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ABSTRACT. We determine the group of cohomological invariants of algebraic tori of
degree and weight 2.

1. INTRODUCTION

The notion of invariant of a group scheme G over a field F' was defined by Serre as
follows (see [8]). Consider the functor

Torsg : Fieldsp — Sets,

where Fieldsp is the category of field extensions of F' and field homomorphisms over
F, taking a field K to the set Torsg(K) of isomorphism classes of G-torsors (principal
homogeneous G-spaces) over Spec K. Let

H : Fields — Abelian Groups
be another functor. An H-invariant of G is then a morphism of functors
Torsq — H,

where we view H as a functor with values in Sets. We denote the group of H-invariants
of G by Inv(G, H).

An invariant in Inv(G, H) is called normalized if it takes the class of trivial G-torsors
to 0. The normalized invariants form a subgroup Inv,, (G, H) of Inv(G, H) and there is
a natural isomorphism

Inv(G,H) ~ H(F) ® Inv,,(G, H),
where H(F') can be identified with the subgroup of constant invariants.

Example 1.1. Let M be a complex of Galois modules over F' and let H be the functor
taking a field K over F' to the Galois cohomology group H4(K, M) for a fixed integer d.
We write Inv?(G, M) for the group of cohomological invariants Inv(G, H). In particular,
Inv(G,Z/nZ(j)) for an integer n > 0 and Inv?(G,Q/Z(j)) are the group of degree d and
weight j invariants. (For the definition of Z/nZ(j) and Q/Z(j) see [10]. If n is prime
to char(F), then Z/nZ(j) = u%’) We call the type of such invariants the pair of integers

(d, 7).

The type (1, 1) invariants of algebraic tori (and more generally, groups of multiplicative
type) were considered in [18]. Cohomological invariants of types (2, 1) (Brauer invariants)
and (3,2) invariants were studied in [1].
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In the present paper we study type (2, 2)-invariants of algebraic tori. Since
H*(F,Z/nZ(2))) ~ Ky(F)/nKy(F) and H?*(F,Q/Z(2)) ~ Ky(F) ®Q/Z

for a field F' (see [2, §2] and [11, Theorem 11.5]), we study invariants with values in the
functors Ky /nkK, and Ky ® Q/Z.

Ifl1—-T— P — S —1is a coflasque resolution of a torus 7', we prove that there is
an exact sequence

P°(F)n] = T°(F)[n] 2 Invam (T, Ka/nks) — 0,

where P° and T° are the tori dual to P and T respectively. Note that T°(F)[n] is the
group of F-points of the finite group 7°[n] = Ker(T° 2 T°) of multiplicative type.

We give two formulas for the map A. One formula uses the self-symmetric pairing

H'(F,S[n]) ® H'(F,5°[n]) = Ky(F)/nK,(F).

The group T°(F)tors is the union of the subgroups T°(F)[n] of elements of exponent n.

Passing to the colimit over all n we prove that there is an exact sequence
P°(F)tors = T°(F)tors = Invym (T, Ko ® Q/Z) — 0.

We use the following notations in the paper.

For a field F' write Fy,, for a separable closure of F' and I' = I'p for the (absolute)
Galois group of Fi,/F.

If A is an abelian group and n an integer, we write A[n] for the kernel of A ™ A and
Ators for the subgroup of elements of finite order in A.

If X is a scheme and M is an étale sheaf of abelian groups on X, we write H4(X, M) for
the degree d étale cohomology group of X with values in M. The scheme X X Spec Fy,
is denoted by Xep.

K, (F) denotes Milnor’s K-groups of F' (see [14]).

The multiplicative group G,, over F is Spec F[t,t71].

We write p, for the I'-module of all n-th roots of unity in FX and p,(F) for g, N F*.

sep
2. PRELIMINARY RESULTS

2a. Invariants over fields of positive characteristic. The following statement re-
duces to the study of invariants to the case when n is prime to char(F').

Lemma 2.1. Let F' be a field of characteristic p > 0 and n = mp® for integers n > 0 and
s > 0. Then the map

p° o Invyy (G, K. /mK,) = Inv,, (G, K, /nK,)
is an isomorphism for every smooth group G and r = 0.

