
THE GROUP SK1 FOR SIMPLE ALGEBRAS

ALEXANDER MERKURJEV

Let A be central simple algebra over a field F . Denote by K1(A) the White-
head group and by SK1(A) the reduced Whitehead group of A [2, §23]. If
the Schur index ind(A) is squarefree, then the group SK1(A) is trivial [2, §23,
Cor. 4]. In the case when ind(A) is not squarefree, the reduced Whitehead
group can still be trivial over some classes of fields, for example, global and
local fields. On the other hand, A. Suslin has conjectured in [15] that if ind(A)
is not squarefree, then the group SK1(A) is nontrivial generically, i.e., there is
a field extension L/F such that SK1(AL) ̸= 0 where AL = A⊗F L.

In the present paper we give a prove of the following case of Suslin’s conjec-
ture:

Theorem. Let A be a central simple algebra over a field F . If ind(A) is
divisible by 4, then SK1(AL) ̸= 0 for some field extension L/F .

Note that in [7] this theorem was proven in the case charF ̸= 2 with help
of the algebraic theory of quadratic forms. The present proof does not rely
on quadratic forms and could be viewed as a step towards the proof of the
conjecture in general.

Let GL1(A) be the algebraic group of invertible elements of A (with the
group of F -points equal to A×). The kernel of the reduced norm homomor-
phism Nrd : GL1(A)→ GL1(F ) is denoted by SL1(A).

It is shown in [16, §18, Cor. 3] that the theorem yields

Corollary. If A is a central simple algebra of index divisible by 4, then the
variety of the algebraic group SL1(A) is not stably rational.

1. Proof of Theorem

Let X be a variety over a field F . For every integer p ≥ 0, denote by X(p)

the set of points of X of codimension p. Let M∗ be a cycle module over X [12,
§2]. We write Ap(X,Mn) for the homology group of the complex⨿

x∈X(p−1)

Mn−p+1F (x)
∂−→

⨿
x∈X(p)

Mn−pF (x)
∂−→

⨿
x∈X(p+1)

Mn−p−1F (x).

Example 1.1. We denote by K∗ the cycle module given by Quillen’s K-
groups [12, Remark 2.5]. The group Ap(X,Kp) coincides with the Chow group
CHp(X) of the classes of cycles on X of codimension p.
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Let f : X → Y be a flat morphism of varieties over F . For a point y ∈ Y ,
denote by Xy the fiber of f over y, so that Xy is a variety over the residue field
F (y). For every integer n there is the fibration spectral sequence [12, Cor. 8.2]

Ep,q
1 =

⨿
y∈Y (p)

Aq(Xy,Mn−p)⇒ Ap+q(X,Mn).

In the rest of the section we formulate three propositions and show that they
imply the theorem. The proofs of the propositions are given in the last three
sections of the paper.

Let X = SB(A) be the Severi-Brauer variety of A of right ideals of A of
dimension deg(A) = dim(A)1/2. The dimension d of X is equal to deg(A)− 1.
We define the cycle module S∗ over F by

Sn(E) = Ad(XE, Kd+n)

for a field extension E/F , where XE = X ×SpecF SpecE [12, Th. 7.3]. The
push-forward homomorphism

p∗ : A
d(XE, Kd+n)→ A0(SpecE,Kn) = Kn(E)

induced by the structure morphism p : XE → SpecE, gives rise to the norm
map N : S∗ → K∗ of cycle modules.

If A is a split algebra, the variety X is isomorphic to the projective space
Pd
F . The projective bundle theorem for the K-cohomology [13, Cor. 8.2.1]

implies that the push-forward homomorphism p∗ is an isomorphism, hence N
is also an isomorphism.

Consider the algebraic group G = SL1(A). The group A1(G,K2) is infinite
cyclic with a canonical generator and does not change under field extensions
[3, Th. 9.3].

Proposition 1.2. Suppose that the norm homomorphism A1(G,S2)→ A1(G,K2)
is not surjective. Then SK1(AF (G)) ̸= 0.

Now suppose that A is a biquaternion algebra, i.e., deg(A) = 4 and the
exponent exp(A) divides 2. In this case d = 3.

