
EQUIVARIANT CONNECTIVE K-THEORY

NIKITA A. KARPENKO AND ALEXANDER S. MERKURJEV

Abstract. For separated schemes of finite type over a field with an action of an affine
group scheme of finite type, we construct the bi-graded equivariant connective K-theory
mapping to the equivariant K-homology of Guillot and the equivariant algebraic K-
theory of Thomason. It has all the standard basic properties as the homotopy invariance
and localization. We also get the equivariant version of the Brown-Gersten-Quillen spec-
tral sequence and study its convergence.

Contents

1. Introduction 1
2. K-homology 2
3. CK-homology 5
4. Spectral sequence 10
5. Gysin homomorphism and external product 12
6. Smooth varieties 13
7. Examples 15
References 18

1. Introduction

Let G be an algebraic group acting on an algebraic variety X of dimension n over a field
F . Following Totaro’s paper [17], Edidin and Graham defined in [3] the G-equivariant
Chow groups CHi(G,X) of X as follows. Choose a finite dimensional vector space V
with a linear G-action having the property that there is a G-invariant open subset U ⊂ V
such that codimV (V \ U) > n − i and there exists a G-torsor U → U/G with U/G a
variety. Then CHi(G,X) is defined as an appropriate Chow group of the algebraic space
(X × U)/G. This is independent of the choice of V and U .
The situation changes if we replace Chow groups by another homology theory H, for

example, cobordism theory of [9]: the homology groups H((X × U)/G) do depend on
the choice of V and U . To remedy the situation one can take the (inverse) limit of
homology groups H((X × U)/G) over all U . This approach was adopted in [6]. It has
two disadvantages. First, the homology groups are large. For example, the G-equivariant
group K0 of the point pt = SpecF defined this way coincides with the completion of
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the representation ring R(G) with respect to the fundamental ideal. Second, the proofs
of some standard properties are quite involved. (Note that the proof of the localization
property for the equivariant cobordism theory given in [6] is incorrect.)
In the case of algebraic K-theory there is an alternative way to define the equivariant

K-groups of X as the K-groups of the category M(G,X) of coherent G-modules on X.
TheseK-groups are smaller: the groupK0(G, pt) coincides withR(G), not the completion.

The theory of Chow groups is a particular case of a bi-graded theory in two ways. First
of all, Chow groups are the K-homology groups Ap,q when p+ q = 0 (see Section 2). On
the other hand, Chow groups are a special case of the motivic homology groups.

In the motivic world the smallest bi-graded theory that maps both to the motivic
homology and algebraic K-theory is the connective K-theory. In [2], Cai has constructed
a variant of the connective K-theory that maps to the K-homology and algebraic K-
theory. The connective K-groups of a variety X arise as the terms D2

p,q in the Brown-
Gersten-Quillen (BGQ) spectral sequence that starts from K-homology groups of X and
converges to the K-theory of X (with the topological filtration).

In the present paper we define an equivariant analog of Cai’s connective K-theory of
a G-variety X. The straightforward generalization of Cai’s approach does not work by
the same reason as one cannot define the equivariant Chow groups using just G-invariant
cycles on X – there are not enough of them (look at X = pt). Instead, we apply the
BGQ spectral sequence to X × V for a friendly G-space V . Note that the G-equivariant
K-homology and, in particular, the G-equivariant Chow groups can also be obtained this
way (see Corollary 3.3).

The equivariant connective homology K-theory we construct is bi-graded. Even though
“zero diagonal” homology groups are of primary interest, the higher homology groups are
very useful in various inductive proofs. We prove standard properties of the theory such
as localization and homotopy invariance (see Sections 3, 5 and 6).

We construct an equivariant analog of the BGQ spectral sequence and study its conver-
gence properties (see Section 4). We prove that there is a natural homomorphism from the
subsequent factor groups of the topological filtration on the G-equivariant K-groups of
X to the E∞-terms of the spectral sequence and show that this homomorphism is always
injective but may not be surjective (Example 7.2). However it is always an isomorphism
at the zero diagonal. Some examples are provided in Section 7.

We use the following terminology in the paper. We don’t impose any restrictions on
the base field F . A variety over F in the paper is a separated scheme of finite type over
F . An algebraic group over F is an affine group scheme of finite type over F .

2. K-homology

Our references for algebraic spaces are [8], [10], [14].
Consider an algebraic space X which is of finite type and quasi-separated over a field

F . Write |X| for the set of points of X and F (x) for the residue field of x ∈ |X|. The
dimension of x is the transcendence degree of F (x) over F . Denote X(p) the set of all
points x ∈ |X| of dimension p.
An elementary étale neighborhood of a point x is an étale morphism (U, u) → (X, x),

where U is a scheme, u ∈ U is a point mapping to x, and F (x) → F (u) is an isomorphism
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(see [14, 0EMV]). The henselian local ring Oh
X,x of X at x is the henselization Oh

U,u of
the local ring OU,u of U at u. This is independent of the choice of an elementary étale
neighborhood (U, u) of x. There is a canonical morphism

tx : SpecOh
X,x → X.

Denote Mp(X) the category of coherent OX-modules on X with support of dimension
at most p and set

Mi/j(X) = Mi(X)/Mj(X)

for i > j.
For every x ∈ |X| write Cx for the abelian category of finitely generated Oh

X,x-modules
killed by a power of the maximal ideal. For every quasi-coherent module A on X and
x ∈ |X| denote Ax the Oh

X,x-module t∗x(A). If A is in Mp(X) and x ∈ X(p), then Ax lies
in Cx. Thus, we have an exact functor

Mp(X) →
⨿

x∈X(p)

Cx, A 7→ (Ax).

This functor takes the subcategory Mp−1(X) to zero, hence it yields a functor

α : Mp/(p−1)(X) →
⨿

x∈X(p)

Cx.

The authors are grateful to Johan de Jong who provided a proof of the following propo-
sition.

Proposition 2.1. The functor α is an equivalence of categories.

