A LOWER BOUND ON THE ESSENTIAL DIMENSION OF
SIMPLE ALGEBRAS

ALEXANDER S. MERKURJEV

ABSTRACT. Let p be a prime integer and F' a field of characteristic different
from p. We prove that the essential p-dimension edp(CSA(p”)) of the class
CSA(p") of central simple algebras of degree p” is at least (r—1)p"+1. The
integer ed,(CSA(p")) measures complexity of the class of central simple
algebras of degree p” over field extensions of F.

1. INTRODUCTION

The essential dimension of an “algebraic structure” is a numerical invari-
ant that measures its complexity. Informally, the essential dimension of an
algebraic structure over a field F' is the smallest number of algebraically inde-
pendent parameters required to define the structure over a field extension of
F (see [B] or [I)).

Let F : Fields/F — Sets be a functor (an “algebraic structure”) from the
category Fields/F of field extensions of F' and field homomorphisms over F to
the category of sets. Let K € Fields/F, a € F(K) and K, a subfield of K
over F.. We say that « is defined over K, (and K is called a field of definition
of a) if there exists an element oy € F(Kj) such that the image (ag)x of ag
under the map F(K,) — F(K) coincides with . The essential dimension
of a, denoted ed” (a), is the least transcendence degree tr.deg(Kjy) over all
fields of definition Ky of a. The essential dimension of the functor F is

ed(F) = sup{ed” (a)},

where the supremum is taken over fields K € Fields/F and all o € F(K).

Let p be a prime integer and a € F(K). The essential p-dimension edf(a)
of a is the minimum of ed” (o) over all finite field extensions K’/K of degree
prime to p. The essential p-dimension ed,(F) of F is the supremum of edf(a)
over all fields K € Fields/F and all o € F(K) (see [, §6]). Clearly, ed” (o) >
edlf(a) and ed(F) > ed,(F) for all p.

Let CSA(n) be the functor taking a field extension K/F to the set of iso-
morphism classes CSAk(n) of central simple K-algebras of degree n. Let p
be a prime integer and let p” be the highest power of p dividing n. Then
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ed,(CSA(n)) = ed,(CSA(p")) [I3, Lemma 8.5.5]. Every central simple al-
gebra of degree p is cyclic over a finite field extension of degree prime to
p, hence ed,(CSA(p)) = 2 [[2, Lemma 8.5.7]. It was proven in [[2] that
edp(CSA(pz)) = p?> + 1 and in general, 2p* 2 —p" +1 > edp<CSA(p’”)) > 2r
for all 7 > 2 (see [[@, Th. 1] and [Ca, Th. 8.6]).

We improve the lower bound for ed,(CSA(p")) as follows (Theorem E1):

Theorem. Let F' be a field and p a prime integer different from char(F').
Then
ed,(CSA(P")) > (r — 1)p" + 1.

Let G be an algebraic group over F. The essential dimension ed(G) (resp.
essential p-dimension ed,(G)) of G is the essential dimension (resp. essential p-
dimension) of the functor G- torsors taking a field K to the set of isomorphism
classes of all G-torsors (principal homogeneous G-spaces) over K.

If G = PGL(n) is the projective linear group over F', the functor G- torsors is
isomorphic to the functor CSA(n). Therefore, the theorem yields the following
lower bound for the essential dimension of PGL(p"):

ed(PGL(p")) > edy(PGL(p")) > (r — 1)p" + L.
2. PRELIMINARIES

2.1. Characters. Let I' be a field, Fi, a separable closure of F' and I' =
Gal(Fyep/F) the absolute Galois group of F. For a I'module M we write
H"(F, M) for the cohomology group H"(I', M).

The character group Ch(F') of F' is defined as

Homcont(r7@/z) = H1<F7 @/Z) = Hz(Fv Z)

For a character x € Ch(F), set F(x) = (Fip)X™. Then F(x)/F is a cyclic
field extension of degree ord(y). If & C Ch(F) is a finite subgroup, we set

F((I)) = (Fsep)mKer(X)v

where the intersection is taken over all x € ®. The Galois group G =
Gal(F(®)/F) is abelian and @ is canonically isomorphic to the character group
Hom(G,Q/Z) of G.

If F/ C F is a subfield and x € Ch(F"), we write xp for the image of y
under the natural map Ch(F’) — Ch(F) and F(x) for F(xp). If & C Ch(F)
is a finite subgroup, then the character xp(g) is trivial if and only if x € @.

Lemma 2.1. Let ®,d" C Ch(F) be two finite subgroups. Suppose that for
a field extension K/F, we have ®x = @ in Ch(K). Then there is a finite
subeztension K'/F in K/F such that ®x = ', in Ch(K’).

Proof. Choose a set of characters {x1,...,xm} generating ® and a set of char-
acters {x},..., X, generating ® such that (x;)x = (x})x for all 7. Let n; =
Xi — X;- As all n; vanish over K, the finite field extension K’ := F(n1,...,0m)
of F' can be viewed as a subextension in K/F. As (x:)x» = (X})k’, we have
Dy = .. O
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2.2. Brauer groups. We write Br(F) for the Brauer group H*(F, F}) of a
field F. If a € Br(F) and K/F is a field extension, then we write ax for
the image of a under the natural homomorphism Br(F) — Br(K). We write
Br(K/F) for the relative Brauer group Ker(Br(F) — Br(K)). We say that K
is a splitting field of a if ax = 0, i.e., a € Br(K/F). The index ind(a) of a is
the smallest degree of a splitting field of a.
The cup-product
Ch(F)® F* = H*(F,Z) @ H*(F,F})) — H*(F,F}) = Br(F)

sep sep

takes x ® a to the class x U (a) in Br(F') that is split by F(x).

