
THE CHOW RING OF THE CLASSIFYING SPACE
OF THE UNITARY GROUP

NIKITA A. KARPENKO AND ALEXANDER S. MERKURJEV

Abstract. We fill a gap in the literature by computing the Chow ring of the classifying
space of the unitary group of a hermitian form on a finite dimensional vector space over
a separable quadratic field extension.
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1. Introduction

Let K/F be a separable quadratic extension of fields and let V be a vector space over
K of a finite dimension n ≥ 1. A hermitian form h on V is a K-linear in the second
argument map V × V → K such that σ(h(u, v)) = h(v, u) for any u, v ∈ V , where σ is
the nontrivial automorphism of K/F .
The form h yields a K-linear map σV → V ∨, v 7→ h(v,−), where V ∨ is the K-vector

space dual to V and the vector space σV is obtained from V via the base change by σ; h
is called non-degenerate if the map σV → V ∨ is an isomorphism. Below we assume that
this is the case.

The unitary group U(h), defined as in [10, Example 29.19], is an affine algebraic group
over F . Its group of F -points U(h)(F ) consists of the automorphisms of the vector space
V (over K) preserving h. The isomorphism classes of U(h)-torsors over F correspond
bijectively to the isomorphism classes of all non-degenerate hermitian forms on V , [10,
Example 29.19].

Date: July 31, 2020.
Key words and phrases. Algebraic groups; unitary groups; torsors; hermitian forms; classifying spaces;

Chow groups. Mathematical Subject Classification (2010): 20G15; 14C25.
The work of the first author has been supported by a Discovery Grant from the National Science

and Engineering Research Council of Canada and accomplished during his stay at the Universitéit vu
Lëtzebuerg. The second author has been supported by the NSF grant DMS #1801530.

1



2 NIKITA A. KARPENKO AND ALEXANDER S. MERKURJEV

The group U(h) is a closed subgroup of the Weil transfer RGL(V ) = RK/F GL(V ) of
the general linear group of V . (See Section 2 for general references on Weil transfers.) We
also note that the algebraic group U(h)K over K, obtained from U(h) by the base change
K/F , is canonically isomorphic to GL(V ).

For any affine algebraic group G over a field F , the Chow ring CH(BG) of the classifying
space BG of G has been defined in [17]. Among the split reductive groups G, the ring
CH(BG) is computed for any special G, i.e., for G possessing no non-trivial G-torsors over
field extensions of F (see [3]). In particular, CH(BGL(V )) for the general linear group
is computed: as shown (already in [17]), it turns out to be the polynomial ring over the
integers Z in the Chern classes c1, . . . , cn of the tautological representation of GL(V ).
For the orthogonal group O(q) of a non-degenerate quadratic form q, the Chow ring

CH(BO(q)) is computed in [17] as well (see also [13] and [12]),1 making the orthogonal
group O(q) a rare example of a non-special group for which the Chow ring of its classifying
space is understood.
However the ring CH(BG) for the unitary group G = U(h) seems not to be even

discussed in the literature.2

In the present paper, this gap is being filled. Our main result is the following theorem.
To state it, we consider the norm homomorphism

N : Z[c1, . . . , cn] = CH(BGL(V ))→ CH(BG),

given by the extension K/F . Note that N is a homomorphism of additive groups of the
rings, but its image is an ideal so that its cokernel is a ring. The same situation occurs
when we restrict to the subrings given by the sum of the even homogeneous components:

N : Z[c1, . . . , cn]even → CH(BG)even.

Since RGL(V ) is a closed subgroup of GL(RV ), where RV is V viewed as the vector
space over F , we have a (2n-dimensional) representation G ↪→ GL(RV ) of G that we call
tautological and write di ∈ CHi(BG) for its ith Chern class.

For any odd m = 2i+ 1 ≥ 1, we define an element

em := c0cm + c1cm−1 + · · ·+ cici+1 ∈ F2[c1, . . . , cn]
odd,

where c0 = 1 and F2 := Z/2Z. The superscript (−)odd stands for the sum of odd degree
homogeneous components of the corresponding graded ring (the degree of ci is defined to
be i). Since ci = 0 for i > n, we have em = 0 for m > 2n − 1. Let E ⊂ F2[c1, . . . , cn]

odd

be the subgroup, generated by all ejc
2, where j ≥ 1 is odd and c ∈ F2[c1, . . . , cn] is any

monomial.

