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Abstract. We determine the group of cohomological invariants of algebraic tori of
degree and weight 2.

1. Introduction

The notion of invariant of a group scheme G over a field F was defined by Serre as
follows (see [8]). Consider the functor

TorsG : FieldsF −→ Sets,

where FieldsF is the category of field extensions of F and field homomorphisms over
F , taking a field K to the set TorsG(K) of isomorphism classes of G-torsors (principal
homogeneous G-spaces) over SpecK. Let

H : FieldsF −→ Abelian Groups

be another functor. An H-invariant of G is then a morphism of functors

TorsG −→ H,

where we view H as a functor with values in Sets. We denote the group of H-invariants
of G by Inv(G,H).

An invariant in Inv(G,H) is called normalized if it takes the class of trivial G-torsors
to 0. The normalized invariants form a subgroup Invnm(G,H) of Inv(G,H) and there is
a natural isomorphism

Inv(G,H) ' H(F )⊕ Invnm(G,H),

where H(F ) can be identified with the subgroup of constant invariants.

Example 1.1. Let M be a complex of Galois modules over F and let H be the functor
taking a field K over F to the Galois cohomology group Hd(K,M) for a fixed integer d.
We write Invd(G,M) for the group of cohomological invariants Inv(G,H). In particular,
Invd(G,Z/nZ(j)) for an integer n > 0 and Invd(G,Q/Z(j)) are the group of degree d and
weight j invariants. (For the definition of Z/nZ(j) and Q/Z(j) see [10]. If n is prime
to char(F ), then Z/nZ(j) = µ⊗jn ) We call the type of such invariants the pair of integers
(d, j).

The type (1, 1) invariants of algebraic tori (and more generally, groups of multiplicative
type) were considered in [18]. Cohomological invariants of types (2, 1) (Brauer invariants)
and (3, 2) invariants were studied in [1].
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In the present paper we study type (2, 2)-invariants of algebraic tori. Since

H2(F,Z/nZ(2))) ' K2(F )/nK2(F ) and H2(F,Q/Z(2)) ' K2(F )⊗ Q/Z

for a field F (see [2, §2] and [11, Theorem 11.5]), we study invariants with values in the
functors K2/nK2 and K2 ⊗ Q/Z.

If 1 → T → P → S → 1 is a coflasque resolution of a torus T , we prove that there is
an exact sequence

P ◦(F )[n]→ T ◦(F )[n]
λ−→ Invnm(T,K2/nK2)→ 0,

where P ◦ and T ◦ are the tori dual to P and T respectively. Note that T ◦(F )[n] is the

group of F -points of the finite group T ◦[n] = Ker(T ◦
n−→ T ◦) of multiplicative type.

We give two formulas for the map λ. One formula uses the self-symmetric pairing

H1(F, S[n])⊗H1(F, S◦[n])
∪−→ K2(F )/nK2(F ).

The group T ◦(F )tors is the union of the subgroups T ◦(F )[n] of elements of exponent n.
Passing to the colimit over all n we prove that there is an exact sequence

P ◦(F )tors → T ◦(F )tors → Invnm(T,K2 ⊗ Q/Z)→ 0.

We use the following notations in the paper.
For a field F write Fsep for a separable closure of F and Γ = ΓF for the (absolute)

Galois group of Fsep/F .

If A is an abelian group and n an integer, we write A[n] for the kernel of A
n−→ A and

Ators for the subgroup of elements of finite order in A.
If X is a scheme and M is an étale sheaf of abelian groups on X, we write Hd(X,M) for

the degree d étale cohomology group of X with values in M . The scheme X ×F SpecFsep

is denoted by Xsep.
Kr(F ) denotes Milnor’s K-groups of F (see [14]).
The multiplicative group Gm over F is SpecF [t, t−1].
We write µn for the Γ-module of all n-th roots of unity in F×sep and µn(F ) for µn ∩ F×.

2. Preliminary results

2a. Invariants over fields of positive characteristic. The following statement re-
duces to the study of invariants to the case when n is prime to char(F ).

Lemma 2.1. Let F be a field of characteristic p > 0 and n = mps for integers n > 0 and
s > 0. Then the map

ps : Invnm(G,Kr/mKr)→ Invnm(G,Kr/nKr)

is an isomorphism for every smooth group G and r > 0.