For a finite subgroup ® C Ch(F) write Brye.(F(®)/F) for the subgroup of
decomposable elements in Br(F(®)/F) generated by the elements yU(a) for all
X € ® and a € F'*. The indecomposable relative Brauer group Briyg (F(CID)/F)
is the factor group Br(F(®)/F)/ Brae(F(®)/F).

2.3. Complete fields. Let E be a complete field with respect to a discrete
valuation v and K its residue field.

Let p be a prime integer different from char(K). There is a natural injec-
tive homomorphism Ch(K){p} — Ch(E){p} of the p-primary components of
the character groups that identifies Ch(K){p} with the character group of an
unramified field extension of E. For a character y € Ch(K){p}, we write X
for the corresponding character in Ch(E){p}.

By [B, §7.9], there is an exact sequence

(1) 0 — Br(K){p} > Br(E){p} 2 Ch(K){p} — 0.

If a € Br(K){p}, then we write a for the element i(a) in Br(F){p}. For
example, if @ = x U (a) for some x € Ch(K){p} and a unit v € FE, then
a=xXU (u).

The following proposition was proved in [@, Th. 5.15(a)], [[@, Prop. 2.4])
and [B, Prop. 8.2].

Proposition 2.2. Let E be a complete field with respect to a discrete valuation
v and K 1its residue field of characteristic different from p. Then
(1) ind(a) = ind(a) for any a € Br(K){p}.
(2) Let b =a+ (YU (z)) for an element a € Br(K){p}, x € Ch(K){p}
and x € E*. Then 0,(b) = v(z)x. If moreover, v(x) is not divisible by
p, we have
ind(b) = ind(ak(y)) - ord(x).

(3) Let E'/E be a finite field extension and v’ the discrete valuation on E’
extending v with residue field K'. Then for any b € Br(E){p}, we have

6v/(bE/) =€ Gv(b)K/,

where e is the ramification index of E'/E.
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The choice of a prime element 7 in E provides us with a splitting of the
sequence () by sending a character y to the class Y U (7) in Br(E){p}. Thus,
any b € Br(F){p} can be written in the form:

(2) b=a+ (YU (7))

for x = 0,(b) and a unique a € Br(K){p}.
The homomorphism

sy : Br(E){p} — Br(K){p},

defined by s,(b) = a, where a is given by (B), is called a specialization map.
For example, s,(a@) = a for any a € Br(K){p} and s,(YU(z)) = xU (@), where
x € Ch(K){p}, € EX and u is the unit in E such that = ur®®.

Moreover, if v is trivial on a subfield F' C E and ® C Ch(F){p} a finite
subgroup, then

(3) $x(Braec(E(®)/E)) C Brae(K(®)/K).

We shall need the following technical Lemma. For an abelian group A we
write ,A for the subgroup of all elements in A of exponent dividing p.

Lemma 2.3. Let (E,v) be a complete discrete valued field with the residue
field K of characteristic different from p containing a primitive p*-th root of
unity. Let n € Ch(E) be a character of order p* such that p - n is unramified,
i.e., p-n =70 for some v € Ch(K) of order p. Let x €,Ch(K) be a character
linearly independent from v. Let a € Br(K) and set b=a+ (xU(z)) € Br(E),
where x € E* is an element such that v(x) is not divisible by p. Then:
(1) If n is unramified, , i.e., n = fi for some u € Ch(K) of order p?, then
ind(bE(n)) =p- ind(aK(%X)).
(2) If n is ramified, then there exists a unit u € E* such that K(v) =
K(a'?) and ind(bp(,)) = ind(a — (x U (ﬂl/p)))K( )

Proof. (1) If n = 1 for some p € Ch(K), then K (p) is the residue field of E(n)
and we have

b = axw + (Xew U (2)).

As x and v are linearly independent, the character X, is nontrivial. The
first statement follows from Proposition IZZA(2).

(2) Since p - n is unramified, the ramification index of E(n)/FE is equal to p,
hence E(n) = E((ump)l/pz) for some unit v € E. Note that K(v) = K (u'/?)
is the residue field of F(n). As u'/Px is a p-th power in E(n), the class

bt = rw) — (Xcw) U (7)) =) — (X U (@)

is unramified. It follows from Proposition Z2A(1) that the elements bg, in
Br(E(n)) and ax@) — (xxw) U (@"/?)) in Br(K(v)) have the same indices. O
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3. BRAUER GROUP AND ALGEBRAIC TORI

3.1. Torsors. Let G be an algebraic groups over F' and let K/F be a field
extension. The set of isomorphism classes of G-torsors (principal homogeneous
spaces) over K is bijective to H'(K,G) (see [IF]).

Example 3.1. Let A be a central simple F-algebra of degree n and G =
Aut(A). Then H'(K, Q) is the set of isomorphism classes of central simple
K-algebras of degree n, or equivalently, the set of elements in Br(K) of index
dividing n. If A = M, (F) is the split algebra, then G = PGL(n).

Example 3.2. Let L be an étale F-algebra of dimension n. Consider the
algebraic torus U = Ry p(Gm )/ Gy, over F. The exact sequence

1 =Gy = Ryp(Gpyr) U —1

and Hilbert Theorem 90 yield an isomorphism 6 : H'(F,U) = Br(L/F). Note
that if L is a subalgebra of a central simple F-algebra A of degree n, then U
is a maximal torus in the group Aut(A).