Theorem 1.1. (1) The group CHeven(BG) is free of torsion. The map

N : Z[c1, . . . , cn]even → CHeven(BG)

is injective and its cokernel is the polynomial ring over F2 in the even Chern classes
d2, d4, . . . , d2n.

1For characteristic 2 see [9, Appendix B]. Note that the answer in characteristic 2 differs from the one
in other characteristics.

2Unfortunately, the Chow ring with coefficients Z/2Z of the Nisnevich classifying space of U(h), com-
puted in [16] (for split h and in characteristic different from 2), is only a distant relative of our CH(BU(h)).
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(2) The group CHodd(BG) is 2-torsion. The map

N ′ : F2[c1, . . . , cn]
odd → CHodd(BG),

induced by N : Z[c1, . . . , cn]odd → CHodd(BG), is surjective and E is its kernel.

The tautological representation of the group G factors through the symplectic group of
certain non-degenerate alternating bilinear form on RV . By this reason, dm = 0 for all
odd m ≥ 1 in any characteristic (Proposition 6.6).
In order to verify that there are no further relations between the elements of CH(BG),

we consider their images under the ring homomorphism CH(BG) → CH(BT ) for the
torus T ⊂ G, given by a diagonalization of h. The ring CH(BT ) is easy to compute
(Lemma 6.2) and the homomorphism turns out to be injective (Theorem 7.6).

As an intermediate step, the Chow ring CH(RGL(V )) of the classifying space of the
Weil transfer of the general linear group (this Weil transfer is a special quasi-split non-split
reductive algebraic group) is computed on the way (see Propositions 4.1 and 4.3).

2. Approximations of Weil transfers

Let K/F be a finite separable extension of fields. We write R = RK/F for the Weil
transfer with respect to it (see [1, §7.6], [15, §4], [5, §1] for Weil transfer of varieties, [11,
§2i] for Weil transfer of algebraic groups). Note that for any (quasi-)projective variety X
over K, its Weil transfer RX exists (see [15, Corollary 4.8.1]) and is a (quasi-)projective
F -variety.

For an arbitrary affine algebraic group G over the field K and an integer l ≥ 1, let us
consider a quasi-projective l-approximation U/G of the classifying space BG, see [9]. Thus
U is an open G-invariant subset in a (finite dimensional) vector space V with a linear
G-action such that codimV (V \U) is at least l and U is a G-torsor over a quasi-projective
K-variety U/G. As shown in [17] (see also [9]), a quasi-projective l-approximation exists
for any G and any l.
Recall that a morphism of (right) G-varieties X → Y over K with the trivial G-action

on Y is called a G-torsor if it is faithfully flat and the induced morphismX×G→ X×Y X,
(x, g) 7→ (xg, x) is an isomorphism. So, applying the Weil transfer to the morphism of
the K-varieties U → U/G, we get a morphism of F -varieties RU → R(U/G) which is a
torsor under the affine algebraic group RG over F .
Moreover, RU is an open RG-invariant subset of the vector space RV over F (the

space RV is endowed with the linear action of RG given by the action of G on V ). Note
that the Weil transfer RV of the vector space V over K is V itself considered as a vector
space over F .
Finally, the codimension of RV \ RU in RV coincides with codimV (V \ U). Indeed,

over K the variety RV and its open piece RU become the product σV × V and its open
subset σU × U , where given a K-variety X, we write σX for the K-variety obtained by
the base change via the non-trivial automorphism σ of K/F .
We have proved

Lemma 2.1. If U/G is a quasi-projective l-approximation of BG, then R(U/G) =
RU/RG is a quasi-projective l-approximation of BRG. �
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3. Weil transfers of grassmannians

We fix a separable quadratic field extension K/F and write R = RK/F for the Weil
transfer with respect to it. Let X be the grassmannian of the subspaces of a fixed
dimension in a fixed (finite dimensional) vector space V over K.
The K-variety (RX)K is identified with the product σX ×X. Thus σX is the “same”

as X grassmannian given (in place of V ) by the vector space σV obtained from V by the
base change via σ. The isomorphism of the Chow rings CH(σX) ≃ CH(X) given by the
isomorphism of the K-varieties σX ≃ X given by any isomorphism of the vector spaces
σV ≃ V does not depend on the latter (see, e.g., [7, Corollary 4.2]). Therefore the rings
CH(σX) and CH(X) are canonically isomorphic.

Since the varietyX is (absolutely) cellular (in the sense of [4, §66]), the external product
homomorphism CH(σX)⊗CH(X)→ CH(σX ×X) is an isomorphism. It follows that the
Chow ring CH((RX)K) is identified with the tensor square CH(X)⊗ CH(X).

