INVARIANTS OF SIMPLE ALGEBRAS

SANGHOON BAEK AND ALEXANDER S. MERKURJEV

Let F be a field and let A be an “algebraic structure” over field extensions of
F'. More precisely, A is a functor from the category Fields/F' of field extensions
over F to the category Sets of sets. For example, the values of A can be the sets
of isomorphism classes of central simple algebras of given degree n, quadratic
forms of dimension n, étale algebras of rank n, etc. As defined in [7], an
invariant of a functor A with values in a cohomology theory H (also viewed
as a functor from Fields/F to Sets) is a morphism of functors A — H. All the
invariants of A with values in H form a group Inv(A, H).

An interesting functor Torsg can be associated to an algebraic group G
defined over F' as follows. For a field extension L/F, Torsg(L) is the set of
isomorphism classes of G-torsors over Spec L. All examples of the functors
A listed above are isomorphic to the functors Torsg for certain groups G (cf.
[7, 83]). For example, Torsg(L) for the projective linear group G = PGL,
is naturally bijective to the set of isomorphism classes of central simple L-
algebras of degree n.

The structure of the group Inv(A, H) was determined for various functors A
in [7]. The case A = Torsg for G = PGL,, i.e., the problem of classification
of invariants of central simple algebras of degree n, is still wide open. In
the present paper we determine the group of invariants with values in Galois
cohomology with coefficients Z /27 of central simple algebras of degree at most
8 and exponent dividing 2, i.e., determine invariants of Torsq for G = GL,, /.
with n dividing 8.

In the present paper, the word “variety” over a field F' means a separated
integral scheme of finite type over F.

1. INVARIANTS

1.1. Cohomology theories, residues and values. Let F' be a field and let
C be a Galois module for F' such that nC' = 0 for some n not divisible by
char F. We define a graded cohomology theory H over F' as follows. For any
field extension L/F', we write

H(L) =[] H"(L.C(r)).

r>0
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where C(r) is the Tate twist of C' [7, 7.8]. Note that H(L) is a (left) module
over the cohomology ring

17 (L. (Z/nz)(r))
r>0
with respect to the cup-product. We shall write (x) for the element of
H! (L, (Z/nZ)(l)) = HY(L,pp) ~ L™/ L*"

corresponding to the coset xL*".
Let L be a field extension of F' with a discrete valuation v trivial on F' and
residue field F'(v). There is the residue map of degree —1 [7,, §7.13]:

Oy : H'(L) — H" ' (F(v)).

An element h € H"(L) is called unramified at v if 9,(h) = 0.
Let m € L be a prime element. The graded map

sr: H'(L) — H"(F(v)), sr(h) = 0, ((—m) U h)

is called a specialization map [15, §1]. If h € H"(L) is unramified at v, then
the element s,(h) does not depend on the choice of m and is called the value
of h at v, denoted h(v).

1.2. The group A°(X, H"). Let X be a variety over F and let H be a coho-
mology theory over F'. Recall that for any point x € X of codimension 1 we
have the residue map

O, H'(F(X)) — H ' (F(2))
defined as follows [15] §2]:

ar = Z COI‘F(U)/F(m) o0,

where the sum is taken over all (finitely many) discrete valuations of F(X)
over I dominating z, and 9, : H"(F(X)) — H""*(F(v)) is the residue map
for the discrete valuation v. We write

“(X,H") ==\ Ker(d,) C H"(F(X)),

where the intersection is taken over all points z € X of codimension 1.

Let K/F be a field extension, p € X(K) a point and o € A%(X,H") an
arbitrary element. We say that p is nonsingular if the image of p : Spec K — X
is a nonsingular point of X. If p is nonsingular, the value a(p) of o at p is the
image of « under the pull-back map [15 §12]:

A(X,H") — A°(Spec K, H") = H"(K).
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1.3. Values of invariants. We view the homogeneous components H" of the
cohomology theory H as functors from the category Fields/F of field extensions
over I’ and field homomorphisms over F' to the category Sets of sets. Let
S : Fields/F — Sets be another functor. An H-invariant of S of degree r is
a morphism of functors ¢ : S — H" [7, Def. 1.1]. We write Inv(S, H") for
the group of H-invariant of S of degree r and Inv(S, H) for the graded group
[~ Inv(S, H").