Proof. The group K, of a field of characteristic p has no p-torsion by [9, Theorem A],
hence the sequence

0— K,.(K)/mK,(K) r, K, (K)/nK,(K) = K,(K)/p°K,(K)
is exact for every field extension K/F'. It follows that the sequence

0 — Invy (G, K, /mK,) LiN Invy, (G, K, /nK,) = Invyn (G, K, /p°K,.)
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is also exact. It suffices to show that the last group in the sequence is trivial. This
follows from the fact that every G-torsor over K is split over K, (since G is smooth)
and the natural homomorphism K, (K)/p°K,(K) = K,(Ksp)/P K, (Ksp) s injective by
[9, Corollary 6.5]. O

2b. Groups of multiplicative type. Let A be an algebraic group of multiplicative type
over a field F' (see [13, Chapter 12]). For a field extension K/F we write A*(K) for the
group of characters Homp(A ®p Spec K,G,,) of A over K and A, for the I'-module

A*(Fiep). The group A can be reconstructed out of the group ring of A7, via the formula
A = Spec(Fep[AL ).

sep

Let n be a positive integer prime to char(F) such that nA%_ = 0. We have

sep

A(Fsep) = HOHl(A* Fx ) — Hom(A:eI),/J%) — A*V ® fin,

sep’ * sep sep

where Az = Hom(AZ,,,Q/Z) = Hom(A,,,Z/nZ) is the dual module.

The dual group A° is a group of multiplicative type with character module A%y . Then
A°(Feep) = A:ep & fn.-

If T' is an algebraic torus (i.e., the character group T is a lattice), we write T° for the
dual torus with character Galois module 7" = Hom(7™*, Z).

The kernel T[n] of T % T taking t to t" is a finite group of multiplicative type with
character Galois module T}, /nT . We have T'[n]° = T°[n] and T°[n](F) = (T}, ® pn)",

sep
and T'[n](K) = T(K)[n] for any field extension K/F.

2c. Cohomology of BT. Let T be an algebraic torus over a field F'. Choose a repre-
sentation 7 : T'— GL(V'), where V' is a finite dimensional vector space over F' such that
there exists a T-invariant open subscheme U of the affine space of V' such that U(F) # 0,
codimy (V' — U) > 2 and there is a T-torsor U — X. Such representations exist (see [17,
Remark 1.4]). We can view X as an approximation of the classifying space BT (which we
don’t define). We will sometimes write X = U/T.

Borel construction yields a homomorphism 7*(F) — Pic(X) taking a character x to
the class of the line bundle (U x A')/T — X, where T acts on the affine line A! via .

Lemma 2.2. The map T*(F) — Pic(X) is an isomorphism.

Proof. By [15, Proposition 6.10] applied to the T-torsor U — X there is an exact sequence
F[X]*/F* = T*(F) — Pic(X) — Pic(U),

where the middle map is given by Borel construction. The group F[X]|*/F* is isomorphic
to a subgroup of F[U]*/F*. The latter group is trivial as F[V]* = F* and the divisor
groups of U and V' are canonically isomorphic by assumption. Moreover, Pic(U) = 0 since
the restriction homomorphism 0 = Pic(V') — Pic(U) is surjective. u

For a point € X of codimension 1 we write [x] for the character in T*(F') corresponding
to the class of x in Pic(X) under the isomorphism in Lemma 2.2.

Lemma 2.3. If F is separably closed and n is a positive integer prime char(F), then
there is a natural isomorphism

H*(X, p) = T*(F)/nT*(F).
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Proof. The Kummer short exact sequence 1 — pu, — G,, — G,, — 1 yields an exact
sequence
HY(X,G,,) > HY(X,G,,) = H*(X, p,) — H*(X,G,,)[n] = Br(X)[n],
where Br(X) is the Brauer group of X. In view of Lemma 2.2, H'(X,G,,) ~ Pic(X) ~
T*(F). It suffices to show that the group Br(X)[n] is trivial. By [15, Proposition 6.10)]
applied to the T-torsor U — X there is an exact sequence
Pic(T') — Br(X) — Br(U).

The Picard group of T is trivial as T" is split. It remains to show that Br(U)[n] = 0. By
the homotopy invariance property for the étale cohomology (see [12, Ch. VI, Corollary
4.20]), Br(V)[n] ~ Br(F)[n] = 0 as F is separably closed. It follows from [5, Corollary
3.4.2] that Br(U)[n] ~ Br(V)[n] = 0. O

Let n be a positive integer prime to char(F'). By Lemma 2.3, we have a natural

composition
a: H*(X, ) — HQ(XSBWNS?Q)F = (HQ(Xsem“n) ® )" (T ® i)' = T°(F)[n].
).

n sep

Proposition 2.4. Let n be a positive integer prime char(F'). Then the sequence

0 — H*(F, p?) = H*(X, p,?) = T°(F)[n] — 1,
where ¢ is the pull-back with respect to the structure morphism X — Spec F, is exact.

