INVARIANTS OF ALGEBRAIC TORI OF DEGREE AND WEIGHT 2

ALEXANDER MERKURJEV AND ALEXANDER WERTHEIM

Abstract. We determine the group of cohomological invariants of algebraic tori of degree and weight 2.

1. Introduction

The notion of invariant of a group scheme G over a field F was defined by Serre as follows (see [8]). Consider the functor

$$
\operatorname{Tors}_{G}: \text { Fields }_{F} \longrightarrow \text { Sets, }
$$

where Fields ${ }_{F}$ is the category of field extensions of F and field homomorphisms over F, taking a field K to the set $\operatorname{Tors}_{G}(K)$ of isomorphism classes of G-torsors (principal homogeneous G-spaces) over Spec K. Let

$$
H: \text { Fields }_{F} \longrightarrow \text { Abelian Groups }
$$

be another functor. An H-invariant of G is then a morphism of functors

$$
\operatorname{Tors}_{G} \longrightarrow H,
$$

where we view H as a functor with values in Sets. We denote the group of H-invariants of G by $\operatorname{Inv}(G, H)$.

An invariant in $\operatorname{Inv}(G, H)$ is called normalized if it takes the class of trivial G-torsors to 0 . The normalized invariants form a subgroup $\operatorname{Inv}_{\mathrm{nm}}(G, H)$ of $\operatorname{Inv}(G, H)$ and there is a natural isomorphism

$$
\operatorname{Inv}(G, H) \simeq H(F) \oplus \operatorname{Inv}_{\mathrm{nm}}(G, H)
$$

where $H(F)$ can be identified with the subgroup of constant invariants.
Example 1.1. Let M be a complex of Galois modules over F and let H be the functor taking a field K over F to the Galois cohomology group $H^{d}(K, M)$ for a fixed integer d. We write $\operatorname{Inv}^{d}(G, M)$ for the group of cohomological invariants $\operatorname{Inv}(G, H)$. In particular, $\operatorname{Inv}^{d}(G, \mathbb{Z} / n \mathbb{Z}(j))$ for an integer $n>0$ and $\operatorname{Inv}^{d}(G, \mathbb{Q} / \mathbb{Z}(j))$ are the group of degree d and weight j invariants. (For the definition of $\mathbb{Z} / n \mathbb{Z}(j)$ and $\mathbb{Q} / \mathbb{Z}(j)$ see [10]. If n is prime to $\operatorname{char}(F)$, then $\left.\mathbb{Z} / n \mathbb{Z}(j)=\mu_{n}^{\otimes j}\right)$ We call the type of such invariants the pair of integers (d, j).

The type $(1,1)$ invariants of algebraic tori (and more generally, groups of multiplicative type) were considered in [18]. Cohomological invariants of types (2,1) (Brauer invariants) and $(3,2)$ invariants were studied in [1].

[^0]In the present paper we study type (2,2)-invariants of algebraic tori. Since

$$
\left.H^{2}(F, \mathbb{Z} / n \mathbb{Z}(2))\right) \simeq K_{2}(F) / n K_{2}(F) \quad \text { and } \quad H^{2}(F, \mathbb{Q} / \mathbb{Z}(2)) \simeq K_{2}(F) \otimes \mathbb{Q} / \mathbb{Z}
$$

for a field F (see $[2, \S 2]$ and [11, Theorem 11.5]), we study invariants with values in the functors $K_{2} / n K_{2}$ and $K_{2} \otimes \mathbb{Q} / \mathbb{Z}$.

If $1 \rightarrow T \rightarrow P \rightarrow S \rightarrow 1$ is a coflasque resolution of a torus T, we prove that there is an exact sequence

$$
P^{\circ}(F)[n] \rightarrow T^{\circ}(F)[n] \xrightarrow{\lambda} \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} / n K_{2}\right) \rightarrow 0
$$

where P° and T° are the tori dual to P and T respectively. Note that $T^{\circ}(F)[n]$ is the group of F-points of the finite group $T^{\circ}[n]=\operatorname{Ker}\left(T^{\circ} \xrightarrow{n} T^{\circ}\right)$ of multiplicative type.

We give two formulas for the map λ. One formula uses the self-symmetric pairing

$$
H^{1}(F, S[n]) \otimes H^{1}\left(F, S^{\circ}[n]\right) \xrightarrow{\cup} K_{2}(F) / n K_{2}(F) .
$$

The group $T^{\circ}(F)_{\text {tors }}$ is the union of the subgroups $T^{\circ}(F)[n]$ of elements of exponent n. Passing to the colimit over all n we prove that there is an exact sequence

$$
P^{\circ}(F)_{\text {tors }} \rightarrow T^{\circ}(F)_{\text {tors }} \rightarrow \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} \otimes \mathbb{Q} / \mathbb{Z}\right) \rightarrow 0
$$

We use the following notations in the paper.
For a field F write $F_{\text {sep }}$ for a separable closure of F and $\Gamma=\Gamma_{F}$ for the (absolute) Galois group of $F_{\text {sep }} / F$.

If A is an abelian group and n an integer, we write $A[n]$ for the kernel of $A \xrightarrow{n} A$ and $A_{\text {tors }}$ for the subgroup of elements of finite order in A.