Consider the fibration spectral sequence associated with the projection G×
X → G:

(1) Ep,q
1 =

⨿
g∈G(p)

Aq(XF (g), K5−p)⇒ Ap+q(G×X,K5).

Clearly, Ep,q
∗ = 0 if q > dimX = 3 and Ep,3

2 = Ap(G,S2). Let

δ : A1(G,S2) = E1,3
2 → E3,2

2

be the differential in the spectral sequence.

Proposition 1.3. If indA = 2, then the image of Ker δ under the norm
homomorphism

E1,3
2 = A1(G,S2)

N−→ A1(G,K2) = Z
is contained in 2Z.
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Let Y = SB(2, A) be the generalized Severi-Brauer variety of right ideals

of A of dimension 8. We set F̃ = F (Y ), Ã = AF̃ , X̃ = XF̃ , G̃ = GF̃ and

write Ẽp,q
∗ for the terms of the fibration spectral sequence associated with the

projection G̃ × X̃ → G̃. There is a natural morphism of spectral sequences

κ : Ep,q
∗ → Ẽp,q

∗ .

Proposition 1.4. If indA = 4, then κ : E3,2
2 → Ẽ3,2

2 is the zero map.

We deduce now the theorem from Propositions 1.2, 1.3 and 1.4. By the
index reduction formula in [1], there is a field extension E/F such that the
algebra AE is similar to a biquaternion algebra of index 4. Replacing A by AE

we get A similar to a biquaternion algebra. Since the groups SK1 of similar
algebras are canonically isomorphic [2, §23], we may assume that A itself is a
biquaternion algebra of index 4.

Consider the following commutative diagram:

Z A1(G,K2)
N←−−− A1(G,S2) E1,3

2
δ−−−→ E3,2

2∥∥∥ y y y κ

y
Z A1(G̃,K2)

Ñ←−−− A1(G̃, S2) Ẽ1,3
2

δ̃−−−→ Ẽ3,2
2 .

Since AF̃ is of index 2, by Propositions 1.3 (applied to Ã) and 1.4, the image
of the composite

A1(G,S2)→ A1(G̃, S2)
Ñ−→ A1(G̃,K2) = Z

is contained in 2Z. On the other hand, this composite coincides withN . There-
fore the norm homomorphism N : A1(G,S2)→ A1(G,K2) is not surjective and
Proposition 1.2 completes the proof of the theorem.

2. Proof of Proposition 1.2

Consider the split case first. The generic matrix determines a canonical
element α ∈ K1(SLn). Since det(α) = 1, the element α vanishes over the
generic point of SLn, therefore α belongs to the first term K1(SLn)

(1) of the
topological filtration on K1(SLn) [11, §7]. By [14, Th. 2.7], the first Chern
class c1(α) generates the group A1(SLn, K2).

Lemma 2.1. The image of α under the canonical homomorphism
K1(SLn)

(1) → A1(SLn, K2) is equal to the generator c1(α).

Proof. Let β ∈ K1(GLn) be the element given by the generic matrix. By
[14, Th. 3.10], γp+1(β) ∈ K1(GLn)

(p) for all p ≥ 0, where γ is the gamma-
operation, and the image of −γ2(β) under the canonical homomorphism

K1(GLn)
(1) → A1(GLn, K2)

is equal to c1(β). On the other hand, the sum of γp+1(β) for all p ≥ 1 coin-
cides with Λn(β) = det(β) [14, p. 65]. Hence −γ2(β) ≡ β − det(β) modulo
K1(GLn)

(2).
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Pulling back with respect to the embedding of SLn into GLn we have
−γ2(α) ≡ α modulo K1(SLn)

(2) since det(α) = 0 and therefore the image of α
under the homomorphism K1(SLn)

(1) → A1(SLn, K2) is equal to c1(α). �

Now let A be a central simple algebra over F , let G = SL1(A) and set X =
SB(A). Filtering the category of coherent A ⊗F OX-modules by codimension
of support as in [11, §7.5], we get the Gersten-Quillen spectral sequence

Ep,q
1 =

⨿
g∈G(p)

K−p−qAF (g) ⇒ K−p−q(G,A),

where the limit is the K-group of the category of coherent A⊗F OX-modules.
Consider the cycle module R∗ over F given by Rn(E) = Kn(AE). We have
Ep,q

2 = Ap(G,R−q).
By [13, §26], there is reduced norm homomorphism Nrd : Rn → Kn for

n ≤ 2. It yields a homomorphism

NrdG : A1(G,R2)→ A1(G,K2).

