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1. The map ϕT

Let T be an algebraic torus over a field F and X a smooth compactification of T ,
i.e., a geometrically irreducible smooth complete variety containing T as an open
set. The Chow group CH0(X) of classes of zero dimensional cycles on X does not
depend (up to canonical isomorphism) on the choice of X (cf. [7, 16.1.11], [4, Prop.
6.3], [8]).

Recall that two F -points t, t′ ∈ T (F ) are called R-equivalent if there is rational
morphism f : A1 99K T defined at 0 and 1 satisfying f(0) = t and f(1) = t′ (cf. [2,
§4]). We write T (F )/R for the group of R-equivalence classes in T (F ).

For an F -point t ∈ T (F ) let [t] denote its class in CH0(X). Consider the map
from T (F ) to CH0(X) taking a point t to the class [t] − [1]. This map does not
depend on the choice of X (up to canonical isomorphism) and it factors through
R-equivalence. Indeed, a map f as above extends to a morphism g : P1 → X and
[t] = g∗([0]) = g∗([1]) = [t′], where g∗ : CH0(P1) → CH0(X) is the push-forward
homomorphism (cf. [7, 1.4]).

We denote the resulting map by

ϕT : T (F )/R → CH0(X).

Note that there is a homomorphism ψT : A0(X) → T (F )/R such that ψT ◦ ϕT

is the identity (cf. [2, Prop. 12]). It follows that the map ϕT is injective.
One can ask whether ϕT is a homomorphism. It is known that ϕT is a homo-

morphism for all tori T of dimension at most 3 (cf. [10]). In this note we shall give
an example of a torus T such that ϕT is not a homomorphism although it has left
inverse map ψT that is a homomorphism. It follows that ϕT is not surjective.

The map ϕT is a homomorphism if and only if for any two points t1 and t2 in
T (F ) one has

(1) [t1t2]− [t1]− [t2] + [1] = 0

in CH0(X).
Let T ′ be another torus with a compactification X ′. Then X×X ′ is a compacti-

fication of T ×T ′. Let t ∈ T (F ) and t′ ∈ T ′(F ). The condition (1) for the elements
t1 = (t, 1) and t2 = (1, t′) of (T × T ′)(F ) amounts to

(2) ([t]− [1])× ([t′]− [1]) = 0

in CH0(X × X ′), where × denotes the external product for Chow groups (cf. [7,
1.10]). In the next section we shall give examples of tori T and T ′ such that
the condition (2) fails for some t and t′. It would follows that ϕT×T ′ is not a
homomorphism.
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2. The tori R1
L/F (Gm)

Let F be a field with charF 6= 2. For an element a ∈ F×, let Fa denote the
quadratic (étale) F -algebra F [t]/(t2 − a).

Let a, b ∈ F×. Consider the biquadratic F -algebra L = Fa⊗Fb and let G be the
Galois group Gal(L/F ). Write σ ∈ G for the generator of Gal(L/Fa) and τ ∈ G
for the generator of Gal(L/Fb).

Let T be the torus R1
L/F (Gm) of norm 1 elements of the extension L/F . For

a field extension K/F , a point t of T (K) is an element t ∈ (K ⊗ L)× satisfying
N(K⊗L)/K(t) := t · σ(t) · τ(t) · στ(t) = 1, where N(K⊗L)/K : (K ⊗L)× → K× is the
norm homomorphism. The element N(K⊗L)/(K⊗Fa) = t · σ(t) in K ⊗ Fa has norm
1 in K. By Hilbert Theorem 90, applied to the quadratic extension (K ⊗ Fa)/K,
there is an element z ∈ (K⊗Fa)× with t ·σ(t) = z ·τ(z)−1. Note that z is unique up
to a multiple from K×. Hence the norm N(K⊗Fa)/K(z) = z · τ(z) is unique up to a
multiple from K×2. It follows that the class qK(t) quaternion algebra

(
z · τ(z), b

)
K

in the Brauer group Br(K) is well defined. Thus, we get a group homomorphism

qK : T (K) → Br(K), t 7→ qK(t).

The collection of the homomorphisms qK over all field extensions K of F form a
morphism q of functors T and Br from the category of all field extensions of F to
the category of groups. In other words, q is an invariant of the algebraic torus T
with values in the Brauer group (cf. [9]).

Remark 2.1. It is shown in [11, p. 427] that qF induces an isomorphism between
T (F )/R and the subgroup of Br(F ) consisting of classes of algebras that are split
over all three quadratic subalgebras of L.

Example 2.2. Assume that F contains a square root i of −1. Then we can view i
as an element of T (F ). We have i ·σ(i) = −1 = z ·τ(z)−1 with z =

√
a in Fa. Hence

qF (i) is the class of the quaternion algebra
(
z · τ(z), b

)
F
' (−a, b

)
F
' (

a, b
)
F
.