Let o : G — GL(W) be a finite dimensional representation over F'. Suppose
that « is generically free, i.e., there is a non-empty open subset W’ C W and
a G-torsor  : W’ — X for a variety X over F. The torsor 3 is versal, i.e.,
every G-torsor over a field extension K/F is the pull-back of 8 with respect
to a K-point of X. The generic fiber of 3 is called a generic G-torsor. It is a
torsor over the function field F'(X) (see [@] and [[G]).

Example 3.3. Let S be an algebraic torus over F'. We embed S into the
quasi-trivial torus P = Ry (G, 1), where L is an étale F-algebra (see [H).
Then S acts on the vector space L by multiplication, so that the action on
the open subset P is regular. If 7" is the factor torus P/S, then the S-torsor
P — T is versal.

3.2. The tori P®, S®, T®, U® and V®. Let F be a field, ® a subgroup
of ,Ch(F) of rank r and L = F(®). Let G = Gal(L/F). Choose a basis
X1, X2, -- -, Xr for ®. We can view each y; as a character of G, i.e., as a
homomorphism x; : G — Q/Z. Let 01, 09,...,0, be the dual basis for G, i.e.,
_ [ Q/p+Z, ifi=j;
Xi(o5) = { 0, otherwise.

Let R be the group ring Z[G|. Consider the surjective homomorphism of
G-modules k : R" — R taking the i-th basis element e; of R" to o; — 1. The
image of k is the augmentation ideal I = Ker(e) in R, where ¢ : R — Z is
defined by e(p) =1 for all p € G.

Write Ny =140, +02+---+0"' € R.

Set N := Ker(k). Consider the following elements in NV:

€ij = (Ui — 1)ej — <O'j — ].)6z and fz = Niei, Z,j = ]_, .. T

Lemma 3.4. The G-module N is generated by e;; and f;.
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Proof. Let R = Zl[ty,...,t,] be the polynomial ring. Acyclicity of the Koszul
complex for the homomorphism k : (R)" — R, taking the i-th basis element
é; to t; — 1 (see [M, Th. 43]) implies that Ker(k) is generated by é&; :=
(ti — De; — (t; — 1)e;.

The kernel J of the surjective homomorphism R — R, taking ¢; to o, is
generated by ¢ — 1.

Let 7 := Y w;e; € Ker(k). Lift every z; to a polynomial Z; € R and consider
T:=> 76 € (R)". We have k(z) € J, hence

k(z) = Z(ti -1z = Z(ﬂ? —1Dh; = Z(ti — 1)N;h;

for some polynomials h; € R, where N; =1+t + t? + P !¢ R. Hence
the element > (Z; — h;N;)é; belongs to the kernel of k and therefore is a linear
combination of €;;. It follows that z is a linear combination of €;; and N,é;,
hence z is a linear combination of e;; and f;. O

Let ¢; : R" — Z be the i-th projection followed by the augmentation map
e. It follows from Lemma B4 that ¢;(N) = pZ for every i. Moreover, the
G-homomorphism

[N —=Z', mw(e(m)/p,...,e.(m)/p)
is surjective. Set M = Ker(l) and @ = R" /M.
Lemma 3.5. The G-module M is generated by e;;.
Proof. Let M’ be the submodule of N generated by e;;. Clearly, M' C M.
Note also that (o; — 1) f; = N;e;; € M', hence If; C M'.
Suppose that m € M. By Lemma B4, modifying m by an element in M’

we can assume that m = Y., z;f; for some z; € R. As [(m) = 0, we have
e(z;) =0, ie., x; € [ for all i, hence m € Y If; C M. d

Let P®, 8%, T® U® and V® be the algebraic tori over F' with the character
G-modules R", QQ, M, I and N, respectively. The diagram of homomorphisms
of G-modules with exact columns and rows

(4) M=——M

[

N——R —=1

1

Z"'(—>Q*>>[
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yields the following diagram of homomorphisms of the tori

()

(I)(H S‘I’ *>>G:n

1]

413( P<I> V<I>
T<I> T<I>

Let K/F be a field extension. Set KL := K ®p L. The exact sequence of
G-modules

(6) 0=>I—-R—=>7Z—0
gives an exact sequence of the tori
1 =G, = Ryp(Gpr) - U —1
and then an exact sequence
0— HYK,U®) - H*K,G,,) = H*KL,G,,).
Hence
(7) HY(K,U®) ~Br(KL/K).

Lemma 3.6. The homomorphism (K*)" — H'(K,U®) ~ Br(KL/K) induced
by the first row of the diagram (B) takes (x1,...,z,) to > i_((xi)x U ().

Proof. Consider the composition
(8)  h:Homg(Z",Z) — Exts(I,Z) — Ext3(Z,Z) = H*(G,Z) = Ch(G),

where the first homomorphism is induced by the bottom row of the diagram
(@) and the second one - by the exact sequence (B).

We claim that for any k, the image of the k-th projection p, : Z" — Z
under the composition (8) coincides with yj. Consider the G-homomorphism
R" — Q, taking e, to 1/p and e; to 0 for all i # k. By Lemma B3, this
homomorphism vanishes on M and hence it factors through a map @ — Q.
Thus, we have a commutative diagram

0 > 77 > Q) > I —— 0

© G

0 >y Z > Q » Q/Z —— 0

for the map fy defined by fr(or—1) = 1/p+Z and fiy(o; —1) =0 for all i # k.