The non-trivial automorphism σ ofK/F induces an involution on the ring CH((RX)K),
which we will denote by the same letter σ. Under the identification CH((RX)K) =
CH(X)⊗CH(X), the involution σ : CH(X)⊗CH(X)→ CH(X)⊗CH(X) is given by the
switch of the factors.

We work with the category of Chow motives defined as in [4, §64]. By [2] (see also [6]),
the Chow motive of the projective F -variety RX decomposes into a finite direct sum,
where each summand is a shift of the motive of SpecF or of the motive of SpecK (where
SpecK is considered as an F -variety). This proves

Lemma 3.1. The ring CH((RX)) is identified with the subring (CH(X) ⊗ CH(X))σ of
σ-invariant elements in CH(X)⊗CH(X), where σ : CH(X)⊗CH(X)→ CH(X)⊗CH(X)
is the switch involution. �
Remark 3.2. Lemma 3.1 and its proof generalize to an arbitrary étale F -algebra K (in
place of the quadratic separable field extension K/F ) as follows (cf. [7, §3] treating the
case where X is a projective space). Let us fix a separable closure F̄ of the field F ,
write Γ for the Galois group of F̄ /F , and write S for the finite Γ-set of all F -algebra
homomorphisms K → F̄ . The ring CH((RX)F̄ ) is identified with the tensor product⊗

S CH(X) of copies of CH(X) numbered by S, the change of field homomorphism

CH(RX)→ CH((RX)F̄ ) =
⊗
S

CH(X)

is injective, and its image is the subring of Γ-invariant elements in the product, where Γ
acts by the permutations of the factors.

4. Weil transfer of the general linear group

We fix a separable quadratic field extension K/F , write R = RK/F for Weil transfer
with respect to it, and consider the group H = RGL(V ), where V is a vector space
over K of a finite dimension n. In this section, we investigate the Chow ring CH(BH)
of the classifying space BH of H. Recall that for any algebraic group G and any i, the
ith homogeneous component CHi(BG) of the graded ring CH(BG) is defined in [17] as
the ith Chow group CHi(U/G) of an l-approximation U/G of BG, introduced in §2, with
l > i.
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The ring CH(BGL(V )) is computed in [17] (see also [9, Example 4.1]) using approx-
imations of BGL(V ) by the grassmannians of n-dimensional subspaces in vector spaces
of higher dimensions. The answer is: CH(BGL(V )) is the polynomial ring Z[c1, . . . , cn],
where c1, . . . , cn are the Chern classes of the tautological (also called standard) represen-
tation of GL(V ).
It follows by Lemma 2.1 that CH(BH) can be computed using Weil transfers of the

grassmannians. By Lemma 3.1, we get

Proposition 4.1. The change of field homomorphism

CH(BH)→ CH(BHK) = CH(BGL(V ))⊗ CH(BGL(V ))

is injective and identifies CH(BH) with the subring (CH(BGL(V ))⊗ CH(BGL(V )))σ of
σ-invariant elements, where σ is the switch involution on the tensor product. In particular,
the group CH(BH) is free of torsion. �

Remark 4.2. Proposition 4.1 and its proof generalize to an arbitrary étale F -algebra K
(in place of the quadratic separable field extension K/F ) as follows (cf. [7, §3] treating
the case of n = 1). In notation of Remark 3.2, for H = RGLn, the ring CH(BHF̄ )
is identified with the tensor product

⊗
S CH(BGLn) of copies of the ring CH(BGLn)

numbered by S, the change of field homomorphism CH(BH) → CH(BHF̄ ) is injective,
and its image is the subring of Γ-invariant elements in the tensor product, where Γ acts
by the permutations of the factors.

Returning to the case of a separable quadratic field extension K/F and the group H =
RGL(V ), the subring of σ-invariant elements from Proposition 4.1 is better understood
as follows. Let N be the norm map CH(BHK) → CH(BH). Its image N CH(BHK) is
an ideal of the ring CH(BH) containing the ideal 2CH(BH). Under the identification of
Proposition 4.1, the norm ideal N CH(BHK) is the image of the self-map id + σ of the
tensor product

CH(BGL(V ))⊗ CH(BGL(V )) = Z[c′1, . . . , c′n, c1, . . . , cn].

