_0)_M = a'_M$ in $\mathcal{F}_{k+1}^{\Phi'}$ and $\operatorname{tr.deg}_F(M_0) = \operatorname{ed}_p^{\mathcal{F}_{k+1}^{\Phi'}}(a')$. We have

(15)
$$a'_M - (a'_0)_M \in \operatorname{Br}_{\operatorname{dec}}(M(\Phi')/M).$$

It follows from (14) that

(16)
$$a_M' = \widehat{a}_N + (\widehat{\eta}_N \cup (x))$$

and $\partial_{v'}(a') = q \cdot \eta_E$, where q = v'(x) is relatively prime to p. We extend the discrete valuation v' on E' to a (unique) discrete valuation v on M. The ramification index e' and inertia degree are both prime to p. Thus, the residue field N of v is a finite extension of E of degree prime to p. By Proposition 2.2(3),

(17)
$$\partial_v(a_M') = e' \cdot \partial_{v'}(a')_N = e'q \cdot \eta_N.$$

Let v_0 be the restriction of v to M_0 and N_0 its residue field. It follows from (15) that

(18)
$$\partial_v(a_M') - \partial_v((a_0')_M) \in \Phi_N'.$$

Recall that $\eta_E \notin \Phi_E'$. As [N:E] is not divisible by p, it follows that

(19)
$$\eta_N \notin \Phi_N'.$$

By (17), (18) and (19), $\partial_v((a_0')_M) \neq 0$, i.e., $(a_0')_M$ is ramified and therefore v_0 is nontrivial, i.e., v_0 is a discrete valuation on M_0 .

Let $\eta_0 := \partial_{v_0}(a'_0) \in \operatorname{Ch}(N_0)\{p\}$. By Proposition 2.2(3),

(20)
$$\partial_v((a_0')_M) = e \cdot (\eta_0)_N,$$

where e is the ramification index of M/M_0 , hence $(\eta_0)_N \neq 0$. It follows from (17),(18) and (20) that

(21)
$$e'q \cdot \eta_N - e \cdot (\eta_0)_N \in \Phi'_N.$$

As e'q is relatively prime to p,

(22)
$$\eta_N \in \langle \Phi'_N, (\eta_0)_N \rangle \text{ in } \mathrm{Ch}(N).$$

Let p^t $(t \ge 1)$ be the order of $(\eta_0)_N$. It follows from (19) and (21) that $v_p(e) = t - 1$ and

$$(23) p^{t-1} \cdot (\eta_0)_N \in \Phi_N \setminus \Phi_N'.$$

Choose a prime element π_0 in M_0 and write

$$(24) (a_0')_{\widehat{M}_0} = \widehat{a}_0 + (\widehat{\eta}_0 \cup (\pi_0))$$

in $Br(\widehat{M}_0)$, where $a_0 \in Br(N_0)\{p\}$.

Applying the specialization homomorphism $s_{\pi} : Br(M)\{p\} \to Br(N)\{p\}$ (for a prime element π in M) to (15), (16) and (24), using (3) and (22), we get

(25)
$$a_N - (a_0)_N \in \operatorname{Br}_{\operatorname{dec}}(N(\Phi', \eta_0)/N).$$

It follows from (25) that

(26)
$$a_{N(\Phi',\eta_0)} = (a_0)_{N(\Phi',\eta_0)}$$

in Br $(N(\Phi', \eta_0))$. By (24),

$$(a_0')_{\widehat{M_0}(\Phi')} = \widehat{(a_0)}_{N_0(\Phi')} + (\widehat{(\eta_0)}_{N_0(\Phi')} \cup (\pi_0)).$$

As no nontrivial multiple of $(\eta_0)_N$ belongs to Φ'_N by (23), the order of the character $(\eta_0)_{N_0(\Phi')}$ is at least p^t . It follow from Proposition 2.2(2) that

