
INVARIANTS OF SIMPLE ALGEBRAS

SANGHOON BAEK AND ALEXANDER S. MERKURJEV

Let F be a field and let A be an “algebraic structure” over field extensions of
F . More precisely, A is a functor from the category Fields/F of field extensions
over F to the category Sets of sets. For example, the values of A can be the sets
of isomorphism classes of central simple algebras of given degree n, quadratic
forms of dimension n, étale algebras of rank n, etc. As defined in [7], an
invariant of a functor A with values in a cohomology theory H (also viewed
as a functor from Fields/F to Sets) is a morphism of functors A → H. All the
invariants of A with values in H form a group Inv(A,H).

An interesting functor TorsG can be associated to an algebraic group G
defined over F as follows. For a field extension L/F , TorsG(L) is the set of
isomorphism classes of G-torsors over Spec L. All examples of the functors
A listed above are isomorphic to the functors TorsG for certain groups G (cf.
[7, §3]). For example, TorsG(L) for the projective linear group G = PGLn

is naturally bijective to the set of isomorphism classes of central simple L-
algebras of degree n.

The structure of the group Inv(A,H) was determined for various functors A
in [7]. The case A = TorsG for G = PGLn, i.e., the problem of classification
of invariants of central simple algebras of degree n, is still wide open. In
the present paper we determine the group of invariants with values in Galois
cohomology with coefficients Z/2Z of central simple algebras of degree at most
8 and exponent dividing 2, i.e., determine invariants of TorsG for G = GLn /µ2

with n dividing 8.
In the present paper, the word “variety” over a field F means a separated

integral scheme of finite type over F .

1. Invariants

1.1. Cohomology theories, residues and values. Let F be a field and let
C be a Galois module for F such that nC = 0 for some n not divisible by
char F . We define a graded cohomology theory H over F as follows. For any
field extension L/F , we write

H(L) :=
∐
r≥0

Hr
(
L,C(r)

)
,

The work of the second author has been supported by the NSF grant DMS #0652316.
1



2 S. BAEK AND A. MERKURJEV

where C(r) is the Tate twist of C [7, 7.8]. Note that H(L) is a (left) module
over the cohomology ring

∐
r≥0

Hr
(
L, (Z/nZ)(r)

)

with respect to the cup-product. We shall write (x) for the element of

H1
(
L, (Z/nZ)(1)

)
= H1(L, µn) ' L×/L×n

corresponding to the coset xL×n.
Let L be a field extension of F with a discrete valuation v trivial on F and

residue field F (v). There is the residue map of degree −1 [7, §7.13]:

∂v : Hr(L) → Hr−1
(
F (v)

)
.

An element h ∈ Hr(L) is called unramified at v if ∂v(h) = 0.
Let π ∈ L be a prime element. The graded map

sπ : Hr(L) → Hr
(
F (v)

)
, sπ(h) = ∂v

(
(−π) ∪ h

)

is called a specialization map [15, §1]. If h ∈ Hr(L) is unramified at v, then
the element sπ(h) does not depend on the choice of π and is called the value
of h at v, denoted h(v).

1.2. The group A0(X, Hr). Let X be a variety over F and let H be a coho-
mology theory over F . Recall that for any point x ∈ X of codimension 1 we
have the residue map

∂x : Hr
(
F (X)

) → Hr−1
(
F (x)

)

defined as follows [15, §2]:

∂x =
∑

corF (v)/F (x) ◦∂v,

where the sum is taken over all (finitely many) discrete valuations of F (X)
over F dominating x, and ∂v : Hr

(
F (X)

) → Hr−1
(
F (v)

)
is the residue map

for the discrete valuation v. We write

A0(X, Hr) :=
⋂

Ker(∂x) ⊂ Hr
(
F (X)

)
,

where the intersection is taken over all points x ∈ X of codimension 1.
Let K/F be a field extension, p ∈ X(K) a point and α ∈ A0(X, Hr) an

arbitrary element. We say that p is nonsingular if the image of p : Spec K → X
is a nonsingular point of X. If p is nonsingular, the value α(p) of α at p is the
image of α under the pull-back map [15, §12]:

A0(X, Hr) → A0(Spec K, Hr) = Hr(K).
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1.3. Values of invariants. We view the homogeneous components Hr of the
cohomology theory H as functors from the category Fields/F of field extensions
over F and field homomorphisms over F to the category Sets of sets. Let
S : Fields/F → Sets be another functor. An H-invariant of S of degree r is
a morphism of functors q : S → Hr [7, Def. 1.1]. We write Inv(S, Hr) for
the group of H-invariant of S of degree r and Inv(S,H) for the graded group∐

r≥0 Inv(S,Hr).
Let G be an algebraic group defined over a field F . Let TorsG : Fields/F →

Sets be the functor taking a field extension K/F to the set of isomorphism
classes of G-torsors over Spec K. We have TorsG(K) ' H1(K, G) [11, Ch.
VII]. We simply write Inv(G,Hr) for the group Inv(TorsG, Hr).

Example 1.1. Let n > 0 be an integer and k > 0 a divisor of n. We view
the group µk of kth roots of unity as a subgroup of GLn via the embeddings
µk ⊂ Gm ⊂ GLn and set G = GLn /µk. By [11, Cor. 28.6], the exact
sequence

1 → Gm
α−→ G

β−→ PGLn → 1,

where α is the composition

Gm
∼→ Gm /µk → GLn /µk = G

and β is the natural epimorphism, and Hilbert Theorem 90 yield a bijection
between H1(F,G) and the kernel of the connecting map

δ : H1(F,PGLn) → H2(F,Gm) = Br(F ).

The set H1(F,PGLn) is bijective to the set of isomorphism classes of central
simple F -algebras A of degree n and the map δ takes the class of A to k[A].
Therefore, there is a natural bijection between TorsG(F ) = H1(F,G) and
the set of isomorphism classes of central simple F -algebras of degree n and
exponent dividing k.

We shall need the following statement:

Proposition 1.2. [7, Th. 11.7] Let G be an algebraic group over F and
q ∈ Inv(G,Hr). Let R be a discrete valuation ring containing F with quotient
field L and residue field K. Then for any G-torsor E over Spec R, we have:

(1) The residue of q(EL) at v is zero, i.e., q(EL) is unramified at v.
(2) The value q(EL)(v) of q(EL) at v is q(EK).

Let X be a variety over F and E → X a G-torsor. For a field extension
K/F and a point p ∈ X(K), we write Ep → Spec K for the pull-back of the
torsor E with respect to p : Spec(K) → X. Thus, we have a morphism of
functors X → TorsG taking a point p to Ep. We also write Egen for the generic
fiber of E → X. It is a G-torsor over Spec F (X).

Theorem 1.3. Let G be an algebraic group over F , X a variety over F . Let
E → X be a G-torsor and q ∈ Inv(G,Hr). Then

(1) q(Egen) ∈ A0(X, Hr).
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(2) Let K/F be a field extension and let p ∈ X(K) be a nonsingular point.
Then q(Ep) is equal to the value of q(Egen) at p.

(3) Let X be smooth and let f : Y → X be a morphism of varieties over
F . Then

f ∗
(
q(Egen)

)
= q(f ∗(E)gen)

in A0(Y,Hr), where f ∗ : A0(X, Hr) → A0(Y, Hr) is the pull-back ho-
momorphism.

Proof. (1) and (2) follow from Proposition 1.2 and [15, Cor. 12.4].
(3): By (2), the pull-back homomorphism for the composition Spec F (Y ) →

Y → X is equal to q(f ∗(E)gen). The pull-back homomorphism for the first
morphism Spec F (Y ) → Y is the inclusion of A0(Y, Hr) into Hr

(
F (Y )

)
. ¤

It follows from Theorem 1.3(1) that a G-torsor E → X gives rise to a group
homomorphism

ϕE : Inv(G,Hr) → A0(X, Hr), q 7→ q(Egen).

1.4. Classifying torsors. A G-torsor E → X over F is called classifying
if X is smooth and the corresponding morphism of functors X → TorsG is
surjective, i.e., for any field extension K/F and any G-torsor E ′ → Spec K,
there is a point p ∈ X(K) such that E ′ ' Ep.