If X is a scheme and M is an étale sheaf of abelian groups on X, we write $H^{d}(X, M)$ for the degree d étale cohomology group of X with values in M. The scheme $X \times{ }_{F} \operatorname{Spec} F_{\text {sep }}$ is denoted by $X_{\text {sep }}$.
$K_{r}(F)$ denotes Milnor's K-groups of F (see [14]).
The multiplicative group \mathbb{G}_{m} over F is Spec $F\left[t, t^{-1}\right]$.
We write μ_{n} for the Γ-module of all n-th roots of unity in $F_{\text {sep }}^{\times}$and $\mu_{n}(F)$ for $\mu_{n} \cap F^{\times}$.

2. Preliminary results

2a. Invariants over fields of positive characteristic. The following statement reduces to the study of invariants to the case when n is prime to $\operatorname{char}(F)$.

Lemma 2.1. Let F be a field of characteristic $p>0$ and $n=m p^{s}$ for integers $n>0$ and $s \geqslant 0$. Then the map

$$
p^{s}: \operatorname{Inv}_{\mathrm{nm}}\left(G, K_{r} / m K_{r}\right) \rightarrow \operatorname{Inv}_{\mathrm{nm}}\left(G, K_{r} / n K_{r}\right)
$$

is an isomorphism for every smooth group G and $r \geqslant 0$.
Proof. The group K_{r} of a field of characteristic p has no p-torsion by [9, Theorem A], hence the sequence

$$
0 \rightarrow K_{r}(K) / m K_{r}(K) \xrightarrow{p^{s}} K_{r}(K) / n K_{r}(K) \rightarrow K_{r}(K) / p^{s} K_{r}(K)
$$

is exact for every field extension K / F. It follows that the sequence

$$
0 \rightarrow \operatorname{Inv}_{\mathrm{nm}}\left(G, K_{r} / m K_{r}\right) \xrightarrow{p^{s}} \operatorname{Inv}_{\mathrm{nm}}\left(G, K_{r} / n K_{r}\right) \rightarrow \operatorname{Inv}_{\mathrm{nm}}\left(G, K_{r} / p^{s} K_{r}\right)
$$

is also exact. It suffices to show that the last group in the sequence is trivial. This follows from the fact that every G-torsor over K is split over $K_{\text {sep }}$ (since G is smooth) and the natural homomorphism $K_{r}(K) / p^{s} K_{r}(K) \rightarrow K_{r}\left(K_{\text {sep }}\right) / p^{s} K_{r}\left(K_{\text {sep }}\right)$ is injective by [9, Corollary 6.5].

2b. Groups of multiplicative type. Let A be an algebraic group of multiplicative type over a field F (see [13, Chapter 12]). For a field extension K / F we write $A^{*}(K)$ for the group of characters $\operatorname{Hom}_{F}\left(A \otimes_{F} \operatorname{Spec} K, \mathbb{G}_{m}\right)$ of A over K and $A_{\text {sep }}^{*}$ for the Γ-module $A^{*}\left(F_{\text {sep }}\right)$. The group A can be reconstructed out of the group ring of $A_{\text {sep }}^{*}$ via the formula

$$
A=\operatorname{Spec}\left(F_{\text {sep }}\left[A_{\text {sep }}^{*}\right]\right)^{\Gamma} .
$$

Let n be a positive integer prime to $\operatorname{char}(F)$ such that $n A_{\text {sep }}^{*}=0$. We have

$$
A\left(F_{\text {sep }}\right)=\operatorname{Hom}\left(A_{\text {sep }}^{*}, F_{\text {sep }}^{\times}\right)=\operatorname{Hom}\left(A_{\text {sep }}^{*}, \mu_{n}\right)=A_{\text {sep }}^{* \vee} \otimes \mu_{n},
$$

where $A_{\text {sep }}^{* \vee}:=\operatorname{Hom}\left(A_{\text {sep }}^{*}, \mathbb{Q} / \mathbb{Z}\right)=\operatorname{Hom}\left(A_{\text {sep }}^{*}, \mathbb{Z} / n \mathbb{Z}\right)$ is the dual module.
The dual group A° is a group of multiplicative type with character module $A_{\text {sep }}^{* v}$. Then $A^{\circ}\left(F_{\text {sep }}\right)=A_{\text {sep }}^{*} \otimes \mu_{n}$.

If T is an algebraic torus (i.e., the character group $T_{\text {sep }}^{*}$ is a lattice), we write T° for the dual torus with character Galois module $T^{* \vee}=\operatorname{Hom}\left(T^{*}, \mathbb{Z}\right)$.

The kernel $T[n]$ of $T \xrightarrow{n} T$ taking t to t^{n} is a finite group of multiplicative type with character Galois module $T_{\text {sep }}^{*} / n T_{\text {sep }}^{*}$. We have $T[n]^{\circ}=T^{\circ}[n]$ and $T^{\circ}[n](F)=\left(T_{\text {sep }}^{*} \otimes \mu_{n}\right)^{\Gamma}$, and $T[n](K)=T(K)[n]$ for any field extension K / F.