(27)
$$\operatorname{ind}(a_0)_{N_0(\Phi',\eta_0)} = \operatorname{ind}(a'_0)_{\widehat{M_0}(\Phi')} / \operatorname{ord}(\eta_0)_{N_0(\Phi')} \le p^{k+1}/p^t = p^{k-t+1}$$
.
By (26) and (27),

$$(28) \qquad \operatorname{ind}(a_{N(\Phi',\eta_0)}) \le p^{k-t+1}.$$

Suppose that $t \geq 2$ and consider the character $\rho = p^{t-2} \cdot (\eta_0)_N$ of order p^2 in $\mathrm{Ch}(N)$. We have $p \cdot \rho = p^{t-1}(\eta_0)_N \in \Phi_N \setminus \Phi_N'$ by (23). Moreover, the degree of the field extension $N(\Phi', \eta_0)/N(\Phi', \rho)$ is equal to p^{t-2} . Hence by (28),

$$\operatorname{ind}(a_{N(\Phi',\rho)}) \le \operatorname{ind}(a_{N(\Phi',\eta_0)}) \cdot p^{t-2} \le p^{k-t+1} \cdot p^{t-2} = p^{k-1}$$

This contradicts the assumption. Therefore, t = 1, i.e., $\operatorname{ord}(\eta_0)_N = p$. Then (e, p) = 1 and it follows from (21) that $(\eta_0)_N \in \langle \Phi'_N, \eta_N \rangle$. Moreover,

(29)
$$\langle \Phi', \eta_0 \rangle_N = \langle \Phi', \eta \rangle_N = \Phi_N.$$

By Lemma 2.1, there is a finite subextension N_1/N_0 of N/N_0 such that $\langle \Phi', \eta_0 \rangle_{N_1} = \Phi_{N_1}$. Replacing N_0 by N_1 and a_0 by $(a_0)_{N_1}$, we may assume that $\langle \Phi', \eta_0 \rangle_{N_0} = \Phi_{N_0}$. In particular, η_0 is of order p in $Ch(N_0)$. Since by (27),

$$\operatorname{ind}(a_0)_{N_0(\Phi)} = \operatorname{ind}(a_0)_{N_0(\Phi',\eta_0)} \le p^k,$$

we have $a_0 \in \mathcal{B}_k^{\Phi}(N_0)$.

It follows from (25) that

$$a_N - (a_0)_N \in \operatorname{Br}_{\operatorname{dec}}(N(\Phi)/N).$$

Hence the classes of a_N and $(a_0)_N$ are equal in $\mathcal{F}_k^{\Phi}(N)$. The class of a_N in $\mathcal{F}_k^{\Phi}(N)$ is then defined over N_0 , therefore,

$$\operatorname{ed}_{p}^{\mathcal{F}_{k+1}^{\Phi'}}(a') = \operatorname{tr.deg}_{F}(M_{0}) \ge \operatorname{tr.deg}_{F}(N_{0}) + 1 \ge \operatorname{ed}_{p}^{\mathcal{F}_{k}^{\Phi}}(a) + 1.$$

5.2. Multiple degeneration. In this section we assume that the base field F contains a primitive p^2 -th root of unity.

Let $\chi_1, \chi_2, \ldots, \chi_r$ be linearly independent characters in $p \operatorname{Ch}(F)$ and $\Phi = \langle \chi_1, \chi_2, \ldots, \chi_r \rangle$. Let E/F be a field extension such that $\operatorname{rank}(\Phi_E) = r$ and let $a \in \operatorname{Br}(E)\{p\}$ be an element that is split by $E(\Phi)$.

Let $E_0 = E, E_1, \ldots, E_r$ be field extensions of F such that for any $k = 1, 2, \ldots, r$, the field E_k is complete with respect to a discrete valuation v_k over F and E_{k-1} is its residue field. For any $k = 1, 2, \ldots, r$, choose elements $x_k \in E_k^{\times}$

such that $v_k(x_k)$ is not divisible by p and define the elements $a_k \in \operatorname{Br}(E_k)\{p\}$ inductively by $a_0 = a$ and $a_k = \widehat{a_{k-1}} + (\widehat{(\chi_k)}_{E_{k-1}} \cup (x_k))$.

