A LOWER BOUND ON THE ESSENTIAL DIMENSION OF SIMPLE ALGEBRAS

ALEXANDER S. MERKURJEV

Abstract

Let p be a prime integer and F a field of characteristic different from p. We prove that the essential p-dimension $\operatorname{ed}_{p}\left(\operatorname{CSA}\left(p^{r}\right)\right)$ of the class $\operatorname{CSA}\left(p^{r}\right)$ of central simple algebras of degree p^{r} is at least $(r-1) p^{r}+1$. The integer $\operatorname{ed}_{p}\left(\operatorname{CSA}\left(p^{r}\right)\right)$ measures complexity of the class of central simple algebras of degree p^{r} over field extensions of F.

1. Introduction

The essential dimension of an "algebraic structure" is a numerical invariant that measures its complexity. Informally, the essential dimension of an algebraic structure over a field F is the smallest number of algebraically independent parameters required to define the structure over a field extension of

Let \mathcal{F} : Fields $/ F \rightarrow$ Sets be a functor (an "algebraic structure") from the category Fields/ F of field extensions of F and field homomorphisms over F to the category of sets. Let $K \in$ Fields $/ F, \alpha \in \mathcal{F}(K)$ and K_{0} a subfield of K over F. We say that α is defined over K_{0} (and K_{0} is called a field of definition of α) if there exists an element $\alpha_{0} \in \mathcal{F}\left(K_{0}\right)$ such that the image $\left(\alpha_{0}\right)_{K}$ of α_{0} under the map $\mathcal{F}\left(K_{0}\right) \rightarrow \mathcal{F}(K)$ coincides with α. The essential dimension of α, denoted $\operatorname{ed}^{\mathcal{F}}(\alpha)$, is the least transcendence degree $\operatorname{tr} . \operatorname{deg}_{F}\left(K_{0}\right)$ over all fields of definition K_{0} of α. The essential dimension of the functor \mathcal{F} is

$$
\operatorname{ed}(\mathcal{F})=\sup \left\{\operatorname{ed}^{\mathcal{F}}(\alpha)\right\}
$$

where the supremum is taken over fields $K \in$ Fields $/ F$ and all $\alpha \in \mathcal{F}(K)$.
Let p be a prime integer and $\alpha \in \mathcal{F}(K)$. The essential p-dimension $\operatorname{ed}_{p}^{\mathcal{F}}(\alpha)$ of α is the minimum of $\operatorname{ed}^{\mathcal{F}}\left(\alpha_{K^{\prime}}\right)$ over all finite field extensions K^{\prime} / K of degree prime to p. The essential p-dimension $\operatorname{ed}_{p}(\mathcal{F})$ of \mathcal{F} is the supremum of $\operatorname{ed}_{p}^{\mathcal{F}}(\alpha)$ over all fields $K \in$ Fields $/ F$ and all $\alpha \in \mathcal{F}(K)$ (see [[], §6]). Clearly, $\operatorname{ed}^{\mathcal{F}}(\alpha) \geq$ $\operatorname{ed}_{p}^{\mathcal{F}}(\alpha)$ and $\operatorname{ed}(\mathcal{F}) \geq \operatorname{ed}_{p}(\mathcal{F})$ for all p.

Let $\operatorname{CSA}(n)$ be the functor taking a field extension K / F to the set of isomorphism classes $C S A_{K}(n)$ of central simple K-algebras of degree n. Let p be a prime integer and let p^{r} be the highest power of p dividing n. Then

[^0]$\operatorname{ed}_{p}(\operatorname{CSA}(n))=\operatorname{ed}_{p}\left(\operatorname{CSA}\left(p^{r}\right)\right)[\square]$, Lemma 8.5.5]. Every central simple algebra of degree p is cyclic over a finite field extension of degree prime to p, hence $\operatorname{ed}_{p}(\operatorname{CSA}(p))=2[\boxed{[\square}$, Lemma 8.5.7]. It was proven in [[2$]$ that $\operatorname{ed}_{p}\left(\operatorname{CSA}\left(p^{2}\right)\right)=p^{2}+1$ and in general, $2 p^{2 r-2}-p^{r}+1 \geq \operatorname{ed}_{p}\left(\operatorname{CSA}\left(p^{r}\right)\right) \geq 2 r$ for all $r \geq 2$ (see [[巛], Th. 1] and [[], Th. 8.6]).

We improve the lower bound for $\operatorname{ed}_{p}\left(\operatorname{CSA}\left(p^{r}\right)\right)$ as follows (Theorem [1]):
Theorem. Let F be a field and p a prime integer different from $\operatorname{char}(F)$. Then

$$
\operatorname{ed}_{p}\left(\operatorname{CSA}\left(p^{r}\right)\right) \geq(r-1) p^{r}+1 .
$$

Let G be an algebraic group over F. The essential dimension ed (G) (resp. essential p-dimension $\left.\operatorname{ed}_{p}(G)\right)$ of G is the essential dimension (resp. essential p dimension) of the functor G-torsors taking a field K to the set of isomorphism classes of all G-torsors (principal homogeneous G-spaces) over K.

If $G=\mathbf{P G L}(n)$ is the projective linear group over F, the functor G-torsors is isomorphic to the functor $\operatorname{CSA}(n)$. Therefore, the theorem yields the following lower bound for the essential dimension of $\operatorname{PGL}\left(p^{r}\right)$:

$$
\operatorname{ed}\left(\mathbf{P G L}\left(p^{r}\right)\right) \geq \operatorname{ed}_{p}\left(\mathbf{P G L}\left(p^{r}\right)\right) \geq(r-1) p^{r}+1
$$

2. Preliminaries

2.1. Characters. Let F be a field, $F_{\text {sep }}$ a separable closure of F and $\Gamma=$ $\operatorname{Gal}\left(F_{\text {sep }} / F\right)$ the absolute Galois group of F. For a Γ-module M we write $H^{n}(F, M)$ for the cohomology group $H^{n}(\Gamma, M)$.

The character group $\operatorname{Ch}(F)$ of F is defined as

$$
\operatorname{Hom}_{\text {cont }}(\Gamma, \mathbb{Q} / \mathbb{Z})=H^{1}(F, \mathbb{Q} / \mathbb{Z}) \simeq H^{2}(F, \mathbb{Z})
$$

For a character $\chi \in \operatorname{Ch}(F)$, set $F(\chi)=\left(F_{\text {sep }}\right)^{\operatorname{Ker}(\chi)}$. Then $F(\chi) / F$ is a cyclic field extension of degree $\operatorname{ord}(\chi)$. If $\Phi \subset \operatorname{Ch}(F)$ is a finite subgroup, we set

$$
F(\Phi)=\left(F_{\mathrm{sep}}\right)^{\cap \operatorname{Ker}(\chi)},
$$

where the intersection is taken over all $\chi \in \Phi$. The Galois group $G=$ $\operatorname{Gal}(F(\Phi) / F)$ is abelian and Φ is canonically isomorphic to the character group $\operatorname{Hom}(G, \mathbb{Q} / \mathbb{Z})$ of G.

If $F^{\prime} \subset F$ is a subfield and $\chi \in \operatorname{Ch}\left(F^{\prime}\right)$, we write χ_{F} for the image of χ under the natural map $\mathrm{Ch}\left(F^{\prime}\right) \rightarrow \mathrm{Ch}(F)$ and $F(\chi)$ for $F\left(\chi_{F}\right)$. If $\Phi \subset \operatorname{Ch}(F)$ is a finite subgroup, then the character $\chi_{F(\Phi)}$ is trivial if and only if $\chi \in \Phi$.

Lemma 2.1. Let $\Phi, \Phi^{\prime} \subset \operatorname{Ch}(F)$ be two finite subgroups. Suppose that for a field extension K / F, we have $\Phi_{K}=\Phi_{K}^{\prime}$ in $\operatorname{Ch}(K)$. Then there is a finite subextension K^{\prime} / F in K / F such that $\Phi_{K^{\prime}}=\Phi_{K^{\prime}}^{\prime}$ in $\operatorname{Ch}\left(K^{\prime}\right)$.

Proof. Choose a set of characters $\left\{\chi_{1}, \ldots, \chi_{m}\right\}$ generating Φ and a set of characters $\left\{\chi_{1}^{\prime}, \ldots, \chi_{m}^{\prime}\right\}$ generating Φ^{\prime} such that $\left(\chi_{i}\right)_{K}=\left(\chi_{i}^{\prime}\right)_{K}$ for all i. Let $\eta_{i}=$ $\chi_{i}-\chi_{i}^{\prime}$. As all η_{i} vanish over K, the finite field extension $K^{\prime}:=F\left(\eta_{1}, \ldots, \eta_{m}\right)$ of F can be viewed as a subextension in K / F. As $\left(\chi_{i}\right)_{K^{\prime}}=\left(\chi_{i}^{\prime}\right)_{K^{\prime}}$, we have $\Phi_{K^{\prime}}=\Phi_{K^{\prime}}^{\prime}$.

2．2．Brauer groups．We write $\operatorname{Br}(F)$ for the Brauer group $H^{2}\left(F, F_{\text {sep }}^{\times}\right)$of a field F ．If $a \in \operatorname{Br}(F)$ and K / F is a field extension，then we write a_{K} for the image of a under the natural homomorphism $\operatorname{Br}(F) \rightarrow \operatorname{Br}(K)$ ．We write $\operatorname{Br}(K / F)$ for the relative Brauer group $\operatorname{Ker}(\operatorname{Br}(F) \rightarrow \operatorname{Br}(K))$ ．We say that K is a splitting field of a if $a_{K}=0$ ，i．e．，$a \in \operatorname{Br}(K / F)$ ．The index $\operatorname{ind}(a)$ of a is the smallest degree of a splitting field of a ．

The cup－product

$$
\operatorname{Ch}(F) \otimes F^{\times}=H^{2}(F, \mathbb{Z}) \otimes H^{0}\left(F, F_{\text {sep }}^{\times}\right) \rightarrow H^{2}\left(F, F_{\text {sep }}^{\times}\right)=\operatorname{Br}(F)
$$

takes $\chi \otimes a$ to the class $\chi \cup(a)$ in $\operatorname{Br}(F)$ that is split by $F(\chi)$ ．
For a finite subgroup $\Phi \subset \operatorname{Ch}(F)$ write $\operatorname{Br}_{\text {dec }}(F(\Phi) / F)$ for the subgroup of decomposable elements in $\operatorname{Br}(F(\Phi) / F)$ generated by the elements $\chi \cup(a)$ for all $\chi \in \Phi$ and $a \in F^{\times}$．The indecomposable relative Brauer group $\mathrm{Br}_{\text {ind }}(F(\Phi) / F)$ is the factor group $\operatorname{Br}(F(\Phi) / F) / \operatorname{Br}_{\text {dec }}(F(\Phi) / F)$ ．