By [7, Lemma 2.1], the quotient

CH(BH)/N CH(BHK)

is the polynomial ring over F2 = Z/2Z in the monomials c′1c1, . . . , c
′
ncn. Finally, for any

i = 1, . . . , n, the 2ith Chern class d2i of the tautological representation of H equals

c′0c2i + c′1c2i−1 + · · ·+ c′ici + · · ·+ c′2i−1c1 + c′2ic0 =

N(c′0c2i + c′1c2i−1 + · · ·+ c′i−1ci+1) + c′ici

and therefore is congruent modulo N CH(BHK) to the product c′ici. We proved

Proposition 4.3. Let K/F be a separable quadratic extension of fields, V a finite-
dimensional K-vector space, H the group RGL(V ), and N the norm map CH(BHK)→
CH(BH). The cokernel of N is a polynomial ring over F2 in the even Chern classes of
the tautological representation H ↪→ GL(RV ). �
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5. The unitary group

Let K/F be a separable quadratic field extension, V a vector space over K of a finite
dimension n ≥ 1, and h a non-degenerate hermitian form on V . Let G be the unitary
group U(h). It is a closed subgroup of RGL(V ) and the quotient RGL(V )/G is the
F -variety of all non-degenerate hermitian forms on V , which is an open subset of the
affine space (over F ) of all (not necessarily non-degenerate) hermitian forms on V . This
is similar to the situation with the orthogonal group described in [17, §15] (see also [8,
§3]). Using [17, Proposition 14.2] (see also [8, Proposition 5.1])), we get the following
result:

Proposition 5.1. The ring homomorphism CH(BRGL(V ))→ CH(BG), induced by the
embedding G ↪→RGL(V ), is surjective. �

We are now in a position to prove Theorem 1.1.

Beginning of Proof of Theorem 1.1. The cartesian square

GK = GL(V ) −−−→ (RGL(V ))K = GL(V ∨)×GL(V )y y
G −−−→ RGL(V )

(the horizontal arrows are the natural closed embeddings, the top one maps f to the pair
((f∨)−1, f)) yields a similar cartesian square of l-approximations of the classifying spaces
(for any l ≥ 1) and therefore a commutative square

CH(BGL(V )) ←−−− CH(B(GL(V ∨)×GL(V )))yN

yN

CH(BG) ←−−− CH(BRGL(V )).

Under the identifications CH(BGL(V )) = Z[c1, . . . , cn] and

CH(B(GL(V ∨)×GL(V ))) = CH(BGL(V ∨))⊗ CH(BGL(V )) =

Z[c′1, . . . , c′n, c1, . . . , cn],

the top arrow of the square is the ring homomorphism mapping c′i to (−1)ici and mapping
ci to ci.
By Proposition 5.1, the bottom arrow in the square is surjective so that the induced

ring homomorphism

CH(BRGL(V ))/N CH(BGL(V ∨)×BGL(V ))→ CH(BG)/N CH(BGL(V ))

is surjective as well. It follows by Proposition 4.3 that the quotient

CH(BG)/N CH(BGL(V ))

is generated by the even Chern classes of the tautological representation. In particular,
the norm map is surjective in odd degrees.
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Replacing the norm maps by the change of field homomorphisms in the last square, we
get another commutative square

Z[c1, . . . , cn] ←−−− Z[c′1, . . . , c′n, c1, . . . , cn]xres

xres

CH(BG) ←−−− CH(BRGL(V )).

Using it, we see that the composition res ◦N : Z[c1, . . . , cn]→ Z[c1, . . . , cn] coincides with
id + σ, where σ is the involution of the ring Z[c1, . . . , cn] mapping ci to (−1)ici for any i.
Therefore this composition is 0 in odd degrees and is injective (being the multiplication by
2) in even degrees. Since the compositionN◦res in the opposite order is also multiplication
by 2, it follows that 2CHodd(BG) = 0.

It also follows that in even degrees the homomorphism res is injective on the norm
ideal.

The norm ideal vanishes under the composition

CH(BG)
res−−−→ CH(B(GL(V ))) −−−→ CH(BGL(V ))/2CH(BGL(V )).

The even Chern classes d2, . . . , d2n are mapped under this composition to the classes
of the squares c21, . . . , c

2
n which are algebraically independent (over F2). Therefore the

classes d2, . . . , d2n, viewed in the cokernel of the norm map, are algebraically independent
as well. Since we already know that res is injective on NZ[c1, . . . , cn]even, it follows that it
is injective on the entire ring CH(BG)even. In particular, the additive group of this ring
is torsion free.
We proved Theorem 1.1 almost completely. The only missing part is the description of

KerN ′ and will be done in the end of §7. �
Remark 5.2. For given K/F and V , the ring CH(BG) does not depend on h. A general
(and an a priori) explanation of this phenomenon is given in [12, Remark 4.2].
Of course, with Theorem 1.1 (as well as with Theorem 7.6) we also see that the ring

CH(BG) does not depend on the fields K and F and, in particular, on their characteristic.