Proof. Let M be a module in Cx for some x ∈ X(p). Then N := (tx)∗(M) is a quasi-
coherent module on X such that Nx′ ≃ M if x′ = x and Nx′ = 0 if dim(x′) ≥ p and
x′ ̸= x. By [14, Tag 07UV], N is the filtered colimit of its coherent submodules. It follows
that there is a coherent submodule A ⊂ N such that Ax = Nx ≃ M and Ax = 0 for all
x′ ∈ |X| with dim(x′) ≥ p and x′ ̸= x. Then A ∈ Mp(X) and α(A) ≃ M , i.e., the functor
α is essentially surjective.
Let A and B be coherent modules in Mp(X). We need to prove that the natural map

φ : HomMp/(p−1)(X)(A,B) →
⨿

x∈X(p)

HomCx(Ax, Bx)

is an isomorphism. To prove injectivity consider a morphism f : A → B such that
fx : Ax → Bx is trivial for all x ∈ X(p). Since Im(f)x = 0 for all x ∈ X(p), the module
Im(f) is in Mp−1(X), i.e., it represents a zero object in the factor category Mp/(p−1)(X).
As a result, f = 0 in Mp/(p−1)(X).

Now we turn to the proof of the surjectivity. For any coherent module C in Mp(X)

denote C̃ the direct sum of the modules (tx)∗(Cx) over all x ∈ X(p). Note that there is

a natural homomorphism λC : C → C̃ of quasi-coherent modules on X such that the

induced homomorphism Cx → C̃x is an isomorphism for all x ∈ X(p). Denote C ⊂ C̃ the

image of λC . Then Cx = Cx for all x ∈ X(p) and hence C ≃ C in Mp/(p−1)(X).
Let sx : Ax → Bx be morphisms in Cx for all x ∈ X(p). The collection (sx) yields a

morphism s : Ã → B̃. Write A′ for the submodule s−1(B) in A and set A′′ := A ∩ A′.
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We have Ax = A′
x = A′′

x for all x ∈ X(p), hence the natural homomorphism A′′ → A is an
isomorphism in Mp/(p−1)(X). If g is the composition

A
∼→ A′′ s−→ B

∼→ B

in Mp/(p−1)(X), we have φ(g) = (sx), i.e., φ is surjective. �
Corollary 2.2. For every n, there is a natural isomorphism

Kn(Mp/(p−1)(X)) ≃
⨿

x∈X(p)

Kn(F (x)). �

By Corollary 2.2, the connecting homomorphisms for the exact sequences of categories

0 → Mp/(p−1)(X) → M(p+1)/(p−1)(X) → M(p+1)/p(X) → 0

yield a complex

Cp,q(X) :=
[ ⨿
x∈X(p+1)

Kp+q+1(F (x)) →
⨿

x∈X(p)

Kp+q(F (x)) →
⨿

x∈X(p−1)

Kp+q−1(F (x))
]
.

Denote Ap,q(X) the homology group of this complex and call it a K-homology group of
X.

Let X be an algebraic space which is of finite type and quasi-separated over a field F ,
U ⊂ X an open subspace and Z ⊂ X a closed subspace such that |X| is the disjoint union
of |Z| and |U |. We have a short exact sequence of complexes

0 → Cp,q(Z) → Cp,q(X) → Cp,q(U) → 0

and therefore a long localization exact sequence

. . . → Ap+1,q(U) → Ap,q(Z) → Ap,q(X) → Ap,q(U) → Ap−1,q(Z) → . . .

Let f : X ′ → X be a flat morphism of algebraic spaces (of finite type and quasi-
separated over F ) of relative dimension d. If A is a module in Mp(X), then f ∗(A) is in
Mp+d(X

′). The induced functor

Mp/(p−1)(X) → M(p+d)/(p+d−1)(X
′)

yields a morphism of complexes Cp,q(X) → Cp+d,q−d(X
′) and finally, the pull-back homo-

morphism
f ∗ : Ap,q(X) → Ap+d,q−d(X

′).

Proposition 2.3. If f : E → X is an affine G-bundle (a torsor under a vector G-bundle)
of constant rank r over an algebraic space X which is of finite type and quasi-separated
over a field F , then the pull-back homomorphism

f ∗ : Ap,q(X) → Ap+r,q−r(E)

is an isomorphism.

Proof. We induct on the dimension of X. By [10, Theorem 6.4.1], there is a dense open
subscheme U ⊂ X and let Z ⊂ X be a closed subspace such that |X| is the disjoint
union of |Z| and |U | (see [14, Tag 03IQ]). Let EU and EZ be the restrictions of E to U
and Z respectively. There is a morphism of the localization long exact sequence for the
triple (X,U,Z) and for (E,EU , EZ). The pull-back maps f ∗

U : Ap,q(U) → Ap+r,q−r(EU)
are isomorphisms by the homotopy invariance of K-homology for varieties ([13, Theorem



EQUIVARIANT CONNECTIVE K-THEORY 5

3.3] or [12, Proposition 8.6]) and the pull-back maps f ∗
Z are isomorphisms by induction.

The statement of the proposition follows by the 5-lemma. �

Example 2.4. Let an algebraic group G act freely on a variety X over F , i.e., the group
G(R) acts freely on X(R) for every commutative F -algebra R. Then the stack X/G is an
algebraic space which is of finite type and quasi-separated over F by [14, Tag 06PH]. In
some cases X/G is a scheme, for example, when X is quasi-projective with a linearized
G-action, or G is connected and X is equivariantly embedded as a closed subscheme of a
normal variety (see [3, Proposition 23]).

Let V be a vector G-space of finite dimension with the property that there is a G-
invariant open subset U ⊂ V such that codimV (V \ U) ≥ n and there exists a G-torsor
U → U/G with U/G a variety. We call V an n-friendly space and U an n-friendly subset.
It was shown in [17, Remark 1.4] that n-friendly spaces exist for every n.
Let X be a G-variety. For a G-variety S write XS for the product X × S. Let U be an

n-friendly subset. Then G acts freely on XU , so that XU/G is an algebraic space which
is of finite type and quasi-separated over F and the equivariant K-homology group

Ap,q(G,X) := Ap+v−g,q−v+g(XU/G),

where v = dim(V ) and g = dim(G), is independent of the choice of U and V if n >
dim(X)− p+ 1 (see [5]).