2．3．Complete fields．Let E be a complete field with respect to a discrete valuation v and K its residue field．

Let p be a prime integer different from $\operatorname{char}(K)$ ．There is a natural injec－ tive homomorphism $\operatorname{Ch}(K)\{p\} \rightarrow \operatorname{Ch}(E)\{p\}$ of the p－primary components of the character groups that identifies $\operatorname{Ch}(K)\{p\}$ with the character group of an unramified field extension of E ．For a character $\chi \in \operatorname{Ch}(K)\{p\}$ ，we write $\hat{\chi}$ for the corresponding character in $\operatorname{Ch}(E)\{p\}$ ．

By［ $[\mathbf{G}, \S 7.9$ ］，there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Br}(K)\{p\} \xrightarrow{i} \operatorname{Br}(E)\{p\} \xrightarrow{\partial_{v}} \mathrm{Ch}(K)\{p\} \rightarrow 0 . \tag{1}
\end{equation*}
$$

If $a \in \operatorname{Br}(K)\{p\}$ ，then we write \widehat{a} for the element $i(a)$ in $\operatorname{Br}(E)\{p\}$ ．For example，if $a=\chi \cup(\bar{u})$ for some $\chi \in \operatorname{Ch}(K)\{p\}$ and a unit $u \in E$ ，then $\widehat{a}=\widehat{\chi} \cup(u)$ ．

The following proposition was proved in［【，Th．5．15（a）］，［囿，Prop．2．4］） and［句，Prop．8．2］．

Proposition 2．2．Let E be a complete field with respect to a discrete valuation v and K its residue field of characteristic different from p ．Then
（1） $\operatorname{ind}(\widehat{a})=\operatorname{ind}(a)$ for any $a \in \operatorname{Br}(K)\{p\}$ ．
（2）Let $b=\widehat{a}+(\widehat{\chi} \cup(x))$ for an element $a \in \operatorname{Br}(K)\{p\}$ ，$\chi \in \operatorname{Ch}(K)\{p\}$ and $x \in E^{\times}$．Then $\partial_{v}(b)=v(x) \chi$ ．If moreover，$v(x)$ is not divisible by p ，we have

$$
\operatorname{ind}(b)=\operatorname{ind}\left(a_{K(\chi)}\right) \cdot \operatorname{ord}(\chi)
$$

（3）Let E^{\prime} / E be a finite field extension and v^{\prime} the discrete valuation on E^{\prime} extending v with residue field K^{\prime} ．Then for any $b \in \operatorname{Br}(E)\{p\}$ ，we have

$$
\partial_{v^{\prime}}\left(b_{E^{\prime}}\right)=e \cdot \partial_{v}(b)_{K^{\prime}},
$$

where e is the ramification index of E^{\prime} / E ．

The choice of a prime element π in E provides us with a splitting of the sequence (\mathbb{D}) by sending a character χ to the class $\widehat{\chi} \cup(\pi)$ in $\operatorname{Br}(E)\{p\}$. Thus, any $b \in \operatorname{Br}(E)\{p\}$ can be written in the form:

$$
\begin{equation*}
b=\widehat{a}+(\widehat{\chi} \cup(\pi)) \tag{2}
\end{equation*}
$$

for $\chi=\partial_{v}(b)$ and a unique $a \in \operatorname{Br}(K)\{p\}$.
The homomorphism

$$
s_{\pi}: \operatorname{Br}(E)\{p\} \rightarrow \operatorname{Br}(K)\{p\},
$$

defined by $s_{\pi}(b)=a$, where a is given by (\mathbb{Z}), is called a specialization map. For example, $s_{\pi}(\widehat{a})=a$ for any $a \in \operatorname{Br}(K)\{p\}$ and $s_{\pi}(\widehat{\chi} \cup(x))=\chi \cup(\bar{u})$, where $\chi \in \operatorname{Ch}(K)\{p\}, x \in E^{\times}$and u is the unit in E such that $x=u \pi^{v(x)}$.

Moreover, if v is trivial on a subfield $F \subset E$ and $\Phi \subset \operatorname{Ch}(F)\{p\}$ a finite subgroup, then

$$
\begin{equation*}
s_{\pi}\left(\operatorname{Br}_{\mathrm{dec}}(E(\Phi) / E)\right) \subset \operatorname{Br}_{\mathrm{dec}}(K(\Phi) / K) . \tag{3}
\end{equation*}
$$

We shall need the following technical Lemma. For an abelian group A we write ${ }_{p} A$ for the subgroup of all elements in A of exponent dividing p.

Lemma 2.3. Let (E, v) be a complete discrete valued field with the residue field K of characteristic different from p containing a primitive p^{2}-th root of unity. Let $\eta \in \operatorname{Ch}(E)$ be a character of order p^{2} such that $p \cdot \eta$ is unramified, i.e., $p \cdot \eta=\widehat{\nu}$ for some $\nu \in \operatorname{Ch}(K)$ of order p. Let $\chi \in_{p} \operatorname{Ch}(K)$ be a character linearly independent from ν. Let $a \in \operatorname{Br}(K)$ and set $b=\widehat{a}+(\widehat{\chi} \cup(x)) \in \operatorname{Br}(E)$, where $x \in E^{\times}$is an element such that $v(x)$ is not divisible by p. Then:
(1) If η is unramified, , i.e., $\eta=\widehat{\mu}$ for some $\mu \in \operatorname{Ch}(K)$ of order p^{2}, then $\operatorname{ind}\left(b_{E(\eta)}\right)=p \cdot \operatorname{ind}\left(a_{K(\mu, \chi)}\right)$.
(2) If η is ramified, then there exists a unit $u \in E^{\times}$such that $K(\nu)=$ $K\left(\bar{u}^{1 / p}\right)$ and $\operatorname{ind}\left(b_{E(\eta)}\right)=\operatorname{ind}\left(a-\left(\chi \cup\left(\bar{u}^{1 / p}\right)\right)\right)_{K(\nu)}$

Proof. (1) If $\eta=\widehat{\mu}$ for some $\mu \in \operatorname{Ch}(K)$, then $K(\mu)$ is the residue field of $E(\eta)$ and we have

$$
b_{E(\eta)}=\widehat{a}_{K(\mu)}+\left(\widehat{\chi}_{K(\mu)} \cup(x)\right) .
$$

As χ and ν are linearly independent, the character $\chi_{K(\mu)}$ is nontrivial. The first statement follows from Proposition $\mathbb{Z 2 2 (2)}$.
(2) Since $p \cdot \eta$ is unramified, the ramification index of $E(\eta) / E$ is equal to p, hence $E(\eta)=E\left(\left(u x^{p}\right)^{1 / p^{2}}\right)$ for some unit $u \in E$. Note that $K(\nu)=K\left(\bar{u}^{1 / p}\right)$ is the residue field of $E(\eta)$. As $u^{1 / p} x$ is a p-th power in $E(\eta)$, the class

$$
b_{E(\eta)}=\widehat{a}_{K(\nu)}-\left(\widehat{\chi}_{K(\nu)} \cup\left(u^{1 / p}\right)\right)=\widehat{a}_{K(\nu)}-\left(\chi_{K(\nu)} \widehat{\cup\left(\bar{u}^{1 / p}\right)}\right)
$$

is unramified. It follows from Proposition $\llbracket .2(1)$ that the elements $b_{E(\eta)}$ in $\operatorname{Br}(E(\eta))$ and $a_{K(\nu)}-\left(\chi_{K(\nu)} \cup\left(\bar{u}^{1 / p}\right)\right)$ in $\operatorname{Br}(K(\nu))$ have the same indices.

3. Brauer group and algebraic tori

3.1. Torsors. Let G be an algebraic groups over F and let K / F be a field extension. The set of isomorphism classes of G-torsors (principal homogeneous spaces) over K is bijective to $H^{1}(K, G)$ (see [[

Example 3.1. Let A be a central simple F-algebra of degree n and $G=$ $\operatorname{Aut}(A)$. Then $H^{1}(K, G)$ is the set of isomorphism classes of central simple K-algebras of degree n, or equivalently, the set of elements in $\operatorname{Br}(K)$ of index dividing n. If $A=M_{n}(F)$ is the split algebra, then $G=\mathbf{P G L}(n)$.

Example 3.2. Let L be an étale F-algebra of dimension n. Consider the algebraic torus $U=R_{L / F}\left(\mathbb{G}_{m, L}\right) / \mathbb{G}_{m}$ over F. The exact sequence

$$
1 \rightarrow \mathbb{G}_{m} \rightarrow R_{L / F}\left(\mathbb{G}_{m, L}\right) \rightarrow U \rightarrow 1
$$

and Hilbert Theorem 90 yield an isomorphism $\theta: H^{1}(F, U) \xrightarrow{\sim} \operatorname{Br}(L / F)$. Note that if L is a subalgebra of a central simple F-algebra A of degree n, then U is a maximal torus in the group $\boldsymbol{\operatorname { A u t }}(A)$.

Let $\alpha: G \rightarrow \mathbf{G L}(W)$ be a finite dimensional representation over F. Suppose that α is generically free, i.e., there is a non-empty open subset $W^{\prime} \subset W$ and a G-torsor $\beta: W^{\prime} \rightarrow X$ for a variety X over F. The torsor β is versal, i.e., every G-torsor over a field extension K / F is the pull-back of β with respect to a K-point of X. The generic fiber of β is called a generic G-torsor. It is a torsor over the function field $F(X)$ (see [[$[\square]$ and [$[6]$).

Example 3.3. Let S be an algebraic torus over F. We embed S into the quasi-trivial torus $P=R_{L / F}\left(\mathbb{G}_{m, L}\right)$, where L is an étale F-algebra (see [G]). Then S acts on the vector space L by multiplication, so that the action on the open subset P is regular. If T is the factor torus P / S, then the S-torsor $P \rightarrow T$ is versal.
3.2. The tori $P^{\Phi}, S^{\Phi}, T^{\Phi}, U^{\Phi}$ and V^{Φ}. Let F be a field, Φ a subgroup of ${ }_{p} \mathrm{Ch}(F)$ of rank r and $L=F(\Phi)$. Let $G=\operatorname{Gal}(L / F)$. Choose a basis $\chi_{1}, \chi_{2}, \ldots, \chi_{r}$ for Φ. We can view each χ_{i} as a character of G, i.e., as a homomorphism $\chi_{i}: G \rightarrow \mathbb{Q} / \mathbb{Z}$. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ be the dual basis for G, i.e.,

$$
\chi_{i}\left(\sigma_{j}\right)= \begin{cases}(1 / p)+\mathbb{Z}, & \text { if } i=j ; \\ 0, & \text { otherwise }\end{cases}
$$

Let R be the group ring $\mathbb{Z}[G]$. Consider the surjective homomorphism of G-modules $k: R^{r} \rightarrow R$ taking the i-th basis element e_{i} of R^{r} to $\sigma_{i}-1$. The image of k is the augmentation ideal $I=\operatorname{Ker}(\varepsilon)$ in R, where $\varepsilon: R \rightarrow \mathbb{Z}$ is defined by $\varepsilon(\rho)=1$ for all $\rho \in G$.