2c. Cohomology of BT. Let T be an algebraic torus over a field F. Choose a representation $\tau: T \rightarrow \mathrm{GL}(V)$, where V is a finite dimensional vector space over F such that there exists a T-invariant open subscheme U of the affine space of V such that $U(F) \neq \emptyset$, $\operatorname{codim}_{V}(V-U) \geqslant 2$ and there is a T-torsor $U \rightarrow X$. Such representations exist (see [17, Remark 1.4]). We can view X as an approximation of the classifying space $\mathrm{B} T$ (which we don't define). We will sometimes write $X=U / T$.

Borel construction yields a homomorphism $T^{*}(F) \rightarrow \operatorname{Pic}(X)$ taking a character χ to the class of the line bundle $\left(U \times \mathbb{A}^{1}\right) / T \rightarrow X$, where T acts on the affine line \mathbb{A}^{1} via χ.

Lemma 2.2. The map $T^{*}(F) \rightarrow \operatorname{Pic}(X)$ is an isomorphism.
Proof. By [15, Proposition 6.10] applied to the T-torsor $U \rightarrow X$ there is an exact sequence

$$
F[X]^{\times} / F^{\times} \rightarrow T^{*}(F) \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(U)
$$

where the middle map is given by Borel construction. The group $F[X]^{\times} / F^{\times}$is isomorphic to a subgroup of $F[U]^{\times} / F^{\times}$. The latter group is trivial as $F[V]^{\times}=F^{\times}$and the divisor groups of U and V are canonically isomorphic by assumption. Moreover, $\operatorname{Pic}(U)=0$ since the restriction homomorphism $0=\operatorname{Pic}(V) \rightarrow \operatorname{Pic}(U)$ is surjective.

For a point $x \in X$ of codimension 1 we write $[x]$ for the character in $T^{*}(F)$ corresponding to the class of x in $\operatorname{Pic}(X)$ under the isomorphism in Lemma 2.2.
Lemma 2.3. If F is separably closed and n is a positive integer prime $\operatorname{char}(F)$, then there is a natural isomorphism

$$
H^{2}\left(X, \mu_{n}\right) \xrightarrow{\sim} T^{*}(F) / n T^{*}(F) .
$$

Proof. The Kummer short exact sequence $1 \rightarrow \mu_{n} \rightarrow \mathbb{G}_{m} \xrightarrow{n} \mathbb{G}_{m} \rightarrow 1$ yields an exact sequence

$$
H^{1}\left(X, \mathbb{G}_{m}\right) \xrightarrow{n} H^{1}\left(X, \mathbb{G}_{m}\right) \rightarrow H^{2}\left(X, \mu_{n}\right) \rightarrow H^{2}\left(X, \mathbb{G}_{m}\right)[n]=\operatorname{Br}(X)[n],
$$

where $\operatorname{Br}(X)$ is the Brauer group of X. In view of Lemma 2.2, $H^{1}\left(X, \mathbb{G}_{m}\right) \simeq \operatorname{Pic}(X) \simeq$ $T^{*}(F)$. It suffices to show that the group $\operatorname{Br}(X)[n]$ is trivial. By [15, Proposition 6.10] applied to the T-torsor $U \rightarrow X$ there is an exact sequence

$$
\operatorname{Pic}(T) \rightarrow \operatorname{Br}(X) \rightarrow \operatorname{Br}(U)
$$

The Picard group of T is trivial as T is split. It remains to show that $\operatorname{Br}(U)[n]=0$. By the homotopy invariance property for the étale cohomology (see [12, Ch. VI, Corollary 4.20]), $\operatorname{Br}(V)[n] \simeq \operatorname{Br}(F)[n]=0$ as F is separably closed. It follows from [5, Corollary 3.4.2] that $\operatorname{Br}(U)[n] \simeq \operatorname{Br}(V)[n]=0$.

Let n be a positive integer prime to $\operatorname{char}(F)$. By Lemma 2.3, we have a natural composition

$$
\alpha: H^{2}\left(X, \mu_{n}^{\otimes 2}\right) \rightarrow H^{2}\left(X_{\mathrm{sep}}, \mu_{n}^{\otimes 2}\right)^{\Gamma}=\left(H^{2}\left(X_{\mathrm{sep}}, \mu_{n}\right) \otimes \mu_{n}\right)^{\Gamma} \xrightarrow{\sim}\left(T_{\mathrm{sep}}^{*} \otimes \mu_{n}\right)^{\Gamma}=T^{\circ}(F)[n] .
$$

Proposition 2.4. Let n be a positive integer prime $\operatorname{char}(F)$. Then the sequence

$$
0 \rightarrow H^{2}\left(F, \mu_{n}^{\otimes 2}\right) \xrightarrow{\iota} H^{2}\left(X, \mu_{n}^{\otimes 2}\right) \xrightarrow{\alpha} T^{\circ}(F)[n] \rightarrow 1,
$$

where ι is the pull-back with respect to the structure morphism $X \rightarrow \operatorname{Spec} F$, is exact.
Proof. Consider the Hochschild-Serre spectral sequence (see [12, Chapter III, Theorem 2.20])

$$
E_{2}^{p, q}=H^{p}\left(F, H^{q}\left(X_{\mathrm{sep}}, \mu_{n}^{\otimes 2}\right)\right) \Rightarrow H^{p+q}\left(X, \mu_{n}^{\otimes 2}\right)
$$