Proof. The group Kr of a field of characteristic p has no p-torsion by [9, Theorem A],
hence the sequence

0→ Kr(K)/mKr(K)
ps−→ Kr(K)/nKr(K)→ Kr(K)/psKr(K)

is exact for every field extension K/F . It follows that the sequence

0→ Invnm(G,Kr/mKr)
ps−→ Invnm(G,Kr/nKr)→ Invnm(G,Kr/p

sKr)
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is also exact. It suffices to show that the last group in the sequence is trivial. This
follows from the fact that every G-torsor over K is split over Ksep (since G is smooth)
and the natural homomorphism Kr(K)/psKr(K)→ Kr(Ksep)/psKr(Ksep) is injective by
[9, Corollary 6.5]. �

2b. Groups of multiplicative type. Let A be an algebraic group of multiplicative type
over a field F (see [13, Chapter 12]). For a field extension K/F we write A∗(K) for the
group of characters HomF (A ⊗F SpecK,Gm) of A over K and A∗sep for the Γ-module
A∗(Fsep). The group A can be reconstructed out of the group ring of A∗sep via the formula

A = Spec(Fsep[A∗sep])Γ.

Let n be a positive integer prime to char(F ) such that nA∗sep = 0. We have

A(Fsep) = Hom(A∗sep, F
×
sep) = Hom(A∗sep, µn) = A∗

∨

sep ⊗ µn,
where A∗∨sep := Hom(A∗sep,Q/Z) = Hom(A∗sep,Z/nZ) is the dual module.

The dual group A◦ is a group of multiplicative type with character module A∗∨sep. Then
A◦(Fsep) = A∗sep ⊗ µn.

If T is an algebraic torus (i.e., the character group T ∗sep is a lattice), we write T ◦ for the
dual torus with character Galois module T ∗∨ = Hom(T ∗,Z).

The kernel T [n] of T
n−→ T taking t to tn is a finite group of multiplicative type with

character Galois module T ∗sep/nT
∗
sep. We have T [n]◦ = T ◦[n] and T ◦[n](F ) = (T ∗sep⊗ µn)Γ,

and T [n](K) = T (K)[n] for any field extension K/F .

2c. Cohomology of BT . Let T be an algebraic torus over a field F . Choose a repre-
sentation τ : T → GL(V ), where V is a finite dimensional vector space over F such that
there exists a T -invariant open subscheme U of the affine space of V such that U(F ) 6= ∅,
codimV (V − U) > 2 and there is a T -torsor U → X. Such representations exist (see [17,
Remark 1.4]). We can view X as an approximation of the classifying space BT (which we
don’t define). We will sometimes write X = U/T .

Borel construction yields a homomorphism T ∗(F ) → Pic(X) taking a character χ to
the class of the line bundle (U × A1)/T → X, where T acts on the affine line A1 via χ.

Lemma 2.2. The map T ∗(F )→ Pic(X) is an isomorphism.

Proof. By [15, Proposition 6.10] applied to the T -torsor U → X there is an exact sequence

F [X]×/F× → T ∗(F )→ Pic(X)→ Pic(U),

where the middle map is given by Borel construction. The group F [X]×/F× is isomorphic
to a subgroup of F [U ]×/F×. The latter group is trivial as F [V ]× = F× and the divisor
groups of U and V are canonically isomorphic by assumption. Moreover, Pic(U) = 0 since
the restriction homomorphism 0 = Pic(V )→ Pic(U) is surjective. �

For a point x ∈ X of codimension 1 we write [x] for the character in T ∗(F ) corresponding
to the class of x in Pic(X) under the isomorphism in Lemma 2.2.

Lemma 2.3. If F is separably closed and n is a positive integer prime char(F ), then
there is a natural isomorphism

H2(X,µn)
∼→ T ∗(F )/nT ∗(F ).
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Proof. The Kummer short exact sequence 1 → µn → Gm
n−→ Gm → 1 yields an exact

sequence

H1(X,Gm)
n−→ H1(X,Gm)→ H2(X,µn)→ H2(X,Gm)[n] = Br(X)[n],

where Br(X) is the Brauer group of X. In view of Lemma 2.2, H1(X,Gm) ' Pic(X) '
T ∗(F ). It suffices to show that the group Br(X)[n] is trivial. By [15, Proposition 6.10]
applied to the T -torsor U → X there is an exact sequence

Pic(T )→ Br(X)→ Br(U).

