ZERO-CYCLES ON ALGEBRAIC TORI

ALEXANDER S. MERKURJEV

1. THE MAP @r

Let T be an algebraic torus over a field F' and X a smooth compactification of T,
i.e., a geometrically irreducible smooth complete variety containing 7" as an open
set. The Chow group CHy(X) of classes of zero dimensional cycles on X does not
depend (up to canonical isomorphism) on the choice of X (cf. [7, 16.1.11], [4, Prop.
6.3], [8])-

Recall that two F-points t,t’ € T(F) are called R-equivalent if there is rational
morphism f : Al --» T defined at 0 and 1 satisfying f(0) = ¢ and f(1) =’ (cf. [2,
§4]). We write T'(F)/R for the group of R-equivalence classes in T'(F).

For an F-point ¢t € T'(F) let [t] denote its class in CHy(X). Consider the map
from T(F) to CHo(X) taking a point ¢ to the class [t] — [1]. This map does not
depend on the choice of X (up to canonical isomorphism) and it factors through
R-equivalence. Indeed, a map f as above extends to a morphism g : P! — X and
[t] = g«([0]) = g«([1]) = [t'], where g, : CHg(P!) — CHg(X) is the push-forward
homomorphism (cf. [7, 1.4]).

We denote the resulting map by

Note that there is a homomorphism 9 : Ag(X) — T(F)/R such that ¢r o pr
is the identity (cf. [2, Prop. 12]). It follows that the map ¢ is injective.

One can ask whether 7 is a homomorphism. It is known that @7 is a homo-
morphism for all tori 7" of dimension at most 3 (cf. [10]). In this note we shall give
an example of a torus T such that @7 is not a homomorphism although it has left
inverse map 7 that is a homomorphism. It follows that ¢ is not surjective.

The map @7 is a homomorphism if and only if for any two points ¢; and to in
T(F) one has
(1) [tite] = [t1] — [t2] +[1] =0
in CHO (X)

Let T be another torus with a compactification X’. Then X x X’ is a compacti-

fication of T'x T". Let t € T(F) and t' € T'(F'). The condition (1) for the elements
t;1 = (t,1) and to = (1,¢') of (T x T")(F') amounts to

(2) (] =[] < (] - [1) =0

in CHo(X x X'), where x denotes the external product for Chow groups (cf. [7,
1.10]). In the next section we shall give examples of tori T and T” such that
the condition (2)) fails for some ¢ and ¢'. It would follows that @7« is not a
homomorphism.
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2. THE TORI R} /1 (Gm)

Let F be a field with char F' # 2. For an element a € F'*, let F, denote the
quadratic (étale) F-algebra F[t]/(t? — a).

Let a,b € F*. Consider the biquadratic F-algebra L = F, ® F}, and let G be the
Galois group Gal(L/F). Write o € G for the generator of Gal(L/F,) and 7 € G
for the generator of Gal(L/Fy).

Let T be the torus Ri/F(Gm) of norm 1 elements of the extension L/F. For
a field extension K/F, a point ¢t of T(K) is an element ¢t € (K ® L)* satisfying
Nkeory/k(t) :=t-o(t)-7(t)-o7(t) = 1, where Nggr)/x : (K ®L)* — K* is the
norm homomorphism. The element N xgr)/(ker,) =1 - o(t) in K ® F, has norm
1 in K. By Hilbert Theorem 90, applied to the quadratic extension (K ® F,)/K,
there is an element 2z € (K ® F,)* with t-o(t) = z-7(2)~!. Note that z is unique up
to a multiple from K. Hence the norm N(ggr,)/x(2) = z-7(2) is unique up to a
multiple from K *2. It follows that the class g (t) quaternion algebra (z-7(z),b) x
in the Brauer group Br(K) is well defined. Thus, we get a group homomorphism

qr : T(K) — Br(K), t— qi(t).

The collection of the homomorphisms ¢ over all field extensions K of F' form a
morphism ¢ of functors 7" and Br from the category of all field extensions of F' to
the category of groups. In other words, ¢ is an invariant of the algebraic torus T
with values in the Brauer group (cf. [9]).

Remark 2.1. Tt is shown in [11} p. 427] that ¢r induces an isomorphism between
T(F)/R and the subgroup of Br(F') consisting of classes of algebras that are split
over all three quadratic subalgebras of L.