3. CK-homology

Let G be an algebraic group over F and X be a G-variety over F . Denote M(G,X)
the abelian category of all coherent G-modules on X (see [15]). For every integer p
write Mp(G,X) for the abelian category of coherent G-modules M on X such that
dim(Supp(M)) ≤ p and Mi/j(G,X) for the factor category Mi(G,X)/Mj(G,X) for
i > j. In particular, Mp(G,X) coincides with the category M(G,X) for p ≥ dim(X).

Set

D1
p,q(X) = Kp+q(Mp(G,X)), E1

p,q(X) = Kp+q(Mp/(p−1)(G,X)).

We have the exact sequences

. . . → E1
p,q+1(X) → D1

p−1,q+1(X) → D1
p,q(X) → E1

p,q(X) → . . .

which form an exact couple

D1
∗,∗(X) // D1

∗,∗(X)

yysss
ss
ss
ss

E1
∗,∗(X)

eeKKKKKKKKK

Note that D1
p,q(X) = K ′

p+q(G,X) := Kp+q(M(G,X)) if p ≥ dim(X) and E1
p,q(X) = 0

if p > dim(X).
The pull-back functor for a flat G-equivariant morphism f : X ′ → X of relative dimen-

sion d yields functors f ∗ : Mp(G,X) → Mp+d(G,X ′) for every p. In particular, there is
a morphism of the exact couple for X to the one for X ′ shifting bi-indices by (d,−d).
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Lemma 3.1. Let X be a G-variety, Y ⊂ X a closed G-invariant subvariety and X ′ =
X \ Y . Then

(1) The natural homomorphism

E1
p,q(X) → E1

p,q(X
′)

is an isomorphism for all p > dim(Y ) and q.
(2) The natural homomorphism

E2
p,q(X) → E2

p,q(X
′)

is an isomorphism for all p > dim(Y ) + 1 and q.

Proof. Let C be the full subcategory of M(G,X) of coherent modules with support in
Y . Then C ⊂ Mi(G,X) for all i ≥ dim(Y ) and the factor category Mi(G,X)/C is
equivalent to Mi(G,X ′). It follows that the category Mp/(p−1)(G,X) is equivalent to
Mp/(p−1)(G,X ′) for p > dim(Y ). This proves (1). For the proof of (2) notice that the
differential E1

p,q(X) → E1
p−1,q(X) is the connecting homomorphism for the exact sequence

0 → M(p−1)/(p−2)(G,X) → Mp/(p−2)(G,X) → Mp/(p−1)(G,X) → 0

of abelian categories. �
Recall that g = dim(G).

Lemma 3.2. If G acts freely on a variety X, then

E1
p,q(X) =

⨿
y∈(X/G)(p−g)

Kp+q(F (y)), E2
p,q(X) = Ap−g,q+g(X/G).

Proof. The morphism f : X → X/G is a G-torsor. To give a coherent module A on X/G
is the same as to give a coherent G-module B on X (see [18, §4.4]). Moreover, B = f ∗(A)
and dimSupp(f ∗(A)) = dimSupp(A) + g. Therefore, there are equivalences of categories

Mp(G,X)
∼→ Mp−g(X/G), Mp/(p−1)(G,X)

∼→ M(p−g)/(p−g−1)(X/G).

By Corollary 2.2,

E1
p,q(X) = Kp+q(M(p−g)/(p−g−1)(X/G)) =

⨿
y∈(X/G)(p−g)

Kp+q(F (y))

and hence
E2

p,q(X) = Ap−g,q+g(X/G). �

Corollary 3.3. Let V be an n-friendly G-space and v = dim(V ). Then

E2
p,q(XV ) ≃ Ap−v,q+v(G,X)

for p > dim(X) + v − n+ 1.

Proof. Let U be an n-friendly subset of V , Z = V \ U and p > dim(X) + v − n + 1. By
assumption, dim(Z) ≤ v − n. Applying Lemma 3.1 to the closed subset XZ in XV , we
have

E2
p,q(XV ) ≃ E2

p,q(XU)

since p > dim(X) + v − n+ 1 ≥ dim(XZ) + 1.
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Note that G acts freely on XU . By Lemma 3.2, applied to the G-variety XU ,

E2
p,q(XU) = Ap−g,q+g(XU/G) = Ap−v,q+v(G,X). �

Set

(3.4)

C̃Kp,q(G,X) := D2
p+1,q−1(X) = Im(D1

p,q(X) → D1
p+1,q−1(X))

=Coker(E1
p+1,q(X) → D1

p,q(X))

=Ker(D1
p+1,q−1(X) → E1

p+1,q−1(X)).

Note that

C̃Kp,q(G,X) = K ′
p+q(G,X)

if p ≥ dim(X).
We have an exact sequence

(3.5) . . . → E2
p+1,q(X) → C̃Kp−1,q+1(G,X) → C̃Kp,q(G,X) → E2

p,q(X) → . . .

A G-equivariant flat morphism f : X ′ → X of relative dimension d yields a homomor-
phism

C̃Kp,q(G,X) → C̃Kp+d,q−d(G,X ′)

for all p and q.

Lemma 3.6. Let V be an n-friendly G-space, v = dim(V ) and W any vector G-space of
finite dimension w. Then the natural homomorphism

C̃Kp+v,q−v(G,XV ) → C̃Kp+v+w,q−v−w(G,XV×W )

is an isomorphism for every p > dim(X)− n+ 1 and q.