Let a be the image of the class of the top row of (A) under the map
pi : Bxto(I,Z7) — Extg(I,Z). Then h(py) is the image of a under the
second map in the composition (B). Hence h(py) is also the image of the class
B of the sequence (B) under the connecting map H'(G, 1) = Exts(Z,I) —
Ext%(Z,Z) = H?*(G,Z) induced by the exact sequence representing the class
.
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The diagram (8) yields a commutative diagram

HY(G,I) —25 H*G,7")

f{:l pZJ{
HY(G,Q/7Z) —— H*(G,Z)
As we have shown, pi(9(8)) = h(pr). Therefore, it suffices to prove that
f5(B) = xx- The cocycle 3 satisfies 5(0;) = 0; — 1. It follows that f;(5)(ox) =
fr(ox, —1) =1/p+7Z and f;(5)(0;) = 0 for all i # k. This proves the claim.
Consider the commutative diagram

(K*)" = Homg(Z",Z) @ K* — BExth(I,2) @ K* — Ext(Z,7) ® K*

| |

(K*)" = Homg(Z", KL*) —— Extg,(I, KL*) — Extg(Z, KL*),

where the vertical homomorphisms are given by the cup-products. By the

claim, the image of the tuple (x1,...,x,) under the diagonal composition is
equal to .7, ((xi)x U (z;)). On the other hand, the bottom composition
coincides with (K*)" — HY(K,U®) ~ Br(KL/K). O

Corollary 3.7. The map H'(K,U®) — HY(K,S?®) induces an isomorphism
HY(K,S%) ~ Brina(KL/K).

It follows from Corollary B0 and the triviality of the group H'(K, P®) that
we have a commutative diagram

Ve(K) — HY(K,U®) —— Br(KL/K)
(10 | | |
T*(K) —— HY(K,S®) ——— Bri(KL/K)

with surjective homomorphisms.

3.3. The element a. Let a’ be the image of the generic point of V' over
K = F(V®)inBr(L(V?®)/F(V*?)) in the diagram (). Choose also an element
a € Br(L(T®)/F(T®)) corresponding to the generic point of T'® over F(T'®).
The field F(T®) is a subfield of F(V®) and the classes ap(+) and o’ are equal
in Bri,a(L(V®)/F(V?®)). It follows that papy+) = pa’ in Br F(V®).
The exact sequence of G-modules
0= L*® N — LV®)* = Div(V?) =0
induces an exact sequence

H'(G,Div(V?)) = H*(G,L*) & H*(G,N) — H*(G,L(V*)*).

As Div(V}?) is a permutation G-module, the first term in the sequence is trivial.
Therefore, we get an injective homomorphism

¢: H*(G,N) — Br F(V®)/Br(F).
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Then (8) and (B) yield
H*(G,N)~ HY(G,I)~ H(G,Z) = Z/p'Z,
thus, H%(G, N) has a canonical generator £ of order p'.
Lemma 3.8. (cf.,, [[@, Lemma 2.4]) We have ¢(§) = —a’ + Br(F).

Proof. Consider the following diagram

Homeg(Z, Z)

Homg(1, 1) Ext(Z, 1)

Homg(N, N) Extg (I, N) ExtZ(Z, N)
| |

Homg (N, L(V®)*) — Extg (1, L(V®)*) — BExtg(Z, L(V®)*)

By [B, Ch. XIV], the images of 1z and —1; agree in Extg(Z, I) and the images
of 1y and —1; agree in Extg (I, N). It follows from [@, Ch. V, Prop. 4.1] that
the upper square is anticommutative. The image of 1z is equal to ¢(§) and
the image of 1y is equal to a’ + Br(F') in the right bottom corner. O

Corollary 3.9. If r > 2, then the class p"ta in Br F(T®) does not belong to
the image of Br(F) — Br F(T®).

Proof. The image of p"'a in Br F(V?) coincides with p"~'a’. Modulo the
image of the map Br(F) — Br F(V?), the class p"~'d’ is equal to —p(p"~1€)
and therefore, is nonzero as ¢ is injective. 0

4. ESSENTIAL DIMENSION OF ALGEBRAIC TORI

Let S be an algebraic torus over F' with the splitting group G. We assume
that G is a p-group of order p”. Let X be the G-module of characters of S. A
p-presentation of X is a G-homomorphism f : P — X with P a permutation
G-module and finite cokernel of order prime to p. A p-presentation with the
smallest rank(P) is called minimal.

Essential p-dimension of algebraic tori was determined in [, Th. 1.4]:

Theorem 4.1. Let S be an algebraic torus over F with the (finite) splitting
group G, X the G-module of characters of S and f : P — X a minimal
p-presentation of X. Then ed,(S) = rank(Ker(f)).
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Corollary 4.2. Suppose that X admits a surjective minimal p-presentation
f:P— X. Then ed(S) = ed,(S) = rank(Ker(f)).

Proof. As explained in Example B33, a surjective G-homomorphism f yields a
generically free representation of S of dimension rank(P). By [I3, §3],

ed,(S) < ed(S) < rank(P) — dim(S) = rank(Ker(f)). O

In this section we derive from Theorem EZI an explicit formula for the es-
sential p-dimension of algebraic tori.

Define the group X := X/(pX + IX), where I is the augmentation ideal in
R = Z|G]. For any subgroup H C G, consider the composition X7 — X —
X. For every k, let Vj, denote the image of the homomorphism

H X 53X,
HCG

where the coproduct is taken over all subgroups H with [G : H] < p*. We
have the sequence of subgroups

(11) 0=V,cVycCc---CcV,=X.

Theorem 4.3. We have the following explicit formula for the essential p-
dimension of S:
ed,(S) = Z(rank Vi — rank Vi_1)p" — dim(9).
k=0
Proof. Set by = rank(V}). By Theorem E, it suffices to prove that the smallest
rank of the G-module P is a p-presentation of X is equal to >, _,(bx — br—1)p".