Remark 1.4. We don’t require the density condition as in [7, Def. 5.1].

Theorem 1.5. Let E → X be a classifying G-torsor over F . Then the map
ϕE : Inv(G,Hr) → A0(X, Hr) is injective.

Proof. Let q ∈ Ker(ϕE), i.e., q(Egen) = 0. Let K/F be a field extension and
let E ′ → Spec K be a G-torsor. Choose a point p ∈ X(K) such that E ′ ' Ep.
By Theorem 1.3(2), q(Ep) is the value of q(Egen) at p. Hence q(E ′) = 0. ¤

2. Invariants of algebras of degree 8

In this section we assume that char(F ) 6= 2.

2.1. The functors Algn and Decn. For a commutative F -algebra R and
a, b ∈ R× we write

(
a, b

)
=

(
a, b

)
R

for the quaternion algebra R⊕Ri⊕Rj⊕Rk

with the multiplication table i2 = a, j2 = b, k = ij = −ji. The class of
(
a, b

)
R

in the Brauer group Br(R) will be denoted by
[
a, b

]
=

[
a, b

]
R
. We write

Quat(R) for the set of isomorphism classes of quaternion algebras over R.
Let a ∈ R× and S = R[

√
a] := R[t]/(t2 − a) the quadratic extension of R.

We write NR(a) for the subgroup of R× of all element of the form x2−ay2 with
x, y ∈ R, i.e., NR(a) is the image of the norm homomorphism NS/R : S× → R×.

If b ∈ NR(a), then the quaternion algebra
(
a, b

)
R

is isomorphic to the matrix
algebra M2(R) by [10, Th. 6].

For every n ≥ 1, Algn(F ) denotes the set of isomorphism classes of central
simple F -algebras of degree 2n and exponent dividing 2. We can identify
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Algn(F ) with the subset of Br(F ) of classes of algebras of degree dividing 2n.
In particular, we have that

Alg 1(F ) ⊂ Alg 2(F ) ⊂ Alg 3(F ) ⊂ · · · ⊂ Br2(F ).

The isomorphism class of an algebra A in Algn(F ) is called decomposable if
A is isomorphic to the tensor product of n quaternion algebras over F . The
subset of all decomposable classes in Algn(F ) is denoted by Decn(F ). The
union of all Decn(F ) coincides with Br2(F ).

We view Algn and Decn as functors Fields/F → Sets. By Example 1.1, the
functor Algn is isomorphic to the functor TorsG for G = GL2n /µ2.

Obviously, Alg 1(F ) = Dec1(F ) = Quat(F ). By Albert’s theorem [12, Prop.
5.2], Alg 2(F ) = Dec2(F ).

The case n = 3 is more complicated. It is shown in [1] that Alg 3(F ) 6=
Dec3(F ) in general. On the other hand, Tignol proved in [18] that Alg 3(F ) ⊂
Dec4(F ) as the subsets of Br2(F ).

2.2. Tignol’s construction. We recall Tignol’s argument given in [18]. Let
A be a central simple F -algebra in Alg 3(F ). By [16], there is a triquadratic

splitting extension F (
√

a,
√

b,
√

c)/F of A with a, b, c ∈ F×. Let L = F (
√

a).
By Albert’s Theorem, we have

(1)
[
A

]
L

=
[
b, s

]
+

[
c, t

]

in Br(L) for some s, t ∈ L×.
Taking the corestriction for the extension L/F in (1), we get

0 = 2
[
A

]
=

[
b,NL/F (s)

]
+

[
c,NL/F (t)

]

in Br(F ), hence
[
b,NL/F (s)

]
=

[
c,NL/F (t)

]
. By the Common Slot Lemma [2,

Lemma 1.7], we have
[
b,NL/F (s)

]
=

[
d,NL/F (s)

]
=

[
d,NL/F (t)

]
=

[
c,NL/F (t)

]

in Br(F ) for some d ∈ F×. It follows that the classes
[
bd,NL/F (s)