Proof. Let E(X) be the exact sequence (3.5). Consider the natural morphism

θ : E(XV ) → E(XV×W )

of exact sequences of bi-degree (w,−w) (i.e., the bi-index is shifted by (w,−w)).
Let U be an n-friendly subset of V . By Corollary 3.3 applied twice for the n-friendly

spaces V and V ×W , we have

E2
p+v,q−v(XV ) ≃ Ap,q(G,X) ≃ E2

p+v+w,q−v−w(XV×W )

if p > dim(X)− n+ 1, i.e., θ is an isomorphism on the terms E2
p+v,q−v(XV ) in this range.

If p ≥ dim(X) then

C̃Kp+v,q−v(G,XV ) = K ′
p+q(G,XV ) ≃ K ′

p+q(G,XV×W ) = C̃Kp+v+w,q−v−w(G,XV×W )

by homotopy invariance in the equivariant K-theory (see [15, Theorem 4.1]), i.e., θ is an

isomorphism on the terms C̃Kp+v,q−v(G,XV ) in this range.
Descending induction on p and the 5-lemma applied to the homomorphism θ yield the

statement in general. �
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It follows from Lemma 3.6 that the group C̃Kp+v,q−v(G,XV ) is canonically independent
of the choice of the n-friendly G-space V for n > dim(X) − p + 1. We define the G-
equivariant connective K-groups

(3.7) CKp,q(G,X) := C̃Kp+v,q−v(G,XV ).

In the case of trivial G, these groups coincide with the connective K-groups of [2].

Remark 3.8. It is crucial that friendly G-spaces V instead of friendly subsets U (used
in the definition of G-equivariant K-homology) are employed in the definition of G-
equivariant connective K-groups: the stabilization we have for V by Lemma 3.6 fails
for U . For instance, for G = Gm, n-friendly subset U = A

n
F \ {0} ⊂ A

n
F = V , and any

p ≥ n, the group

C̃Kp,−p(G,U) = K ′
0(G,U) = K ′

0(U/G) = K ′
0(P

n−1
F )

is free of finite rank n.

Let X be a G-variety and p an integer. WriteK ′
n(G,X)(p) for the subgroup inK ′

n(G,X)
generated by the images of the homomorphisms

(3.9) Kn(Mp+w(G,XW )) → Kn(M(G,XW )) = K ′
n(G,XW ) ≃ K ′

n(G,X)

for all vector G-spaces W of finite dimension w. We obtain a filtration

· · · ⊂ K ′
n(G,X)(p−1) ⊂ K ′

n(G,X)(p) ⊂ · · ·

on K ′
n(G,X), generalizing the Chow filtration on R(G) defined in [7]. Note that

K ′
n(G,X)(p) = K ′

n(G,X)

if p ≥ dim(X).

Theorem 3.10. Let G be an algebraic group over F . The G-equivariant connective K-
groups have the following properties.

(1) The assignment X 7→ CK∗,∗(G,X) is a functor from the category of G-varieties
and proper morphisms to the category of bi-graded abelian groups.

(2) If f : X ′ → X is a flat G-equivariant morphism of relative dimension d, there is
a functorial pull-back homomorphism

f ∗ : CKp,q(G,X) → CKp+d,q−d(G,X ′).

(3) There is an exact sequence

. . . → Ap+1,q(G,X) → CKp−1,q+1(G,X)
βX−→ CKp,q(G,X) → Ap,q(G,X) → . . .

We call βX the Bott map.
(4) There is a natural surjective homomorphism CKp,q(G,X) → K ′

p+q(G,X)(p). This
is an isomorphism if p ≥ dim(X).

(5) Let i : Z → X be a G-equivariant closed embedding, X ′ = X \Z, and j : X ′ ↪→ X
the open embedding. Then there is a localization exact sequence

. . . → CKp,q(G,Z)
i∗−→ CKp,q(G,X)

j∗−→ CKp,q(G,X ′) → CKp−1,q(G,Z)
i∗−→ . . .
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(6) If f : E → X is an affine G-bundle (a torsor under a vector G-bundle) of constant
rank r, then the pull-back homomorphism

f ∗ : CKp,q(G,X) → CKp+r,q−r(G,E)

is an isomorphism.
(7) Viewing the graded group CK∗,∗(G,X) as a Z[s]-module via sm = βX(m), we have

an isomorphism( ⨿
p+q=n

CKp,q(G,X)

)
[s−1]

∼→ K ′
n(G,X)[s, s−1]

for every n.

Proof. (1) Let f : X → Y be a proper G-equivariant morphism. Write C for the full
subcategory of Mp(G,X) of all coherent modules M such that Rif∗(M) = 0 for all i > 0.
By dévissage, Kp+q(C) ≃ D1

p,q(X). The exact functor f∗ : C → Mp(G, Y ) then gives a

homomorphism D1
p,q(X) → D1

p,q(Y ). The latter yields a push-forward map

f∗ : CKp,q(G,X) → CKp,q(G, Y ).

(2) The pull-back homomorphism f ∗ is induced by the pull-back functor Mp(G,X) →
Mp+d(G,X ′).

(3) Apply the exact sequence (3.5) to XV in place of X for an n-friendly space V with
n sufficiently large and use Corollary 3.3.

(4) Let V be an n-friendly space with n large, v = dim(V ). The homomorphism

D1
p+v,q−v(XV ) = Kp+q(Mp(G,XV )) → K ′

p+q(G,X)

factors through D1
p+v+1,q−v−1(XV ) = Kp+q(Mp+1(G,XV )). Therefore, there is a well

defined homomorphism

hp,q : CKp,q(G,X) → K ′
p+q(G,X)(p).

To show that this map is surjective, let W be a vector G-spaces of dimension w. The
homomorphism (3.9) with n = p+ q factors through Kp+q(G,Mp+v+w(G,XV×W )), hence
replacing W by V ×W we may assume that W is an m-friendly space for m sufficiently
large. It follows that the image of (3.9) is contained in the image of hp,q.