Let Φ_k be the subgroup of Φ generated by $\chi_{k+1}, \ldots, \chi_r$. Thus, $\Phi_0 = \Phi$, $\Phi_r = 0$ and rank $(\Phi_k) = r - k$. Note that the character $(\chi_k)_{E_{k-1}(\Phi_k)}$ is not trivial. It follows from Proposition 2.2(2) that

$$\operatorname{ind}(a_k)_{E_k(\Phi_k)} = p \cdot \operatorname{ind}(a_{k-1})_{E_{k-1}(\Phi_{k-1})}$$

for any k = 1, ..., r. As ind $a_{E(\Phi)} = 1$, we have $\operatorname{ind}(a_k)_{E_k(\Phi_k)} = p^k$ for all k = 0, 1, ..., r. In particular, $a_k \in \mathcal{B}_k^{\Phi_k}(E_k)$.

The followings lemma assures that under a certain restriction on the element a, the conditions of Proposition 5.2 are satisfied for the fields E_k , the groups of characters Φ_k and the elements a_k .

Lemma 5.3. Suppose that $a_{E(\Psi)} \notin \operatorname{Im}(\operatorname{Br} F(\Psi) \to \operatorname{Br} E(\Psi))$ for any proper subgroup $\Psi \subset \Phi$. Then for every $k = 0, 1, \ldots, r - 1$, and any finite field extension N/E_k of degree prime to p and any character $\rho \in \operatorname{Ch}(N)$ of order p^2 such that $p \cdot \rho \in (\Phi_k)_N \setminus (\Phi_{k+1})_N$, we have

(30)
$$\operatorname{ind}(a_k)_{N(\Phi_{k+1},\rho)} > p^{k-1}.$$

Proof. Let $k=0,1,\ldots,r-1$ and N/E_k be a finite field extension of degree prime to p. We construct a new sequence of fields $\tilde{E}_0,\tilde{E}_1,\ldots,\tilde{E}_r$ such that each \tilde{E}_i is a finite extension of E_i of degree prime to p as follows. We set $\tilde{E}_j=N$. The fields \tilde{E}_j with j< k are constructed by descending induction on j. If we have constructed \tilde{E}_j as a finite extension of E_j of degree prime to p, then we extend the valuation v_j to \tilde{E}_j and let \tilde{E}_{j-1} to be its residue field. The fields \tilde{E}_j with j>k are constructed by induction on j. If we have constructed \tilde{E}_j as a finite extension of E_j of degree prime to p, then let \tilde{E}_{j+1} be an extension of E_{j+1} of degree $[\tilde{E}_j:E_j]$ with residue field \tilde{E}_j .

Replacing E_i by \tilde{E}_i and a_i by $(a_i)_{\tilde{E}_i}$, we may assume that $N=E_k$. Let $\rho \in \operatorname{Ch}(E_k)$ be a character of order p^2 . We prove the inequality (30) by induction on r. The case r=1 is obvious. Suppose first that k < r-1. Consider the fields $F'=F(\chi_r), E'=E(\chi_r), E'_i=E_i(\chi_r)$, the sequence of characters $\chi'_i=(\chi_i)_{F'}$ and the sequence of elements $a'_i:=(a_i)_{E'_i}\in\operatorname{Br}(E'_i)$ for $i=0,1,\ldots,r-1$. Let $\Phi'=\langle \chi'_1,\chi'_2,\ldots,\chi'_{r-1}\rangle$ and let Φ'_k be the subgroup of Φ' generated by $\chi'_{k+1},\ldots,\chi'_{r-1}$.

Let $\Psi' \subset \Phi'$ be a proper subgroup. Then $\Psi := \Psi' + \langle \chi_r \rangle$ is a proper subgroup of Φ . Since $F(\Psi) = F'(\Psi')$ and $E(\Psi) = E'(\Psi')$, we have $a_{E'(\Psi')} \notin \operatorname{Im}(\operatorname{Br} F'(\Psi') \to \operatorname{Br} E'(\Psi'))$. By induction, the inequality (30) holds for the term a'_k of the new sequence. As

$$(a'_k)_{E'_k(\Phi'_{k+1},\rho)} = (a_k)_{E_k(\Phi_{k+1},\rho)},$$

the inequality (30) holds for the term a_k .

Thus we can assume that k = r - 1.