]
,
[
cd,NL/F (t)

]
and

[
d,NL/F (st)

]
are trivial. By [4, Lemma 2.3] (see also Lemma 2.2 below),

[
bd, s

]
=

[
bd, k

]
,[

cd, t
]

=
[
cd, l

]
,[

d, st
]

=
[
d,m

]
.

in Br(L) for some k, l,m ∈ F×. It follows from (1) that
[
A

]
L

=
[
bd, k

]
L

+
[
cd, l

]
L

+
[
d,m

]
L

in Br(L). Hence

(2)
[
A

]
=

[
a, e

]
+

[
bd, k

]
+

[
cd, l

]
+

[
d,m

]
=

[
a, e

]
+

[
b, k

]
+

[
c, l

]
+

[
d, klm

]

in Br(F ) for some e ∈ F×.
We shall also need the following well known statements:
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Lemma 2.1. Let K be a field and let A be a central simple K-algebra such
that [A] ∈ Br2(K) and let L/K be a quadratic field extension such that [A]L =[
b, s

]
+

[
c, t

]
for some b, c ∈ K× and s, t ∈ L×. Suppose that one of the classes[

b,NL/K(s)
]

and
[
c,NL/K(t)

]
is zero in Br(K). Then A ∈ Dec3(K).

Proof. Suppose that
[
b,NL/K(s)

]
= 0. Taking the corestriction we get

0 = 2[A] =
[
b,NL/K(s)

]
+

[
c,NL/K(t)

]
=

[
c, NL/K(t)

]
.

By [4, Lemma 2.3], there are u, v ∈ K× such that
[
b, s

]
=

[
b, u

]
L

and
[
c, t

]
=[

c, v
]
L
. It follows that the class [A]− [

b, u
]− [

c, v
]

is split by L, hence is the
class of a quaternion algebra. Thus, A ∈ Dec3(K). ¤

Lemma 2.2. Let R be a commutative F -algebra, a, b ∈ R×, T = R[
√

a] and
x+ y

√
a ∈ T× such that x2−ay2 = u2− bv2 for some u, v ∈ R. If x+u ∈ R×,

then 2(x + u)(x + y
√

a) ∈ NT (b). In particular,
[
b, x + y

√
a
]
T

=
[
b, 2(x + u)

]
T
.

Proof. We have the equality

(x + y
√

a + u)2 − bv2 = (x + y
√

a)(x + y
√

a + 2u) + (u2 − bv2)

= (x + y
√

a)(x + y
√

a + 2u) + (x + y
√

a)(x− y
√

a)

= (x + y
√

a)(2x + 2u). ¤

2.3. The Azumaya algebra A. Consider the affine space A8
F with coordi-

nates a, e,u,v,w,x,y, z and define the rational functions:

f = xy + az,

g = y + xz,

d = w2 − f2 + ag2,

b = (u2 − x2 + a)d−1,

c = (v2 − y2 + az2)d−1,

p = (u + x)(v + y)(w + f).

Let X be the open subscheme of A8
F given by

q := adep(u2 − x2 + a)(v2 − y2 + az2)(x2 − a)(y2 − az2)(f2 − ag2) 6= 0,

i.e., X = Spec(R) with R = F [a, e,u,v,w,x,y, z,q−1]. Let S = R[
√

a,
√

b,
√

c].
Consider the Azumaya R-algebra

(3) A′ =
(
a, e

)
R
⊗ (

b, 2(u + x)
)

R
⊗ (

c, 2(v + y)
)

R
⊗ (

d, 2p
)

R
.

We view S as a subring of A′. Moreover,
(
d, 2p

)
S

:=
(
d, 2p

)⊗R S ⊂ A′.
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Let T = R[
√

a]. It follows from Lemma 2.2 that

2(u + x)(x +
√

a) ∈ NT (bd) ⊂ NS(d),

2(v + y)(y + z
√

a) ∈ NT (cd) ⊂ NS(d),

2(w + f)(x +
√

a)(y + z
√

a) ∈ NT (d) ⊂ NS(d).