(5) Let V be an n-friendly G-space for sufficiently large n, v = dim(V ). Set p̄ = p+ v
and q̄ = q − v. Let C be the subcategory of Mp̄(G,XV ) of all modules with support in
ZV . Then the factor category Mp̄(G,XV )/C is equivalent to Mp̄(G,X ′

V ) and Kn(C) =
Kn(Mp̄(G,X ′

V )) (see [15, Theorem 2.7]). It follows that the middle row of the diagram

E1
p̄+1,q̄(ZV ) //

��

E1
p̄+1,q̄(XV )

α // //

��

E1
p̄+1,q̄(X

′
V )

��

CKp−1,q(G,Z)
i∗ //

� _

��

CKp−1,q(G,X)
j∗ //

� _

��

CKp−1,q(G,X′)� _

��
D1

p̄,q̄(ZV ) //

����

D1
p̄,q̄(XV ) //

����

D1
p̄,q̄(X

′
V ) //

����

D1
p̄,q̄−1(ZV ) //

��

D1
p̄,q̄−1(XV ) //

��

D1
p̄,q̄−1(X

′
V )

��
CKp,q(G,Z)

i∗ // CKp,q(G,X)
j∗ // CKp,q(G,X′) E1

p̄,q̄−1(ZV )
� � β // E1

p̄,q̄−1(XV ) // E1
p̄,q̄−1(X

′
V )



10 N. KARPENKO AND A. MERKURJEV

is exact. By Lemma 3.2, α is surjective and β is injective. The columns of the diagram are
exact by (3.4). The exact sequence in the statement of (5) can be obtained by diagram
chase.

(6) Follows by descending induction on p from (3), (4), homotopy invariance of equi-
variant K-theory [15, Theorem 4.1], 5-lemma and homotopy invariance of equivariant
K-homology (Proposition 2.3).

(7) Follows from (3) and (4). �

Remark 3.11 (Euler classes, Projective Bundle Theorem (PBT), Chern classes). Given
a G-equivariant vector bundle E over a G-variety X, its Euler class is, as usual, the
composition

(π∗)−1 ◦ s∗ : CK∗,∗(G,X) → CK∗−1,∗+1(G,X),

where π : E → X is the projection and s : X → E is the zero section. With the help
of Theorem 3.10(3,4), PBT for equivariant K-theory [15, Theorem 3.1], 5-lemma, and
PBT for (equivariant) K-cohomology, one sees by descending induction as in the proof
of Theorem 3.10(6) that PBT holds for the equivariant connective K-groups. Therefore
(operator) Chern classes

ci(E) : CK∗,∗(G,X) → CK∗−i,∗+i(G,X)

(for i ≥ 0) of E are defined.

Remark 3.12 (Functoriality in G). Given a homomorphism of algebraic groups G′ → G,
the restriction of action yields an exact functor Mp(G,X) → Mp(G

′, X) so that the

graded group C̃K∗,∗(G,X) is cofunctorial in G. Taking a sufficiently friendly G-space V
and a sufficiently friendly G′-space V ′, we get a homomorphism

CKp,q(G,X) = C̃Kp+v,q−v(G,XV ) → C̃Kp+v,q−v(G
′, XV ) →

C̃Kp+v+v′,q−v−v′(G
′, XV×V ′) = CKp,q(G

′, X)

independent of the choice of V and V ′. It follows that the graded group CK∗,∗(G,X) is
cofunctorial in G.

4. Spectral sequence

Let

D2
∗,∗

i // D2
∗,∗

j}}{{
{{
{{
{{

E2
∗,∗

k

aaCCCCCCCC

be an exact couple (starting from the second page). The maps i, j and k have bi-degrees
(1,−1), (−1, 1) and (−1, 0) respectively. For every r ≥ 2, the (r − 2)nd derivative of the
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exact couple is the diagram

Dr
∗,∗

ir // Dr
∗,∗

jr}}zz
zz
zz
zz

Er
∗,∗

kr

aaDDDDDDDD

where

Dr
p,q = Im(D2

p−r+2,q+r−2
ir−2

−−→ D2
p,q) ⊂ D2

p,q,

Er
p,q = k−1(Dr

p−1,q)/j(Ker(ir−2)) = Ker(jr−1kr−1)/ Im(jr−1kr−1).

(In the last formula ir−2 is the map D2
p,q → D2

p+r−2,q−r+2.) Thus we have a (homological)
spectral sequence {Er

p,q}.
Define the following two subgroups of D2

p,q:

D∞
p,q =

∩
r

Dr
p,q, D+

p,q =
∪
r

Ker(ir)

and the “infinity” terms

E∞
p,q = k−1(D∞

p−1,q)/j(D
+
p+1,q−1).

For every n let Hn be the colimit of the sequence

. . .
i−→ D2

p,n−p
i−→ D2

p+1,n−p−1
i−→ D2

p+2,n−p−2
i−→ . . .

Write (Hn)(p) for the image of the natural homomorphism D2
p+1,n−p−1 → Hn, so we have

a filtration
. . . ⊂ (Hn)(p−1) ⊂ (Hn)(p) ⊂ (Hn)(p+1) ⊂ . . .

of Hn. We would like to relate the subsequent factor (Hn)(p/p−1) and the infinity term
E∞

p,n−p.

Proposition 4.1. There is an exact sequence

0 → (Hp+q)(p−1) → (Hp+q)(p)
j̄−→ E∞

p,q
k̄−→ D∞

p−1,q
ī−→ D∞

p,q−1.

In particular, (Hp+q)(p/p−1) is canonically isomorphic to a subgroup of E∞
p,q.

Proof. An element x̄ ∈ (Hp+q)(p) is represented by an element x ∈ D2
p+1,q−1 and we set

j̄(x̄) = j(x) + j(D+
p+1,q−1) ∈ E∞

p,q.

An element e ∈ E∞
p,q is represented by an element d ∈ k−1(D∞

p−1,q) and we set k̄(e) = k(d).
The map ī is induced by i. The exactness of the sequence readily follows from the
definitions. �
We say that the spectral sequence {Er

p,q} converges at the nth diagonal if the homo-
morphism (Hn)(p/p−1) → E∞

p,q is an isomorphism for all p and q such that p+ q = n.
Let X be a G-variety. By Theorem 3.10(3), there is an exact couple with

D2
p,q = CKp−1,q+1(G,X) and E2

p,q = Ap,q(G,X).