The Picard group of T is trivial as T is split. It remains to show that Br(U)[n] = 0. By
the homotopy invariance property for the étale cohomology (see [12, Ch. VI, Corollary
4.20]), Br(V )[n] ' Br(F )[n] = 0 as F is separably closed. It follows from [5, Corollary
3.4.2] that Br(U)[n] ' Br(V )[n] = 0. �

Let n be a positive integer prime to char(F ). By Lemma 2.3, we have a natural
composition

α : H2(X,µ⊗2
n )→ H2(Xsep, µ

⊗2
n )Γ = (H2(Xsep, µn)⊗ µn)Γ ∼→ (T ∗sep ⊗ µn)Γ = T ◦(F )[n].

Proposition 2.4. Let n be a positive integer prime char(F ). Then the sequence

0→ H2(F, µ⊗2
n )

ι−→ H2(X,µ⊗2
n )

α−→ T ◦(F )[n]→ 1,

where ι is the pull-back with respect to the structure morphism X → SpecF , is exact.

Proof. Consider the Hochschild–Serre spectral sequence (see [12, Chapter III, Theorem
2.20])

Ep,q
2 = Hp(F,Hq(Xsep, µ

⊗2
n ))⇒ Hp+q(X,µ⊗2

n ).

The Kummer sequence yields

H1(Xsep, µ
⊗2
n ) = H1(Xsep, µn)⊗ µn ' Pic(X)[n]⊗ µn = 0

as Pic(X) is torsion free by Lemma 2.2, hence Ep,1
2 = 0 for all p. In particular, E1,1

∞ =
E1,1

2 = 0 and E2,0
∞ = E2,0

2 = H2(F, µ⊗2
n ). Since X has a point over F , the edge homomor-

phism H∗(F, µ⊗2
n )→ H∗(X,µ⊗2

n ) is injective. In view of Lemma 2.3 it follows that

E0,2
∞ = E0,2

2 = H2(Xsep, µ
⊗2
n )Γ ' (T ∗sep ⊗ µn)Γ = T ◦(F )[n].

The result follows. �

It can be deduced from Proposition 2.4 that the group H2(X,µ⊗2
n ) is canonically inde-

pendent of the choice of the representation τ and the open subscheme U .

3. The pairings

Let n be a positive integer prime to char(F ) and let A be a group of multiplicative type
such that nA∗sep = 0. The natural map A∗∨sep ⊗ A∗sep → Z/nZ yields a pairing

(3.1) A(Fsep)⊗ A◦(Fsep)→ µ⊗2
n

of Galois modules.
Let T be a torus over F and let Y be a scheme over F . The pairing (3.1) for A = T [n]:

T [n](Fsep)⊗ T ◦[n](Fsep)→ µ⊗2
n
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yields the cup-product

Hp(Y, T [n])⊗Hq(Y, T ◦[n])
∪−→ Hp+q(Y, µ⊗2

n ).

We define a pairing

H1(Y, T )⊗ T ◦(F )[n]
�−→ H2(Y, µ⊗2

n )

by the formula a � b := δ(a)∪ bY , where bY is the image of b under the natural homomor-
phism T ◦(F )[n]→ H0(Y, T ◦[n]) and

δ : H1(Y, T )→ H2(Y, T [n])

is the connecting homomorphism for the exact sequence

1→ T [n]→ T
n−→ T → 1.

Example 3.2. The T -torsor U → X = U/G yields a canonical element acan ∈ H1(X,T ).
We have the homomorphism

β : T ◦(F )[n]→ H2(X,µ⊗2
n ), b 7→ acan � b.