Proof. Consider the Hochschild-Serre spectral sequence (see [12, Chapter III, Theorem
2.20])
B = HP(F, HY(Xgop, p1,”)) = H" (X, 11,?).
The Kummer sequence yields
Hl(Xsepa U%z) = Hl(Xsepa fin) @ pn == Pic(X)[n] @ p, =0
as Pic(X) is torsion free by Lemma 2.2, hence E2' = 0 for all p. In particular, EL' =

Ey' =0 and E%° = E;° = H?(F, u®?). Since X has a point over F, the edge homomor-
phism H*(F, u®?) — H*(X, u®?) is injective. In view of Lemma 2.3 it follows that

B3’ = By = H*(Xeep, 117°)" = (T ® )" = T°(F)[n].

sep

The result follows. U

It can be deduced from Proposition 2.4 that the group H?(X, u®?) is canonically inde-
pendent of the choice of the representation 7 and the open subscheme U.

3. THE PAIRINGS

Let n be a positive integer prime to char(F') and let A be a group of multiplicative type
such that nAZ,, = 0. The natural map Ay ® A — Z/nZ yields a pairing
(3.1) A(Frp) @ A*(Fiay) — i
of Galois modules.

Let T be a torus over F' and let Y be a scheme over F'. The pairing (3.1) for A = T'[n]:

T[”](Fsep) ®T° [n](Fsep) — N%Q
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yields the cup-product
HP(Y, T[n)) & HA(Y, T[n]) 5 HP9(Y, 152)
We define a pairing
HY(Y,T) @ T°(F)[n] = H*(Y, ;%)

by the formula a ¢ b := §(a) U by, where by is the image of b under the natural homomor-
phism 7°(F)[n] — H°(Y,T°[n]) and

§: HY(Y,T) — H*(Y,T[n])
is the connecting homomorphism for the exact sequence

1—=Th) —-T5T 1.

Example 3.2. The T-torsor U — X = U/@ yields a canonical element ac,, € H' (X, T).
We have the homomorphism

B:T°(F)n] = H*(X, "), b ean 0 b.
Taking Y = Spec K for a field extension K/F, we get a homomorphism
A 2 T°(F)[n] = Inv2 (T, u&?) = Invy (T, Ko /nK>)
sending an element b € T°(F')[n] to the normalized invariant defined by
HYK,T) — H*(K,u%?), a+raob

for a field extension K/F.
Let
1T —>P—=S5—1
be an exact sequence of tori with P a quasi-split torus.
The diagram with exact rows and columns

T« P S
T« P S
yields a diagram
(3.3) HY(K,S) HY K, T) —— HY(K, P)

| ]

HY(K, S[n])) -2~ H*(K, T[n))

with an exact row and anti-commutative square (see [4, Chapter V, Proposition 4.1]).
Since H'(K, P) = 0, for every a € H' (K, T), there is a’ € H'(K, S[n]) such that §'(a’) =
§(a). Let b € T°(F)[n] = H°(F,T°[n]) and let b’ := §"(b) € H'(F, S°[n]), where ¢” is the
connecting homomorphism for the exact sequence 1 — S°[n|] — P°[n] — T°[n] — 1.
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The map A, can be expressed in terms of the pairing
H'(K, S[n]) ® H'(K, S°[n]) = H*(K, u3*)
as follows.

Proposition 3.4. The map \, takes an element b € T°(F)[n] to the invariant a — a’'xby,
where a € H' (K, T).

Proof. By [4, Chapter XII, Proposition 6.1],
An(b)(a) =aob=0d(a) Ubg =0 (') Ubx = a' x 0" (bg) = a’ * V. O
Recall that we have a T-torsor U — X = U/T.

Lemma 3.5. The composition T°(F)[n] 5 w2 (x, p®?) & T°(F)[n] is the identity map.