Case 1: The character ρ is unramified with respect to v_{r-1} , i.e., $\rho = \widehat{\mu}$ for a character $\mu \in \text{Ch}(E_{r-2})$ of order p^2 . By Lemma 2.3(1),

(31)
$$\operatorname{ind}(a_{r-2})_{E_{r-2}(\chi_{r-1},\mu)} = \operatorname{ind}(a_{r-1})_{E_{r-1}(\rho)}/p = \operatorname{ind}(a_{r-1})_{E_{r-1}(\Phi_r,\rho)}/p.$$

Consider the fields $F' = F(\chi_{r-1})$, $E' = E(\chi_{r-1})$, $E'_i = E_i(\chi_{r-1})$, the new sequence of characters $\chi_1, \ldots, \chi_{r-2}, \chi_r$ and the elements $a'_i \in \text{Br}(E'_i)$ for $i = 0, 1, \ldots, r-1$ defined by $a'_i = (a_i)_{E'_i}$ for $i \leq r-2$ and $a'_{r-1} = \widehat{a}_{r-2} + (\widehat{\chi}_r \cup (x_{r-1}))$ over E'_{r-1} .

Let $\Phi' = \langle \chi_1, \dots, \chi_{r-2}, \chi_r \rangle$ and $\Psi' \subset \Phi'$ a proper subgroup. Then $\Psi := \Psi' + \langle \chi_{r-1} \rangle$ is a proper subgroup of Φ . Since $F(\Psi) = F'(\Psi')$ and $E(\Psi) = E'(\Psi')$, we have $a_{E'(\Psi')} \notin \operatorname{Im}(\operatorname{Br} F'(\Psi') \to \operatorname{Br} E'(\Psi'))$. By induction, the inequality (30) holds for the term a'_{r-2} of the new sequence, the field $N = E'_{r-2}$ and the character μ_N . As

$$(a'_{r-2})_{E'_{r-2}(\mu)} = (a_{r-2})_{E_{r-2}(\chi_{r-1},\mu)},$$

the equality (31) shows that (30) holds for a_{r-1} .

Case 2: The character ρ is ramified. Note that $p \cdot \rho$ is a nonzero multiple of $(\chi_r)_{E_{r-1}}$. Suppose the inequality (30) fails for a_{r-1} , i.e., we have

$$\operatorname{ind}(a_{r-1})_{E_{r-1}(\rho)} \le p^{r-2}$$
.

By Lemma 2.3(2), there exists a unit $u \in E_{r-1}$ such that $E_{r-2}(\chi_r) = E_{r-2}(\bar{u}^{1/p})$ and

$$\operatorname{ind}(a_{r-2} - (\chi_{r-1} \cup (\bar{u}^{1/p})))_{E_{r-2}(\chi_r)} = \operatorname{ind}(a_{r-1})_{E_{r-1}(\rho)} \le p^{r-2}.$$

By descending induction on $j=0,1,\ldots,r-2$ we show that there exist a unit u_j in E_{j+1} and a subgroup $\Theta_j \subset \Phi$ of rank r-j-1 such that $\chi_r \in \Theta_j$, $\langle \chi_1, \ldots, \chi_j, \chi_{r-1} \rangle \cap \Theta_j = 0$, $E_j(\chi_r) = E_j(\bar{u}_j^{1/p})$ and

(32)
$$\operatorname{ind}(a_j - (\chi_{r-1} \cup (\bar{u}_j^{1/p})))_{E_j(\Theta_j)} \le p^j.$$

If j = r - 2, we set $u_j = u$ and $\Theta_j = \langle \chi_r \rangle$.