6. Torsion

Theorem 1.1 in particular claims that the subgroup CH(BG)tors of the elements of finite
order has exponent 2 and coincides with the image of Z[c1, . . . , cn]odd under the norm map
N . Here comes our first example of nonzero torsion:

Proposition 6.1. For any i ∈ {2, . . . , n}, the element N(ci) ∈ CH(BG) is nonzero.

Proof. For even i, the order of the element N(ci) is infinite, because

res(N(ci)) = 2ci.

Our main case of interest is the case of odd i: here res(N(ci)) = 0 implying that 2N(ci) =
0. However the proof of N(ci) ̸= 0 we give below does not depend on the parity of i.

Choosing a diagonalization of h (which exists in any characteristic, see [14, Theorem
7.6.3]), we get an embedding T ↪→ G of the direct product T of n copies of the group
U1 – the unitary group of a 1-dimensional hermitian form. (The group U1 can be also
viewed as the norm 1 torus R(1)(Gm) of the separable quadratic extension K/F , defined
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as the kernel of the norm map RGm → Gm.) Note that T is a maximal torus of the
reductive group G. We will see later on (Theorem 7.6) that the induced homomorphism
CH(BG)→ CH(BT ) injective.

Lemma 6.2. The embedding T ↪→RG×n
m yields a surjective ring homomorphism

CH(BRG×n
m )→ CH(BT ).

Its kernel is generated by x′
1 + x1, . . . , x

′
n + xn. Here we identify CH(BRG×n

m ) with the
subring of the polynomial ring

Z[x′
1, . . . , x

′
n, x1, . . . , xn] = CH(BG×2n

m ) = CH(B(RG×n
m )K)

consisting of the polynomials invariant under the involution σ exchanging x′
i with xi for

every i (cf. §4, see [7, §3]).
Proof. Since (RG×n

m )/T = G×n
m , we are in the situation of [8, Proposition 4.1]. �

Example 6.3. For n = 1, we have G = T . It follows that the ring CH(BG) is the
polynomial ring over Z in the second Chern class of the tautological (2-dimensional)
representation of G. The change of field homomorphism

CH(BG)→ CH(BGm)

is injective. (The first Chern class of the representation vanishes.)

We are now in a position to prove that N(cn) ̸= 0 (provided that n ≥ 2). The image of
N(cn) in CH(BT ) coincides with the image of the polynomial x′

1 . . . x
′
n + x1 . . . xn under

the homomorphism of Lemma 6.2. So, it suffices to show that this polynomial cannot be
written in the form

(6.4) x′
1 . . . x

′
n + x1 . . . xn = (x′

1 + x1)f1 + · · ·+ (x′
n + xn)fn

with σ-invariant f1, . . . , fn ∈ Z[x′
1, . . . , x

′
n, x1, . . . , xn]. Recall that the subring of σ-

invariant polynomials is generated by the products x′
1x1, . . . , x

′
nxn modulo the norm ideal,

where the norm ideal here is the image of the norm homomorphism

Z[x′
1, . . . , x

′
n, x1, . . . , xn] = CH(B(RG×n

m )K)→
CH(BRG×n

m ) = Z[x′
1, . . . , x

′
n, x1, . . . , xn]

σ

mapping f ∈ Z[x′
1, . . . , x

′
n, x1, . . . , xn] to f + σ(f).

Setting in (6.4) x′
i = xi for all i and dividing by 2 we get the relation

x1 . . . xn = x1g1 + · · ·+ xngn ∈ Z[x1, . . . , xn].

Because of the above description of σ-invariant elements, the polynomials g1, . . . , gn
reduced modulo 2 become polynomials in the squares of the variables. Switching to
F2[x1, . . . , xn] and taking the derivative in x1, we therefore get the relation

x2 . . . xn = g1 ∈ F2[x1, . . . , xn]

which cannot hold for n ≥ 2.
We proved that N(cn) ̸= 0 (for n ≥ 2). To prove that N(ci) ̸= 0 for any 2 ≤ i ≤ n, we

simply choose a non-degenerate i-dimensional subform h′ of h and apply the homomor-
phism CH(BG)→ CH(BG′) given by the embedding G′ := U(h′) ↪→ U(h). The image of
N(ci) ∈ CH(BG) is the nonzero N(ci) ∈ CH(BG′). �



THE CHOW RING OF THE CLASSIFYING SPACE OF THE UNITARY GROUP 9

Recall that for any m ≥ 0, we write dm ∈ CHm(BG) for the mth Chern class of the
tautological representation G ↪→ GL(RV ).