The map i in the exact couple is the Bott map

βX : CKp−1,q+1(G,X) → CKp,q(G,X).
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In view of Theorem 3.10(4),

Hn = K ′
n(G,X) and (Hn)(p) = K ′

n(G,X)(p).

Write CKp,q(G,X) for the intersection of Im(CKp−r,q+r(G,X)
βr
X−→ CKp,q(G,X)) over all

r ≥ 0. Thus,

D∞
p,q = CKp−1,q+1(G,X).

Proposition 4.1 then gives:

Proposition 4.2. Let X be a G-variety. Then there is an exact sequence

0 → K ′
p+q(G,X)(p/p−1) → E∞

p,q → CKp−2,q+1(G,X) → CKp−1,q(G,X).

In particular, K ′
p+q(G,X)(p/p−1) is canonically isomorphic to a subgroup of E∞

p,q.

Note that if p + q = 0, we have CKp−2,q+1(G,X) = 0, hence the spectral sequence
converges at the zero diagonal.

5. Gysin homomorphism and external product

Let X be a G-variety and P(G,X) exact category of locally free coherent G-modules on
X. Then K∗(G,X) := K∗(P(G,X)) is a ring and K ′

∗(G,X) is a module over K∗(G,X).
The tensor product pairing of categories

P(G,X)×Mp(G,X) → Mp(G,X)

for every p yields a pairing

Kn(G,X)⊗D1
p,q(X) → D1

p,q+n(X)

which is consistent with the maps D1
p,∗(X) → D1

p+1,∗−1(X). It follows that we have a
pairing

Kn(G,X)⊗ C̃Kp,q(G,X) → C̃Kp,q+n(G,X).

Let V be an m-friendly G-space and p > dim(X) − m + 1. Then by (3.7) we have a
pairing

Kn(G,X)⊗ CKp,q(G,X) → Kn(G,XV )⊗ CKp,q(G,X) → CKp,q+n(G,X).

Thus for every p, the graded group CKp,∗(G,X) is a left graded module over K∗(G,X).
Let f : Y → X be a closed G-equivariant embedding. Write Df for the deformation

variety of f , Cf ⊂ Df the normal cone of f . The open complement Df \Cf is canonically
isomorphic to X × Gm. We view Gm as a G-variety with trivial G-action.

The coordinate function t on Gm can be viewed as an element in K1(G,X × Gm). The
composition

σf : CKp,q(G,X) → CKp+1,q−1(G,X × Gm)
t−→ CKp+1,q(G,X × Gm)

∂−→ CKp,q(G,Cf ),

where the second homomorphism is multiplication by t ∈ K1(G,X × Gm) and the third
one is the connecting map in the localization exact sequence for the closed subvariety Cf

in Df , is called the deformation homomorphism.
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Let f : Y → X be a regular closed G-equivariant embedding of codimension d. The
normal cone Cf is a vector bundle over Y of rank d. The composition

f ⋆ : CKp,q(G,X)
σf−→ CKp,q(G,Cf )

∼→ CKp−d,q+d(G, Y ),

where the second isomorphism is the inverse to the homotopy invariance isomorphism, is
called Gysin homomorphism.

Let X and X ′ be two G-varieties. The obvious pairing of categories

Mp(G,X)×Mp′(G,X ′) → Mp+p′(G,X ×X ′)

yields a pairing

D1
p,q(X)⊗D1

p′,q′(X
′) → D1

p+p′,q+q′(X ×X ′)

which is consistent with the mapsD1
p,q(X) → D1

p+1,q−1(X) andD1
p′,q′(X

′) → D1
p′+1,q′−1(X

′).
It follows that we have a pairing

× : CKp,q(G,X)⊗ CKp′,q′(G,X ′) → CKp+p′,q+q′(G,X ×X ′),

called the external product.

6. Smooth varieties

Let X be a smooth G-variety over F . If X is equidimensional, we define the K-
cohomology groups of X

Ap,q(G,X) = Ad−p,−d−q(G,X)

and the CK-cohomology groups

CKp,q(G,X) := CKd−p,−d−q(G,X),

where d = dim(X). In general, X is a disjoint union of G-invariant equidimensional
varieties X1, X2, . . . , Xn, and we set

Ap,q(G,X) :=
⨿
i

Ap,q(G,Xi) and CKp,q(G,X) :=
⨿
i

CKp,q(G,Xi).

The exact sequence in Theorem 3.10 reads

. . . → Ap−1,q(G,X) → CKp+1,q−1(G,X)
βX−→ CKp,q(G,X) → Ap,q(G,X) → . . .

Let f : X → Y be a morphism of smooth G-varieties. We would like to define a
pull-back homomorphism

f ∗ : CKp,q(G, Y ) → CKp,q(G,X).

We may assume that X and Y are equidimensional varieties. The morphism

h = (1X , f) : X → X × Y

is a regular closed embedding of codimension dY = dim(Y ). The projection s : X×Y → Y
is flat of relative dimension dX = dim(X). We define f ∗ as the composition

CKp,q(G, Y ) = CKdY −p,−dY −q(G, Y )
s∗−→ CKdX+dY −p,−dX−dY −q(G,X × Y )

h⋆

−→
CKdX−p,−dX−q(G,X) = CKp,q(G,X).
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If X is an equidimensional smooth G-variety, the diagonal morphism

∆ : X → X ×X

is a closed regular embedding of codimension dim(X). The composition

CKp,q(G,X)⊗ CKp′,q′(G,X)
×−→ CKp+p′,q+q′(G,X ×X)

∆⋆

−→ CKp+p′,q+q′(G,X)

defines the structure of a bi-graded ring on CK∗,∗(G,X).
Thus, the assignment X 7→ CK∗,∗(G,X) yields a contravariant functor from the cat-

egory of smooth G-varieties to the category of bi-graded associative commutative unital
rings.