If A is split, the homomorphisms Nrd and NrdG are isomorphisms.
The generic element of G defines a canonical element αA ∈ K1(G,A) =

K1

(
A⊗F F [G]

)
.

Suppose that SK1(AF (G)) = 0. Then αA vanishes over the generic point

of G and therefore it belongs to the first term K1(G,A)(1) of the topological
filtration. Denote by ξ the image of αA under the canonical homomorphism

K1(G,A)(1) → E1,−2
2 = A1(G,R2).

Let E/F be a splitting field of the algebra A. In the commutative diagram

K1(G,A)(1) //

vvnnn
nnn

nnn
nnn

A1(G,R2)

r
wwooo

ooo
ooo

oo
NrdG
��

K1(GE, AE)
(1) //

≀
��

A1(GE, R2)

NrdGE ≀
��

A1(G,K2)

k

wwooo
ooo

ooo
oo

K1(GE)
(1) // A1(GE, K2)

the two lower vertical homomorphisms are canonical isomorphisms. The image
of αA in the group K1(GE)

(1) is equal to the generic element α defined above.
It follows from the commutativity of the diagram that the element NrdGE

(r(ξ))
is the image of α from K1(GE)

(1). By Lemma 2.1, the element NrdGE
(r(ξ)) is

a generator of A1(GE, K2). Since k is an isomorphism, the element NrdG(ξ) is
a generator of A1(G,K2). Therefore, the map NrdG is surjective.

Note that by [10], there is a natural isomorphism Rn ≃ Sn for n = 0 and
1. Hence the images of NrdG and of the norm map A1(G,S2) → A1(G,K2)
coincide. Therefore the latter map is surjective, a contradiction.
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3. Proof of Proposition 1.3

We assume that A is a biquaternion algebra of index 2, so that A = M2(Q),
where Q is a quaternion division algebra. We have G = SL2(Q) and denote
by C the conic curve SB(Q).

Consider the fibration spectral sequence associated with the projection G×
C → G:

(2) Êp,q
1 =

⨿
g∈G(p)

Aq(CF (g), K3−p)⇒ Ap+q(G× C,K3).

We have for p = 2, 3:

Êp,0
1 =

⨿
g∈G(p)

A0(CF (g), K3−p) =
⨿

g∈G(p)

K3−p(F (g)),

hence Ê3,0
2 = CH3(G). The spectral sequence (2) yields an exact sequence

(3) A2(G× C,K3)→ Ê1,1
2

δ̂−→ Ê3,0
2 .

By [4, Cor. 1.3.2], the motive M(X) in the category of Chow motives over
F is isomorphic canonically to M(C)⊕M(C)(2). Hence,

Aq+2(X,Kn+2) ≃ Aq+2(C,Kn+2)⊕ Aq(C,Kn).

If q ≥ 0, then Aq+2(C,Kn+2) = 0, hence there is an isomorphism

Aq(C,Kn)
∼→ Aq+2(X,Kn+2),

which in fact is induced by a closed embedding C → X [8, p. 326].
We compare the spectral sequences (1) and (2). The push forward ho-

momorphism with respect to the embedding C → X yields a morphism of
spectral sequences Êp,q

∗ → Ep,q+2
∗ which is an isomorphism for q = 0 and 1. In

particular,

(4) E3,2
2 = Ê3,0

2 = CH3(G).