Lemma 6.5. For any odd m = 2i+ 1 ≥ 1 we have

dm = d2i+1 = N(c2i+1 + c1c2i + · · ·+ cici+1).

Proof. Recall the commutative square

Z[c1, . . . , cn] ←−−− Z[c′1, . . . , c′n, c1, . . . , cn]yN

yN

CH(BG) ←−−− CH(BRGL(V )).

The element dm is the image of

N(c′2i+1 + c′2ic1 + · · ·+ c′ici+1).

Since the upper arrow maps c′j to (−1)jcj for any j ≥ 1, we get that

dm = N(−c2i+1 + c2ic1 + · · ·+ (−1)icici+1).

Finally, since the norm of every summand is killed by 2, the signs do not matter. �

Proposition 6.6. dm = 0 for any odd m ≥ 1.

Proof. Let us consider the trace homomorphism (of the additive groups) Tr: K → F . Let
a ∈ K be a nonzero element of trace 0. The bilinear form

b : (u, v) 7→ Tr(ah(u, v))

on RV is then alternating and non-degenerate. The group G embeds into the symplectic
group Sp(b) and the tautological representation of G factors through this embedding. By
[17, §15] (see also [12]), all odd Chern classes of the tautological representation of Sp(b)
vanish, giving the desired result. �

Remark 6.7. Note that the element a ∈ K from the proof of Proposition 6.6, is unique up
to multiplication by a nonzero element of F so that the described embedding G ↪→ Sp(b) is
canonical. In characteristic 2, one can take a = 1 in which case b becomes the (symmetric)
bilinear form associated with the quadratic form q on RV given by h via the formula
q(v) = h(v, v). (The values of q, living a priori in K, are σ-invariant and therefore live in
F .) In characteristic not 2, a is a generator of K/F with a2 ∈ F .

Example 6.8. For n = 2, the group CH(BG) is torsion free. Indeed, by projection
formula, since c21 and c22 are in the image of res, the ideal of the elements of finite order is
generated by N(c1) = d1 = 0 and N(c1c2) = d3 = 0.

Since for n = 1 the group CH(BG) is also torsion free (cf. Example 6.3) whereas for
any n ≥ 3 it is not (by Proposition 6.1), we have determined the exact value of n starting
from which the non-trivial torsion appears.
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7. Norm kernel

In order to better understand the norm kernel for the unitary group G = U(h), we
study the norm kernel for the torus T of Lemma 6.2.

We have two commutative squares with the same vertexes, the same upper arrows and
the same lower arrows:

CH(BTK) ←−−− CH(B(RG×n
m )K)yN

yN

CH(BT ) ←−−− CH(B(RG×n
m ))

CH(BTK) ←−−− CH(B(RG×n
m )K)xres

xres

CH(BT ) ←−−− CH(B(RG×n
m )).

Both res are ring homomorphisms, the right one is injective. Both (the upper and the
lower) horizontal arrows are surjective ring homomorphisms.

Let A be the polynomial ring Z[x′
1, . . . , x

′
n, x1, . . . , xn] (which we view as the upper

right vertex of the squares) and σ the involution on A satisfying σ(x′
i) = xi for every i

(viewed as the involution of the upper right vertex given by the non-trivial automorphism
of K/F ). The subgroup Aσ ⊂ A of the σ-invariant elements in A is generated by N(A),
where

N := idA + σ : A→ Aσ

is the norm (group) homomorphism, and the monomials (x′
1x1)

a1 . . . (x′
nxn)

an with all
a1 ≥ 0, . . . , an ≥ 0. (By Lemma 6.2, Aσ is the subring of A corresponding to the lower
right vertex.) Let C be the polynomial ring Z[x1, . . . , xn] (viewed as the upper left vertex
of the squares). Consider the ideal J ⊂ Aσ generated by x′

i + xi for all i. By Lemma
6.2, this ideal is the kernel of the lower arrow of the squares. We want to understand
the torsion subgroup in the factor ring B = Aσ/J (which – again by Lemma 6.2 – is the
lower left vertex CH(BT )). Note that the kernel of the upper arrow of the squares is
also the ideal (now of the ring A instead of Aσ) generated by x′

i + xi for all i. The norm
homomorphism N : C → B, corresponding to N : CH(BTK)→ CH(BT ), can be defined
directly in terms of N : A→ Aσ using the commutative square.