Write $N_{i}=1+\sigma_{i}+\sigma_{i}^{2}+\cdots+\sigma_{i}^{p-1} \in R$.
Set $N:=\operatorname{Ker}(k)$. Consider the following elements in N :

$$
e_{i j}:=\left(\sigma_{i}-1\right) e_{j}-\left(\sigma_{j}-1\right) e_{i} \quad \text { and } \quad f_{i}=N_{i} e_{i}, \quad i, j=1, \ldots r .
$$

Lemma 3.4. The G-module N is generated by $e_{i j}$ and f_{i}.

Proof. Let $\bar{R}=\mathbb{Z}\left[t_{1}, \ldots, t_{r}\right]$ be the polynomial ring. Acyclicity of the Koszul complex for the homomorphism $\bar{k}:(\bar{R})^{r} \rightarrow \bar{R}$, taking the i-th basis element \bar{e}_{i} to $t_{i}-1$ (see [四, Th. 43]) implies that $\operatorname{Ker}(\bar{k})$ is generated by $\bar{e}_{i j}:=$ $\left(t_{i}-1\right) \bar{e}_{j}-\left(t_{j}-1\right) \bar{e}_{i}$.

The kernel J of the surjective homomorphism $\bar{R} \rightarrow R$, taking t_{i} to σ_{i}, is generated by $t_{i}^{p}-1$.

Let $x:=\sum x_{i} e_{i} \in \operatorname{Ker}(k)$. Lift every x_{i} to a polynomial $\bar{x}_{i} \in \bar{R}$ and consider $\bar{x}:=\sum \bar{x}_{i} \bar{e}_{i} \in(\bar{R})^{r}$. We have $\bar{k}(\bar{x}) \in J$, hence

$$
\bar{k}(\bar{x})=\sum\left(t_{i}-1\right) \bar{x}_{i}=\sum\left(t_{i}^{p}-1\right) h_{i}=\sum\left(t_{i}-1\right) \bar{N}_{i} h_{i}
$$

for some polynomials $h_{i} \in \bar{R}$, where $\bar{N}_{i}=1+t_{i}+t_{i}^{2}+\cdots+t_{i}^{p-1} \in R$. Hence the element $\sum\left(\bar{x}_{i}-h_{i} \bar{N}_{i}\right) \bar{e}_{i}$ belongs to the kernel of \bar{k} and therefore is a linear combination of $\bar{e}_{i j}$. It follows that \bar{x} is a linear combination of $\bar{e}_{i j}$ and $\bar{N}_{i} \bar{e}_{i}$, hence x is a linear combination of $e_{i j}$ and f_{i}.

Let $\varepsilon_{i}: R^{r} \rightarrow \mathbb{Z}$ be the i-th projection followed by the augmentation map ε. It follows from Lemma [.]4 that $\varepsilon_{i}(N)=p \mathbb{Z}$ for every i. Moreover, the G-homomorphism

$$
l: N \rightarrow \mathbb{Z}^{r}, \quad m \mapsto\left(\varepsilon_{1}(m) / p, \ldots, \varepsilon_{r}(m) / p\right)
$$

is surjective. Set $M=\operatorname{Ker}(l)$ and $Q=R^{r} / M$.
Lemma 3.5. The G-module M is generated by $e_{i j}$.
Proof. Let M^{\prime} be the submodule of N generated by $e_{i j}$. Clearly, $M^{\prime} \subset M$. Note also that $\left(\sigma_{j}-1\right) f_{i}=N_{i} e_{i j} \in M^{\prime}$, hence $I f_{i} \subset M^{\prime}$.

Suppose that $m \in M$. By Lemma B.4, modifying m by an element in M^{\prime} we can assume that $m=\sum_{i=1}^{r} x_{i} f_{i}$ for some $x_{i} \in R$. As $l(m)=0$, we have $\varepsilon\left(x_{i}\right)=0$, i.e., $x_{i} \in I$ for all i, hence $m \in \sum I f_{i} \subset M^{\prime}$.

Let $P^{\Phi}, S^{\Phi}, T^{\Phi}, U^{\Phi}$ and V^{Φ} be the algebraic tori over F with the character G-modules R^{r}, Q, M, I and N, respectively. The diagram of homomorphisms of G-modules with exact columns and rows

yields the following diagram of homomorphisms of the tori

Let K / F be a field extension. Set $K L:=K \otimes_{F} L$. The exact sequence of G-modules

$$
\begin{equation*}
0 \rightarrow I \rightarrow R \rightarrow \mathbb{Z} \rightarrow 0 \tag{6}
\end{equation*}
$$

gives an exact sequence of the tori

$$
1 \rightarrow \mathbb{G}_{m} \rightarrow R_{L / F}\left(\mathbb{G}_{m, L}\right) \rightarrow U \rightarrow 1
$$

and then an exact sequence

$$
0 \rightarrow H^{1}\left(K, U^{\Phi}\right) \rightarrow H^{2}\left(K, \mathbb{G}_{m}\right) \rightarrow H^{2}\left(K L, \mathbb{G}_{m}\right) .
$$

Hence

$$
\begin{equation*}
H^{1}\left(K, U^{\Phi}\right) \simeq \operatorname{Br}(K L / K) . \tag{7}
\end{equation*}
$$

Lemma 3.6. The homomorphism $\left(K^{\times}\right)^{r} \rightarrow H^{1}\left(K, U^{\Phi}\right) \simeq \operatorname{Br}(K L / K)$ induced by the first row of the diagram (回) takes $\left(x_{1}, \ldots, x_{r}\right)$ to $\sum_{i=1}^{r}\left(\left(\chi_{i}\right)_{K} \cup\left(x_{i}\right)\right)$.

Proof. Consider the composition

$$
\begin{equation*}
h: \operatorname{Hom}_{G}\left(\mathbb{Z}^{r}, \mathbb{Z}\right) \rightarrow \operatorname{Ext}_{G}^{1}(I, \mathbb{Z}) \rightarrow \operatorname{Ext}_{G}^{2}(\mathbb{Z}, \mathbb{Z})=H^{2}(G, \mathbb{Z})=\operatorname{Ch}(G), \tag{8}
\end{equation*}
$$

where the first homomorphism is induced by the bottom row of the diagram (\mathbb{I}) and the second one - by the exact sequence (${ }^{(\mathbb{C}}$).

We claim that for any k, the image of the k-th projection $p_{k}: \mathbb{Z}^{r} \rightarrow \mathbb{Z}$ under the composition (\mathbb{B}) coincides with χ_{k}. Consider the G-homomorphism $R^{r} \rightarrow \mathbb{Q}$, taking e_{k} to $1 / p$ and e_{i} to 0 for all $i \neq k$. By Lemma [3.D, this homomorphism vanishes on M and hence it factors through a map $Q \rightarrow \mathbb{Q}$. Thus, we have a commutative diagram

for the map f_{k} defined by $f_{k}\left(\sigma_{k}-1\right)=1 / p+\mathbb{Z}$ and $f_{k}\left(\sigma_{i}-1\right)=0$ for all $i \neq k$.
Let α be the image of the class of the top row of ($\mathbb{\nabla})$ under the map $p_{k}^{*}: \operatorname{Ext}_{G}^{1}\left(I, \mathbb{Z}^{r}\right) \rightarrow \operatorname{Ext}_{G}^{1}(I, \mathbb{Z})$. Then $h\left(p_{k}\right)$ is the image of α under the second map in the composition ($(\mathbb{})$. Hence $h\left(p_{k}\right)$ is also the image of the class β of the sequence ($\mathbb{B}^{(G)}$) under the connecting map $H^{1}(G, I)=\operatorname{Ext}_{G}^{1}(\mathbb{Z}, I) \rightarrow$ $\operatorname{Ext}_{G}^{2}(\mathbb{Z}, \mathbb{Z})=H^{2}(G, \mathbb{Z})$ induced by the exact sequence representing the class α.

The diagram（ $\mathbb{(1)}$ ）yields a commutative diagram

As we have shown，$p_{k}^{*}(\partial(\beta))=h\left(p_{k}\right)$ ．Therefore，it suffices to prove that $f_{k}^{*}(\beta)=\chi_{k}$ ．The cocycle β satisfies $\beta\left(\sigma_{i}\right)=\sigma_{i}-1$ ．It follows that $f_{k}^{*}(\beta)\left(\sigma_{k}\right)=$ $f_{k}\left(\sigma_{k}-1\right)=1 / p+\mathbb{Z}$ and $f_{k}^{*}(\beta)\left(\sigma_{i}\right)=0$ for all $i \neq k$ ．This proves the claim．

Consider the commutative diagram

where the vertical homomorphisms are given by the cup－products．By the claim，the image of the tuple $\left(x_{1}, \ldots, x_{r}\right)$ under the diagonal composition is equal to $\sum_{i=1}^{r}\left(\left(\chi_{i}\right)_{K} \cup\left(x_{i}\right)\right)$ ．On the other hand，the bottom composition coincides with $\left(K^{\times}\right)^{r} \rightarrow H^{1}\left(K, U^{\Phi}\right) \simeq \operatorname{Br}(K L / K)$ ．
Corollary 3．7．The map $H^{1}\left(K, U^{\Phi}\right) \rightarrow H^{1}\left(K, S^{\Phi}\right)$ induces an isomorphism $H^{1}\left(K, S^{\Phi}\right) \simeq \operatorname{Br}_{\text {ind }}(K L / K)$ ．

It follows from Corollary 5.7 and the triviality of the group $H^{1}\left(K, P^{\Phi}\right)$ that we have a commutative diagram

with surjective homomorphisms．
3．3．The element a ．Let a^{\prime} be the image of the generic point of V^{Φ} over $K=F\left(V^{\Phi}\right)$ in $\operatorname{Br}\left(L\left(V^{\Phi}\right) / F\left(V^{\Phi}\right)\right)$ in the diagram（［⿴囗⿰丿㇄ ）．Choose also an element $a \in \operatorname{Br}\left(L\left(T^{\Phi}\right) / F\left(T^{\Phi}\right)\right)$ corresponding to the generic point of T^{Φ} over $F\left(T^{\Phi}\right)$ ． The field $F\left(T^{\Phi}\right)$ is a subfield of $F\left(V^{\Phi}\right)$ and the classes $a_{F\left(V^{\Phi}\right)}$ and a^{\prime} are equal in $\operatorname{Br}_{\text {ind }}\left(L\left(V^{\Phi}\right) / F\left(V^{\Phi}\right)\right.$ ）．It follows that $p a_{F\left(V^{\Phi}\right)}=p a^{\prime}$ in $\operatorname{Br} F\left(V^{\Phi}\right)$ ．