Let G be an algebraic group defined over a field F. Let Torsg : Fields/F —
Sets be the functor taking a field extension K/F to the set of isomorphism
classes of G-torsors over Spec K. We have Torsg(K) ~ H'(K,G) [11, Ch.
VII]. We simply write Inv(G, H") for the group Inv(Torsg, H").

Example 1.1. Let n > 0 be an integer and k£ > 0 a divisor of n. We view
the group p;, of kth roots of unity as a subgroup of GL,, via the embeddings
p, C Gn € GL, and set G = GL,, /u,. By [11, Cor. 28.6], the exact

sequence
1- G, > a2 PaL, — 1,

where « is the composition
Gum = Gu /1y, — GL, [, = G

and [ is the natural epimorphism, and Hilbert Theorem 90 yield a bijection
between H!(F,G) and the kernel of the connecting map

§: H'(F,PGL,) — H*(F,Gy) = Br(F).

The set H'(F,PGL,) is bijective to the set of isomorphism classes of central
simple F-algebras A of degree n and the map 0 takes the class of A to k[A].
Therefore, there is a natural bijection between Torsg(F) = H'(F,G) and
the set of isomorphism classes of central simple F-algebras of degree n and
exponent dividing k.

We shall need the following statement:

Proposition 1.2. [7, Th. 11.7] Let G be an algebraic group over F and
q € Inv(G, H"). Let R be a discrete valuation ring containing F' with quotient
field L and residue field K. Then for any G-torsor E over Spec R, we have:

(1) The residue of ¢(FL) at v is zero, i.e., ¢(Fy) is unramified at v.
(2) The value q(EL)(v) of q(Ep) at v is q(Ek).

Let X be a variety over F' and F — X a G-torsor. For a field extension
K/F and a point p € X(K), we write £, — Spec K for the pull-back of the
torsor £ with respect to p : Spec(K) — X. Thus, we have a morphism of
functors X — Torsq taking a point p to Ej,. We also write £, for the generic
fiber of E — X. It is a G-torsor over Spec F'(X).

Theorem 1.3. Let G be an algebraic group over F', X a variety over F'. Let
E — X be a G-torsor and q € Inv(G,H"). Then

(1) q(Byen) € A%(X, H").
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(2) Let K/F be a field extension and let p € X (K) be a nonsingular point.
Then q(E,) is equal to the value of ¢(Eyen) at p.

(3) Let X be smooth and let f :Y — X be a morphism of varieties over
F. Then

f* (q<Egen)) = q(f*(E)gen)
in A°(Y, H"), where f*: A%(X, H") — A%(Y, H") is the pull-back ho-

momorphism.

Proof. (1) and (2) follow from Proposition 1.2/ and [15, Cor. 12.4].

(3): By (2), the pull-back homomorphism for the composition Spec F(Y) —
Y — X is equal to ¢(f*(E)gen). The pull-back homomorphism for the first
morphism Spec F(Y') — Y is the inclusion of A°(Y, H") into H"(F(Y)). O

It follows from Theorem [1.3(1) that a G-torsor E' — X gives rise to a group
homomorphism

vp:Inv(G,H") — AO(X, H"), qw q(Egen).

1.4. Classifying torsors. A G-torsor £ — X over F is called classifying
if X is smooth and the corresponding morphism of functors X — Torsg is
surjective, i.e., for any field extension K/F and any G-torsor E' — Spec K,
there is a point p € X(K) such that £’ ~ E,.

Remark 1.4. We don’t require the density condition as in [7, Def. 5.1].

Theorem 1.5. Let E — X be a classifying G-torsor over F. Then the map
op: Inv(G, H") — A%(X, H") is injective.