Remark 6.1. For smooth X, the canonical map CK∗,∗(G,X) → A∗,∗(G,X) is a ring
homomorphism. The group K ′

∗(G,X) is naturally identified with K∗(G,X) ([16, Remark
1.9(a)]) which is a graded ring and the filtration in Section 3 is a ring filtration. The
maps CKp,q(G,X) → K−p−q(G,X)(p) in Theorem 3.10(4) yield a ring homomorphism
CK∗,∗(G,X) → K∗(G,X)(∗). For a homomorphism of algebraic groups G′ → G, the map
CK∗,∗(G,X) → CK∗,∗(G′, X) in Remark 3.12 is a ring homomorphism.

Remark 6.2 (Projection Formula). For a proper morphism f : X → Y of smooth vari-
eties, Projection Formula holds:

f∗(α · f ∗(γ)) = f∗(α) · γ
for every α ∈ CK∗,∗(G,X) and γ ∈ CK∗,∗(G, Y ). The proof is formally the same as [4,
Proof of Proposition 56.9].

Example 6.3. The class [OX ] ∈ CK0,0(G,X) is the unit of the ring CK∗,∗(G,X). The
image βX of [OX ] under the Bott homomorphism βX : CK0,0(G,X) → CK−1,1(G,X)
is called the Bott element of X. The Bott homomorphism βX : CKp+1,q−1(G,X) →
CKp,q(G,X) is given by the product with βX .

Example 6.4. For a vector G-bundle E on a smooth G-variety X, the ith (operator)
Chern class ci(E) in Remark 3.11 is given by the product with the element ci(E)([OX ]) ∈
CKi,−i(G,X) also called the ith Chern class of E.

An algebraic group G over F acts (trivially) on the point pt = Spec(F ). The stack BG
coincides with pt /G. We will write K∗(BG) for the ring K∗(G, pt) and CK∗,∗(BG) for
CK∗,∗(G, pt). Since M(G, pt) is the category of finite dimensional representations of G,
every object in M(G, pt) has finite length. By [11, §5, Corollary 1],

K∗(BG) =
⨿

K∗(EndG(V )op),

where the direct sum is taken over all isomorphism classes of irreducible G-spaces V . In
particular, K0(BG) is the representation ring R(G).

If G is a diagonalizable group, every irreducible G-space V is 1-dimensional (a charac-
ter), hence EndG(V ) = F and therefore,

(6.5) K∗(BG) =
⨿

K∗(F )x = K∗(F )⊗ Z[Ĝ],

where the direct sum is taken over all characters x ∈ Ĝ = Hom(G,Gm).
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7. Examples

Example 7.1. Let G = Gm over F . We have Ĝ = Z and

A∗ := K∗(BGm) = K∗(F )[t, t−1],

where t is the class of the tautological (identity) character of Gm. For any p ≥ 0, the
codimension p term of the topological filtration K∗(BGm)

(p) is equal to spA∗, where s =
1− t.

The classifying space BGm is approximated by projective spaces Pr = (Ar+1 \ {0})/Gm.
By [2], the Bott map for projective spaces is injective, hence

CKp,q(BGm) =

{
A−p−q, if p ≤ 0;
A−p−qs

p, if p ≥ 0.

In other words, CK∗,∗(BGm) is the subring of A∗[β, β
−1], generated by A∗, β and sβ−1:

CK∗,∗(BGm) = . . . ⊕ A∗β
2 ⊕ A∗β ⊕ A∗ ⊕ A∗sβ

−1 ⊕ A∗s
2β−2 ⊕ . . .

The spectral sequence for BGm converges at all diagonals.

Example 7.2. Now let G = µ2. The character group Ĝ is cyclic of order 2 generated by
the restriction t̄ to µ2 of the tautological character t of Gm in Example 7.1, hence

K∗(Bµ2) = K∗(F )⊕K∗(F )t̄ = A∗/(1− t2)A∗,

and K∗(Bµ2)
(1) = K∗(F )s̄, where s̄ = 1− t̄.

The classifying space Bµ2 is approximated by the lens spaces Lr \ Zr, where Zr is the
image of the zero section of the line bundle Lr over Pr

F with O(2) the sheaf of sections.
By homotopy invariance, CK∗,∗(Lr) ≃ CK∗,∗(Pr

F ). The composition

CK∗−1,∗+1(Pr
F )

z∗−→ CK∗,∗(Lr) ≃ CK∗,∗(Pr
F ),

where z is the zero section of Lr is multiplication by the first Chern class of Lr. Computed
in K0(P

r
F ) this Chern class is equal to 1 − [O(−2)]. It follows that in the notation of

Example 7.1 and by localization, there is an exact sequence

CK∗−1,∗+1(BGm)
(1−t−2)β−1

−−−−−−−→ CK∗,∗(BGm) → CK∗,∗(Bµ2) →

CK∗,∗+1(BGm)
(1−t−2)β−1

−−−−−−−→ CK∗+1,∗(BGm).

By Example 7.1, multiplication by (1− t−2)β−1 is injective, hence

CK∗,∗(Bµ2) ≃ CK∗,∗(BGm)/(1− t2)β−1CK∗−1,∗+1(BGm).

It follows that

CKp,q(Bµ2) = A−p−q/(1− t2)A−p−q ≃ K−p−q(Bµ2) = K−p−q(F )⊕K−p−q(F )t̄, if p ≤ 0,

CKp,q(Bµ2) = A−p−qs
p/A−p−qs

p−1(1− t2) ≃ A−p−q/A−p−q(1 + t) ≃ K−p−q(F ), if p > 0.

The Bott homomorphism β : CKp,q(Bµ2) → CKp−1,q+1(Bµ2) is the identity if p ≤ 0,
multiplication by 1 − t̄ if p = 1 and multiplication by 2 if p > 1 (we use the equality
(1− t̄)2 = 2(1− t̄)). Thus, the Bott map is not injective in general.
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Recall that the Bott element β is equal to 1 in K0(Bµ2) = CK−1,1(Bµ2). Write α for
1 ∈ K0(F ) = CK1,−1(Bµ2). We have α2β = 2α and

CK∗,∗(Bµ2) = K∗(F )[α, β]/(α2β − 2α).