The exact sequence of G－modules

$$
0 \rightarrow L^{\times} \oplus N \rightarrow L\left(V^{\Phi}\right)^{\times} \rightarrow \operatorname{Div}\left(V_{L}^{\Phi}\right) \rightarrow 0
$$

induces an exact sequence

$$
H^{1}\left(G, \operatorname{Div}\left(V_{L}^{\Phi}\right)\right) \rightarrow H^{2}\left(G, L^{\times}\right) \oplus H^{2}(G, N) \rightarrow H^{2}\left(G, L\left(V^{\Phi}\right)^{\times}\right)
$$

As $\operatorname{Div}\left(V_{L}^{\Phi}\right)$ is a permutation G－module，the first term in the sequence is trivial． Therefore，we get an injective homomorphism

$$
\varphi: H^{2}(G, N) \rightarrow \operatorname{Br} F\left(V^{\Phi}\right) / \operatorname{Br}(F)
$$

$$
H^{2}(G, N) \simeq H^{1}(G, I) \simeq \hat{H}^{0}(G, \mathbb{Z})=\mathbb{Z} / p^{r} \mathbb{Z}
$$

thus, $H^{2}(G, N)$ has a canonical generator ξ of order p^{r}.
Lemma 3.8. (cf., [[D], Lemma 2.4]) We have $\varphi(\xi)=-a^{\prime}+\operatorname{Br}(F)$.
Proof. Consider the following diagram

By [$[\mathbb{Z}, \mathrm{Ch} . \mathrm{XIV}]$, the images of $1_{\mathbb{Z}}$ and -1_{I} agree in $\operatorname{Ext}_{G}^{1}(\mathbb{Z}, I)$ and the images of 1_{N} and -1_{I} agree in $\operatorname{Ext}_{G}^{1}(I, N)$. It follows from [[], Ch. V, Prop. 4.1] that the upper square is anticommutative. The image of $1_{\mathbb{Z}}$ is equal to $\varphi(\xi)$ and the image of 1_{N} is equal to $a^{\prime}+\operatorname{Br}(F)$ in the right bottom corner.

Corollary 3.9. If $r \geq 2$, then the class $p^{r-1} a$ in $\operatorname{Br} F\left(T^{\Phi}\right)$ does not belong to the image of $\operatorname{Br}(F) \rightarrow \operatorname{Br} F\left(T^{\Phi}\right)$.

Proof. The image of $p^{r-1} a$ in $\operatorname{Br} F\left(V^{\Phi}\right)$ coincides with $p^{r-1} a^{\prime}$. Modulo the image of the map $\operatorname{Br}(F) \rightarrow \operatorname{Br} F\left(V^{\Phi}\right)$, the class $p^{r-1} a^{\prime}$ is equal to $-\varphi\left(p^{r-1} \xi\right)$ and therefore, is nonzero as φ is injective.

4. Essential dimension of algebraic tori

Let S be an algebraic torus over F with the splitting group G. We assume that G is a p-group of order p^{r}. Let X be the G-module of characters of S. A p-presentation of X is a G-homomorphism $f: P \rightarrow X$ with P a permutation G-module and finite cokernel of order prime to p. A p-presentation with the smallest $\operatorname{rank}(P)$ is called minimal.

Essential p-dimension of algebraic tori was determined in [四, Th. 1.4]:
Theorem 4.1. Let S be an algebraic torus over F with the (finite) splitting group G, X the G-module of characters of S and $f: P \rightarrow X$ a minimal p-presentation of X. Then $\operatorname{ed}_{p}(S)=\operatorname{rank}(\operatorname{Ker}(f))$.

Corollary 4.2. Suppose that X admits a surjective minimal p-presentation $f: P \rightarrow X$. Then $\operatorname{ed}(S)=\operatorname{ed}_{p}(S)=\operatorname{rank}(\operatorname{Ker}(f))$.

Proof. As explained in Example [3.3, a surjective G-homomorphism f yields a generically free representation of S of dimension $\operatorname{rank}(P)$. By [[6], §3],

$$
\operatorname{ed}_{p}(S) \leq \operatorname{ed}(S) \leq \operatorname{rank}(P)-\operatorname{dim}(S)=\operatorname{rank}(\operatorname{Ker}(f))
$$

In this section we derive from Theorem an explicit formula for the essential p-dimension of algebraic tori.

Define the group $\bar{X}:=X /(p X+I X)$, where I is the augmentation ideal in $R=\mathbb{Z}[G]$. For any subgroup $H \subset G$, consider the composition $X^{H} \hookrightarrow X \rightarrow$ \bar{X}. For every k, let V_{k} denote the image of the homomorphism

$$
\coprod_{H \subset G} X^{H} \rightarrow \bar{X}
$$

where the coproduct is taken over all subgroups H with $[G: H] \leq p^{k}$. We have the sequence of subgroups

$$
\begin{equation*}
0=V_{-1} \subset V_{0} \subset \cdots \subset V_{r}=\bar{X} \tag{11}
\end{equation*}
$$

Theorem 4.3. We have the following explicit formula for the essential pdimension of S :

$$
\operatorname{ed}_{p}(S)=\sum_{k=0}^{r}\left(\operatorname{rank} V_{k}-\operatorname{rank} V_{k-1}\right) p^{k}-\operatorname{dim}(S)
$$

Proof. Set $b_{k}=\operatorname{rank}\left(V_{k}\right)$. By Theorem [.] , it suffices to prove that the smallest rank of the G-module P is a p-presentation of X is equal to $\sum_{k=0}^{r}\left(b_{k}-b_{k-1}\right) p^{k}$.

Let $f: P \rightarrow X$ be a p-presentation of X and A a G-invariant basis of P. The set A is the disjoint union of the G-orbits A_{j}, so that P is the direct sum of the permutation G-modules $\mathbb{Z}\left[A_{j}\right]$.

The composition $\bar{f}: P \rightarrow X \rightarrow \bar{X}$ is surjective. As G acts trivially on \bar{X}, the rank of the group $\bar{f}\left(\mathbb{Z}\left[A_{j}\right]\right)$ is at most 1 for all j and $\bar{f}\left(\mathbb{Z}\left[A_{j}\right]\right) \subset V_{k}$ if $\left|A_{j}\right| \leq p^{k}$. It follows that the group \bar{X} / V_{k} is generated by the images under the composition $P \xrightarrow{\bar{f}} \bar{X} \rightarrow \bar{X} / V_{k}$ of all $\mathbb{Z}\left[A_{j}\right]$ with $\left|A_{j}\right|>p^{k}$. Denote by c_{k} the number of such orbits A_{j}, so we have

$$
c_{k} \geq \operatorname{rank}\left(\bar{X} / V_{k}\right)=b_{r}-b_{k} .
$$

Set $c_{k}^{\prime}=b_{r}-c_{k}$, so that $b_{k} \geq c_{k}^{\prime}$ for all k and $b_{r}=c_{r}^{\prime}$.
Since the number of orbits A_{j} with $\left|A_{j}\right|=p^{k}$ is equal to $c_{k-1}-c_{k}$, we have

$$
\begin{aligned}
& \operatorname{rank}(P)=\sum_{k=0}^{r}\left(c_{k-1}-c_{k}\right) p^{k}=\sum_{k=0}^{r}\left(c_{k}^{\prime}-c_{k-1}^{\prime}\right) p^{k}= \\
& c_{r}^{\prime} p^{r}+\sum_{k=0}^{r-1} c_{k}^{\prime}\left(p^{k}-p^{k+1}\right) \geq b_{r} p^{r}+\sum_{k=0}^{r-1} b_{k}\left(p^{k}-p^{k+1}\right)=\sum_{k=0}^{r}\left(b_{k}-b_{k-1}\right) p^{k} .
\end{aligned}
$$

It remains to construct a p-presentation with P of rank $\sum_{k=0}^{r}\left(b_{k}-b_{k-1}\right) p^{k}$. For every $k \geq 0$ choose a subset X_{k} in X of the pre-image of V_{k} under the canonical map $X \rightarrow \bar{X}$ with the property that for any $x \in X_{k}$ there is a subgroup $H_{x} \subset G$ with $x \in X^{H_{x}}$ and $\left[G: H_{x}\right]=p^{k}$ such that the composition

$$
X_{k} \rightarrow V_{k} \rightarrow V_{k} / V_{k-1}
$$

yields a bijection between X_{k} and a basis of V_{k} / V_{k-1}. In particular, $\left|X_{k}\right|=$ $b_{k}-b_{k-1}$. Consider the G-homomorphism

$$
f: P:=\coprod_{k=0}^{r} \coprod_{x \in X_{k}} \mathbb{Z}\left[G / H_{x}\right] \rightarrow X,
$$

taking 1 in $\mathbb{Z}\left[G / H_{x}\right]$ to x in X.
By construction, the composition of f with the canonical map $X \rightarrow \bar{X}$ is surjective. As G is a p-group, the ideal $p R_{(p)}+I$ of $R_{(p)}$ is the Jacobson radical of the ring $R_{(p)}:=R \otimes \mathbb{Z}_{(p)}$. By the Nakayama Lemma, $f_{(p)}$ is surjective. Hence the cokernel of f is finite of order prime to p. The rank of the permutation G-module P is equal to

$$
\sum_{k=0}^{r} \sum_{x \in X_{k}} p^{k}=\sum_{k=0}^{r}\left|X_{k}\right| p^{k}=\sum_{k=0}^{r}\left(b_{k}-b_{k-1}\right) p^{k} .
$$

Remark 4.4. In the context of finite p-groups, Theorem 4.3 was proved in [[ـ⿹\zh4, Th. 1.2].

Example 4.5. Let F be a field, Φ a subgroup of ${ }_{p} \operatorname{Ch}(F)$ of $\operatorname{rank} r, L=F(\Phi)$ and $G=\operatorname{Gal}(L / F)$. Consider the torus U^{Φ} with the character group the augmentation ideal I defined in Section [5.2.

The middle row of ($\mathbb{\square}$) yields an exact sequence

$$
\bar{N} \rightarrow(\bar{R})^{r} \rightarrow \bar{I} \rightarrow 0 .
$$

It follows from Lemma 3.4 that $N \subset p R^{r}+I^{r}$, hence the first homomorphism in the sequence is trivial. The middle group is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{r}$, hence $\operatorname{rank}(\bar{I})=r$.