We write Btors for the torsion subgroup of B. Besides, as usual, we write Bodd and Codd

for the sum of the odd degree components of the graded rings B and C.

Lemma 7.1. The kernel of N : C → B is contained in Codd. The group Btors is 2-torsion
and coincides with Bodd and with N(Codd).

Proof. The ring homomorphism res : B → C, induced by the embedding Aσ ↪→ A, takes
the class of x′

i to −xi and takes the class of xi to xi for every i. Since C is free of torsion
and N ◦ res is multiplication by 2, the torsion subgroup of B is 2-torsion.

The composition res ◦N coincides with idC +σ, where the ring homomorphism σ : C →
C is induced by the ring homomorphism σ : A→ A and maps xi to (−1)ixi for any i. So,
res ◦N vanishes on the odd degree homogeneous components and is injective (multipli-
cation by 2) on the even degree components. In particular, the kernel of N is contained
in Codd. Since Aσ is additively generated by N(A) and monomials in x1y1, . . . , xnyn, the
additive group of B is generated by N(g) and g · σ(g) for all g ∈ C. This implies that
Bodd = N(Codd). This also implies that res is trivial in odd degrees (hence Btors ⊃ Bodd)
and that res is injective in even degrees (hence B has no torsion in even degrees and so
Btors = Bodd). �
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A monomial xa1
1 . . . xan

n of odd degree is called an almost square, if all ai but one are
even. We are going to describe the kernel of the norm homomorphism N : C → B. By
Lemma 7.1, this kernel is concentrated in odd degrees.

Proposition 7.2. Let f ∈ Codd. Then N(f) = 0 if and only if the reduction f̄ ∈
F2[x1, . . . , xn] of f modulo 2 is a sum of almost square monomials.

Proof. Suppose N(f) = 0 and consider f as a polynomial in A. Then N(f) ∈ J , i.e.,

(7.3) N(f) =
n∑

i=1

(x′
i + xi)gi, where gi ∈ Aσ.

Note that if g ∈ Aσ and we plug in x′
i = xi in g (for all i), we get a monomial in C that is

contained in 2C+ a sum of square monomials. (A square monomial is a monomial that
is the square of a monomial.) So, plugging in x′

i = xi for all i in (7.3), we get

2f ∈
n∑

i=1

2xi(2C + a sum of square monomials).

Dividing by 2 and reducing modulo 2 we see that f̄ is a sum of almost square monomials.
Conversely, for f ∈ Codd, suppose f̄ is a sum of almost square monomials. We will

show that N(f) = 0. If f ∈ 2C, i.e., f = 2g for some g ∈ Codd, then, since N(g) is a
2-torsion element in B by Lemma 7.1, we have N(f) = 2N(g) = 0.
It remains to consider the case when f is an almost square monomial. We have f = xi·x2

for some i and monomial x. Since x2
j is the image of the class of −x′

jxj under res : B → C,

the monomial x2 is in the image of res. The projection formula relating N and res shows
that N(f) is a multiple of N(xi) = 0. �

We identify the polynomial ring Z[c1, . . . , cn] with the subring of symmetric polynomials
in the polynomial ring Z[x1, . . . , xn] by viewing ci as the ith elementary symmetric function
in x1, . . . , xn. We think of Z[c1, . . . , cn] as of CH(BGL(V )) and we think of Z[x1, . . . , xn]
as of CH(BG×n

m ). We have the following commutative diagram:

Z[c1, . . . , cn]odd

Nc

��

// Z[x1, . . . , xn]
odd

Nx

��

CHodd(BG) // CHodd(BT ),

where we added the indexes in the notation Nc and Nx for the norm maps in order to
distinguish between them. We would like to determine the kernel of Nc. By Proposition
7.2, we know the kernel of Nx: it is (additively) generated by 2Z[x1, . . . , xn]

odd and the
almost square monomials. Since Ker(Nc) also contains 2Z[c1, . . . , cn]odd, we may switch
to the coefficients F2 and work with the commutative diagram

F2[c1, . . . , cn]
odd

Nc

��

// F2[x1, . . . , xn]
odd

Nx

��

CHodd(BG) // CHodd(BT ).
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So, the kernel of the new Nx is generated by the almost square monomials. Let D ⊂
F2[c1, . . . , cn]

odd be the inverse image of Ker(Nx). Certainly, Ker(Nc) ⊂ D. First we are
going to construct generators for D and then we will see if each of these generators is in
Ker(Nc).