Taking Y = SpecK for a field extension K/F , we get a homomorphism

λn : T ◦(F )[n]→ Inv2
nm(T, µ⊗2

n ) = Invnm(T,K2/nK2)

sending an element b ∈ T ◦(F )[n] to the normalized invariant defined by

H1(K,T )→ H2(K,µ⊗2
n ), a 7→ a � b

for a field extension K/F .
Let

1→ T → P → S → 1

be an exact sequence of tori with P a quasi-split torus.
The diagram with exact rows and columns

T [n]
� _

��

� � // P [n]
� _

��

// // S[n]
� _

��
T

n
����

� � // P

n
����

// // S

n
����

T �
� // P // // S

yields a diagram

(3.3) H0(K,S) //

��

H1(K,T )

δ
��

// H1(K,P )

H1(K,S[n])
δ′ // H2(K,T [n])

with an exact row and anti-commutative square (see [4, Chapter V, Proposition 4.1]).
Since H1(K,P ) = 0, for every a ∈ H1(K,T ), there is a′ ∈ H1(K,S[n]) such that δ′(a′) =
δ(a). Let b ∈ T ◦(F )[n] = H0(F, T ◦[n]) and let b′ := δ′′(b) ∈ H1(F, S◦[n]), where δ′′ is the
connecting homomorphism for the exact sequence 1→ S◦[n]→ P ◦[n]→ T ◦[n]→ 1.
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The map λn can be expressed in terms of the pairing

H1(K,S[n])⊗H1(K,S◦[n])
?−→ H2(K,µ⊗2

n )

as follows.

Proposition 3.4. The map λn takes an element b ∈ T ◦(F )[n] to the invariant a 7→ a′?b′K,
where a ∈ H1(K,T ).

Proof. By [4, Chapter XII, Proposition 6.1],

λn(b)(a) = a � b = δ(a) ∪ bK = δ′(a′) ∪ bK = a′ ? δ′′(bK) = a′ ? b′K . �

Recall that we have a T -torsor U → X = U/T .

Lemma 3.5. The composition T ◦(F )[n]
β−→ H2(X,µ⊗2

n )
α−→ T ◦(F )[n] is the identity map.

Proof. As the map T ◦[n](F )→ T ◦[n](Fsep) is injective, we may assume that F is separably
closed. Consider the commutative diagram

T ∗ ⊗H1(X,T )

��

∪ // H1(X,Gm)

��

∼ // T ∗(F )

��
T ∗ ⊗H2(X,T [n])

∪ // H2(X,µn)
∼ // T ∗(F )/nT ∗(F ),

where the isomorphisms are given by Lemmas 2.2 and 2.3. For a character b ∈ T ∗(F ),
the image of acan∪ b in H1(X,Gm) = Pic(X) is given by Borel construction, i.e., coincides
with the image of b under the isomorphism in Lemma 2.2. Hence, the image of acan ⊗ b
under the composition in the top row in the diagram is equal to b. The statement follows
from commutativity of the diagram after tensoring with µn. �

By Lemma 3.5, the map β is a splitting for the exact sequence in Proposition 2.4. Hence
we have a natural isomorphism

(ι, β) : H2(F, µ⊗2
n )⊕ T ◦(F )[n]

∼→ H2(X,µ⊗2
n ).

The Bloch-Ogus spectral sequence (see [3, §3] and [6, §1])

Ep,q
1 =

∐
x∈X(p)

Hq−p(F (x), µ⊗(2−p)
n )⇒ Hp+q(X,µ⊗2

n )

for the sheaf µ⊗2
n on X (here X(p) is the set of points of X of codimension p) gives the

bottom exact sequence of the commutative diagram

H2(F, µ⊗2
n )⊕ T ◦(F )[n]

o(ι,β)

��

(1,λn)
// H2(F, µ⊗2

n )⊕ Inv2
nm(T, µ⊗2

n )

θ

��∐
x∈X(1)

µn(F (x))
ρ // H2(X,µ⊗2

n ) // H2(F (X), µ⊗2
n ))

∂ //
∐

x∈X(1)

H1(F (x), µn),

where the homomorphism

θ : H2(F, µ⊗2
n )⊕ Inv2

nm(T, µ⊗2
n ) = Inv2(T, µ⊗2

n )→ H2(F (X), µ⊗2
n )
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evaluates an invariant at the generic fiber of the T -torsor U → X. By Totaro’s theorem
[8, Part 1, Appendix C], θ yields an isomorphism between Inv2(T, µ⊗2

n ) and Ker ∂. The
natural homomorphism H2(F, µ⊗2

n ) → H2(F (X), µ⊗2
n ) is injective since X(F ) 6= ∅. It

follows that Im(ρ) ⊂ Im(β) ' T ◦(F )[n] and the sequence

(3.6)
∐

x∈X(1)

µn(F (x))
ρ−→ T ◦(F )[n]

λn−→ Inv2
nm(T, µ⊗2

n )→ 0

is exact.