It follows from (3) that

(4)
[A′]

T
=

[
b,x +

√
a
]
+

[
c,y + z

√
a
]

in Br(T ).
Moreover, we have 2p = 2(u+x)(v+y)(w+f) ∈ NS(d), therefore,

(
d, 2p

)
S

is isomorphic to the matrix algebra M2(S). In particular,

M2(R) ⊂ M2(S) ' (
d, 2p

)
S
⊂ A′

and hence A′ ' M2(A) for the centralizer A of M2(R) in A′ by the proof of
[8, Th. 4.4.2]. Then A is an Azumaya R-algebra of degree 8 that is Brauer
equivalent to A′ by [17, Th. 3.10].

Proposition 2.3. The Azumaya algebra A is classifying for Alg 3, i.e, the
corresponding GL8 /µ2-torsor over X is classifying.

Proof. Let A ∈ Alg 3(K), where K is a field extension of F . We shall find a
point p ∈ X(K) such that A ' A(p).

We follow Tignol’s construction. There is a triquadratic splitting extension
K(
√

a,
√

b,
√

c)/K of A with a, b, c ∈ K×. Let L = K(
√

a), so
[
A

]
L

=
[
b, s

]
+

[
c, t

]

in Br(L) for some s = x + x′
√

a, and t = y + z
√

a ∈ L×. Modifying s by a

norm for the extension L(
√

b)/L, we may assume that x′ 6= 0. Similarly, we
may assume that z 6= 0. Moreover, replacing a by ax′2, we may assume that
x′ = 1.

We have
[
b, x2 − a

]
=

[
d, x2 − a

]
=

[
d, y2 − az2

]
=

[
c, y2 − az2

]

in Br(K) for some d ∈ K×, so the classes
[
bd, x2 − a

]
,

[
cd, y2 − az2

]
and[

d, (x2 − a)(y2 − az2)
]

are trivial. Hence

bd = u2 − (x2 − a)u′2,

cd = v2 − (y2 − az2)v′2,

d = w2 − (x2 − a)(y2 − az2)w′2

for some u, u′, v, v′, w, w′ in K. Moreover, we may assume that u′ 6= 0. Replac-
ing b and u by bu′2 and uu′ respectively, we may assume that u′ = 1. Similarly,
we may assume v′ = w′ = 1.
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Replacing u by −u if necessary, we may assume that u+x 6= 0 and similarly
v + y 6= 0 and w + s 6= 0, where s = xy + az. It follows from Lemma 2.2 that[

b, x +
√

a
]

=
[
b, 2(u + x)

]
L
,[

c, y + z
√

a
]

=
[
c, 2(v + y)

]
L
,[

d, (x +
√

a)(y + z
√

a)
]

=
[
d, 2(w + s)

]
L

in Br(L). Hence[
A

]
=

[
a, e

]
+

[
b, 2(u + x)

]
+

[
c, 2(v + y)

]
+

[
d, 2(u + x)(v + y)(w + s)

]

in Br(K) for some e ∈ K×.
Let p be the point (a, e, u, v, w, x, y, z) in X(K). We have

[A(p)
]

=
[
A

]
and

hence A(p) ' A as A(p) and A have the same dimension. ¤

Proposition 2.4. Let K be the quotient field of the ring R = F [X]. Let K̂
be the completion of K with respect to the discrete valuation associated with
one of the irreducible polynomials a,u2− x2 + a,v2− y2 + az2,d,x2− a,y2−
az2, f2 − ag2,u + x,v + y and w + f . Then AK̂ ∈ Dec3(K̂).

Proof. First assume that the valuation v = va is associated with a. By Hensel’s

Lemma, x2−a ∈ K̂×2. It follows that
[
b,x2−a

]
K̂

= 0. By Lemma 2.1, applied

to (4), AK̂ ∈ Dec3(K̂).
Let v = vu2−x2+a. In the residue field, ū2 − x̄2 + ā = 0̄, hence x̄2 − ā is a

square. By Hensel’s Lemma, x2 − a ∈ K̂×2. Therefore, AK̂ ∈ Dec3(K̂) as in
the previous case.