Let f : P — X be a p-presentation of X and A a G-invariant basis of P.
The set A is the disjoint union of the G-orbits A;, so that P is the direct sum
of the permutation G-modules Z[A;].

The composition f : P — X — X is surjective. As G acts trivially on X,
the rank of the group f(Z[A;]) is at most 1 for all j and f(Z[A4;]) C V; if
|A;| < p*. Tt follows that the group X /Vj, is generated by the images under
the composition P LX > X /Vi of all Z[A;] with |A;| > p*. Denote by ¢
the number of such orbits A;, so we have

cp > rank(X /V;) = b, — by.
Set ¢}, = b, — ¢y, so that by > ¢, for all £ and b, = ¢.
Since the number of orbits A; with |A;| = p¥ is equal to ¢;_1 — ¢, we have

s s

rank(P) =Y (cr—1 — ep)pt =Y (ch = p =
k=0 k=0

r—1 r

r—1
Ap+ ) G =P = b+ b0 =P = (b — ben)ph.
k=0

k=0 k=0
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It remains to construct a p-presentation with P of rank Y, _(bx — bg_1)p".

For every k > 0 choosi a subset Xj in X of the pre-image of V, under the
canonical map X — X with the property that for any x € X} there is a
subgroup H, C G with x € X+ and [G : H,] = p* such that the composition

X = Vi = Vie/ Vi

yields a bijection between X} and a basis of Vj/Vi_;. In particular, | X;| =
by, — bp_1. Consider the G-homomorphism

f:P=111] zl¢/H.) — X,
k=0 xeX)
taking 1 in Z|G/H,| to z in X.

By construction, the composition of f with the canonical map X — X is
surjective. As G is a p-group, the ideal pR,) + I of R, is the Jacobson radical
of the ring R := R®Z,). By the Nakayama Lemma, f,) is surjective. Hence
the cokernel of f is finite of order prime to p. The rank of the permutation
G-module P is equal to

Z Z = Z | X |p" = Z(bk — by_1)p". O
k=0

k=0 ze X}, k=0

Remark 4.4. In the context of finite p-groups, Theorem EZ3 was proved in
[3, Th. 1.2].

Example 4.5. Let F be a field, ® a subgroup of , Ch(F') of rank r, L = F(®)
and G = Gal(L/F). Consider the torus U? with the character group the
augmentation ideal I defined in Section B2

The middle row of (@) yields an exact sequence

N— (R)"—=1—0.

It follows from Lemma B4 that N C pR" + I", hence the first homomorphism
in the sequence is trivial. The middle group is isomorphic to (Z/pZ)", hence
rank(7) = 7.

For any subgroup H C G, the Tate cohomology group [:IO(H, I) ~ ﬁfl(H, 7)
is trivial. It follows that the group I is generated by Ny for all € I, where
Ny =Y ,egh € R. Since I is of period p with trivial G-action, the classes
of the elements Ny in I are trivial if H is a nontrivial subgroup of G. It
follows that the maps I'! — T are trivial for all H # 1. In the notation of

(), Vp = ---=V,_; = 0 and V, = I. By Theorem B3,
ed,(U?) = rp" —dim(U®) =rp" —p" +1=(r—1)p" +1

and the rank of the permutation module in a minimal p-presentation of I is
equal to rp”. Therefore, k : R" — [ is a minimal p-presentation of I that
appears to be surjective. Therefore, by Corollary B2,

(12) ed(U®) = ed,(U*) = (r — 1)p" + 1.
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Let S? be the torus with the character group @ defined in Section B2. As
in (@), the homomorphism k factors through a surjective map R"™ — @ that

is then necessarily a minimal p-presentation of ). According to Theorem A3
and Corollary B2,

(13) ed(S?) = ed,(S®) = rp" — dim(S®) = (r — 1)p" —r + 1.
5. DEGENERATION

In this section we study the behavior of the essential p-dimension under
degeneration, i.e. we compare the essential p-dimension of an object over
a complete discrete valued field and its specialization over the residue field
(Proposition B3). The iterated degeneration (Corollary B4) connects a class
in the Brauer group degree p” over some (large) field and the elements of the
indecomposable relative Brauer group that are torsors for a certain torus.

5.1. A simple degeneration. Let F' be a field, p a prime integer different
from char(F) and ® C ,Ch(F) a finite subgroup. For an integer £ > 0 and a
field extension K/F, let

Br(K)={a € Br(K){p} suchthat indag@) <p"}.

Two elements a and @' in B (K) are equivalent if a — a’' € Brgec (K (®)/K).
Write Fi¥(K) for the set of equivalence classes in Bf (K). Abusing notation

we shall write a for the equivalence class of an element a € Bf (K) in F2(K).
We view Bf and F as functors from Fields/F to Sets.

Example 5.1. (1) If ® is the zero subgroup, then F¥ = B®? ~ CSA(p") ~
PGL(p")- torsors.

(2) The set BY(K) is naturally bijective to Br(K(®)/K) and Ff(K) =~
Bring (K (®)/K ) By Corollary B7, the latter group is naturally isomorphic

to HY(K,S?), where S® is the torus defined in Section B3, thus, FP =~
S®- torsors.

Let ®" C ® be a subgroup of index p and n € ®\ &', hence & = (¥, 7). Let
E/F be a field extension such that ng ¢ &% in Ch(F). Choose an element
a € BE(E), ie., a € Br(E){p} and ind(ag@)) < p*.