We also identify the differential δ : E1,3
2 → E3,2

2 with the differential δ̂ :

Ê1,1
2 → Ê3,0

2 . The exactness of (3) implies that it is sufficient to show that the
image of the composite

A2(G× C,K3)→ Ê1,1
2 = E1,3

2 = A1(G,S2)
N−→ A1(G,K2) = Z

is contained in 2Z. Since the norm map N is induced by the push-forward
homomorphism for the projection C → SpecF , this composite is the push-
forward homomorphism

rG∗ : A2(G× C,K3)→ A1(G,K2) = Z

with respect to the projection rG : G× C → G.
Consider the group H = SL1(Q) as a subgroup of G. Let i : H → G be the

embedding morphism. Choose a field extension E/F splitting the algebra Q
and consider the commutative diagram
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A2(G× C,K3)
(i×1C)∗−−−−→ A2(H × C,K3)

res−−−→ A2(HE × CE, K3)

rG∗

y rH∗

y r
HE
∗

y
A1(G,K2)

i∗−−−→ A1(H,K2)
res′−−−→ A1(HE, K2).

The algebra Q is isomorphic over C to EndOC
(J), where J is the canonical

locally free sheaf on C of rank 2. By [14, Th. 4.2],

A2(H × C,K3) = CH1(C) · c1(α),

A2(HE × CE, K3) = CH1(CE) · c1(αE)

where α ∈ K1(G × C) is the generic element and c1(α) ∈ A1(H × C,K2)
is the first Chern class of α. Thus the homomorphism res in the diagram is
isomorphic to the restriction homomorphism CH1(C)→ CH1(CE). Since CE ≃
P1
E and all closed points of C are of even degree, the latter homomorphism is

isomorphic to the inclusion of 2Z into Z, hence the image of res is divisible by
2. By [3, Ex. 7.10, Th. 9.3], the homomorphisms i∗ and res′ are isomorphisms.
It follows that the image of rG∗ is also divisible by 2.

4. Proof of Proposition 1.4

Let A be a central simple algebra over F and let G = SL1(A). We first
collect some information about the Chow groups of G.

Proposition 4.1. The groups CH1(G) and CH2(G) are trivial and there is
a natural surjective homomorphism A1(G,K2) → CH3(G). In particular,
CH3(G) is a cyclic group. Moreover, 2 · CH3(G) = 0.

Proof. Consider the Gersten-Quillen spectral sequence [11, §7, Th. 5.4]
Ep,q

2 = Ap(G,K−q)⇒ K−p−q(G).

By [14, Th. 6.1], K0(G) = Z, hence for p = 1 and 2 we have

CHp(G) = Ep,−p
2 = Ep,−p

∞ = 0

and the differential

A1(G,K2) = E1,−2
2 → E3,−3

2 = CH3(G)

is surjective. The last assertion is proven in [9, Prop. 4.3]. �
Corollary 4.2. Suppose that ind(A) ≤ 2. Then CHp(G) = 0 if p ̸= 0 and 3.

Proof. If A is split, then CHp(G) = 0 for every p > 0 [14, Th. 2.7]. We may
therefore assume that G = SLn(Q), where Q is a quaternion algebra. We
proceed by induction on n. In the case n = 1 we have dim(G) = 3 and the
statement follows from Proposition 4.1.

Let H = SLn−1(Q). We view H as a subgroup of G with respect to the
embedding a 7→ diag(1, a). Consider the closed subvariety V of the affine
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space Q2n consisting of tuples (b1, . . . , bn, c1, . . . , cn) such that
∑

bici = 1.
Define the morphism

f : G→ V, a = (aij) 7→ (a11, . . . , a1n, a
′
11, . . . , a

′
n1),

where (a′ij) = a−1. Clearly, f is an H-torsor over V . For any field extension
E/F , in the exact sequence of Galois cohomology

G(E)
f(E)−−→ V (E)→ H1(E,H)

r−→ H1(E,G)

the map r is an isomorphism (both sets are identified with E×/Nrd(A×
E) and

r is the identity map [6, Cor. 2.9.4]). Hence f is surjective on E-points.
Let W be the open subset of the affine space Qn consisting of all tuples

(b1, . . . , bn) such that
∑

biQ = Q. Clearly CHp(W ) = 0 for p > 0. The obvious
projection V → W is an affine bundle, hence by the homotopy invariance
property,

(5) CHp(V ) ≃ CHp(W ) = 0

for every p > 0.
For every m, consider the fibration spectral sequence associated with the

morphism f :

Ep,q
1 =

⨿
v∈V (p)

Aq(Gv, Km−p)⇒ Ap+q(G,Km).