 $(j \Rightarrow j-1)$: The field $E_j(\bar{u}_j^{1/p}) = E_j(\chi_r)$ is unramified over E_j , hence $v_j(\bar{u}_j)$ is divisible by p. Modifying u_j by a p^2 -th power, we may assume that $\bar{u}_j = u_{j-1}x_j^{mp}$ for a unit $u_{j-1} \in E_j$ and an integer m. Then

$$\left(a_j - (\chi_{r-1} \cup (\bar{u}_j^{1/p}))\right)_{E_j(\Theta_j)} = \widehat{b} + (\widehat{\eta} \cup (x_j))_{E_j(\Theta_j)},$$

where $\eta = \chi_j - m\chi_{r-1}$ and $b = \left(a_{j-1} - (\chi_{r-1} \cup (\bar{u}_{j-1}^{1/p}))\right)_{E_{j-1}(\Theta_j)}$. As η is not contained in Θ_j , the character $\eta_{E_{j-1}(\Theta_j)}$ is not trivial. Set $\Theta_{j-1} = \langle \Theta_j, \eta \rangle$. It follows from Proposition 2.2(2) that

$$\operatorname{ind}(b_{E_{j-1}(\Theta_{j-1})}) = \operatorname{ind}(a_j - (\chi_{r-1} \cup (\bar{u}_j^{1/p})))_{E_j(\Theta_j)}/p \le p^{j-1}.$$

Applying the inequality (32) in the case j = 0, we get

$$a_{E(\Theta_0)} = (\chi_{r-1} \cup (w^{1/p}))_{E(\Theta_0)}$$

for an element $w \in E^{\times}$ such that $E(w^{1/p}) = E(\chi_r)$. As the character χ_r is defined over F, we may assume that $w \in F^{\times}$, therefore

$$a_{E(\Theta_0)} \in \operatorname{Im}(\operatorname{Br} F(\Theta_0) \to \operatorname{Br} E(\Theta_0)).$$

The degree of the extension $E(\Theta_0)/E$ is equal to p^{r-1} , hence Θ_0 is a proper subgroup of Φ , a contradiction. Thus, we have shown that the inequality (30) holds.

By Example 5.1(2), we can view a as an S^{Φ} -torsor over E.

Corollary 5.4. Suppose that $p^{r-1}a \notin \operatorname{Im}(\operatorname{Br}(F) \to \operatorname{Br}(E))$. Then

$$\operatorname{ed}_{p}^{\operatorname{CSA}(p^{r})}(a_{r}) \ge \operatorname{ed}_{p}^{S^{\Phi}\text{-torsors}}(a) + r.$$

Proof. By iterated application of Proposition 5.2 and Example 5.1,

$$\operatorname{ed}_{p}^{CSA(p^{r})}(a_{r}) = \operatorname{ed}_{p}^{\mathcal{F}_{r}^{\Phi_{r}}}(a_{r}) \ge \operatorname{ed}_{p}^{\mathcal{F}_{r-1}^{\Phi_{r-1}}}(a_{r-1}) + 1 \ge \dots$$
$$\ge \operatorname{ed}_{p}^{\mathcal{F}_{1}^{\Phi_{1}}}(a_{1}) + (r-1) \ge \operatorname{ed}_{p}^{\mathcal{F}_{0}^{\Phi_{0}}}(a_{0}) + r = \operatorname{ed}_{p}^{S^{\Phi_{-}} \text{ torsors}}(a) + r.$$

6. Proof of the main theorem

Theorem 6.1. Let F be a field and p a prime integer different from char(F). Then

$$\operatorname{ed}_p(\operatorname{CSA}(p^r)) \ge (r-1)p^r + 1.$$

Proof. As $\operatorname{ed}_p(\operatorname{CSA}(p^r))$ can only go down if we replace the base field F by any field extension (see [11, Prop. 1.5]), we can replace F by any field extension. In particular, we may assume that F contains a primitive p^2 -th root of unity and there is a subgroup Φ of $p\operatorname{Ch}(F)$ of rank r (replacing F by the field of rational functions in r variables over F).

Let T^{Φ} be the algebraic torus constructed in Section 3 for the subgroup Φ . Set $E = F(T^{\Phi})$ and let $a \in \text{Br}(EL/E)$ be the element defined in Section 3.3. Let $a_r \in \text{Br}(E_r)$ be the element of index p^r constructed in Section 5.2. By Corollary 3.9, the class $p^{r-1}a$ in Br(E) does not belong to the image of $\text{Br}(F) \to \text{Br}(E)$. It follows from Corollary 5.4 that

(33)
$$\operatorname{ed}_{p}^{CSA(p^{r})}(a_{r}) \ge \operatorname{ed}_{p}^{S^{\Phi}-torsors}(a) + r.$$