Remark 3.7. It follows from the surjectivity and the definition of λn that every invariant
I in Inv2

nm(T, µ⊗2
n ) is homomorphic, i.e., the map I(K) : H1(K,T ) → H2(K,µ⊗2

n ) is a
homomorphism for every field extension K/F .

Let

(3.8) 1→ T → P → S → 1

be a coflasque resolution of T , i.e., P is a quasi-split torus and S is a coflasque torus (see
[7, §1]).

Proposition 3.9. The image of ρ in (3.6) coincides with the image of P ◦(F )[n] →
T ◦(F )[n].

Proof. In the commutative diagram

P ◦(F )[n]

��

// Inv2
nm(P, µ⊗2

n )

��∐
x∈X(1)

µn(F (x))
ρ // T ◦(F )[n]

λn // Inv2
nm(T, µ⊗2

n )

the group Inv2
nm(P, µ⊗2

n ) is trivial since every P -torsor over a field is trivial. It follows
that the image of P ◦(F )[n]→ T ◦(F )[n] is contained in Im(ρ).

In order to prove the opposite inclusion fix a point x ∈ X(1) and write ρx for the
component µn(F (x)) → T ◦(F )[n] of ρ. Let K be the subfield of F (x) generated by all
roots of unity in µn(F (x)) over F . The finite field extension K/F is separable and we can
view K as a subfield of Fsep.

Let y ∈ XK := X×F SpecK be (the only) point in the image of the canonical morphism
SpecF (x)→ XK . This is a point of codimension 1 in XK over x ∈ X such that K(y) =
F (x). Note that µn(K(y)) = µn(K).

It follows from [12, Chapter VI, §6] that the image of the composition

Z/nZ→ H2(XK , µn)→ H2(Xsep, µn)
∼→ T ∗sep/nT

∗
sep,

where the first map is the y-component of the homomorphism

E1,1
1 → H2(XK , µn)

arising from the Bloch-Ogus spectral sequence

Ep,q
1 =

∐
y∈X(p)

K

Hq−p(K(y), µ⊗(1−p)
n )⇒ Hp+q(XK , µn)
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for the sheaf µn on XK , is contained in the subgroup generated by [y] in T ∗sep/mT
∗
sep.

Therefore, as µn(K(y)) = µn(K), the image of ρy : µn(K(y))→ T ◦(K)[n] is contained in
[y]⊗ µn(K).

The natural morphism f : XK → X yields a commutative diagram

ρy : µn(K(y)) // H2(XK , µ
⊗2
n )

f∗
��

// T ◦(K)[n]

NK/F

��
ρx : µn(F (x)) // H2(X,µ⊗2

n ) // T ◦(F )[n].

It follows that

Im(ρx) ⊂ NK/F ([y]⊗ µn(K)) ⊂ T ◦(F )[n].

As S is a coflasque torus, the last term in the exact sequence

P ∗(K)→ T ∗(K)→ H1(K,S∗sep)

is trivial, hence the first map is surjective. This implies that

[y]⊗ µn(K) ⊂ Im(P ◦(K)[n]→ T ◦(K)[n]).

Applying NK/F we see that

Im(ρx) ⊂ NK/F (Im(P ◦(K)[n]→ T ◦(K)[n])) ⊂ Im(P ◦(F )[n]→ T ◦(F )[n])

for all x ∈ X(1), hence Im(ρ) ⊂ Im(P ◦(F )[n]→ T ◦(F )[n]). �

4. Main results

Let T be a torus over F and let n be a positive integer. We define the homomorphism

λn : T ◦(F )[n]→ Invnm(T,K2/nK2)

as follows. Recall that this map is defined in Section 3 in the case n is prime to p if
p = char(F ) > 0. Write n = mps for an integer m prime to p and define λn as the
composition

T ◦(F )[n] = T ◦(F )[m]
λm−→ Invnm(T,K2/mK2)

ps−→ Invnm(T,K2/nK2).

Now we are ready to compute the group of invariants Invnm(T,K2/nK2).

Theorem 4.1. Let T be a torus over a field F and let 1 → T
ε−→ P → S → 1 be a

coflasque resolution of T . Then for a positive integer n the sequence

P ◦(F )[n]
ε◦−→ T ◦(F )[n]

λn−→ Invnm(T,K2/nK2)→ 0,

is exact.