The case v = vv2−y2+az2 is similar.
Let v = vd. In the residue field, w̄2 − f̄2 + āḡ2 = 0̄, hence f̄2 − āḡ2 is a

square. By Hensel’s Lemma, f2 − ag2 ∈ K̂×2, hence
[
b, f2 − ag2

]
K̂

= 0. It
follows from (4) that[A]

T
=

[
b,x +

√
a
]
+

[
c,y + z

√
a
]

=
[
b, f + g

√
a
]
+

[
bc,y + z

√
a
]
.

By Lemma 2.1, AK̂ ∈ Dec3(K̂).
Let v = vx2−a. In the residue field, b̄d̄ = ū2 is a square. By Hensel’s Lemma,

bd ∈ K̂×2. It follows from (3) that AK̂ ∈ Dec3(K̂).
The cases v = vy2−az2 and v = vf2−ag2 are similar.

Let v = vu+x. In the residue field, b̄d̄ = ā. By Hensel’s Lemma, abd ∈ K̂×2.

It follows again from (3) that AK̂ ∈ Dec3(K̂).
The cases v = vv+y and v = vw+f are similar. ¤
From now on we consider the cohomology theory with values in the Galois

module Z/2Z, i.e., H(L) = H(L,Z/2Z) for any field extension of F . Note that
H(L) has structure of a commutative ring.

Proposition 2.5. The restriction homomorphism

Inv(Alg 3, H
r) → Inv(Dec3, H

r)

is injective.
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Proof. Let q be an invariant of Alg 3 of degree r and let K be the quotient field
of the ring R, i.e., K = F (X). By Theorem 1.3, we have q(AK) ∈ A0(X, Hr).
Let X ′ be the open subscheme of A8

F given by e 6= 0, so X ⊂ X ′ ⊂ A8
F and

X ′ ' A7
F ×Gm. Note that

A0(X ′, Hr) = A0(Gm, Hr) = Hr(F )⊕ (e) ∪Hr−1(F )

by [15, Prop. 2.2 and Prop. 8.6].
Suppose that the restriction of q on Dec3 is zero. By Proposition 2.4, AK̂ ∈

Dec3(K̂), where K̂ is the completion of K with respect to every divisor x of

X ′ in X ′ \X. Hence q(AK̂) = 0 for all such K̂. The residue homomorphism

∂x : Hr(K) → Hr−1
(
F (x)

)
factors through the group Hr(K̂). It follows that

∂x

(
q(AK)

)
= 0 and therefore,

q(AK) ∈ A0(X ′, Hr) = Hr(F )⊕ (e) ∪Hr−1(F ),

i.e., q(AK) = hK + (e) ∪ h′K for some h ∈ Hr(F ) and h′ ∈ Hr−1(F ). Consider
a point p ∈ X(E) with E = F (e) such that e(p) = e and b(p) = 1. It follows
from (3) that A(p) ∈ Dec3(E). Hence by Theorem 1.3(2),

0 = q
(A(p)

)
= hE + (e) ∪ h′E,

therefore, h = h′ = 0 and q(AK) = 0. By Proposition 2.3 and Theorem 1.5,
q = 0. ¤

2.4. Invariants of Decn. From now on we assume that −1 ∈ F×2.
Let K∗(F ) denote the Milnor ring of a field F and set k∗(F ) = K∗(F )/2K∗(F ).

For every n ≥ 0, let γn denote the divided power operation [9], [19]:

k2(F ) → k2m(F )

defined by

γn

( r∑
i=1

αi

)
=

∑
1≤i1≤···≤im≤n

αi1 · . . . · αim ,

where the αi are symbols. In particular, γ0 = 1 ∈ k0(F ) = Z/2Z and γ1 is the
identity.

We identify k2(F ) with Br2(F ) via the norm residue isomorphism. Re-
stricting γm to Decn and composing with the norm residue homomorphism
k2m(F ) → H2m(F ), we can view the divided power operations (still denoted
by γm) as invariants of Decn with values in H, so γm ∈ Inv(Decn, H2m) for all
n. Clearly, γm = 0 if m > n.