Proof. As the map T°[n|(F) — T°[n|(Fsp) is injective, we may assume that F' is separably
closed. Consider the commutative diagram

~

T* @ H'(X,T) —— H'(X,G,,) T*(F)

| | |

T © H3(X, T[n)) —~ HX(X, ) —— T*(F)/nT*(F),

where the isomorphisms are given by Lemmas 2.2 and 2.3. For a character b € T*(F),
the image of ac., Ub in H'(X, G,,) = Pic(X) is given by Borel construction, i.e., coincides
with the image of b under the isomorphism in Lemma 2.2. Hence, the image of ac. ® b
under the composition in the top row in the diagram is equal to b. The statement follows
from commutativity of the diagram after tensoring with p,,. O

By Lemma 3.5, the map £ is a splitting for the exact sequence in Proposition 2.4. Hence
we have a natural isomorphism

n

The Bloch-Ogus spectral sequence (see [3, §3] and [6, §1])

EP? = 1 HOP(F(x), py®P) = HH(X, 15?)
zeX (@)

(1, 8) : HY(F, 1) @ T°(F)[n] S H*(X, u?).

for the sheaf 422 on X (here X® is the set of points of X of codimension p) gives the
bottom exact sequence of the commutative diagram

H2(F, p2%) & T°(F)[n] 2 H2(F, 482) & Tnv?, (T, 152)
(t,B8) | 0
o
I pn(F(x)) —2— H(X, %) HX(F(X), p22) —2— 1 H(F(2), ).
xeXxX(®) zeXx 1)

where the homomorphism
0 H*(F, p,?) @ Invy, (T %) = Inv*(T, p?) — H?(F(X), p1,”)

n n
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evaluates an invariant at the generic fiber of the T-torsor U — X. By Totaro’s theorem
8, Part 1, Appendix C], @ yields an isomorphism between Inv?(T, u®?) and Kerd. The
natural homomorphism H?(F, u®?) — H*(F(X),u$?) is injective since X (F) # (. Tt
follows that Im(p) C Im(8) ~ T°(F)[n] and the sequence
(3.6) L pin(E () 5 T(F)fn] 2 I} (T, i) = 0

zeX®)
is exact.

Remark 3.7. It follows from the surjectivity and the definition of A, that every invariant
I in Inv2 (T, u®2) is homomorphic, i.e., the map I(K) : HY(K,T) — H*(K,u®?) is a
homomorphism for every field extension K/F.

Let
(3.8) 1T —>P—S5S—1

be a coflasque resolution of 7', i.e., P is a quasi-split torus and S is a coflasque torus (see
[7, §1]).

Proposition 3.9. The image of p in (3.6) coincides with the image of P°(F)[n] —
T°(F)[n].

Proof. In the commutative diagram

P°(F)[n] — Tnvy, (P, i)

| |

I a(F(z)) —2=To(F)[n] =2 Inv2, (T, 482

the group Inv2 (P, u®?) is trivial since every P-torsor over a field is trivial. It follows
that the image of P°(F)[n] — T°(F)[n] is contained in Im(p).

In order to prove the opposite inclusion fix a point z € X® and write p, for the
component, i, (F(x)) — T°(F)[n] of p. Let K be the subfield of F(z) generated by all
roots of unity in p, (F'(x)) over F'. The finite field extension K/F' is separable and we can
view K as a subfield of Fy.

Let y € Xk := X xpSpec K be (the only) point in the image of the canonical morphism
Spec F'(z) — X. This is a point of codimension 1 in X over x € X such that K(y) =
F(z). Note that u,(K(y)) = pn(K).

It follows from [12, Chapter VI, §6] that the image of the composition

Z/nZ — H*(Xk, pin) = H*(Xeep, pin) = Tiep /1Ty,

sep
where the first map is the y-component of the homomorphism
Byt — H*(Xk, i)
arising from the Bloch-Ogus spectral sequence

EPT= 11 H"P(K(y), ;") = H'M (X, pn)

yeXg)
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for the sheaf p, on X, is contained in the subgroup generated by [y] in 1o, /mT%,.

Therefore, as p,(K(y)) = pn(K), the image of p, : u,(K(y)) — T°(K)[n] is contained in

[y] ® 1 (K).
The natural morphism f : Xx — X yields a commutative diagram

py ¢ (K (y)) —= H*(Xi, p?) — T°(K)[n]

‘ lf* jNK/F

pa t pn(F(2)) —— H* (X, p13}?) ——=T°(F)[n].

It follows that
Im(p.) C Ni/p([y] ® pa(K)) € T°(F)[n].
As S is a coflasque torus, the last term in the exact sequence
P(K)—T*(K) - H'(K,SZ,)
is trivial, hence the first map is surjective. This implies that
[y] @ pn(K) C Im(P°(K)[n] — T°(K)[n]).
Applying N /r we see that
Im(p.) C Ni/p(Im(P°(K)[n] — T°(K)[n])) C Im(P°(F)[n] — T°(F)[n])

for all x € XM hence Im(p) C Im(P°(F)[n] — T°(F)[n]). O

4. MAIN RESULTS
Let T be a torus over F' and let n be a positive integer. We define the homomorphism
An 2 T°(F)[n] = Invyw (T, Ky /1K)

as follows. Recall that this map is defined in Section 3 in the case n is prime to p if
p = char(F) > 0. Write n = mp® for an integer m prime to p and define A, as the
composition

T°(F)[n| =T°(F)[m)] Am, vy, (T, Ko /mKy) LiN v, (T, Ko /nKy).