The Kummer sequence yields

$$
H^{1}\left(X_{\text {sep }}, \mu_{n}^{\otimes 2}\right)=H^{1}\left(X_{\text {sep }}, \mu_{n}\right) \otimes \mu_{n} \simeq \operatorname{Pic}(X)[n] \otimes \mu_{n}=0
$$

as $\operatorname{Pic}(X)$ is torsion free by Lemma 2.2, hence $E_{2}^{p, 1}=0$ for all p. In particular, $E_{\infty}^{1,1}=$ $E_{2}^{1,1}=0$ and $E_{\infty}^{2,0}=E_{2}^{2,0}=H^{2}\left(F, \mu_{n}^{\otimes 2}\right)$. Since X has a point over F, the edge homomorphism $H^{*}\left(F, \mu_{n}^{\otimes 2}\right) \rightarrow H^{*}\left(X, \mu_{n}^{\otimes 2}\right)$ is injective. In view of Lemma 2.3 it follows that

$$
E_{\infty}^{0,2}=E_{2}^{0,2}=H^{2}\left(X_{\mathrm{sep}}, \mu_{n}^{\otimes 2}\right)^{\Gamma} \simeq\left(T_{\mathrm{sep}}^{*} \otimes \mu_{n}\right)^{\Gamma}=T^{\circ}(F)[n] .
$$

The result follows.
It can be deduced from Proposition 2.4 that the group $H^{2}\left(X, \mu_{n}^{\otimes 2}\right)$ is canonically independent of the choice of the representation τ and the open subscheme U.

3. The pairings

Let n be a positive integer prime to $\operatorname{char}(F)$ and let A be a group of multiplicative type such that $n A_{\text {sep }}^{*}=0$. The natural map $A_{\text {sep }}^{* V} \otimes A_{\text {sep }}^{*} \rightarrow \mathbb{Z} / n \mathbb{Z}$ yields a pairing

$$
\begin{equation*}
A\left(F_{\text {sep }}\right) \otimes A^{\circ}\left(F_{\text {sep }}\right) \rightarrow \mu_{n}^{\otimes 2} \tag{3.1}
\end{equation*}
$$

of Galois modules.
Let T be a torus over F and let Y be a scheme over F. The pairing (3.1) for $A=T[n]$:

$$
T[n]\left(F_{\text {sep }}\right) \otimes T^{\circ}[n]\left(F_{\text {sep }}\right) \rightarrow \mu_{n}^{\otimes 2}
$$

yields the cup-product

$$
H^{p}(Y, T[n]) \otimes H^{q}\left(Y, T^{\circ}[n]\right) \xrightarrow{\cup} H^{p+q}\left(Y, \mu_{n}^{\otimes 2}\right) .
$$

We define a pairing

$$
H^{1}(Y, T) \otimes T^{\circ}(F)[n] \xrightarrow{\diamond} H^{2}\left(Y, \mu_{n}^{\otimes 2}\right)
$$

by the formula $a \diamond b:=\delta(a) \cup b_{Y}$, where b_{Y} is the image of b under the natural homomorphism $T^{\circ}(F)[n] \rightarrow H^{0}\left(Y, T^{\circ}[n]\right)$ and

$$
\delta: H^{1}(Y, T) \rightarrow H^{2}(Y, T[n])
$$

is the connecting homomorphism for the exact sequence

$$
1 \rightarrow T[n] \rightarrow T \xrightarrow{n} T \rightarrow 1
$$

Example 3.2. The T-torsor $U \rightarrow X=U / G$ yields a canonical element $a_{\text {can }} \in H^{1}(X, T)$. We have the homomorphism

$$
\beta: T^{\circ}(F)[n] \rightarrow H^{2}\left(X, \mu_{n}^{\otimes 2}\right), \quad b \mapsto a_{\text {can }} \diamond b .
$$

Taking $Y=\operatorname{Spec} K$ for a field extension K / F, we get a homomorphism

$$
\lambda_{n}: T^{\circ}(F)[n] \rightarrow \operatorname{Inv}_{\mathrm{nm}}^{2}\left(T, \mu_{n}^{\otimes 2}\right)=\operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} / n K_{2}\right)
$$

sending an element $b \in T^{\circ}(F)[n]$ to the normalized invariant defined by

$$
H^{1}(K, T) \rightarrow H^{2}\left(K, \mu_{n}^{\otimes 2}\right), \quad a \mapsto a \diamond b
$$

for a field extension K / F.
Let

$$
1 \rightarrow T \rightarrow P \rightarrow S \rightarrow 1
$$

be an exact sequence of tori with P a quasi-split torus.
The diagram with exact rows and columns

yields a diagram

with an exact row and anti-commutative square (see [4, Chapter V, Proposition 4.1]). Since $H^{1}(K, P)=0$, for every $a \in H^{1}(K, T)$, there is $a^{\prime} \in H^{1}(K, S[n])$ such that $\delta^{\prime}\left(a^{\prime}\right)=$ $\delta(a)$. Let $b \in T^{\circ}(F)[n]=H^{0}\left(F, T^{\circ}[n]\right)$ and let $b^{\prime}:=\delta^{\prime \prime}(b) \in H^{1}\left(F, S^{\circ}[n]\right)$, where $\delta^{\prime \prime}$ is the connecting homomorphism for the exact sequence $1 \rightarrow S^{\circ}[n] \rightarrow P^{\circ}[n] \rightarrow T^{\circ}[n] \rightarrow 1$.