Proof. By Lemma 2.1 we may assume that n is prime to char(F ). Now the statement
follows from (3.6) and Proposition 3.9. �
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Example 4.2. Let L/F be a finite separable field extension and let T be the norm one
torus for L/F , i.e., T is the kernel of the norm homomorphism NL/F : RL/F (Gm) → Gm,
so that we have the exact sequence (3.8) with P = RL/F (Gm) and S = Gm. For a positive
integer n, we have S[n] = S◦[n] = µn. The dual torus T ◦ is RL/F (Gm)/Gm, hence

T ◦(F )[n] = {x ∈ L× : xn ∈ F×}/F×.
To compute δ′′(xF×) in the case when n is prime to char(F ), where δ′′ is the connecting
map

T ◦(F )[n]→ H1(F, S◦[n]) = H1(F, µn),

let a := xn ∈ F× and find y ∈ F×sep such that yn = a. Then the element z := xy−1 ∈
P ◦[n](Fsep) goes to xF× under P ◦[n](Fsep) → T ◦[n](Fsep), hence δ′′(xF×) is represented
by the 1-cocycle γ 7→ γ(z)z−1 = yγ(y−1). The identification F×/F×n = H1(F, µn)
takes aF×n to the class of the cocycle γ 7→ γ(y)y−1. It follows that δ′′ viewed as map
T ◦(F )[n]→ F×/F×n takes xF× to b′ := x−nF×n.

If K/F is a field extension and

ā = aNKL/K(KL×) ∈ K×/NKL/K(KL×) = H1(K,T )

for an element a ∈ K×, then we get from the anti-commutative diagram (3.3) that
δ(ā) = δ(a′), where a′ = a−1K×n ∈ K×/K×n = H1(K,µn) = H1(K,S[n]). It follows
from the Proposition 3.4 that

λn(xF×)(ā) = a′ ? b′ = {a−1, x−n} = {a, xn} ∈ K2(K)/nK2(K)

under the identification of H2(K,µ⊗2
n ) with K2(K)/nK2(K).

We have P ◦(F )[n] = P (F )[n] = µn(L) and the map x 7→ xn identifies the cokernel of
P ◦(F )[n]→ T ◦(F )[n] with the group F× ∩ L×n. The isomorphism

F× ∩ L×n ∼→ Inv2
nm(T, µ⊗2

n )

takes an element b ∈ F× ∩ L×n to the invariant ā 7→ {a, b} ∈ K2(K)/nK2(K). Note that
this formula holds for all n > 0.

In the following theorem we determine the group of normalized (K2 ⊗ Q/Z)-invariants
of a torus.

Theorem 4.3. Let T be a torus over field F and let 1→ T
ε−→ P → S → 1 be a coflasque

resolution of T . Then the sequence

P ◦(F )tors
ε◦−→ T ◦(F )tors

λ−→ Invnm(T,K2 ⊗ Q/Z)→ 0,

where λ is the colimit of λn, is exact.

Proof. Let X = U/T be as in Section 2c. According to [1, Theorem 3.4] and [16, Theorem
2.1] the group of invariants Inv(T,K2/nK2) is naturally isomorphic to the kernel of the
homomorphism

p∗1 − p∗2 : K2(F (X))⊗ Z/nZ→ K2(F ((U × U)/T ))⊗ Z/nZ,

where p1 and p2 are the two projections of (U ×U)/T onto X. A similar statement holds
for the group Inv(T,K2 ⊗ Q/Z). Since the étale cohomology commutes with colimits the
natural map

colimn Invnm(T,K2/nK2)→ Invnm(T,K2 ⊗ Q/Z)
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is an isomorphism. Taking the colimit of the exact sequences in Theorem 4.1, we get the
statement. �

Example 4.4. In the notation of Example 4.2, passing to the colimit over all integers n
prime to char(F ) we get an isomorphism

(F× ⊗ Q) ∩ (L×/µ(L))
∼→ Invnm(T,K2 ⊗ Q/Z),

where the intersection is taken in L× ⊗Q. Note the kernel of the natural homomorphism

Invnm(T,K2/nK2)→ Invnm(T,K2 ⊗ Q/Z)

is isomorphic to µn(F ) ∩ L×n and it is not trivial in general.
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