Since f is surjective on points, we have Gv ≃ HF (v) for every v ∈ V . By the

induction hypothesis and Proposition 4.1, Em−q,q
1 = 0 if q ̸= 0, 3 and there are

surjections CHm(V ) → Em,0
2 , CHm−3(V ) → Em−3,3

2 . By (5), if m ̸= 0 and 3,
Em,0

2 and Em−3,3
2 are trivial, hence CHm(G) = Am(G,Km) = 0. �

Suppose now that A is a biquaternion division algebra. Since indAF̃ = 2, it
follows from (4) that

Ẽ3,2
2 = CH3(G̃).

The group E3,2
2 is generated by the images of the groups A2(XF (g), K2) =

CH2(XF (g)) for all g ∈ G(3). Since over a splitting field the variety X is isomor-

phic to a projective space, and the group CH2 of a projective space is canoni-
cally isomorphic to Z, we have a canonical homomorphism CH2(XF (g))→ Z.

It is proven in [5, Cor. 7] that

(6) Im
(
CH2(XF (g))→ Z

)
=

{
2Z, if indAF (g) = 4;
Z, if indAF (g) ≤ 2.

Recall that Y = SB(2, A) so that dim(Y ) = 4. The variety Y has a rational
point if and only if ind(A) ≤ 2. Therefore we have the following computation
of the image of the degree homomorphism for every g ∈ G:

(7) Im
(
CH4(YF (g))

deg−−→ Z
)
=

{
2Z, if indAF (g) = 4;
Z, if indAF (g) ≤ 2.
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Consider the cycle module M∗ over F defined by

Mn(E) = A4(YE, Kn+4).

It follows from (6) and (7) that the image of κ : E3,2
2 → Ẽ3,2

2 coincides with
the image of the composite

A3(G,M3)→ A3(G,K3) = CH3(G)→ CH3(G̃) = Ẽ3,2
2 ,

where the first homomorphism is induced by the norm map M∗ → K∗. It is
sufficient to prove that the first homomorphism in the composite is trivial.

Consider the fibration spectral sequence associated with the projection G×
Y → G:

Ep,q
1 =

⨿
g∈G(p)

Aq(YF (g), K7−p)⇒ Ap+q(G× Y,K7).

Since by dimension consideration Ep,q
1 = 0 if q > 4, the spectral sequence

yields a surjective homomorphism CH7(G× Y )→ A3(G,M3). The composite

CH7(G× Y )→ A3(G,M3)→ A3(G,K3) = CH3(G)

is the push-forward homomorphism p∗ with respect to the projection p : G ×
Y → G. Thus, it is sufficient to show that p∗ = 0.

Lemma 4.3. The Chow group CH7(G × Y ) is generated by images of the
push-forward homomorphisms CH3(GF (y))→ CH7(G×Y ) for all closed points
y ∈ Y .

Proof. Consider the fibration spectral sequence associated with the projection
G× Y → Y :

Ep,q
1 =

⨿
y∈Y (p)

Aq(GF (y), K7−p)⇒ Ap+q(G× Y,K7).

We have ind(AF (y)) ≤ 2 for every y ∈ Y , hence by Corollary 4.2, CHq(GF (y)) =

0 if q > 3. This implies that E7−q,q
1 = 0 if q > 3, whence the result. �

By Lemma 4.3, it is sufficient to prove that for every closed point y ∈ Y ,
the push-forward homomorphism

CH3(GF (y))→ CH3(G)

is trivial. Note that deg(y) is even since ind(A) = 4. It follows from Proposi-
tion 4.1 that the horizontal morphisms in the commutative diagram

Z A1(GF (y), K2) −−−→ CH3(GF (y))

deg(y)

y y y
Z A1(G,K2) −−−→ CH3(G)

are surjective. The statement follows from the equality 2 ·CH3(G) = 0 (Propo-
sition 4.1).
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