Theorem 2.6. The H(F )-module Inv(Decn, H) is free with basis
{1 = γ0, γ1, . . . , γn}.
Proof. The case n = 1, when Dec1 = Quat is proven in [7, Th. 18.1]. By [7,
Ex. 16.5], the natural map

Inv(Quat, H)⊗n → Inv(Quat×n, H)



10 S. BAEK AND A. MERKURJEV

is an isomorphism. It follows that Inv(Quat×n, H) is a free H(F )-module with
basis of all monomials δε1

1 δε2
2 . . . δεn

n , where ε1 = 0 or 1 and the invariant δi is
defined by δi(α1, . . . , αn) = αi.

The natural morphism of functors

(5) Quat×n → Decn

given by the tensor product is surjective. It follows that the map

Inv(Decn, H) → Inv(Quat×n, H)

is injective. The image of this map is element-wise invariant under the natural
action of the symmetric group Sn and hence is contained in the free H(F )-
submodule generated by the standard symmetric functions γm on the δ1, . . . , δn

that are precisely the divided powers. ¤
Remark 2.7. Vial has computed all invariants of kn in [19].

Restricting the divided powers on the subfunctors Algn ⊂ Br2 we view the
γm as invariants on Algn.

Theorem 2.8. If n ≤ 3, then the H(F )-module Inv(Algn, H) is free with basis
{1 = γ0, γ1, . . . , γn}.
Proof. If n ≤ 2, then Algn = Decn and the statement follows from Theorem
2.6. The case n = 3 is implied by Proposition 2.5 and Theorem 2.6. ¤
2.5. Reduced trace form. Let A be a central simple algebra over a field F .
Denote by qA the quadratic form on A defined by qA(a) = TrdA(a2) for a ∈ A,
where TrdA is the reduced trace form for A. If A and A′ are two central simple
algebras over F , then

qA⊗A′ ' qA ⊗ qA′ .

Example 2.9. Let A be a quaternion algebra over a field F . Then qA is the
2-fold Pfister form 〈〈a, b〉〉, where a, b ∈ F× such that [A] =

[
a, b

]
in Br(F ).

It follows from Example 2.9 that for any A ∈ Decn(F ) the form qA is a
2n-fold Pfister form. Moreover, the invariant e2n(qA) in H2n(F ) (cf. [6, §16])
coincides with the divided power γn(A).

Theorem 2.10. If n ≤ 3, then for any A ∈ Algn(F ), the form qA is a 2n-fold
Pfister form such that e2n(qA) = γn(A).

Proof. If n ≤ 2, then Algn = Decn and the statement follows.
Consider the case n = 3. Let A ∈ Alg 3(F ). Choose a splitting field

F (
√

a,
√

b,
√

c) and set L = F (
√

a). We write a 7→ ā for the nontrivial auto-
morphism of L over F . Let B be the centralizer of L in A. By Skolem-Noether
Theorem [11, Th. 1.4], there is an s ∈ A such that sxs−1 = x̄ for all x in L.
Note that s2 commutes with all elements in L, hence s2 ∈ B.

Let ψ : B → B be an automorphism defined by y 7→ sys−1. Then A = B ⊕
Bs with sy = ψ(y)s for all y ∈ B. Since TrdA(yzs) = TrdA(

√
ayzs(

√
a)−1) =

−TrdA(yzs), we have TrdA(yzs) = 0 for any y and z in B. Moreover,
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TrdA(y) = TrL/F (TrdB(y)) for any y ∈ B by [5, §22, Cor. 5]. Therefore,
for the trace forms we have

qA = TrL/F (qB) ⊥ TrL/F (q′B),

where q′B(x) = TrdB

(
(xs)2

)
.

Let t ∈ F× and At the F -algebra with presentation At = B ⊕ By and
yby−1 = sbs−1 for all b ∈ B and y2 = ts2. By Proposition [11, Th. 13.41],

[At] =
[
a, t

]
+ [A].

Moreover,

qAt = TrL/F (qB) ⊥ t TrL/F (q′B),

hence, by Lemma 2.11 below, in the Witt ring of F , we have

qA − tqAt = 〈〈t〉〉 · TrL/F (qB) ∈ I6(F ).