For any subgroup $H \subset G$, the Tate cohomology group $\hat{H}^{0}(H, I) \simeq \hat{H}^{-1}(H, \mathbb{Z})$ is trivial. It follows that the group I^{H} is generated by $N_{H} x$ for all $x \in I$, where $N_{H}=\sum_{h \in H} h \in R$. Since \bar{I} is of period p with trivial G-action, the classes of the elements $N_{H} x$ in \bar{I} are trivial if H is a nontrivial subgroup of G. It follows that the maps $I^{H} \rightarrow \bar{I}$ are trivial for all $H \neq 1$. In the notation of (띠), $V_{0}=\cdots=V_{r-1}=0$ and $V_{r}=\bar{I}$. By Theorem [.3.3,

$$
\operatorname{ed}_{p}\left(U^{\Phi}\right)=r p^{r}-\operatorname{dim}\left(U^{\Phi}\right)=r p^{r}-p^{r}+1=(r-1) p^{r}+1
$$

and the rank of the permutation module in a minimal p-presentation of I is equal to $r p^{r}$. Therefore, $k: R^{r} \rightarrow I$ is a minimal p-presentation of I that appears to be surjective. Therefore, by Corollary (4.2,

$$
\begin{equation*}
\operatorname{ed}\left(U^{\Phi}\right)=\operatorname{ed}_{p}\left(U^{\Phi}\right)=(r-1) p^{r}+1 . \tag{12}
\end{equation*}
$$

Let S^{Φ} be the torus with the character group Q defined in Section $\$ 2$. As in ((\mathbb{d}), the homomorphism k factors through a surjective map $R^{r} \rightarrow Q$ that is then necessarily a minimal p-presentation of Q. According to Theorem 6.3 and Corollary [.2],

$$
\begin{equation*}
\operatorname{ed}\left(S^{\Phi}\right)=\operatorname{ed}_{p}\left(S^{\Phi}\right)=r p^{r}-\operatorname{dim}\left(S^{\Phi}\right)=(r-1) p^{r}-r+1 \tag{13}
\end{equation*}
$$

5. Degeneration

In this section we study the behavior of the essential p-dimension under degeneration, i.e. we compare the essential p-dimension of an object over a complete discrete valued field and its specialization over the residue field (Proposition 5.7). The iterated degeneration (Corollary [.4) connects a class in the Brauer group degree p^{r} over some (large) field and the elements of the indecomposable relative Brauer group that are torsors for a certain torus.
5.1. A simple degeneration. Let F be a field, p a prime integer different from $\operatorname{char}(F)$ and $\Phi \subset{ }_{p} \operatorname{Ch}(F)$ a finite subgroup. For an integer $k \geq 0$ and a field extension K / F, let

$$
\mathcal{B}_{k}^{\Phi}(K)=\left\{a \in \operatorname{Br}(K)\{p\} \quad \text { such that } \quad \text { ind } a_{K(\Phi)} \leq p^{k}\right\} .
$$

Two elements a and a^{\prime} in $\mathcal{B}_{k}^{\Phi}(K)$ are equivalent if $a-a^{\prime} \in \operatorname{Br}_{\operatorname{dec}}(K(\Phi) / K)$. Write $\mathcal{F}_{k}^{\Phi}(K)$ for the set of equivalence classes in $\mathcal{B}_{k}^{\Phi}(K)$. Abusing notation we shall write a for the equivalence class of an element $a \in \mathcal{B}_{k}^{\Phi}(K)$ in $\mathcal{F}_{k}^{\Phi}(K)$.

We view \mathcal{B}_{k}^{Φ} and \mathcal{F}_{k}^{Φ} as functors from Fields $/ F$ to Sets.
Example 5.1. (1) If Φ is the zero subgroup, then $\mathcal{F}_{r}^{\Phi}=\mathcal{B}_{r}^{\Phi} \simeq \operatorname{CSA}\left(p^{r}\right) \simeq$ PGL $\left(p^{r}\right)$-torsors.
(2) The set $\mathcal{B}_{0}^{\Phi}(K)$ is naturally bijective to $\operatorname{Br}(K(\Phi) / K)$ and $\mathcal{F}_{0}^{\Phi}(K) \simeq$ $\mathrm{Br}_{\text {ind }}(K(\Phi) / K)$. By Corollary [.], the latter group is naturally isomorphic to $H^{1}\left(K, S^{\Phi}\right)$, where S^{Φ} is the torus defined in Section [2. thus, $\mathcal{F}_{0}^{\Phi} \simeq$ S^{Φ} - torsors.

Let $\Phi^{\prime} \subset \Phi$ be a subgroup of index p and $\eta \in \Phi \backslash \Phi^{\prime}$, hence $\Phi=\left\langle\Phi^{\prime}, \eta\right\rangle$. Let E / F be a field extension such that $\eta_{E} \notin \Phi_{E}^{\prime}$ in $\operatorname{Ch}(E)$. Choose an element $a \in \mathcal{B}_{k}^{\Phi}(E)$, i.e., $a \in \operatorname{Br}(E)\{p\}$ and $\operatorname{ind}\left(a_{E(\Phi)}\right) \leq p^{k}$.

Let E^{\prime} be a field extension of F that is complete with respect to a discrete valuation v^{\prime} over F with residue field E and set

$$
\begin{equation*}
a^{\prime}=\widehat{a}+\left(\widehat{\eta}_{E} \cup(x)\right) \in \operatorname{Br}\left(E^{\prime}\right), \tag{14}
\end{equation*}
$$

for some $x \in E^{\prime \times}$ such that $v^{\prime}(x)$ is not divisible by p. By Proposition $\amalg 2(2)$, $\operatorname{ind}\left(a_{E^{\prime}\left(\Phi^{\prime}\right)}^{\prime}\right)=p \cdot \operatorname{ind}\left(a_{E(\Phi)}\right) \leq p^{k+1}$, hence $a^{\prime} \in \mathcal{B}_{k+1}^{\Phi^{\prime}}\left(E^{\prime}\right)$.
Proposition 5.2. Suppose that for any finite field extension N / E of degree prime to p and any character $\rho \in \operatorname{Ch}(N)$ of order p^{2} such that $p \cdot \rho \in \Phi_{N} \backslash \Phi_{N}^{\prime}$, we have ind $a_{N\left(\Phi^{\prime}, \rho\right)}>p^{k-1}$. Then

$$
\operatorname{ed}_{p}^{\mathcal{F}_{k+1}^{\Phi^{\prime}}}\left(a^{\prime}\right) \geq \operatorname{ed}_{p}^{\mathcal{F}_{k}^{\Phi}}(a)+1
$$

Proof. Let M / E^{\prime} be a finite field extension of degree prime to $p, M_{0} \subset M$ a subfield over F and $a_{0}^{\prime} \in \mathcal{B}_{k+1}^{\Phi^{\prime}}\left(M_{0}\right)$ such that $\left(a_{0}^{\prime}\right)_{M}=a_{M}^{\prime}$ in $\mathcal{F}_{k+1}^{\Phi^{\prime}}$ and tr. $\operatorname{deg}_{F}\left(M_{0}\right)=\operatorname{ed}_{p}^{\mathcal{F}_{k+1}^{\Phi^{\prime}}}\left(a^{\prime}\right)$. We have

$$
\begin{equation*}
a_{M}^{\prime}-\left(a_{0}^{\prime}\right)_{M} \in \operatorname{Br}_{\mathrm{dec}}\left(M\left(\Phi^{\prime}\right) / M\right) . \tag{15}
\end{equation*}
$$

It follows from ([]4) that

$$
\begin{equation*}
a_{M}^{\prime}=\widehat{a}_{N}+\left(\widehat{\eta}_{N} \cup(x)\right) \tag{16}
\end{equation*}
$$

and $\partial_{v^{\prime}}\left(a^{\prime}\right)=q \cdot \eta_{E}$, where $q=v^{\prime}(x)$ is relatively prime to p. We extend the discrete valuation v^{\prime} on E^{\prime} to a (unique) discrete valuation v on M. The ramification index e^{\prime} and inertia degree are both prime to p. Thus, the residue field N of v is a finite extension of E of degree prime to p. By Proposition L2.2(3),

$$
\begin{equation*}
\partial_{v}\left(a_{M}^{\prime}\right)=e^{\prime} \cdot \partial_{v^{\prime}}\left(a^{\prime}\right)_{N}=e^{\prime} q \cdot \eta_{N} . \tag{17}
\end{equation*}
$$

Let v_{0} be the restriction of v to M_{0} and N_{0} its residue field. It follows from (때) that

$$
\begin{equation*}
\partial_{v}\left(a_{M}^{\prime}\right)-\partial_{v}\left(\left(a_{0}^{\prime}\right)_{M}\right) \in \Phi_{N}^{\prime} . \tag{18}
\end{equation*}
$$

Recall that $\eta_{E} \notin \Phi_{E}^{\prime}$. As $[N: E]$ is not divisible by p, it follows that

$$
\begin{equation*}
\eta_{N} \notin \Phi_{N}^{\prime} . \tag{19}
\end{equation*}
$$

 is nontrivial, i.e., v_{0} is a discrete valuation on M_{0}.

Let $\eta_{0}:=\partial_{v_{0}}\left(a_{0}^{\prime}\right) \in \mathrm{Ch}\left(N_{0}\right)\{p\}$. By Proposition $\mathbb{L 2}(3)$,

$$
\begin{equation*}
\partial_{v}\left(\left(a_{0}^{\prime}\right)_{M}\right)=e \cdot\left(\eta_{0}\right)_{N}, \tag{20}
\end{equation*}
$$

where e is the ramification index of M / M_{0}, hence $\left(\eta_{0}\right)_{N} \neq 0$. It follows from

$$
\begin{equation*}
e^{\prime} q \cdot \eta_{N}-e \cdot\left(\eta_{0}\right)_{N} \in \Phi_{N}^{\prime} . \tag{21}
\end{equation*}
$$

As $e^{\prime} q$ is relatively prime to p,

$$
\begin{equation*}
\eta_{N} \in\left\langle\Phi_{N}^{\prime},\left(\eta_{0}\right)_{N}\right\rangle \quad \text { in } \quad \operatorname{Ch}(N) . \tag{22}
\end{equation*}
$$

Let $p^{t}(t \geq 1)$ be the order of $\left(\eta_{0}\right)_{N}$. It follows from (\mathbb{T}) and (\mathbb{Z}) that $v_{p}(e)=t-1$ and

$$
\begin{equation*}
p^{t-1} \cdot\left(\eta_{0}\right)_{N} \in \Phi_{N} \backslash \Phi_{N}^{\prime} \tag{23}
\end{equation*}
$$