The map λ_{n} can be expressed in terms of the pairing

$$
H^{1}(K, S[n]) \otimes H^{1}\left(K, S^{\circ}[n]\right) \xrightarrow{\star} H^{2}\left(K, \mu_{n}^{\otimes 2}\right)
$$

as follows.
Proposition 3.4. The map λ_{n} takes an element $b \in T^{\circ}(F)[n]$ to the invariant $a \mapsto a^{\prime} \star b_{K}^{\prime}$, where $a \in H^{1}(K, T)$.

Proof. By [4, Chapter XII, Proposition 6.1],

$$
\lambda_{n}(b)(a)=a \diamond b=\delta(a) \cup b_{K}=\delta^{\prime}\left(a^{\prime}\right) \cup b_{K}=a^{\prime} \star \delta^{\prime \prime}\left(b_{K}\right)=a^{\prime} \star b_{K}^{\prime}
$$

Recall that we have a T-torsor $U \rightarrow X=U / T$.
Lemma 3.5. The composition $T^{\circ}(F)[n] \xrightarrow{\beta} H^{2}\left(X, \mu_{n}^{\otimes 2}\right) \xrightarrow{\alpha} T^{\circ}(F)[n]$ is the identity map.
Proof. As the map $T^{\circ}[n](F) \rightarrow T^{\circ}[n]\left(F_{\text {sep }}\right)$ is injective, we may assume that F is separably closed. Consider the commutative diagram

where the isomorphisms are given by Lemmas 2.2 and 2.3. For a character $b \in T^{*}(F)$, the image of $a_{\text {can }} \cup b$ in $H^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X)$ is given by Borel construction, i.e., coincides with the image of b under the isomorphism in Lemma 2.2. Hence, the image of $a_{\text {can }} \otimes b$ under the composition in the top row in the diagram is equal to b. The statement follows from commutativity of the diagram after tensoring with μ_{n}.

By Lemma 3.5, the map β is a splitting for the exact sequence in Proposition 2.4. Hence we have a natural isomorphism

$$
(\iota, \beta): H^{2}\left(F, \mu_{n}^{\otimes 2}\right) \oplus T^{\circ}(F)[n] \xrightarrow{\sim} H^{2}\left(X, \mu_{n}^{\otimes 2}\right) .
$$

The Bloch-Ogus spectral sequence (see [3, §3] and [6, §1])

$$
E_{1}^{p, q}=\coprod_{x \in X^{(p)}} H^{q-p}\left(F(x), \mu_{n}^{\otimes(2-p)}\right) \Rightarrow H^{p+q}\left(X, \mu_{n}^{\otimes 2}\right)
$$

for the sheaf $\mu_{n}^{\otimes 2}$ on X (here $X^{(p)}$ is the set of points of X of codimension p) gives the bottom exact sequence of the commutative diagram

where the homomorphism

$$
\theta: H^{2}\left(F, \mu_{n}^{\otimes 2}\right) \oplus \operatorname{Inv}_{\mathrm{nm}}^{2}\left(T, \mu_{n}^{\otimes 2}\right)=\operatorname{Inv}^{2}\left(T, \mu_{n}^{\otimes 2}\right) \rightarrow H^{2}\left(F(X), \mu_{n}^{\otimes 2}\right)
$$

evaluates an invariant at the generic fiber of the T-torsor $U \rightarrow X$. By Totaro's theorem [8, Part 1, Appendix C], θ yields an isomorphism between $\operatorname{Inv}^{2}\left(T, \mu_{n}^{\otimes 2}\right)$ and $\operatorname{Ker} \partial$. The natural homomorphism $H^{2}\left(F, \mu_{n}^{\otimes 2}\right) \rightarrow H^{2}\left(F(X), \mu_{n}^{\otimes 2}\right)$ is injective since $X(F) \neq \emptyset$. It follows that $\operatorname{Im}(\rho) \subset \operatorname{Im}(\beta) \simeq T^{\circ}(F)[n]$ and the sequence

$$
\begin{equation*}
\coprod_{x \in X^{(1)}} \mu_{n}(F(x)) \xrightarrow{\rho} T^{\circ}(F)[n] \xrightarrow{\lambda_{n}} \operatorname{Inv}_{\mathrm{nm}}^{2}\left(T, \mu_{n}^{\otimes 2}\right) \rightarrow 0 \tag{3.6}
\end{equation*}
$$

is exact.
Remark 3.7. It follows from the surjectivity and the definition of λ_{n} that every invariant I in $\operatorname{Inv}_{\mathrm{nm}}^{2}\left(T, \mu_{n}^{\otimes 2}\right)$ is homomorphic, i.e., the map $I(K): H^{1}(K, T) \rightarrow H^{2}\left(K, \mu_{n}^{\otimes 2}\right)$ is a homomorphism for every field extension K / F.