Proof. Let q € Ker(yg), i.e., ¢(Egen) = 0. Let K/F be a field extension and
let B/ — Spec K be a G-torsor. Choose a point p € X (K) such that £’ ~ E,.
By Theorem [1.3(2), ¢(E,) is the value of ¢(E,.,) at p. Hence ¢(E') =0. O

2. INVARIANTS OF ALGEBRAS OF DEGREE &

In this section we assume that char(F) # 2.

2.1. The functors Alg, and Dec,. For a commutative F-algebra R and
a,b € R* we write (a, b) = (a, b)R for the quaternion algebra R® Ri® Rj® Rk
with the multiplication table i* = a, j* = b,k = ij = —ji. The class of (a,b) ,
in the Brauer group Br(R) will be denoted by [a,b] = [a,b] s We write
Quat(R) for the set of isomorphism classes of quaternion algebras over R.

Let a € R* and S = R[y/a] := RJ[t]/(t* — a) the quadratic extension of R.
We write Ng(a) for the subgroup of R* of all element of the form x? —ay? with
z,y € R, i.e., Ng(a) is the image of the norm homomorphism Ng/p : S* — R*.
If b € Ng(a), then the quaternion algebra (a, b)  is isomorphic to the matrix
algebra Ms(R) by [10, Th. 6].

For every n > 1, Alg,,(F) denotes the set of isomorphism classes of central
simple F-algebras of degree 2" and exponent dividing 2. We can identify
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Alg, (F) with the subset of Br(F) of classes of algebras of degree dividing 2".
In particular, we have that

Alg,(F) C Algy(F) C Alg4(F) C --- C Bro(F).

The isomorphism class of an algebra A in Alg, (F) is called decomposable if
A is isomorphic to the tensor product of n quaternion algebras over F. The
subset of all decomposable classes in Alg,,(F') is denoted by Dec, (F'). The
union of all Dec,(F) coincides with Bry(F).

We view Alg,, and Dec,, as functors Fields/F — Sets. By Example 1.1, the
functor Alg,, is isomorphic to the functor Torsg for G = GLgn /.

Obviously, Alg,(F) = Dec,(F') = Quat(F'). By Albert’s theorem [12, Prop.
5.2], Algy(F) = Decsy(F).

The case n = 3 is more complicated. It is shown in [I] that Algs(F) #
Dec3(F') in general. On the other hand, Tignol proved in [18] that Algs(F') C
Dec,(F) as the subsets of Bry(F).

2.2. Tignol’s construction. We recall Tignol’s argument given in [18]. Let
A be a central simple F-algebra in Alg;(F'). By [16], there is a triquadratic
splitting extension F(v/a, Vb, /c)/F of A with a,b,c € F*. Let L = F(y/a).
By Albert’s Theorem, we have

(1) [A]p = [bs] + [e1]

in Br(L) for some s,t € L*.
Taking the corestriction for the extension L/F in (1), we get

0= 2[A] = [0 Nuyw(s)] + [es V0]
in Br(F), hence [b, Np/r(s)] = [¢, Npyr(t)]. By the Common Slot Lemma [2,
Lemma 1.7], we have
[0, Niye(s)] = [d Nuyw(s)] = [d Nope(6)] = [e, Niyre ()]

in Br(F) for some d € F*. It follows that the classes [bd, Np/p(s)], [cd, Np/p(t)]
and [d, Ny p(st)] are trivial. By [4, Lemma 2.3] (see also Lemma 2.2 below),

bd, s] = [bd, K],
[cd, t} = [cd, l},
[d, st} = [d, m}
in Br(L) for some k,l,m € F*. It follows from (1) that
[A}L = [bd, k}L + cd, Z]L +|d, m}L
in Br(L). Hence

(2) [A] = [a,€] + [bd, k] + [cd, 1] + [d,m] = [a, €] + [b, k] + [c, 1] + [d, kim]

in Br(F) for some e € F'*.
We shall also need the following well known statements:
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Lemma 2.1. Let K be a field and let A be a central simple K-algebra such
that [A] € Bry(K) and let L/ K be a quadratic field extension such that [A]L =
[b, s} + [c, t] for some b,c € K* and s,t € L*. Suppose that one of the classes