Choose a prime element π_{0} in M_{0} and write

$$
\begin{equation*}
\left(a_{0}^{\prime}\right)_{\widehat{M}_{0}}=\widehat{a}_{0}+\left(\widehat{\eta}_{0} \cup\left(\pi_{0}\right)\right) \tag{24}
\end{equation*}
$$

in $\operatorname{Br}\left(\widehat{M}_{0}\right)$, where $a_{0} \in \operatorname{Br}\left(N_{0}\right)\{p\}$.
Applying the specialization homomorphism $s_{\pi}: \operatorname{Br}(M)\{p\} \rightarrow \operatorname{Br}(N)\{p\}$

$$
\begin{equation*}
a_{N}-\left(a_{0}\right)_{N} \in \operatorname{Br}_{\mathrm{dec}}\left(N\left(\Phi^{\prime}, \eta_{0}\right) / N\right) \tag{25}
\end{equation*}
$$

It follows from (2.5) that

$$
\begin{equation*}
a_{N\left(\Phi^{\prime}, \eta_{0}\right)}=\left(a_{0}\right)_{N\left(\Phi^{\prime}, \eta_{0}\right)} \tag{26}
\end{equation*}
$$

in $\operatorname{Br}\left(N\left(\Phi^{\prime}, \eta_{0}\right)\right)$.
By ([2]),

$$
\left(a_{0}^{\prime}\right)_{\widehat{M}_{0}\left(\Phi^{\prime}\right)}={\widehat{\left(a_{0}\right)}}_{N_{0}\left(\Phi^{\prime}\right)}+\left({\widehat{\left(\eta_{0}\right)_{N_{0}\left(\Phi^{\prime}\right)}}} \cup\left(\pi_{0}\right)\right) .
$$

As no nontrivial multiple of $\left(\eta_{0}\right)_{N}$ belongs to Φ_{N}^{\prime} by ([2.3), the order of the character $\left(\eta_{0}\right)_{N_{0}\left(\Phi^{\prime}\right)}$ is at least p^{t}. It follow from Proposition $\Psi 2(2)$ that

$$
\begin{equation*}
\operatorname{ind}\left(a_{0}\right)_{N_{0}\left(\Phi^{\prime}, \eta_{0}\right)}=\operatorname{ind}\left(a_{0}^{\prime}\right)_{\widehat{M}_{0}\left(\Phi^{\prime}\right)} / \operatorname{ord}\left(\eta_{0}\right)_{N_{0}\left(\Phi^{\prime}\right)} \leq p^{k+1} / p^{t}=p^{k-t+1} \tag{27}
\end{equation*}
$$

By (266) and (27),

$$
\begin{equation*}
\operatorname{ind}\left(a_{N\left(\Phi^{\prime}, \eta_{0}\right)}\right) \leq p^{k-t+1} \tag{28}
\end{equation*}
$$

Suppose that $t \geq 2$ and consider the character $\rho=p^{t-2} \cdot\left(\eta_{0}\right)_{N}$ of order p^{2} in $\operatorname{Ch}(N)$. We have $p \cdot \rho=p^{t-1}\left(\eta_{0}\right)_{N} \in \Phi_{N} \backslash \Phi_{N}^{\prime}$ by ([23). Moreover, the degree of the field extension $N\left(\Phi^{\prime}, \eta_{0}\right) / N\left(\Phi^{\prime}, \rho\right)$ is equal to p^{t-2}. Hence by (28),

$$
\operatorname{ind}\left(a_{N\left(\Phi^{\prime}, \rho\right)}\right) \leq \operatorname{ind}\left(a_{N\left(\Phi^{\prime}, \eta_{0}\right)}\right) \cdot p^{t-2} \leq p^{k-t+1} \cdot p^{t-2}=p^{k-1}
$$

This contradicts the assumption. Therefore, $t=1$, i.e., $\operatorname{ord}\left(\eta_{0}\right)_{N}=p$. Then (e, p) $=1$ and it follows from (\mathbb{Z}) that $\left(\eta_{0}\right)_{N} \in\left\langle\Phi_{N}^{\prime}, \eta_{N}\right\rangle$. Moreover,

$$
\begin{equation*}
\left\langle\Phi^{\prime}, \eta_{0}\right\rangle_{N}=\left\langle\Phi^{\prime}, \eta\right\rangle_{N}=\Phi_{N} . \tag{29}
\end{equation*}
$$

By Lemma [2.], there is a finite subextension N_{1} / N_{0} of N / N_{0} such that $\left\langle\Phi^{\prime}, \eta_{0}\right\rangle_{N_{1}}=\Phi_{N_{1}}$. Replacing N_{0} by N_{1} and a_{0} by $\left(a_{0}\right)_{N_{1}}$, we may assume that $\left\langle\Phi^{\prime}, \eta_{0}\right\rangle_{N_{0}}=\Phi_{N_{0}}$. In particular, η_{0} is of order p in $\operatorname{Ch}\left(N_{0}\right)$.

Since by ($\mathbb{Z 7}$),

$$
\operatorname{ind}\left(a_{0}\right)_{N_{0}(\Phi)}=\operatorname{ind}\left(a_{0}\right)_{N_{0}\left(\Phi^{\prime}, \eta_{0}\right)} \leq p^{k},
$$

we have $a_{0} \in \mathcal{B}_{k}^{\Phi}\left(N_{0}\right)$.
It follows from (25) that

$$
a_{N}-\left(a_{0}\right)_{N} \in \operatorname{Br}_{\operatorname{dec}}(N(\Phi) / N)
$$

Hence the classes of a_{N} and $\left(a_{0}\right)_{N}$ are equal in $\mathcal{F}_{k}^{\Phi}(N)$. The class of a_{N} in $\mathcal{F}_{k}^{\Phi}(N)$ is then defined over N_{0}, therefore,

$$
\operatorname{ed}_{p}^{\mathcal{F}_{k+1}^{\Phi^{\prime}}}\left(a^{\prime}\right)=\operatorname{tr} \cdot \operatorname{deg}_{F}\left(M_{0}\right) \geq \operatorname{tr} \cdot \operatorname{deg}_{F}\left(N_{0}\right)+1 \geq \operatorname{ed}_{p}^{\mathcal{F}_{k}^{\Phi}}(a)+1 .
$$

5.2. Multiple degeneration. In this section we assume that the base field F contains a primitive p^{2}-th root of unity.

Let $\chi_{1}, \chi_{2}, \ldots, \chi_{r}$ be linearly independent characters in ${ }_{p} \operatorname{Ch}(F)$ and $\Phi=$ $\left\langle\chi_{1}, \chi_{2}, \ldots, \chi_{r}\right\rangle$. Let E / F be a field extension such that $\operatorname{rank}\left(\Phi_{E}\right)=r$ and let $a \in \operatorname{Br}(E)\{p\}$ be an element that is split by $E(\Phi)$.

Let $E_{0}=E, E_{1}, \ldots, E_{r}$ be field extensions of F such that for any $k=$ $1,2, \ldots, r$, the field E_{k} is complete with respect to a discrete valuation v_{k} over F and E_{k-1} is its residue field. For any $k=1,2, \ldots, r$, choose elements $x_{k} \in E_{k}^{\times}$
such that $v_{k}\left(x_{k}\right)$ is not divisible by p and define the elements $a_{k} \in \operatorname{Br}\left(E_{k}\right)\{p\}$ inductively by $a_{0}=a$ and $a_{k}=\widehat{a_{k-1}}+\left(\widehat{\left(\chi_{k}\right)_{E_{k-1}}} \cup\left(x_{k}\right)\right)$ ．

Let Φ_{k} be the subgroup of Φ generated by $\chi_{k+1}, \ldots, \chi_{r}$ ．Thus，$\Phi_{0}=\Phi$ ， $\Phi_{r}=0$ and $\operatorname{rank}\left(\Phi_{k}\right)=r-k$ ．Note that the character $\left(\chi_{k}\right)_{E_{k-1}\left(\Phi_{k}\right)}$ is not trivial．It follows from Proposition $\overline{L 2(2)}$ that

$$
\operatorname{ind}\left(a_{k}\right)_{E_{k}\left(\Phi_{k}\right)}=p \cdot \operatorname{ind}\left(a_{k-1}\right)_{E_{k-1}\left(\Phi_{k-1}\right)}
$$

for any $k=1, \ldots, r$ ．As ind $a_{E(\Phi)}=1$ ，we have $\operatorname{ind}\left(a_{k}\right)_{E_{k}\left(\Phi_{k}\right)}=p^{k}$ for all $k=0,1, \ldots, r$ ．In particular，$a_{k} \in \mathcal{B}_{k}^{\Phi_{k}}\left(E_{k}\right)$ ．

The followings lemma assures that under a certain restriction on the element a ，the conditions of Proposition 5.2 are satisfied for the fields E_{k} ，the groups of characters Φ_{k} and the elements a_{k} ．

Lemma 5．3．Suppose that $a_{E(\Psi)} \notin \operatorname{Im}(\operatorname{Br} F(\Psi) \rightarrow \operatorname{Br} E(\Psi))$ for any proper subgroup $\Psi \subset \Phi$ ．Then for every $k=0,1, \ldots, r-1$ ，and any finite field extension N / E_{k} of degree prime to p and any character $\rho \in \operatorname{Ch}(N)$ of order p^{2} such that $p \cdot \rho \in\left(\Phi_{k}\right)_{N} \backslash\left(\Phi_{k+1}\right)_{N}$ ，we have

$$
\begin{equation*}
\operatorname{ind}\left(a_{k}\right)_{N\left(\Phi_{k+1}, \rho\right)}>p^{k-1} \tag{30}
\end{equation*}
$$

Proof．Let $k=0,1, \ldots, r-1$ and N / E_{k} be a finite field extension of degree prime to p ．We construct a new sequence of fields $\tilde{E}_{0}, \tilde{E}_{1}, \ldots, \tilde{E}_{r}$ such that each \tilde{E}_{i} is a finite extension of E_{i} of degree prime to p as follows．We set $\tilde{E}_{j}=N$ ． The fields \tilde{E}_{j} with $j<k$ are constructed by descending induction on j ．If we have constructed \tilde{E}_{j} as a finite extension of E_{j} of degree prime to p ，then we extend the valuation v_{j} to \tilde{E}_{j} and let \tilde{E}_{j-1} to be its residue field．The fields \tilde{E}_{j} with $j>k$ are constructed by induction on j ．If we have constructed \tilde{E}_{j} as a finite extension of E_{j} of degree prime to p ，then let \tilde{E}_{j+1} be an extension of E_{j+1} of degree $\left[\tilde{E}_{j}: E_{j}\right]$ with residue field \tilde{E}_{j} ．