The S^{Φ} -torsor a is the generic fiber of the versal S^{Φ} -torsor $P^{\Phi} \to T^{\Phi}$ (see Example 3.3), hence a is a generic torsor. By [17, §6] or [11, Th. 2.9]

(34)
$$\operatorname{ed}_{p}^{S^{\Phi_{-} \operatorname{torsors}}}(a) = \operatorname{ed}_{p}(S^{\Phi}).$$

The essential p-dimension of S^{Φ} was calculated in (13):

(35)
$$\operatorname{ed}_{p}(S^{\Phi}) = (r-1)p^{r} - r + 1.$$

Finally, it follows from (33), (34) and (35) that

$$\operatorname{ed}_p(\operatorname{CSA}(p^r)) \ge \operatorname{ed}_p^{\operatorname{CSA}(p^r)}(a_r) \ge \operatorname{ed}_p^{S^{\Phi_- \operatorname{torsors}}}(a) + r = (r-1)p^r + 1.$$

7. Remarks

Let K/F be a field extension and G an elementary abelian group of order p^r . Consider the subset $CSA_K(G)$ of $CSA_K(p^r)$ consisting of all classes admitting a splitting Galois K-algebra E with $Gal(E/K) \simeq G$. Equivalently, $CSA_K(G)$ consists of all classes represented by crossed product algebras with the group G (see $[6, \S 4.4]$).

Write $Pair_K(G)$ for the set of isomorphism classes of pairs (a, E), where $a \in CSA_K(G)$ and E is a Galois G-algebra splitting a.

Finally, fix a Galois field extension L/F with $\operatorname{Gal}(L/F) \simeq G$ and consider the subset $\operatorname{CSA}_K(L/F)$ of $\operatorname{CSA}_K(G)$ consisting of all classes split by the extension KL/K . Thus, $\operatorname{CSA}(L/F)$ is a subfunctor of $\operatorname{CSA}(G)$ and there is the obvious surjective morphism of functors $\operatorname{Pair}(G) \to \operatorname{CSA}(G)$.

Theorem 7.1. Let F be a field, p a prime integer different from $\operatorname{char}(F)$, G an elementary abelian group of order p^r , $r \geq 2$, and L/F a Galois field extension with $\operatorname{Gal}(L/F) \simeq G$. Let \mathcal{F} be one of the three functors: $\operatorname{CSA}(L/F)$, $\operatorname{CSA}(G)$ or $\operatorname{Pair}(G)$. Then

$$\operatorname{ed}(\mathcal{F}) = \operatorname{ed}_p(\mathcal{F}) = (r-1)p^r + 1.$$

Proof. The functor CSA(L/F) is isomorphic to U^{Φ} -torsors by (7), where Φ is a subgroup of Ch(F) such that $L = F(\Phi)$. It follows from (12) that

$$\operatorname{ed}(\operatorname{CSA}(L/F)) = \operatorname{ed}_p(\operatorname{CSA}(L/F)) = (r-1)p^r + 1.$$

Let a_r be the element in $Br(E_r)$ in the proof of Theorem 6.1. It satisfies $\operatorname{ed}_p^{CSA(p^r)}(a_r) \geq (r-1)p^r + 1$. By construction, $a_r \in CSA_{E_r}(G)$. As CSA(G) is a subfunctor of $CSA(p^r)$, we have

$$\operatorname{ed}_p(\operatorname{CSA}(G)) \ge \operatorname{ed}_p^{\operatorname{CSA}(G)}(a_r) \ge \operatorname{ed}_p^{\operatorname{CSA}(p^r)}(a_r) \ge (r-1)p^r + 1.$$

The upper bound $\operatorname{ed}(\operatorname{CSA}(G)) \leq (r-1)p^r + 1$ was proven in [8, Cor. 3 10].