[0, Ny (s)] and [c, Npk(t)] is zero in Br(K). Then A € Decs(K).
Proof. Suppose that [b, Np/x(s)] = 0. Taking the corestriction we get
0= 2[A] = [ba NL/K(‘S)} + [Ca NL/K(t>] - |:C7 NL/K(t” :

By [4, Lemma 2.3], there are u,v € K* such that [b, s} = [b, U}L and [c, t} =
[c, v] ;- It follows that the class [A] — [b, u} — [c, v] is split by L, hence is the
class of a quaternion algebra. Thus, A € Dec3(K). O

Lemma 2.2. Let R be a commutative F-algebra, a,b € R*, T = R[\/a] and
r+yv/a € T* such that 2* — ay® = u® — bv? for some u,v € R. If v+u € R*,
then 2(x + u)(x + yv/a) € Np(b). In particular,

b,z +yv/a], = [b,2(x+u)],.

Proof. We have the equality

(@ +yva+u)’ —b? = (z +yva)(z + yva+ 2u) + (u* — bo?)
= (z 4+ yva)(z + yva + 2u) + (z + yv/a)(z — yv/a)
= (z 4+ yva)(2z + 2u). O

2.3. The Azumaya algebra A. Consider the affine space A% with coordi-
nates a,e,u,v,w,X,y,z and define the rational functions:
f =xy + az,
g =y +xz,
d =w?—f? + ag?,
b= (u®—-x*+a)d !,
c= (v’ —y?+az?)d?,
p=(u+x)(v+y)(w+f)

Let X be the open subscheme of A% given by
q = adep(u? — x* + a) (v? — y? + az?)(x? — a)(y* — az) (£? — ag?) £ 0,

i.e., X = Spec(R) with R = Fla,e,u,v,w,X,y,2,q"!]. Let S = R[\/a, Vb, \/c|.
Consider the Azumaya R-algebra

(3) A = (ae),® (b,2(u+x)),® (c,2(v+y)),® (d 2p),
We view S as a subring of A’. Moreover, (d7 2p)S = (d, 2p) ®rS CA.
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Let T' = R[y/a]. Tt follows from Lemma 2.2/ that
2(u+ x)(x + v/a) € Np(bd) C Ng(d),
2(v +y)(y +2zva) € Nr(cd) C Ng(d),
2w + )(x + va)(y + 2v/a) € Nr(d) € Ns(d).

It follows from (3) that

@) A, = [box+ VA + [e.y + 2val
in Br(7T).

Moreover, we have 2p = 2(u+x)(v+y)(w+f) € Ng(d), therefore, (d,2p)
is isomorphic to the matrix algebra Ms(.S). In particular,

MQ(R) C MQ(S) ~ (d72p>5 C ./4./

and hence A" ~ Ms(A) for the centralizer A of Ms(R) in A’ by the proof of
[8, Th. 4.4.2]. Then A is an Azumaya R-algebra of degree 8 that is Brauer
equivalent to A" by [17, Th. 3.10].

Proposition 2.3. The Azumaya algebra A is classifying for Algs, i.e, the
corresponding GLg [ py-torsor over X is classifying.

Proof. Let A € Algs(K), where K is a field extension of F. We shall find a
point p € X(K) such that A ~ A(p).

We follow Tignol’s construction. There is a triquadratic splitting extension
K(yv/a,Vb,\/c)/K of A with a,b,c € K*. Let L = K(y/a), so

[A], = [bs] + 1]

in Br(L) for some s = x + 2'y/a, and t = y + zy/a € L*. Modifying s by a
norm for the extension L(v/b)/L, we may assume that 2/ # 0. Similarly, we
may assume that z # 0. Moreover, replacing a by az’?, we may assume that
=1