Let

$$
\begin{equation*}
1 \rightarrow T \rightarrow P \rightarrow S \rightarrow 1 \tag{3.8}
\end{equation*}
$$

be a coflasque resolution of T, i.e., P is a quasi-split torus and S is a coflasque torus (see [7, §1]).

Proposition 3.9. The image of ρ in (3.6) coincides with the image of $P^{\circ}(F)[n] \rightarrow$ $T^{\circ}(F)[n]$.
Proof. In the commutative diagram

the group $\operatorname{Inv}_{\mathrm{nm}}^{2}\left(P, \mu_{n}^{\otimes 2}\right)$ is trivial since every P-torsor over a field is trivial. It follows that the image of $P^{\circ}(F)[n] \rightarrow T^{\circ}(F)[n]$ is contained in $\operatorname{Im}(\rho)$.

In order to prove the opposite inclusion fix a point $x \in X^{(1)}$ and write ρ_{x} for the component $\mu_{n}(F(x)) \rightarrow T^{\circ}(F)[n]$ of ρ. Let K be the subfield of $F(x)$ generated by all roots of unity in $\mu_{n}(F(x))$ over F. The finite field extension K / F is separable and we can view K as a subfield of $F_{\text {sep }}$.

Let $y \in X_{K}:=X \times_{F}$ Spec K be (the only) point in the image of the canonical morphism Spec $F(x) \rightarrow X_{K}$. This is a point of codimension 1 in X_{K} over $x \in X$ such that $K(y)=$ $F(x)$. Note that $\mu_{n}(K(y))=\mu_{n}(K)$.

It follows from [12, Chapter VI, $\S 6]$ that the image of the composition

$$
\mathbb{Z} / n \mathbb{Z} \rightarrow H^{2}\left(X_{K}, \mu_{n}\right) \rightarrow H^{2}\left(X_{\text {sep }}, \mu_{n}\right) \xrightarrow{\sim} T_{\text {sep }}^{*} / n T_{\text {sep }}^{*}
$$

where the first map is the y-component of the homomorphism

$$
E_{1}^{1,1} \rightarrow H^{2}\left(X_{K}, \mu_{n}\right)
$$

arising from the Bloch-Ogus spectral sequence

$$
E_{1}^{p, q}=\coprod_{y \in X_{K}^{(p)}} H^{q-p}\left(K(y), \mu_{n}^{\otimes(1-p)}\right) \Rightarrow H^{p+q}\left(X_{K}, \mu_{n}\right)
$$

for the sheaf μ_{n} on X_{K}, is contained in the subgroup generated by $[y]$ in $T_{\text {sep }}^{*} / m T_{\text {sep }}^{*}$. Therefore, as $\mu_{n}(K(y))=\mu_{n}(K)$, the image of $\rho_{y}: \mu_{n}(K(y)) \rightarrow T^{\circ}(K)[n]$ is contained in $[y] \otimes \mu_{n}(K)$.

The natural morphism $f: X_{K} \rightarrow X$ yields a commutative diagram

It follows that

$$
\operatorname{Im}\left(\rho_{x}\right) \subset N_{K / F}\left([y] \otimes \mu_{n}(K)\right) \subset T^{\circ}(F)[n]
$$

As S is a coflasque torus, the last term in the exact sequence

$$
P^{*}(K) \rightarrow T^{*}(K) \rightarrow H^{1}\left(K, S_{\mathrm{sep}}^{*}\right)
$$

is trivial, hence the first map is surjective. This implies that

$$
[y] \otimes \mu_{n}(K) \subset \operatorname{Im}\left(P^{\circ}(K)[n] \rightarrow T^{\circ}(K)[n]\right)
$$

Applying $N_{K / F}$ we see that

$$
\operatorname{Im}\left(\rho_{x}\right) \subset N_{K / F}\left(\operatorname{Im}\left(P^{\circ}(K)[n] \rightarrow T^{\circ}(K)[n]\right)\right) \subset \operatorname{Im}\left(P^{\circ}(F)[n] \rightarrow T^{\circ}(F)[n]\right)
$$

for all $x \in X^{(1)}$, hence $\operatorname{Im}(\rho) \subset \operatorname{Im}\left(P^{\circ}(F)[n] \rightarrow T^{\circ}(F)[n]\right)$.

4. Main results

Let T be a torus over F and let n be a positive integer. We define the homomorphism

$$
\lambda_{n}: T^{\circ}(F)[n] \rightarrow \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} / n K_{2}\right)
$$

as follows. Recall that this map is defined in Section 3 in the case n is prime to p if $p=\operatorname{char}(F)>0$. Write $n=m p^{s}$ for an integer m prime to p and define λ_{n} as the composition

$$
T^{\circ}(F)[n]=T^{\circ}(F)[m] \xrightarrow{\lambda_{m}} \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} / m K_{2}\right) \xrightarrow{p^{s}} \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} / n K_{2}\right)
$$

Now we are ready to compute the group of invariants $\operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} / n K_{2}\right)$.
Theorem 4.1. Let T be a torus over a field F and let $1 \rightarrow T \xrightarrow{\varepsilon} P \rightarrow S \rightarrow 1$ be a coflasque resolution of T. Then for a positive integer n the sequence

$$
P^{\circ}(F)[n] \xrightarrow{\varepsilon^{\circ}} T^{\circ}(F)[n] \xrightarrow{\lambda_{n}} \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} / n K_{2}\right) \rightarrow 0,
$$

is exact.
Proof. By Lemma 2.1 we may assume that n is prime to $\operatorname{char}(F)$. Now the statement follows from (3.6) and Proposition 3.9.