By (2), we can choose t such that At is decomposable, hence qAt ∈ I6(F ) and
therefore, qA ∈ I6(F ). As dim(qA) = 64, the form qA is a 6-fold Pfister form.

It follows that e6(qA) is a well defined invariant of Alg 3 that agrees with γ3

on Dec3. By Proposition 2.5, e6(qA) = γ3 on Alg 3. ¤

Lemma 2.11. In the notation above, TrL/F (qB) ∈ I5(F ).

Proof. In Tignol’s construction (see (1) and (2)),

[
A

]
L

=
[
b, s

]
+

[
c, t

]
=

[
a, e

]
+

[
b, k

]
+

[
c, l

]
+

[
d, klm

]

in Br(L). Let

(6) p := 〈〈a, e〉〉+ 〈〈b, k〉〉+ 〈〈c, l〉〉+ 〈〈d, klm〉〉 ∈ I2(F ).

It follows that

pL ≡ 〈〈b, s〉〉+ 〈〈c, t〉〉 mod I3(L),

so B ' (
b, s

)⊗L

(
c, t

)
. We have in W (L):

qB = 〈〈b, s〉〉 · 〈〈c, t〉〉 ≡ 〈〈b, s〉〉 · (p− 〈〈b, s〉〉) = 〈〈b, s〉〉 · p mod I5(L)

since 〈〈b, b〉〉 = 0. By the projection formula and [6, Cor.34.19],

(7) TrL/F (qB) ≡ TrL/F

(〈〈b, s〉〉) · p ≡ 〈〈b,NL/F (s)〉〉 · p mod I5(F ).

We have 〈〈b,NL/F (s)〉〉 ' 〈〈c,NL/F (t)〉〉 ' 〈〈d,NL/F (t)〉〉. It follows that
〈〈b,NL/F (s)〉〉 annihilates all four summands in the right hand side of (6),
hence 〈〈b,NL/F (s)〉〉 · p = 0. By (7), TrL/F (qB) ∈ I5(F ). ¤
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2.6. Essential dimension of Decn and Alg 3. Let S : Fields/F → Sets be a
functor, E ∈ Fields/F and K ⊂ E a subfield over F . An element α ∈ S(E)
is said to be defined over K (and K is called a field of definition of α) if
there exists an element β ∈ S(K) such that α is the image of β under the
map S(K) → S(E). The essential dimension of α, denoted ed(α), is the least
transcendence degree tr. degF (K) over all fields of definition K of α. The
essential dimension of the functor S is

ed(S) = sup{ed(α)},
where the supremum is taken over fields E ∈ Fields/F and all α ∈ S(E) (cf.
[3, Def. 1.2]).

The highest invariant γn of Algn and Decn of degree 2n is nontrivial, hence
ed

(
Algn

) ≥ 2n and ed
(
Decn

) ≥ 2n by [3, Cor. 3.6]. On the other hand, using
the surjection (5), we get

ed
(
Decn

) ≤ ed
(
Quat×n

) ≤ n · ed(
Quat

)
= 2n.

Thus, ed
(
Decn

)
= 2n.

It is proved in [13, Cor. 3.10] and [14, Th. 8.6] that ed
(
Alg 3

) ≤ 17.

Theorem 2.12. 6 ≤ ed
(
Alg 3

) ≤ 8.

Proof. By Proposition 2.3, there is a surjective morphism of functors X →
Alg 3, where X is a variety defined in Section 2. By [3, Cor. 1.19], ed

(
Alg 3

) ≤
dim(X) = 8. ¤
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Sci. Paris Sér. A-B 286 (1978), no. 20, A875–A876.
[19] C. Vial, Operations in milnor k-theory, http://www.math.uiuc.edu/K-theory/0881/

(2008).

Department of Mathematics, University of California, Los Angeles, CA
90095-1555, USA

E-mail address: shbaek@math.ucla.edu

Department of Mathematics, University of California, Los Angeles, CA
90095-1555, USA

E-mail address: merkurev@math.ucla.edu