We have
[b, 2 — a} = [d, z? — a} = [d, y? — azﬂ = [c, T azﬂ

in Br(K) for some d € K*, so the classes [bd, % — a}, [cd, y? — azz} and
d, (2? — a)(y* — az?)] are trivial. Hence

bd = u® — (2* — a)u”,

2 12

= (y* — az")v",

d=uw?— (2% — a)(y? — az?)u"

cd=v

for some w, v, v, v, w,w’ in K. Moreover, we may assume that v’ # 0. Replac-
ing b and u by bu/* and uw’ respectively, we may assume that «/ = 1. Similarly,
we may assume v’ = w' = 1.
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Replacing u by —u if necessary, we may assume that v+ # 0 and similarly
v+1y #0and w+ s # 0, where s = zy + az. It follows from Lemma 2.2 that

[b,x + \/5] = [b, 2(u + x)}L,
[e,y+2v/a] = [e,2(v + )],
[d, (z +Va)(y + zv/a)] = [d,2(w+ )],
in Br(L). Hence
[A] = [a, e} + [b, 2(u + x)} + [c, 2(v+ y)] + [d, 2u+z)(v+y)(w+ s)]
in Br(K) for some e € K*.

Let p be the point (a, e, u, v, w, z,y, z) in X (K). We have [.A(p)} = [A] and
hence A(p) ~ A as A(p) and A have the same dimension. O

Proposition 2.4. Let K be the quotient field of the ring R = F[X]. Let K
be the completion of K with respect to the discrete valuation associated with
one of the irreducible polynomials a,u® — x2 + a, v? — y? —i:\azz, d,x?>—a,y?—
az® f? —ag>u+x,v+y and w+£f. Then A € Decs(K).

Proof. First assume that the valuation v = v, is associated with a. By Hensel’s
Lemma, x>—a € K*2. Tt follows that [b, X2—a} 7 = 0. By Lemma 2.1, applied
to (4), Ap € Decs(K).

Let v = vy2_y24a. In the residue field, u? — x* +a = 0, hence X> —a is a
square. By Hensel’s Lemma, x? —a € K*2, Therefore, Az € Decg([/(\') as in
the previous case.

The case v = vy2_y2 4,2 is similar.

Let v = vq. In the residue field, w? — f2 + ag? = 0, hence f? — ag? is a
square. By Hensel’s Lemma, f2 — ag? € K*2, hence [b,f? —ag?|. = 0. It
follows from (4) that

[A], = [b,x+Va] + [c.y +zva] = [b,f +gVa] + [be,y +zVa].

By Lemma 2.1, Az € Dec;(K).

Let v = vy2_4. In the residue field, bd = 62 is a square. By Hensel’s Lemma,
bd € K*2. It follows from (3) that Ap € Decs(K).

The cases v = vy2_a,2 and v = vg2_,g2 are similar.

Let v = vy x. In the residue field, bd = a. By Hensel’s Lemma, abd € K*2,
It follows again from (3) that Az € Dec;;(f( ).

The cases v = vy4y and v = vy 4¢ are similar. O

From now on we consider the cohomology theory with values in the Galois
module Z/2Z, i.e., H(L) = H(L,Z/2Z) for any field extension of F. Note that
H(L) has structure of a commutative ring.

Proposition 2.5. The restriction homomorphism
Inv(Alg,, H") — Inv(Decs, H")

1S injective.
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Proof. Let g be an invariant of Alg, of degree r and let K be the quotient field
of the ring R, i.e., K = F(X). By Theorem [1.3, we have ¢(Ax) € A°(X, H").
Let X’ be the open subscheme of A% given by e # 0, so X C X’ C A% and
X' ~ A% x Gy,. Note that

ANX' H") = A (G, H") = H(F) ® (e) U HY(F)
by [15, Prop. 2.2 and Prop. 8.6].