Replacing E_{i} by \tilde{E}_{i} and a_{i} by $\left(a_{i}\right)_{\tilde{E}_{i}}$ ，we may assume that $N=E_{k}$ ．Let $\rho \in \operatorname{Ch}\left(E_{k}\right)$ be a character of order p^{2} ．We prove the inequality（B⿴囗⿰丿㇄心）by induction on r ．The case $r=1$ is obvious．Suppose first that $k<r-1$ ． Consider the fields $F^{\prime}=F\left(\chi_{r}\right), E^{\prime}=E\left(\chi_{r}\right), E_{i}^{\prime}=E_{i}\left(\chi_{r}\right)$ ，the sequence of characters $\chi_{i}^{\prime}=\left(\chi_{i}\right)_{F^{\prime}}$ and the sequence of elements $a_{i}^{\prime}:=\left(a_{i}\right)_{E_{i}^{\prime}} \in \operatorname{Br}\left(E_{i}^{\prime}\right)$ for $i=0,1, \ldots, r-1$ ．Let $\Phi^{\prime}=\left\langle\chi_{1}^{\prime}, \chi_{2}^{\prime}, \ldots, \chi_{r-1}^{\prime}\right\rangle$ and let Φ_{k}^{\prime} be the subgroup of Φ^{\prime} generated by $\chi_{k+1}^{\prime}, \ldots, \chi_{r-1}^{\prime}$ ．

Let $\Psi^{\prime} \subset \Phi^{\prime}$ be a proper subgroup．Then $\Psi:=\Psi^{\prime}+\left\langle\chi_{r}\right\rangle$ is a proper subgroup of Φ ．Since $F(\Psi)=F^{\prime}\left(\Psi^{\prime}\right)$ and $E(\Psi)=E^{\prime}\left(\Psi^{\prime}\right)$ ，we have $a_{E^{\prime}\left(\Psi^{\prime}\right)} \notin$ $\operatorname{Im}\left(\operatorname{Br} F^{\prime}\left(\Psi^{\prime}\right) \rightarrow \operatorname{Br} E^{\prime}\left(\Psi^{\prime}\right)\right)$ ．By induction，the inequality（B⿴囗⿰丿㇄ ）holds for the term a_{k}^{\prime} of the new sequence．As

$$
\left(a_{k}^{\prime}\right)_{E_{k}^{\prime}\left(\Phi_{k+1}^{\prime}, \rho\right)}=\left(a_{k}\right)_{E_{k}\left(\Phi_{k+1}, \rho\right)},
$$

the inequality（ $\mathbf{3} \mathbf{0}$ ）holds for the term a_{k} ．
Thus we can assume that $k=r-1$ ．

Case 1: The character ρ is unramified with respect to v_{r-1}, i.e., $\rho=\widehat{\mu}$ for a character $\mu \in \operatorname{Ch}\left(E_{r-2}\right)$ of order p^{2}. By Lemma [2.3(1),

$$
\begin{equation*}
\operatorname{ind}\left(a_{r-2}\right)_{E_{r-2}\left(\chi_{r-1}, \mu\right)}=\operatorname{ind}\left(a_{r-1}\right)_{E_{r-1}(\rho)} / p=\operatorname{ind}\left(a_{r-1}\right)_{E_{r-1}\left(\Phi_{r}, \rho\right)} / p . \tag{31}
\end{equation*}
$$

Consider the fields $F^{\prime}=F\left(\chi_{r-1}\right), E^{\prime}=E\left(\chi_{r-1}\right), E_{i}^{\prime}=E_{i}\left(\chi_{r-1}\right)$, the new sequence of characters $\chi_{1}, \ldots, \chi_{r-2}, \chi_{r}$ and the elements $a_{i}^{\prime} \in \operatorname{Br}\left(E_{i}^{\prime}\right)$ for $i=$ $0,1, \ldots, r-1$ defined by $a_{i}^{\prime}=\left(a_{i}\right)_{E_{i}^{\prime}}$ for $i \leq r-2$ and $a_{r-1}^{\prime}=\widehat{a}_{r-2}+\left(\widehat{\chi}_{r} \cup\left(x_{r-1}\right)\right)$ over E_{r-1}^{\prime}.

Let $\Phi^{\prime}=\left\langle\chi_{1}, \ldots, \chi_{r-2}, \chi_{r}\right\rangle$ and $\Psi^{\prime} \subset \Phi^{\prime}$ a proper subgroup. Then $\Psi:=\Psi^{\prime}+$ $\left\langle\chi_{r-1}\right\rangle$ is a proper subgroup of Φ. Since $F(\Psi)=F^{\prime}\left(\Psi^{\prime}\right)$ and $E(\Psi)=E^{\prime}\left(\Psi^{\prime}\right)$, we have $a_{E^{\prime}\left(\Psi^{\prime}\right)} \notin \operatorname{Im}\left(\operatorname{Br} F^{\prime}\left(\Psi^{\prime}\right) \rightarrow \operatorname{Br} E^{\prime}\left(\Psi^{\prime}\right)\right)$. By induction, the inequality (30) holds for the term a_{r-2}^{\prime} of the new sequence, the field $N=E_{r-2}^{\prime}$ and the character μ_{N}. As

$$
\left(a_{r-2}^{\prime}\right)_{E_{r-2}^{\prime}(\mu)}=\left(a_{r-2}\right)_{E_{r-2}\left(\chi_{r-1}, \mu\right)},
$$

Case 2: The character ρ is ramified. Note that $p \cdot \rho$ is a nonzero multiple of $\left(\chi_{r}\right)_{E_{r-1}}$. Suppose the inequality ($\mathbf{3} \mathbf{(0)}$) fails for a_{r-1}, i.e., we have

$$
\operatorname{ind}\left(a_{r-1}\right)_{E_{r-1}(\rho)} \leq p^{r-2}
$$

By Lemma $\mathbb{2 . 3 (2)}$, there exists a unit $u \in E_{r-1}$ such that $E_{r-2}\left(\chi_{r}\right)=$ $E_{r-2}\left(\bar{u}^{1 / p}\right)$ and

$$
\operatorname{ind}\left(a_{r-2}-\left(\chi_{r-1} \cup\left(\bar{u}^{1 / p}\right)\right)\right)_{E_{r-2}\left(\chi_{r}\right)}=\operatorname{ind}\left(a_{r-1}\right)_{E_{r-1}(\rho)} \leq p^{r-2} .
$$

By descending induction on $j=0,1, \ldots, r-2$ we show that there exist a unit u_{j} in E_{j+1} and a subgroup $\Theta_{j} \subset \Phi$ of rank $r-j-1$ such that $\chi_{r} \in \Theta_{j}$, $\left\langle\chi_{1}, \ldots, \chi_{j}, \chi_{r-1}\right\rangle \cap \Theta_{j}=0, E_{j}\left(\chi_{r}\right)=E_{j}\left(\bar{u}_{j}^{1 / p}\right)$ and

$$
\begin{equation*}
\operatorname{ind}\left(a_{j}-\left(\chi_{r-1} \cup\left(\bar{u}_{j}^{1 / p}\right)\right)\right)_{E_{j}\left(\Theta_{j}\right)} \leq p^{j} \tag{32}
\end{equation*}
$$

If $j=r-2$, we set $u_{j}=u$ and $\Theta_{j}=\left\langle\chi_{r}\right\rangle$.
$(j \Rightarrow j-1)$: The field $E_{j}\left(\bar{u}_{j}^{1 / p}\right)=E_{j}\left(\chi_{r}\right)$ is unramified over E_{j}, hence $v_{j}\left(\bar{u}_{j}\right)$ is divisible by p. Modifying u_{j} by a p^{2}-th power, we may assume that $\bar{u}_{j}=u_{j-1} x_{j}^{m p}$ for a unit $u_{j-1} \in E_{j}$ and an integer m. Then

$$
\left(a_{j}-\left(\chi_{r-1} \cup\left(\bar{u}_{j}^{1 / p}\right)\right)\right)_{E_{j}\left(\Theta_{j}\right)}=\widehat{b}+\left(\widehat{\eta} \cup\left(x_{j}\right)\right)_{E_{j}\left(\Theta_{j}\right)},
$$

where $\eta=\chi_{j}-m \chi_{r-1}$ and $b=\left(a_{j-1}-\left(\chi_{r-1} \cup\left(\bar{u}_{j-1}^{1 / p}\right)\right)\right)_{E_{j-1}\left(\Theta_{j}\right)}$. As η is not contained in Θ_{j}, the character $\eta_{E_{j-1}\left(\Theta_{j}\right)}$ is not trivial. Set $\Theta_{j-1}=\left\langle\Theta_{j}, \eta\right\rangle$. It follows from Proposition $\overline{22}(2)$ that

$$
\operatorname{ind}\left(b_{E_{j-1}\left(\Theta_{j-1}\right)}\right)=\operatorname{ind}\left(a_{j}-\left(\chi_{r-1} \cup\left(\bar{u}_{j}^{1 / p}\right)\right)\right)_{E_{j}\left(\Theta_{j}\right)} / p \leq p^{j-1} .
$$

Applying the inequality (32) in the case $j=0$, we get

$$
a_{E\left(\Theta_{0}\right)}=\left(\chi_{r-1} \cup\left(w^{1 / p}\right)\right)_{E\left(\Theta_{0}\right)}
$$

for an element $w \in E^{\times}$such that $E\left(w^{1 / p}\right)=E\left(\chi_{r}\right)$. As the character χ_{r} is defined over F, we may assume that $w \in F^{\times}$, therefore

$$
a_{E\left(\Theta_{0}\right)} \in \operatorname{Im}\left(\operatorname{Br} F\left(\Theta_{0}\right) \rightarrow \operatorname{Br} E\left(\Theta_{0}\right)\right)
$$

The degree of the extension $E\left(\Theta_{0}\right) / E$ is equal to p^{r-1}, hence Θ_{0} is a proper subgroup of Φ, a contradiction. Thus, we have shown that the inequality (3 Bl) holds.

By Example
Corollary 5.4. Suppose that $p^{r-1} a \notin \operatorname{Im}(\operatorname{Br}(F) \rightarrow \operatorname{Br}(E))$. Then

$$
\operatorname{ed}_{p}^{C S A\left(p^{r}\right)}\left(a_{r}\right) \geq \operatorname{ed}_{p}^{S^{\Phi}-\text { torsors }}(a)+r
$$

Proof. By iterated application of Proposition 52 and Example 5.

$$
\begin{aligned}
\operatorname{ed}_{p}^{\operatorname{CSA}\left(p^{r}\right)}\left(a_{r}\right)= & \operatorname{ed}_{p}^{\mathcal{F}_{r}^{\Phi_{r}}}\left(a_{r}\right) \geq \operatorname{ed}_{p}^{\mathcal{F}_{r-1}^{\Phi_{r-1}}}\left(a_{r-1}\right)+1 \geq \ldots \\
& \geq \operatorname{ed}_{p}^{\mathcal{F}_{1}^{\Phi_{1}}}\left(a_{1}\right)+(r-1) \geq \operatorname{ed}_{p}^{\mathcal{F}_{0}^{\Phi_{0}}}\left(a_{0}\right)+r=\operatorname{ed}_{p}^{S^{\Phi}-\text { torsors }}(a)+r .
\end{aligned}
$$

6. Proof of the main theorem

Theorem 6.1. Let F be a field and p a prime integer different from $\operatorname{char}(F)$. Then

$$
\operatorname{ed}_{p}\left(\operatorname{CSA}\left(p^{r}\right)\right) \geq(r-1) p^{r}+1
$$

Proof. As ed ${ }_{p}\left(\operatorname{CSA}\left(p^{r}\right)\right)$ can only go down if we replace the base field F by any field extension (see [[] Prop. 1.5]), we can replace F by any field extension. In particular, we may assume that F contains a primitive p^{2}-th root of unity and there is a subgroup Φ of ${ }_{p} \operatorname{Ch}(F)$ of rank r (replacing F by the field of rational functions in r variables over F).