The kernel of CKp−2,q+1(G, pt) → CKp−1,q(G, pt) in Proposition 4.2 is equal to

2Kp+q−1(F ) ∩
(∩

r

2rKp+q−1(F )
)

if p ≤ 0. It is not trivial in general, for example, if p+ q = 2 and F is quadratically closed
of characteristic not 2. For such F , the spectral sequence for Bµ2 does not converge at
the second diagonal.

Example 7.3. Let G = (µ2)
n. By (6.5), K0(BG) = A/Q, where A = Z[t±1

1 , . . . , t±n
n ] and

Q is the ideal generated by all t2i − 1. In what follows we will be considering factor rings
of the polynomial ring Z[t1, . . . , tn] by various ideals containing polynomials f(ti) with
constant term 1 for every i. The classes of ti are invertible in such factor rings. Therefore,
we can skip ti

−1 as follows.
Let B = Z[s1, s2, . . . , sn], where si = 1 − ti, I ⊂ B the ideal generated by si’s, J ⊂ B

the ideal generated by t2i − 1 = s2i − 2si for all i. Then as in Example 7.2,

K0(BG) = B/J,

K0(BG)(p) = (Ip + J)/J ≃ Ip/(Ip ∩ J)

for p > 0.
The classifying space BG has the same cohomology group as the product of n copies of

BGm minus the union of n divisors, inverse images of the zero section of BGm under all n
projections (BGm)

n → BGm. By localization,

CKp,−p(BG) = Ip/Ip−1J.

It follows that

K0(BG)(p/p+1) = (Ip + J)/(Ip+1 + J) ≃ Ip/(Ip+1 + (Ip ∩ J)),

CHp(BG) = Coker
(
CKp+1,−p−1(BG) → CKp,−p(BG)

)
= Ip/(Ip+1 + Ip−1J).

Let P ⊂ B be the ideal generated by s2i sj − sis
2
j for all i and j.

Lemma 7.4. P ⊂ IJ and Ip ∩ J = Ip−1J + Ip−3P .

Proof. Since s2i sj − sis
2
j = sj(s

2
i − 2si) − si(s

2
j − 2sj) ∈ IJ , we have P ⊂ IJ ⊂ J . It

follows that Ip−1J + Ip−3P is contained in Ip ∩ J . Let f ∈ Ip ∩ J . The support of a
nonzero monomial ask = ask11 · · · sknn with a ∈ Z is the set of all i such that ki > 0. Let
ask be a nonzero monomial of f with the smallest cardinality of support. Write f as the
sum of two polynomials f ′ and f ′′ such that f ′ is the sum of monomials with the same
support as sk and f ′′ the sum of the remaining monomials of f . Plugging in si = 0 for
all i that are not in the support of sk, we see that f ′ ∈ Ip ∩ J . It suffices to show that
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f ′ ∈ Ip−1J + Ip−3P . By induction on n we may assume that the support of all monomials
in f coincides with {1, . . . , n}.

Write f = sg, where s = s1s2 · · · sn and g(2, . . . , 2) = 0. Then g ∈ Ip−n ∩M , where M
is the ideal in B generated by all si − 2. It follows that g ∈ Ip−nM + Ip−n−1N , where N
is the ideal in B generated by all si − sj. Therefore,

f = sg ∈ Ip−nsM + Ip−n−1sN ⊂ Ip−1J + Ip−3P

since sM ⊂ In−1J and sN ⊂ In−2P . �

Corollary 7.5. Ip ∩ Ip−2J = Ip ∩ J and Ip+1 ∩ J ⊂ Ip−1J . �

It follows from the corollary that

Ker
(
CHp(BG)

φ−→ K0(BG)(p/p+1)
)
= (Ip+1 + (Ip ∩ J))/(Ip+1 + Ip−1J)

= (Ip ∩ J)/
(
(Ip+1 ∩ J) + Ip−1J

)
= (Ip ∩ J)/Ip−1J,

since Ip+1 ∩ J ⊂ Ip−1J . On the other hand,

Ker
(
CKp,−p(BG)

β−→ CKp−1,−p+1(BG)
)
= (Ip ∩ Ip−2J)/Ip−1J

= (Ip ∩ J)/Ip−1J

since Ip ∩ Ip−2J = Ip ∩ J by Corollary 7.5. We proved that the kernel of φ lifts isomor-
phically to the kernel of β. In particular, the image of the differential

Ap−2(BG,Kp−1) → CHp(BG)

on the second page of the spectral sequence for BG coincides with Ker(φ). It follows that
all differentials coming to zero diagonal on pages E∗,∗

r with r ≥ 3 are trivial. Note that by
Lemma 7.4, the kernel of φ is generated by the classes of s2i sj − sis

2
j and it is nontrivial

if n ≥ 2.
The group

Ker
(
CKp,−p(BG) → K0(BG)(p)

)
= (Ip ∩ J)/Ip−1J

coincides with the torsion part CKp,−p(BG)tors of CK
p,−p(BG). Hence CKp,−p(BG)tors is

contained in the kernel of β. As the intersection of all K0(BG)(p) is zero, the groups
CKi,−i(BG) in Proposition 4.2 are trivial. It follows that the spectral sequence converges
at the first diagonal.

Example 7.6. The intersection of the terms R(G)(p) = K0(BG)(p) over all p is nonzero
in the case of G = µ6 (cf. [1]). Indeed, R(G) = Z[t]/(1 − t6) and the ideal R(G)(p) is
generated by (1 − t)p. The polynomial f := (1 − t)(1 + t)(1 + t + t2) ∈ Z[t] yields a
nonzero element of R(G). To see that this element is in R(G)(p) for any p > 0, note that
the polynomials (1− t)p and 1− t + t2 generate the unit ideal. Writing 1 as their linear
combination and multiplying by f , we get the statement because (1− t+ t2)f = 1− t6.
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