Let E’ be a field extension of F' that is complete with respect to a discrete
valuation v over F' with residue field £ and set

(14) a =a+ (g U (z)) € Br(E),
for some x € E'* such that v'(x) is not divisible by p. By Proposition E2(2),
ind(agy) = p - ind(ap)) < p**, hence o’ € BE(E").

Proposition 5.2. Suppose that for any finite field extension N/E of degree
prime to p and any character p € Ch(N) of order p* such that p-p € O\ Py,
we have ind an(a ) > p*~t. Then

@/
edpf’““(a’) > edf’?(a) + 1.
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Proof. Let M/E' be a finite field extension of degree prime to p, My C M
a subfield over F and af € By, (M) such that (a))y = @), in F; and

@/
tr. degp(My) = edfk“(a'). We have

(15) a'M — ((IE))M € Brdec (M(@,)/M)
It follows from (IA) that
(16) ahy =an + (v U (7))

and Oy (a’) = q - ng, where ¢ = v'(x) is relatively prime to p. We extend
the discrete valuation v’ on E’ to a (unique) discrete valuation v on M. The
ramification index e’ and inertia degree are both prime to p. Thus, the residue
field N of v is a finite extension of E of degree prime to p. By Proposition
Z2(3).

(17) Oy(ay) =€ - 0y(d)ny =€q-nn.

Let vg be the restriction of v to My and N, its residue field. It follows from
(I3) that

(18) Oy (ayr) — Ou((ag)ar) € Ply.
Recall that ng ¢ ®. As [N : E] is not divisible by p, it follows that
(19) v & Q.

By (I2), (IR) and (), 9, ((ap)m) # 0, ie., (ay)wm is ramified and therefore vy
is nontrivial, i.e., vy is a discrete valuation on M,.
Let 1o := 0y, (ay) € Ch(Ny){p}. By Proposition Z2(3),

(20) 0y ((ag)ar) = €+ (10),

where e is the ramification index of M /My, hence (n9)y # 0. It follows from
(2),(I8) and (EO) that

(21) €'q-ny —e- (m)y € Py.
As €'q is relatively prime to p,
(22) ny € (P, (m)n) in  Ch(N).

Let p' (t > 1) be the order of (ny)n. It follows from ([9) and (E0) that
vp(e) =t —1 and

(23) Pt (no)w € On \ Py
Choose a prime element my in M, and write
(24) (a0)57, = @0 + (7o U (m0))

in Br(]\//TO), where ay € Br(Ny){p}.
Applying the specialization homomorphism s, : Br(M){p} — Br(N){p}
(for a prime element 7 in M) to (IH), (@) and (£4), using (B) and (E2), we get

(25) an — (ao)N € Bl"dec<N((I)/, ’I]o)/N)
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It follows from (E3) that
(26) aN(qunO) - (aO)N((I)l7770)

in Br(N(®’,m)).
By (@),

(aé))ﬁo(qw) = (a(J)NO(qv) + ((770>NO(¢>/) U (WO))-
As no nontrivial multiple of (n9)y belongs to ®y by (E3), the order of the
character (1) ny(er) is at least p*. It follow from Proposition Z7A(2) that

(27) ind(aO)NO(q,/m) = ind(ai))]/w\o(qﬂ)/Ord(nO)No('ID’) S pk-‘rl/pt — pk—t-i-l.

By (E@) and (22),
(28) ind(aN(q)/m)) S pkiH»l.

Suppose that ¢ > 2 and consider the character p = p'=2- (1) n of order p? in
Ch(N). We have p- p = p'!(ny)n € ®x \ @ by (23). Moreover, the degree
of the field extension N(®' 1)/N (P, p) is equal to p'~2. Hence by (E),

ind(an(ar ) < ind(an(r ) - p2 < pFiH o pttt = phol,
This contradicts the assumption. Therefore, ¢t = 1, i.e., ord(ng)y = p. Then

e,p) = 1 and it follows from (EI) that (ny)y € (s, nn). Moreover,
U N> Tl

(29) (@ noyn = (P, n)ny = Dn.

By Lemma P, there is a finite subextension N;/Ny of N/N, such that
(P, no)n, = Pn,. Replacing Ny by N7 and ag by (ag)n,, we may assume that
(', n0) N, = Pn,- In particular, 7y is of order p in Ch(Ny).

Since by (£2),

ind(ao)No@) = ind(aO)NO(qym) S pk,

we have ag € BF (Np).
It follows from (E3) that

ay — (ao)n € Braee(N(®)/N).

Hence the classes of ay and (ag)y are equal in F2(N). The class of ay in
FE(N) is then defined over Ny, therefore,
F F2
ed, "™ (a') = tr. degp(My) > tr.degp(No) + 1 > edp* (a) + 1. O
5.2. Multiple degeneration. In this section we assume that the base field
F contains a primitive p?>-th root of unity.

Let x1,X2;--.,X» be linearly independent characters in , Ch(F') and & =
(X1, X2y -+, Xr)- Let E/F be a field extension such that rank(®z) = r and let
a € Br(F){p} be an element that is split by E(®).

Let £y = E, Ei,...,E,. be field extensions of F' such that for any £ =
1,2,...,r, the field E, is complete with respect to a discrete valuation v, over
F and Ej_; isits residue field. Forany k = 1,2,...,r, choose elements =, € E}*
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such that vi(xy) is not divisible by p and define the elements ay € Br(Ey){p}
inductively by ag = a and a, = a5_; + ((X;{;)Ek_1 U (mk))

Let @, be the subgroup of ® generated by Xxi1,...,xr. Thus, &5 = &,
¢, = 0 and rank(®,) = r — k. Note that the character (xx)g, ,(o,) is not
trivial. It follows from Proposition EZ2(2) that

ind(ax)gy(@,) = P - ind(ar—1) g, (@,_,)

for any k = 1,...,r. As indape) = 1, we have ind(ay)p, (@, = p* for all
k=0,1,...,r. In particular, a; € B,f’“(Ek).