Let T^{Φ} be the algebraic torus constructed in Section for the subgroup Φ. Set $E=F\left(T^{\Phi}\right)$ and let $a \in \operatorname{Br}(E L / E)$ be the element defined in Section [3.3]. Let $a_{r} \in \operatorname{Br}\left(E_{r}\right)$ be the element of index p^{r} constructed in Section [.2]. By Corollary [...], the class $p^{r-1} a$ in $\operatorname{Br}(E)$ does not belong to the image of $\operatorname{Br}(F) \rightarrow \operatorname{Br}(E)$. It follows from Corollary 5.4 that

$$
\begin{equation*}
\operatorname{ed}_{p}^{\operatorname{CSA}\left(p^{r}\right)}\left(a_{r}\right) \geq \operatorname{ed}_{p}^{S^{\Phi}-\text { torsors }}(a)+r . \tag{33}
\end{equation*}
$$

The S^{Φ}-torsor a is the generic fiber of the versal S^{Φ}-torsor $P^{\Phi} \rightarrow T^{\Phi}$ (see

$$
\begin{equation*}
\operatorname{ed}_{p}^{S^{\Phi}-\text { torsors }}(a)=\operatorname{ed}_{p}\left(S^{\Phi}\right) \tag{34}
\end{equation*}
$$

The essential p-dimension of S^{Φ} was calculated in ([स3):

$$
\begin{equation*}
\operatorname{ed}_{p}\left(S^{\Phi}\right)=(r-1) p^{r}-r+1 \tag{35}
\end{equation*}
$$

Finally, it follows from (B33), (B4]) and (B:3) that

$$
\operatorname{ed}_{p}\left(\operatorname{CSA}\left(p^{r}\right)\right) \geq \operatorname{ed}_{p}^{\operatorname{CSA}\left(p^{r}\right)}\left(a_{r}\right) \geq \operatorname{ed}_{p}^{S^{\Phi}-\text { torsors }}(a)+r=(r-1) p^{r}+1 .
$$

7. REMARKS

Let K / F be a field extension and G an elementary abelian group of order p^{r}. Consider the subset $\operatorname{CSA}_{K}(G)$ of $\operatorname{CSA}_{K}\left(p^{r}\right)$ consisting of all classes admitting a splitting Galois K-algebra E with $\operatorname{Gal}(E / K) \simeq G$. Equivalently, $C S A_{K}(G)$ consists of all classes represented by crossed product algebras with the group G (see [[], §4.4]).

Write $\operatorname{Pair}_{K}(G)$ for the set of isomorphism classes of pairs (a, E), where $a \in \operatorname{CSA}_{K}(G)$ and E is a Galois G-algebra splitting a.

Finally, fix a Galois field extension L / F with $\operatorname{Gal}(L / F) \simeq G$ and consider the subset $\operatorname{CSA}_{K}(L / F)$ of $\operatorname{CSA}_{K}(G)$ consisting of all classes split by the extension $K L / K$. Thus, $\operatorname{CSA}(L / F)$ is a subfunctor of $\operatorname{CSA}(G)$ and there is the obvious surjective morphism of functors $\operatorname{Pair}(G) \rightarrow \operatorname{CSA}(G)$.

Theorem 7.1. Let F be a field, p a prime integer different from $\operatorname{char}(F), G$ an elementary abelian group of order $p^{r}, r \geq 2$, and L / F a Galois field extension with $\operatorname{Gal}(L / F) \simeq G$. Let \mathcal{F} be one of the three functors: $\operatorname{CSA}(L / F), \operatorname{CSA}(G)$ or Pair (G). Then

$$
\operatorname{ed}(\mathcal{F})=\operatorname{ed}_{p}(\mathcal{F})=(r-1) p^{r}+1
$$

Proof. The functor $\operatorname{CSA}(L / F)$ is isomorphic to U^{Φ}-torsors by (\mathbb{D}), where Φ is a subgroup of $\operatorname{Ch}(F)$ such that $L=F(\Phi)$. It follows from (■2) that

$$
\operatorname{ed}(\operatorname{CSA}(L / F))=\operatorname{ed}_{p}(\operatorname{CSA}(L / F))=(r-1) p^{r}+1
$$

Let a_{r} be the element in $\operatorname{Br}\left(E_{r}\right)$ in the proof of Theorem E.l. $^{\text {. It satisfies }}$ $\operatorname{ed}_{p}^{\operatorname{CSA}\left(p^{r}\right)}\left(a_{r}\right) \geq(r-1) p^{r}+1$. By construction, $a_{r} \in \operatorname{CSA}_{E_{r}}(G)$. As $\operatorname{CSA}(G)$ is a subfunctor of $\operatorname{CSA}\left(p^{r}\right)$, we have

$$
\operatorname{ed}_{p}(\operatorname{CSA}(G)) \geq \operatorname{ed}_{p}^{\operatorname{CSA}(G)}\left(a_{r}\right) \geq \operatorname{ed}_{p}^{\operatorname{CSA}\left(p^{r}\right)}\left(a_{r}\right) \geq(r-1) p^{r}+1
$$

The upper bound $\operatorname{ed}(\operatorname{CSA}(G)) \leq(r-1) p^{r}+1$ was proven in [$\left[\begin{array}{l}\text {, Cor. } 310] \text {. }\end{array}\right.$
The split étale F-algebra $E:=\operatorname{Map}(G, F)$ has the natural structure of a Galois G-algebra over F. The group G acts on the split torus $U:=R_{E / F}\left(\mathbb{G}_{m, E}\right) / \mathbb{G}_{m}$. Let A be the split F-algebra $\operatorname{End}_{F}(E)$. The semidirect product $H:=U \rtimes G$ acts naturally on A by F-algebra automorphisms. Moreover, by the SkolemNoether Theorem, H is precisely the automorphism group of the pair (A, E). It follows that the functor $\operatorname{Pair}_{K}(G)$ is isomorphic to H-torsors.

The character group of U is G-isomorphic to the ideal I in $R=\mathbb{Z}[G]$. By [[3], §3], the G-homomorphism $k: R^{r} \rightarrow I$ constructed in Section 3.2 yields a representation W of the group H of dimension $r p^{r}$. As $r \geq 2$, by Lemma (5.4, G acts faithfully on the kernel N of k. By [[ँ3], Lemma 3.3], the action of H on W is generically free, hence

$$
\operatorname{ed}(\operatorname{Pair}(G))=\operatorname{ed}(H) \leq \operatorname{dim}(W)-\operatorname{dim}(H)=(r-1) p^{r}+1
$$

Since $\operatorname{Pair}(G)$ surjects onto $\operatorname{CSA}(G)$, we have

$$
\operatorname{ed}(\operatorname{Pair}(G)) \geq \operatorname{ed}_{p}(\operatorname{Pair}(G)) \geq \operatorname{ed}_{p}(\operatorname{CSA}(G))=(r-1) p^{r}+1
$$

Remark 7.2. The generic G-crossed product algebra D constructed in [U] is a generic element for the functor $\operatorname{CSA}(G)$ in the sense of $[\llbracket], \S 2]$, hence

$$
\operatorname{ed}(D)=\operatorname{ed}_{p}(D)=(r-1) p^{r}+1
$$

for $r \geq 2$ by Theorem \mathbb{R}.

References

[1] S. Amitsur, D. Saltman, Generic Abelian crossed products and p-algebras, J. Algebra 51 (1978), no. 1, 76-87.
[2] G. Berhuy and G. Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279-330 (electronic).
[3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999, With an appendix by David A. Buchsbaum, Reprint of the 1956 original.
[4] J.-L. Colliot-Thélène and J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175-229.
[5] R. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological invariants in galois cohomology, American Mathematical Society, Providence, RI, 2003.
[6] I. N. Herstein, Noncommutative rings, Mathematical Association of America, Washington, DC, 1994, Reprint of the 1968 original, With an afterword by Lance W. Small.
[7] B. Jacob and A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), no. 1, 126-179.
[8] M. Lorenz, Z. Reichstein, L. H. Rowen, and D. J. Saltman, Fields of definition for division algebras, J. London Math. Soc. (2) 68 (2003), no. 3, 651-670.
[9] R. Lötscher, M. MacDonald, A. Meyer, and R. Reichstein, Essential p-dimension of algebraic tori, preprint, 2009.
[10] H. Matsumura, Commutative algebra, second ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980.
[11] A. S. Merkurjev, Essential dimension, Quadratic forms-algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 299-325.
[12] A. S. Merkurjev, Essential p-dimension of PGL(p^{2}), to appear, 2009.
[13] A. Meyer and Z. Reichstein, The essential dimension of the normalizer of a maximal torus in the projective linear group, Algebra and Number Theory 3 (2009), no. 4, 467487.
[14] A. Meyer and Z. Reichstein, An upper bound on the essential dimension of a central simple algebra, to appear in the Journal of Algebra.
[15] A. Meyer and Z. Reichstein, Some consequences of the Karpenko-Merkurjev theorem, to appear in Documenta Mathematica.
[16] Z. Reichstein, On the notion of essential dimension for algebraic groups, Transform. Groups 5 (2000), no. 3, 265-304.
[17] Z. Reichstein and B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for G-varieties, Canad. J. Math. 52 (2000), no. 5, 1018-1056, With an appendix by János Kollár and Endre Szabó.
[18] J.-P. Serre, Galois cohomology, Springer-Verlag, Berlin, 1997, Translated from the French by Patrick Ion and revised by the author.
[19] J.-P. Tignol, Sur les classes de similitude de corps à involution de degré 8, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 20, A875-A876.

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu

[^0]: Key words and phrases. Essential dimension, Brauer group, algebraic tori 2000 Mathematical Subject Classifications: 16K50, secondary 14L30, 20 G15 .

 The work has been supported by the NSF grant DMS \#0652316.