Example 2.2. Assume that F' contains a square root ¢ of —1. Then we can view i
as an element of T(F). We have i-0(i) = —1 = z-7(2)~! with 2 = /a in F,. Hence
qr (i) is the class of the quaternion algebra (z -7(2), b)F o~ (—a, b)F ~ (a, b)F.

Let F(T) be the function field of T over F and let v be a discrete valuation on
F(T) over F. The residue field F(v) is a field extension of F. By [, §5], there is
the residue homomorphism

9y : Br(L(T)/F(T)) — G*,

where G* is the character group of G. An element a in Br(L(T)/F(T)) is called
unramified with respect to v if 9, () = 0 and (totally) unramified if « is unramified
with respect to every discrete valuation of F(T) over F.

Proposition 2.3. For any t € T(F(T)), the element qr(7)(t) in Br(L(T)/F(T))
is unramified.

Proof. Write K for F(T), so L(T) = K® L = KL. As the character group G* is of
exponent 2, it suffices to show that gk (t) is divisible by 2 in Br(KL/K). By Hilbert
Theorem 90, there are elements z € K¢ and w € K, such that t-o(t) = z-7(2) "
and t - 7(t) = w™! - o(w). Consider the cross product central simple K-algebra (cf.
6. §12)):

A=KIL1® KLu, ® KLu, ® KLu,u,

with multiplication table:

=W, UsUr =TUrUs.
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As KL is a maximal subalgebra of A, the Brauer class of A belongs to Br(KL/K).

The centralizer C' of the quadratic subalgebra K, C KL C A in A is generated
by KL and u, and hence is isomorphic to the quaternion algebra (z,b) k. It follows
from [6l, §7] that

[A K Ka] = [(Z’b)Ka] inBr(KL/Ka)»

hence
ax(t) = [(z- 0(2),b) ] = corg, /xc[(2,b) ¢ | = corg, /k[A ®k Ko] =2[A]. O

We write ar for the element gp(ry(t) in Br(L(T)/F(T)), where t is the generic
point in T(F(T)) As 2ar = 0, we can view ar as an element of the group
H?(F(T),Z/2Z) = Bry(F(T)). By Proposition 2.3, ar is an unramified element
of H?(F(T),Z/2Z) in the sense of [1] (cf. [10, 2.2]).

Remark 2.4. If L/F is a field extension, by [3, Prop. 9.5], the factor group of the
group of unramified elements in Br(F(7T")) modulo Br(F) is canonically isomorphic

to H?(G, f) ~ H3(G,Z) ~ 7./27, where T is the Galois module of characters of T.
The class ar corresponds to the only nontrivial element of the group H?(G,T).

Choose a smooth compactifications X of T, so we can view « as an unramified
element of H?(F(X),Z/2Z). Let « € X(F) be any point over F. We write a(z) €

H?(F,7/2Z) for the value of o at x (cf. [10, 2.1]). If z € T(F), then a(z) = qp(z).
In particular, we have a(1) = 0 and a(i) = (a) U (b) by Example 2.2 if F' contains
a square root i of —1.

Let L' = F, ® Fy be another biquadratic F-algebra and T” := RlL,/F(Gm)

and let apr € H?(F(T'),Z/2Z) be the element as above. Choose also a smooth
compactification X’ of T’. Restricting  and o’ to F(X x X') and taking the
cup-product, we get the unramified element

B=axd € H(F(X x X'),Z/2Z).

Let Zo(X x X’) be the group of zero-dimensional cycles on X x X’. The map
Zo(X x X') — H*(F,Z/2Z) taking the class of a closed point z € X x X’ to
Npey/r (ﬁ(z)) factors through a homomorphism

p: CHy(X x X') — HY(F,Z/27)
(cf. [10} 2.4]). Note that for every t € T(F) and t' € T'(F) we have
p((t] x [t) = B(t.t') = alt) U/ (t') € HY(F,Z/21).
It follows that
p(([t] = 1) x ([T = 1)) = (a(t) — a(1)) U (/ () = &/ (1)) = a(t) U (t)
in HY(F,Z/27).
Assume that F' contains a square root ¢ of —1, so ¢ € T(F'). We then have
p(([i] = [1) x ([ = [1])) = (@) U (D) U (a') U (V) € H*(F, Z/22Z).

One can easily find a field F' and elements a,b,a’, b’ with (a) U (b) U (a/) U (b') #0
in H*(F,7Z/2Z). For example, one can take F = k(a,b,a’, V'), where a,b,a’, b’ are
variables over a field k. This contradicts (2)). Hence @7/ is not a homomorphism.
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