The followings lemma assures that under a certain restriction on the element
a, the conditions of Proposition B2 are satisfied for the fields Ej, the groups
of characters ®; and the elements ay.

Lemma 5.3. Suppose that agw) ¢ Im(Br F(¥) — Br E(\I/)) for any proper
subgroup W C ®. Then for every k = 0,1,...,r — 1, and any finite field
extension N/Ey of degree prime to p and any character p € Ch(N) of order
p? such that p-p € (Pp)n \ (<I>k+1)N, we have

(30) ind(ax) N(@y.1,0) > pFt
Proof. Let k = 0,1,...,r — 1 and N/Ej, be a finite field extension of degree
prime to p. We construct a new sequence of fields Ey, E, . .., E, such that each

E; is a finite extension of E; of degree prime to p as follows We set E = N.
The fields E with j < k are constructed by descending induction on j. If we
have constructed E'j as a finite extension of E; of degree prime to p, then we
extend the valuation v; to Ej and let Ej_l to be its residue field. The fields
Ej with j > k are constructed by induction on j. If we have constructed Ej
as a finite extension of £ of degree prime to p, then let Ej+1 be an extension
of Ej;1 of degree [E; : E;] with residue field E.

Replacing E; by E; and a; by (ai)p,, we may assume that N = Ej. Let
p € Ch(Ey) be a character of order p*>. We prove the inequality (BO) by
induction on r. The case r = 1 is obvious. Suppose first that & < r — 1.
Consider the fields F' = F(x,), F' = E(x,), EI = E;(x;), the sequence of
characters x; = (x;)r and the sequence of elements a; := (a;)p € Br(£;) for
i=0,1,...,7r = 1. Let ® = (x|, X% .-, Xo_y) and let @} be the subgroup of
@’ generated by X} 1,5 Xo_1-

Let W' C @ be a proper subgroup. Then ¥ := W' + (y,) is a proper
subgroup of ®. Since F(¥) = F'(V’) and E(¥) = E'(V'), we have apw) ¢
Im(Br F'(¥') — Br E/(¥')). By induction, the inequality (8) holds for the
term aj, of the new sequence. As

(@) @y, 10 = (A8) By(@141.0);

the inequality (B0) holds for the term ay.
Thus we can assume that k =r — 1.
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Case 1: The character p is unramified with respect to v,_1, i.e., p = i for a
character y € Ch(FE,_,) of order p?. By Lemma 223(1),

(31) ind(ar—2)E,_(x—1p) = 0d(ar-1)E,_,(p)/P = nd(ar-1)E,_,(@,.p)/D-

Consider the fields F' = F(x,—1), ' = E(xr-1), E! = Ei(x,-1), the new
sequence of characters xi,..., Xr—2, X and the elements a; € Br(E!) for i =
0,1,...,r—1defined by af = (a;) g for i <r—2and a,_; = G,_s+ (X, U(2r-1))
over E/_,.

Let ® = (x1,..., Xr—2, Xr) and W' C ®" a proper subgroup. Then ¥ := ¥’ +
(Xr—1) is a proper subgroup of ®. Since F(V) = F'(V') and E(¥) = E'(¥'),
we have ap/yy ¢ Im(Br F/(¥') — Br E'(¥')). By induction, the inequality
(B0) holds for the term a_, of the new sequence, the field N = E/_, and the
character py. As

(@ —2)E ) = (@r-2) B st 1)
the equality (B1) shows that (BO) holds for a,_;.

Case 2: The character p is ramified. Note that p- p is a nonzero multiple of
(Xr)E,_,. Suppose the inequality (B0) fails for a,_1, i.e., we have

ind(a,—1)g,_ () <P

By Lemma P33(2), there exists a unit u € FE,_; such that E, o(x,) =
ET—Q(ﬂl/p) and

ind(a, 2 — (61 U (@77) ) = nd(a,1)s, ) <P
By descending induction on 7 =0,1,...,r — 2 we show that there exist a unit

uj in Ejyy and a subgroup ©; C ® of rank r — j — 1 such that x, € 6,
(X115 X5 Xr1) N0 = 0, () = (") and

(32) ind(a; — (X1 U (@) o) < 1.

If j=7r—2, weset u; =uand O; = (x,).
(j = j—1): The field Ej(u /p) = E; (Xr) is unramified over £, hence

v;j(a;) is divisible by p. Modlfymg u; by a p*-th power, we may assume that
Uj = Uuj1; P for a unit uj—1 € Ej and an integer m. Then

1/ NN
( (XT 1 U ( p)))Ej(@j) =b+ (77 U (‘Tj>)Ej(@j)7
where 7 = x; — my,—1 and b = (a;_1 — (x,—1 U (@ 1/Zp)))Ej_l(@j). As n is not

contained in ©j, the character ng, (e, is not trivial. Set ©;_; = (6;,7). It
follows from Proposition Z2(2) that

ind(bg, (o, ) = ind(a; — (xr—1 U (@)

7

(91)/p <y
Applying the inequality (B2) in the case j = 0, we get

CI/E(@O) = (Xr—l U (wl/p))E(@())
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for an element w € E* such that E(w!'/?) = E(x,). As the character x, is
defined over F', we may assume that w € F*, therefore

ap(ey) € Im(Br F(©y) — Br E(6y)).