Example 4.2. Let L / F be a finite separable field extension and let T be the norm one torus for L / F, i.e., T is the kernel of the norm homomorphism $N_{L / F}: R_{L / F}\left(\mathbb{G}_{m}\right) \rightarrow \mathbb{G}_{m}$, so that we have the exact sequence (3.8) with $P=R_{L / F}\left(\mathbb{G}_{m}\right)$ and $S=\mathbb{G}_{m}$. For a positive integer n, we have $S[n]=S^{\circ}[n]=\mu_{n}$. The dual torus T° is $R_{L / F}\left(\mathbb{G}_{m}\right) / \mathbb{G}_{m}$, hence

$$
T^{\circ}(F)[n]=\left\{x \in L^{\times}: x^{n} \in F^{\times}\right\} / F^{\times} .
$$

To compute $\delta^{\prime \prime}\left(x F^{\times}\right)$in the case when n is prime to char (F), where $\delta^{\prime \prime}$ is the connecting map

$$
T^{\circ}(F)[n] \rightarrow H^{1}\left(F, S^{\circ}[n]\right)=H^{1}\left(F, \mu_{n}\right),
$$

let $a:=x^{n} \in F^{\times}$and find $y \in F_{\text {sep }}^{\times}$such that $y^{n}=a$. Then the element $z:=x y^{-1} \in$ $P^{\circ}[n]\left(F_{\text {sep }}\right)$ goes to $x F^{\times}$under $P^{\circ}[n]\left(F_{\text {sep }}\right) \rightarrow T^{\circ}[n]\left(F_{\text {sep }}\right)$, hence $\delta^{\prime \prime}\left(x F^{\times}\right)$is represented by the 1-cocycle $\gamma \mapsto \gamma(z) z^{-1}=y \gamma\left(y^{-1}\right)$. The identification $F^{\times} / F^{\times n}=H^{1}\left(F, \mu_{n}\right)$ takes $a F^{\times n}$ to the class of the cocycle $\gamma \mapsto \gamma(y) y^{-1}$. It follows that $\delta^{\prime \prime}$ viewed as map $T^{\circ}(F)[n] \rightarrow F^{\times} / F^{\times n}$ takes $x F^{\times}$to $b^{\prime}:=x^{-n} F^{\times n}$.

If K / F is a field extension and

$$
\bar{a}=a N_{K L / K}\left(K L^{\times}\right) \in K^{\times} / N_{K L / K}\left(K L^{\times}\right)=H^{1}(K, T)
$$

for an element $a \in K^{\times}$, then we get from the anti-commutative diagram (3.3) that $\delta(\bar{a})=\delta\left(a^{\prime}\right)$, where $a^{\prime}=a^{-1} K^{\times n} \in K^{\times} / K^{\times n}=H^{1}\left(K, \mu_{n}\right)=H^{1}(K, S[n])$. It follows from the Proposition 3.4 that

$$
\lambda_{n}\left(x F^{\times}\right)(\bar{a})=a^{\prime} \star b^{\prime}=\left\{a^{-1}, x^{-n}\right\}=\left\{a, x^{n}\right\} \in K_{2}(K) / n K_{2}(K)
$$

under the identification of $H^{2}\left(K, \mu_{n}^{\otimes 2}\right)$ with $K_{2}(K) / n K_{2}(K)$.
We have $P^{\circ}(F)[n]=P(F)[n]=\mu_{n}(L)$ and the map $x \mapsto x^{n}$ identifies the cokernel of $P^{\circ}(F)[n] \rightarrow T^{\circ}(F)[n]$ with the group $F^{\times} \cap L^{\times n}$. The isomorphism

$$
F^{\times} \cap L^{\times n} \xrightarrow{\sim} \operatorname{Inv}_{\mathrm{nm}}^{2}\left(T, \mu_{n}^{\otimes 2}\right)
$$

takes an element $b \in F^{\times} \cap L^{\times n}$ to the invariant $\bar{a} \mapsto\{a, b\} \in K_{2}(K) / n K_{2}(K)$. Note that this formula holds for all $n>0$.