Suppose that the restriction of ¢ on Decs is zero. By Proposition 2.4, Ay €
Decg(IA( ), where K is the completion of K with respect to every divisor x of
X" in X'\ X. Hence q(Agz) = 0 for all such K. The residue homomorphism
0, : H"(K) — H"'(F(x)) factors through the group H"(K). Tt follows that
9:(q(Ak)) = 0 and therefore,

q(Ag) € A°X' H") = H"(F) @ (e) U H'(F),

ie., q(Ax) = hg + (€) U b} for some h € H"(F) and W' € H"'(F'). Consider
a point p € X (F) with E = F(e) such that e(p) = e and b(p) = 1. It follows
from (3) that A(p) € Decs(F). Hence by Theorem [1.3/(2),

0= a(A(p)) = hs + (€) U hp,

therefore, h = b’ = 0 and ¢(Ag) = 0. By Proposition 2.3/ and Theorem [1.5,
q=0. 0

2.4. Invariants of Dec,. From now on we assume that —1 € F*2,
Let K. (F') denote the Milnor ring of a field F' and set k.(F') = K.(F)/2K.(F).
For every n > 0, let 7,, denote the divided power operation [9], [19]:

defined by

771(2051): Z Qg oot Oy
i=1 1<i1 < rSim<n
where the «; are symbols. In particular, v = 1 € ko(F') = Z/2Z and 7, is the
identity.

We identify ko(F') with Bro(F) via the norm residue isomorphism. Re-
stricting 7,, to Dec, and composing with the norm residue homomorphism
ko (F) — H*™(F), we can view the divided power operations (still denoted
by V) as invariants of Dec,, with values in H, so 7, € Inv(Dec,, H*™) for all
n. Clearly, v,, = 0 if m > n.

Theorem 2.6. The H(F)-module Inv(Dec,,, H) is free with basis
{1 = 70,71, - - 7771}

Proof. The case n = 1, when Decy; = Quat is proven in [7, Th. 18.1]. By [7,
Ex. 16.5], the natural map

Inv(Quat, H)*" — Inv(Quat™", H)
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is an isomorphism. It follows that Inv(Quat™", H) is a free H(F)-module with
basis of all monomials §7'05% ... 5", where 1 = 0 or 1 and the invariant ¢; is
defined by d;(av, ..., an) = ;.

The natural morphism of functors

(5) Quat™" — Dec,,
given by the tensor product is surjective. It follows that the map
Inv(Dec,,, H) — Inv(Quat™", H)

is injective. The image of this map is element-wise invariant under the natural
action of the symmetric group S,, and hence is contained in the free H(F)-
submodule generated by the standard symmetric functions ~,, on the é,...,9,
that are precisely the divided powers. U

Remark 2.7. Vial has computed all invariants of k,, in [19].

Restricting the divided powers on the subfunctors Alg,, C Bry we view the
Ym as invariants on Alg,,.

Theorem 2.8. Ifn < 3, then the H(F')-module Inv(Alg,,, H) is free with basis
{]- =771 - 7’771}

Proof. If n < 2, then Alg,, = Dec,, and the statement follows from Theorem
2.6. The case n = 3 is implied by Proposition 2.5 and Theorem 2.6. U

2.5. Reduced trace form. Let A be a central simple algebra over a field F.
Denote by g4 the quadratic form on A defined by ga(a) = Trd4(a?) for a € A,
where Trdy is the reduced trace form for A. If A and A’ are two central simple
algebras over F', then

JApA =~ 4a D qar.

Example 2.9. Let A be a quaternion algebra over a field F'. Then ¢4 is the
2-fold Pfister form ((a,b)), where a,b € F* such that [A] = [a,b] in Br(F).

It follows from Example 2.9 that for any A € Dec,(F') the form g4 is a
2n-fold Pfister form. Moreover, the invariant es,(ga) in H*"(F) (cf. [6, §16])
coincides with the divided power 7, (A).

Theorem 2.10. Ifn < 3, then for any A € Alg,(F), the form q4 is a 2n-fold
Pfister form such that es,(qa) = Yn(A).

Proof. If n < 2, then Alg, = Dec,, and the statement follows.

Consider the case n = 3. Let A € Algs(F). Choose a splitting field
F(\/a,\/b,\/c) and set L = F(y/a). We write a — a for the nontrivial auto-
morphism of L over F'. Let B be the centralizer of L in A. By Skolem-Noether
Theorem [11, Th. 1.4], there is an s € A such that szs™ = 7 for all z in L.
Note that s? commutes with all elements in L, hence s? € B.