The degree of the extension E(0,)/E is equal to p"!, hence Oy is a proper
subgroup of ®, a contradiction. Thus, we have shown that the inequality (80)
holds. 0

By Example B1(2), we can view a as an S®-torsor over E.
Corollary 5.4. Suppose that p""'a ¢ Im(Br(F) — Br(E)). Then
engA(Pr)(ar> > edgq)—torsors(a) +

Proof. By iterated application of Proposition B2 and Example B,

Pr_1

edSA) (q,) = ed? " (a,) > edy™t (apq) + 1> ...

> edﬁ)1 (@) +(r—1)> edfgo(ao) +r= edgq"t"'s"”(a) + 7.
U

6. PROOF OF THE MAIN THEOREM

Theorem 6.1. Let F' be a field and p a prime integer different from char(F).
Then
ed, (CSA(W")) = (r—1)p" + 1.

Proof. As edp(CSA(pr)) can only go down if we replace the base field F' by any
field extension (see [, Prop. 1.5]), we can replace F' by any field extension.
In particular, we may assume that F' contains a primitive p?-th root of unity
and there is a subgroup ® of , Ch(F') of rank r (replacing F' by the field of
rational functions in r variables over F).

Let T?® be the algebraic torus constructed in Section B for the subgroup
®. Set £ = F(T?) and let a € Br(FL/FE) be the element defined in Section
B3. Let a, € Br(E,) be the element of index p" constructed in Section B3.
By Corollary B9, the class p"'a in Br(F) does not belong to the image of
Br(F) — Br(E). It follows from Corollary B4 that

(33) edSSA(pT)(ar) > edi@_ torsors<a) + 7

The S®-torsor a is the generic fiber of the versal S®-torsor P* — T (see
Example B3), hence a is a generic torsor. By [[4, §6] or [0, Th. 2.9]

(34) ed3" 03 (q) = ed, (S®).
The essential p-dimension of S® was calculated in (I3):
(35) ed,(S*) = (r — 1)p" — 7+ 1.

Finally, it follows from (B3), (84) and (B3) that
od, (CSA(P")) > edSA¥) (a,) > edS™ % (a) + 7 = (r— 1)p" + 1. O



18 A. MERKURJEV

7. REMARKS

Let K/F be a field extension and G an elementary abelian group of order p".
Consider the subset CSAk(G) of CSAk(p") consisting of all classes admitting
a splitting Galois K-algebra E with Gal(F/K) ~ G. Equivalently, CSAk(G)
consists of all classes represented by crossed product algebras with the group
G (see [B, §4.4]).

Write Pairg(G) for the set of isomorphism classes of pairs (a, E'), where
a € CSAK(G) and F is a Galois G-algebra splitting a.

Finally, fix a Galois field extension L/F with Gal(L/F) ~ G and consider
the subset CSAk(L/F) of CSAK(G) consisting of all classes split by the ex-
tension K L/K. Thus, CSA(L/F) is a subfunctor of CSA(G) and there is the
obvious surjective morphism of functors Pair(G) — CSA(G).

Theorem 7.1. Let F be a field, p a prime integer different from char(F), G an
elementary abelian group of order p", r > 2, and L/F a Galois field extension
with Gal(L/F) ~ G. Let F be one of the three functors: CSA(L/F), CSA(G)
or Pair(G). Then

ed(F) =ed,(F) = (r—1)p" + 1.

Proof. The functor CSA(L/F) is isomorphic to U®- torsors by (@), where & is
a subgroup of Ch(F) such that L = F(®). It follows from (I2) that

ed(CSA(L/F)) = ed,(CSA(L/F)) = (r — 1)p" + 1.

Let a, be the element in Br(E,) in the proof of Theorem Bl It satisfies
edIfSA(pr)(aT) > (r — 1)p" + 1. By construction, a, € CSAg,(G). As CSA(G) is
a subfunctor of CSA(p"), we have

edy (CSA(G)) 2 od;* D ar) 2 e (a,) 2 (r = 1p + 1.

The upper bound ed(CSA(G)) < (r — 1)p" + 1 was proven in [B, Cor. 3 10].

The split étale F-algebra E := Map(G, F') has the natural structure of a Ga-
lois G-algebra over F'. The group G acts on the split torus U := Rg/p(Gm,g)/ G-
Let A be the split F-algebra Endg(F). The semidirect product H := U x G
acts naturally on A by F-algebra automorphisms. Moreover, by the Skolem-
Noether Theorem, H is precisely the automorphism group of the pair (A, F).
It follows that the functor Pairg(G) is isomorphic to H- torsors.

The character group of U is G-isomorphic to the ideal I in R = Z|G]. By
[[3, §3], the G-homomorphism k : R" — [ constructed in Section B2 yields a
representation W of the group H of dimension rp". As r > 2, by Lemma B4,
G acts faithfully on the kernel N of k. By [3, Lemma 3.3], the action of H
on W is generically free, hence

ed(Pair(G)) = ed(H) < dim(W) — dim(H) = (r — 1)p" + 1.
Since Pair(G) surjects onto CSA(G), we have
ed(Pair(G)) > ed,(Pair(G)) > ed,(CSA(G)) = (r — 1)p" + 1. O
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Remark 7.2. The generic G-crossed product algebra D constructed in [0] is
a generic element for the functor CSA(G) in the sense of [, §2], hence

ed(D) =ed,(D)=(r—1)p" +1
for r > 2 by Theorem [
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