The split étale F-algebra $E := \operatorname{Map}(G, F)$ has the natural structure of a Galois G-algebra over F. The group G acts on the split torus $U := R_{E/F}(\mathbb{G}_{m,E})/\mathbb{G}_m$. Let A be the split F-algebra $\operatorname{End}_F(E)$. The semidirect product $H := U \rtimes G$ acts naturally on A by F-algebra automorphisms. Moreover, by the Skolem-Noether Theorem, H is precisely the automorphism group of the pair (A, E). It follows that the functor $\operatorname{Pair}_K(G)$ is isomorphic to H-torsors.

The character group of U is G-isomorphic to the ideal I in $R = \mathbb{Z}[G]$. By [13, §3], the G-homomorphism $k: R^r \to I$ constructed in Section 3.2 yields a representation W of the group H of dimension rp^r . As $r \geq 2$, by Lemma 3.4, G acts faithfully on the kernel N of k. By [13, Lemma 3.3], the action of H on W is generically free, hence

$$\operatorname{ed}(\operatorname{\textit{Pair}}(G)) = \operatorname{ed}(H) \le \dim(W) - \dim(H) = (r-1)p^r + 1.$$

Since Pair(G) surjects onto CSA(G), we have

$$\operatorname{ed}(\operatorname{Pair}(G)) \ge \operatorname{ed}_p(\operatorname{Pair}(G)) \ge \operatorname{ed}_p(\operatorname{CSA}(G)) = (r-1)p^r + 1.$$

Remark 7.2. The generic G-crossed product algebra D constructed in [1] is a generic element for the functor CSA(G) in the sense of [11, §2], hence

$$ed(D) = ed_p(D) = (r-1)p^r + 1$$

for $r \geq 2$ by Theorem 7.1.

References

- [1] S. Amitsur, D. Saltman, Generic Abelian crossed products and p-algebras, J. Algebra 51 (1978), no. 1, 76–87.
- [2] G. Berhuy and G. Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279–330 (electronic).
- [3] H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999, With an appendix by David A. Buchsbaum, Reprint of the 1956 original.
- [4] J.-L. Colliot-Thélène and J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229.
- [5] R. Garibaldi, A. Merkurjev, and J.-P. Serre, *Cohomological invariants in galois cohomology*, American Mathematical Society, Providence, RI, 2003.
- [6] I. N. Herstein, Noncommutative rings, Mathematical Association of America, Washington, DC, 1994, Reprint of the 1968 original, With an afterword by Lance W. Small.
- [7] B. Jacob and A. Wadsworth, *Division algebras over Henselian fields*, J. Algebra **128** (1990), no. 1, 126–179.
- [8] M. Lorenz, Z. Reichstein, L. H. Rowen, and D. J. Saltman, Fields of definition for division algebras, J. London Math. Soc. (2) 68 (2003), no. 3, 651–670.
- [9] R. Lötscher, M. MacDonald, A. Meyer, and R. Reichstein, *Essential p-dimension of algebraic tori*, preprint, 2009.
- [10] H. Matsumura, Commutative algebra, second ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980.
- [11] A. S. Merkurjev, *Essential dimension*, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 299–325.
- [12] A. S. Merkurjev, Essential p-dimension of $PGL(p^2)$, to appear, 2009.
- [13] A. Meyer and Z. Reichstein, The essential dimension of the normalizer of a maximal torus in the projective linear group, Algebra and Number Theory 3 (2009), no. 4, 467–487.
- [14] A. Meyer and Z. Reichstein, An upper bound on the essential dimension of a central simple algebra, to appear in the Journal of Algebra.
- [15] A. Meyer and Z. Reichstein, Some consequences of the Karpenko-Merkurjev theorem, to appear in Documenta Mathematica.
- [16] Z. Reichstein, On the notion of essential dimension for algebraic groups, Transform. Groups 5 (2000), no. 3, 265–304.
- [17] Z. Reichstein and B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for G-varieties, Canad. J. Math. **52** (2000), no. 5, 1018–1056, With an appendix by János Kollár and Endre Szabó.
- [18] J.-P. Serre, *Galois cohomology*, Springer-Verlag, Berlin, 1997, Translated from the French by Patrick Ion and revised by the author.
- [19] J.-P. Tignol, Sur les classes de similitude de corps à involution de degré 8, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 20, A875–A876.

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

 $E ext{-}mail\ address: merkurev@math.ucla.edu}$