Let F (T ) be the function field of T over F and let v be a discrete valuation on
F (T ) over F . The residue field F (v) is a field extension of F . By [5, §5], there is
the residue homomorphism

∂v : Br
(
L(T )/F (T )

) → G∗,

where G∗ is the character group of G. An element α in Br
(
L(T )/F (T )

)
is called

unramified with respect to v if ∂v(α) = 0 and (totally) unramified if α is unramified
with respect to every discrete valuation of F (T ) over F .

Proposition 2.3. For any t ∈ T
(
F (T )

)
, the element qF (T )(t) in Br

(
L(T )/F (T )

)
is unramified.

Proof. Write K for F (T ), so L(T ) = K⊗L = KL. As the character group G∗ is of
exponent 2, it suffices to show that qK(t) is divisible by 2 in Br(KL/K). By Hilbert
Theorem 90, there are elements z ∈ K×

a and w ∈ K×
b such that t · σ(t) = z · τ(z)−1

and t · τ(t) = w−1 · σ(w). Consider the cross product central simple K-algebra (cf.
[6, §12]):

A = KL1⊕KLuσ ⊕KLuτ ⊕KLuτuσ

with multiplication table:

u2
σ = z, u2

τ = w, uσuτ = tuτuσ.
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As KL is a maximal subalgebra of A, the Brauer class of A belongs to Br(KL/K).
The centralizer C of the quadratic subalgebra Ka ⊂ KL ⊂ A in A is generated

by KL and uσ and hence is isomorphic to the quaternion algebra (z, b)Ka
. It follows

from [6, §7] that
[A⊗K Ka] = [

(
z, b

)
Ka

] in Br(KL/Ka),

hence

qK(t) = [
(
z · σ(z), b

)
K

] = corKa/K [
(
z, b

)
Ka

] = corKa/K [A⊗K Ka] = 2[A]. ¤

We write αT for the element qF (T )(t) in Br
(
L(T )/F (T )

)
, where t is the generic

point in T
(
F (T )

)
. As 2αT = 0, we can view αT as an element of the group

H2
(
F (T ),Z/2Z

)
= Br2

(
F (T )

)
. By Proposition 2.3, αT is an unramified element

of H2
(
F (T ),Z/2Z

)
in the sense of [1] (cf. [10, 2.2]).

Remark 2.4. If L/F is a field extension, by [3, Prop. 9.5], the factor group of the
group of unramified elements in Br

(
F (T )

)
modulo Br(F ) is canonically isomorphic

to H2(G, T̂ ) ' H3(G,Z) ' Z/2Z, where T̂ is the Galois module of characters of T .
The class αT corresponds to the only nontrivial element of the group H2(G, T̂ ).

Choose a smooth compactifications X of T , so we can view α as an unramified
element of H2

(
F (X),Z/2Z

)
. Let x ∈ X(F ) be any point over F . We write α(x) ∈

H2
(
F,Z/2Z

)
for the value of α at x (cf. [10, 2.1]). If x ∈ T (F ), then α(x) = qF (x).

In particular, we have α(1) = 0 and α(i) = (a) ∪ (b) by Example 2.2 if F contains
a square root i of −1.

Let L′ = Fa′ ⊗ Fb′ be another biquadratic F -algebra and T ′ := R1
L′/F (Gm)

and let αT ′ ∈ H2
(
F (T ′),Z/2Z

)
be the element as above. Choose also a smooth

compactification X ′ of T ′. Restricting α and α′ to F (X × X ′) and taking the
cup-product, we get the unramified element

β = α× α′ ∈ H4
(
F (X ×X ′),Z/2Z

)
.

Let Z0(X ×X ′) be the group of zero-dimensional cycles on X ×X ′. The map
Z0(X × X ′) → H4(F,Z/2Z) taking the class of a closed point z ∈ X × X ′ to
NF (z)/F

(
β(z)

)
factors through a homomorphism

ρ : CH0(X ×X ′) → H4(F,Z/2Z)

(cf. [10, 2.4]). Note that for every t ∈ T (F ) and t′ ∈ T ′(F ) we have

ρ([t]× [t′]) = β(t, t′) = α(t) ∪ α′(t′) ∈ H4(F,Z/2Z).

It follows that

ρ(([t]− [1])× ([t′]− [1])) =
(
α(t)− α(1)

) ∪ (
α′(t′)− α′(1)

)
= α(t) ∪ α′(t′)

in H4(F,Z/2Z).
Assume that F contains a square root i of −1, so i ∈ T (F ). We then have

ρ
(
([i]− [1])× ([i]− [1])

)
= (a) ∪ (b) ∪ (a′) ∪ (b′) ∈ H4(F,Z/2Z).

One can easily find a field F and elements a, b, a′, b′ with (a) ∪ (b) ∪ (a′) ∪ (b′) 6= 0
in H4(F,Z/2Z). For example, one can take F = k(a, b, a′, b′), where a, b, a′, b′ are
variables over a field k. This contradicts (2). Hence ϕT×T ′ is not a homomorphism.
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