Now we are ready to compute the group of invariants Inv,,, (7', Ky /nkK3).

Theorem 4.1. Let T be a torus over a field F and let 1 — T = P — S — 1 be a
coflasque resolution of T'. Then for a positive integer n the sequence

P°(F)[n] < T°(F)[n] 2% Invam(T, Ka/nks) — 0,
15 exact.

Proof. By Lemma 2.1 we may assume that n is prime to char(F). Now the statement
follows from (3.6) and Proposition 3.9. O
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Example 4.2. Let L/F be a finite separable field extension and let 7' be the norm one
torus for L/F, i.e., T is the kernel of the norm homomorphism Ny p : Ry /r(G,) — Gy,
so that we have the exact sequence (3.8) with P = Ry,r(G,,) and S = G,,. For a positive
integer n, we have S[n| = S°[n] = p,. The dual torus T7° is Ry /p(G;,)/Gn, hence
T°(F)[n|={xe L :a" € F*}/F™.
To compute §"(xF*) in the case when n is prime to char(F’), where §” is the connecting
map
T°(F)n] — HY(F,S°([n]) = H'(F, i),

let @ := 2" € F* and find y € F, such that y" = a. Then the element z := xy ' e
P°n)(Fyp) goes to xF* under P°[n|(Fyp) — T°[n](Fiep), hence 6" (xF) is represented
by the l-cocycle v — v(2)z7! = yy(y~!). The identification F*/F*" = H(F,p,)
takes aF*™ to the class of the cocycle v — ~(y)y~'. It follows that ¢” viewed as map
T°(F)[n] — F*/F*" takes 2 F* to b/ := x " F*",

If K/F is a field extension and

a=aNgrx(KL*) € K*/Ngp(KL*) = H'(K,T)
for an element a € K*, then we get from the anti-commutative diagram (3.3) that
§(a) = 6(a’), where @/ = a'K*" € K*/K*" = H' (K, u,) = H'(K, S[n]). It follows
from the Proposition 3.4 that
M(@F*) (@) =d xb ={a ", 27"} = {a, 2"} € Ko(K) /nK5(K)

under the identification of H2(K, u®?) with Ky(K)/nK,(K).

We have P°(F)[n] = P(F)[n] = u,(L) and the map = +— z™ identifies the cokernel of
P°(F)[n] — T°(F)[n] with the group F* N L*™. The isomorphism

F*N L 5 Inv? (T, u?)

takes an element b € F'* N L*™ to the invariant a — {a,b} € K5(K)/nKy(K). Note that
this formula holds for all n > 0.

In the following theorem we determine the group of normalized (K, ® Q/Z)-invariants
of a torus.

Theorem 4.3. Let T be a torus over field F and let 1 — T = P — S — 1 be a coflasque
resolution of T'. Then the sequence

P°(F)iors 5 T°(F)iors = Vo (T, K> ® Q/Z) — 0,
where X is the colimit of \,, is exact.
Proof. Let X = U/T be as in Section 2¢. According to [1, Theorem 3.4] and [16, Theorem

2.1] the group of invariants Inv (7', Ky /nK>) is naturally isomorphic to the kernel of the
homomorphism

pi— syt Ko(F(X)) @ Z/nZ — Ko(F((U x U)/T)) ® Z/nZ,
where p; and p, are the two projections of (U x U)/T onto X. A similar statement holds
for the group Inv(T, Ky ® Q/Z). Since the étale cohomology commutes with colimits the

natural map
colim,, Invy,, (T, K3 /nKy) — Invy, (T, Ky ® Q/Z)
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is an isomorphism. Taking the colimit of the exact sequences in Theorem 4.1, we get the
statement. O

Example 4.4. In the notation of Example 4.2, passing to the colimit over all integers n
prime to char(F') we get an isomorphism

(F*@Q) N (L* /(L)) = Invan(T, K> ® Q/Z),

where the intersection is taken in L™ ® Q. Note the kernel of the natural homomorphism

Invym (7T, Ko /nKs) — Invy, (T, Ko ® Q/Z)

is isomorphic to p,(F) N L*™ and it is not trivial in general.
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