Let ¢ : B — B be an automorphism defined by y +— sys~'. Then A = B ®
Bs with sy = ¢(y)s for all y € B. Since Trds(yzs) = Trda(v/ayzs(y/a)™t) =
—Trda(yzs), we have Trds(yzs) = 0 for any y and z in B. Moreover,
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Trda(y) = Trpp(Trdp(y)) for any y € B by [5, §22, Cor. 5]. Therefore,
for the trace forms we have

qa = Trr/r(gs) L Trr r(dp),

where ¢j5(z) = Trdg ((zs)?).
Let t € F* and A, the F-algebra with presentation A, = B & By and
yby~' = sbs™! for all b € B and y? = ts*. By Proposition |11, Th. 13.41],

[A] = [a,t} + [A].
Moreover,
qa, = Trpr(gs) Lt Trr r(dy),
hence, by Lemma 2.11 below, in the Witt ring of F', we have
qa —tqa, = ((t)) - Tryr(qn) € I°(F).

By (2), we can choose t such that A; is decomposable, hence g4, € I°(F) and

therefore, g4 € I°(F). As dim(ga) = 64, the form ¢4 is a 6-fold Pfister form.
It follows that eg(ga) is a well defined invariant of Algs that agrees with ~3

on Decs. By Proposition 2.5, eg(ga) = 3 on Algs. O

Lemma 2.11. In the notation above, Trr, r(qp) € I°(F).
Proof. In Tignol’s construction (see (1) and (2)),
[A], = [b,s] + [e,t] = [a,e] + [b, k] + [e,1] + [d, kim]

in Br(L). Let
(6) p = {a,€)) + (b, k) + ((c. 1)) + ({d, klm)) € I*(F).
It follows that

pr = ((b,s)) + (e, 1)) mod I*(L),
so B~ (b,s) @ (c,t). We have in W (L):

a5 = ((b,5)) - ({c;t)) = ((b,5)) - (p— {(b,5))) = ((b;s)) -p  mod I°(L)

since ((b,b)) = 0. By the projection formula and [6, Cor.34.19],
() Trope(as) = Trop(((,5)) 0= (b, Noyr(s))) -p  mod I°(F).

We have ((b, N r(s))) =~ ((c, Np/p(t))) ~ ((d,Np/r(t))). It follows that
((b,N1/r(s))) annihilates all four summands in the right hand side of (6),
hence ((b, Np/r(s))) - p = 0. By (7), Trr r(gp) € I°(F). O
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2.6. Essential dimension of Dec, and Alg;. Let S : Fields/F — Sets be a
functor, E € Fields/F and K C E a subfield over F. An element a € S(F)
is said to be defined over K (and K is called a field of definition of «) if
there exists an element § € S(K) such that « is the image of § under the
map S(K) — S(E). The essential dimension of «, denoted ed(«), is the least
transcendence degree tr.degp(K) over all fields of definition K of a. The
essential dimension of the functor S is

ed(S) = sup{ed(a)},

where the supremum is taken over fields £ € Fields/F and all o € S(E) (cf.
3, Def. 1.2]).

The highest invariant v, of Alg, and Dec,, of degree 2n is nontrivial, hence
ed(Alg,) > 2n and ed(Dec,) > 2n by [3, Cor. 3.6]. On the other hand, using
the surjection (5)), we get

ed(Dec,,) < ed(Quat™™) < n-ed(Quat) = 2n.

Thus, ed(Dec,,) = 2n.
It is proved in [13, Cor. 3.10] and [14, Th. 8.6] that ed(Algs) < 17.

Theorem 2.12. 6 < ed(A/gg) < 8.

Proof. By Proposition 2.3, there is a surjective morphism of functors X —
Algs, where X is a variety defined in Section 2. By [3, Cor. 1.19], ed (A/g3) <
dim(X) = 8. O
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