In the following theorem we determine the group of normalized $\left(K_{2} \otimes \mathbb{Q} / \mathbb{Z}\right)$-invariants of a torus.
Theorem 4.3. Let T be a torus over field F and let $1 \rightarrow T \xrightarrow{\varepsilon} P \rightarrow S \rightarrow 1$ be a coflasque resolution of T. Then the sequence

$$
P^{\circ}(F)_{\mathrm{tors}} \xrightarrow{\varepsilon^{\circ}} T^{\circ}(F)_{\mathrm{tors}} \xrightarrow{\lambda} \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} \otimes \mathbb{Q} / \mathbb{Z}\right) \rightarrow 0,
$$

where λ is the colimit of λ_{n}, is exact.
Proof. Let $X=U / T$ be as in Section 2c. According to [1, Theorem 3.4] and [16, Theorem 2.1] the group of invariants $\operatorname{Inv}\left(T, K_{2} / n K_{2}\right)$ is naturally isomorphic to the kernel of the homomorphism

$$
p_{1}^{*}-p_{2}^{*}: K_{2}(F(X)) \otimes \mathbb{Z} / n \mathbb{Z} \rightarrow K_{2}(F((U \times U) / T)) \otimes \mathbb{Z} / n \mathbb{Z},
$$

where p_{1} and p_{2} are the two projections of $(U \times U) / T$ onto X. A similar statement holds for the group $\operatorname{Inv}\left(T, K_{2} \otimes \mathbb{Q} / \mathbb{Z}\right)$. Since the étale cohomology commutes with colimits the natural map

$$
\operatorname{colim}_{n} \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} / n K_{2}\right) \rightarrow \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} \otimes \mathbb{Q} / \mathbb{Z}\right)
$$

is an isomorphism. Taking the colimit of the exact sequences in Theorem 4.1, we get the statement.

Example 4.4. In the notation of Example 4.2, passing to the colimit over all integers n prime to $\operatorname{char}(F)$ we get an isomorphism

$$
\left(F^{\times} \otimes \mathbb{Q}\right) \cap\left(L^{\times} / \mu(L)\right) \xrightarrow[\rightarrow]{\sim} \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} \otimes \mathbb{Q} / \mathbb{Z}\right),
$$

where the intersection is taken in $L^{\times} \otimes \mathbb{Q}$. Note the kernel of the natural homomorphism

$$
\operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} / n K_{2}\right) \rightarrow \operatorname{Inv}_{\mathrm{nm}}\left(T, K_{2} \otimes \mathbb{Q} / \mathbb{Z}\right)
$$

is isomorphic to $\mu_{n}(F) \cap L^{\times n}$ and it is not trivial in general.

References

[1] Blinstein, S., and Merkurjev, A. Cohomological invariants of algebraic tori. Algebra Number Theory 7, 7 (2013), 1643-1684.
[2] Bloch, S., and Kato, K. p-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math., 63 (1986), 107-152.
[3] Bloch, S., and Ogus, A. Gersten's conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7 (1974), 181-201 (1975).
[4] Cartan, H., and Eilenberg, S. Homological algebra. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1999. With an appendix by David A. Buchsbaum, Reprint of the 1956 original.
[5] Colliot-Thélène, J.-L. Birational invariants, purity and the Gersten conjecture. In K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992). Amer. Math. Soc., Providence, RI, 1995, pp. 1-64.
[6] Colliot-Thélène, J.-L., Hoobler, R. T., and Kahn, B. The Bloch-Ogus-Gabber theorem. In Algebraic K-theory (Toronto, ON, 1996). Amer. Math. Soc., Providence, RI, 1997, pp. 31-94.
[7] Colliot-Thélène, J.-L., and Sansuc, J.-J. La R-équivalence sur les tores. Ann. Sci. École Norm. Sup. (4) 10, 2 (1977), 175-229.
[8] Garibaldi, R., Merkurjev, A., and J.-P., S. Cohomological Invariants in Galois Cohomology. American Mathematical Society, Providence, RI, 2003.
[9] Izhboldin, O. On p-torsion in K_{*}^{M} for fields of characteristic p. In Algebraic K-theory. Amer. Math. Soc., Providence, RI, 1991, pp. 129-144.
[10] Kahn, B. Applications of weight-two motivic cohomology. Doc. Math. 1 (1996), No. 17, 395-416.
[11] Merkurjev, A. S., and Suslin, A. A. K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR Ser. Mat. 46, 5 (1982), 1011-1046, 1135-1136.
[12] Milne, J. S. Étale cohomology. Princeton University Press, Princeton, N.J., 1980.
[13] Milne, J. S. Algebraic groups, vol. 170 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field.
[14] Milnor, J. Algebraic K-theory and quadratic forms. Invent. Math. 9 (1969/1970), 318-344.
[15] Sansuc, J.-J. Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. Reine Angew. Math. 327 (1981), 12-80.
[16] Totaro, B. Cohomological invariants in positive characteristic. International Mathematics Research Notices, to appear.
[17] Totaro, B. The Chow ring of a classifying space. In Algebraic K-theory (Seattle, WA, 1997), vol. 67 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1999, pp. 249-281.
[18] Wertheim, A. Degree one Milnor K-invariants of groups of multiplicative type. J. Algebra 577 (2021), 149-174.

Department of Mathematics, University of California, Los Angeles, CA, USA
Email address: merkurev@math.ucla.edu
Department of Mathematics, University of California, Los Angeles, CA, USA Email address: awertheim@math.ucla.edu

[^0]: The first author has been supported by the NSF grant DMS \#1801530.