For every odd m = 2i+ 1 ≥ 1, let us consider the element

em := cm + c1c2i + . . .+ cici+1 ∈ F2[c1, . . . , cn]
odd

introduced in §1. (In particular, e1 = c1.) Note that Nc(em) = dm ∈ CHm(BG) by
Lemma 6.5.
By Proposition 6.6 and projection formula (used as in Remark 6.8), the group D con-

tains the elements em · c2, where c is a monomial of the polynomial ring F2[c1, . . . , cn] and
m ≥ 1 is odd.

Proposition 7.4. The group D is generated by the elements em · c2 with odd m ≥ 1.

Proof. Let D′ be the image of D in F2[x1, . . . , xn]
odd. Thus, D′ consists of all symmetric

polynomials whose monomials are almost squares. The natural map D → D′ is an
isomorphism. We want to find bases for D and D′. For any odd m ≥ 1, we write Dm for
the degree m component of D and we write D′

m for the degree m component of D′.
A basis for D′

m consists of the symmetrizations of the monomials xa1
1 xa2

2 xa3
3 . . . xan

n of
degree m, where a1 is odd and a2 ≤ a3 ≤ . . . is a sequence of even numbers. Note
that these symmetrizations are indeed linearly independent since they share no common
monomial. For a given odd a1 the number of such basis vectors is l(m−a1

2
), where l(k) is

the number of all partitions k = b2+ . . .+bn with 0 ≤ b2 ≤ . . . ≤ bn. (These are partitions
of a length ≤ n− 1.) Thus,

dim(D′
m) = l

(
m−1
2

)
+ l

(
m−3
2

)
+ · · ·+ l(0).

Let us compute the number of polynomials ej · c2 in Dm, where the index j here runs
over all odd integers from 1 to (including) 2n− 1 (We exclude other j because ej = 0 for
j ≥ 2n + 1.) Note that these polynomials are linearly independent since they share no
common monomial. The pairs (j, a) with a ≥ 0 are in bijection (j, a) 7→ j + 2na with all
odd numbers ≥ 1. Therefore the number of polynomials ej · c2 in Dm is

s
(
m−1
2

)
+ s

(
m−3
2

)
+ · · ·+ s(0),

where s(k) is the number of monomials in c1, . . . , cn−1 of degree k. (We use the integer a
as exponent of cn in the monomial c.) It is well known (see Lemma 7.5) that s(k) = l(k).
Therefore the polynomials ej · c2 form a basis for Dm. �
Lemma 7.5. For any k ≥ 0 and any n ≥ 1, the numbers s(k) and l(k), defined in the
proof of Proposition 7.4, coincide.

Proof. A monomial ca11 . . . c
an−1

n−1 of degree k =
∑n−1

i=1 iai determines a partition of k with
ai summands equal to i for i = 1, . . . , n − 1. The conjugate partition of k has length at
most n − 1. The resulting map of the set of degree k monomials in c1, . . . , cn−1 into the
set of partitions of length ≤ n− 1 of k is bijective. �
End of Proof of Theorem 1.1. Recall that the only missing part of Theorem 1.1 after the
partial proof given in §5 is the equality KerNc = D. Since KerNc ⊂ D, we only need
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to check that the generators em · c2 of D, given in Proposition 7.4, are in KerNc. By
Proposition 6.6, the element em is in KerNc. Since the element c2 is in the image of
res : CH(BG) → Z[c1, . . . , cn], the inclusion em · c2 ∈ KerNc follows from projection
formula. �

It is easy to see that the cokernel of the norm map Z[x1, . . . , xn] → CH(BT ) can be
viewed as the polynomial ring over F2 in the squares of the variables. Similarly the
cokernel of the norm map Z[c1, . . . , cn]→ CH(BG) can be viewed as the polynomial ring
over F2 in the squares of c1, . . . , cn. The ring homomorphism CH(BG)→ CH(BT ) induces
the ring homomorphism of the cokernels, mapping c2i to the ith elementary symmetric
polynomial in x2

1, . . . , x
2
n. In particular, the homomorphism of the cokernels is injective.

From the commutative square

Z[c1, . . . , cn]even −−−→ Z[x1, . . . , xn]
eveny y

CHeven(BG) −−−→ CHeven(BT )

with injective upper and (both) side maps, we see that the lower map is injective on the
norm ideal.

Finally, we have just seen that the map CHodd(BG)→ CHodd(BT ) is injective.
Summarizing, we see that CH(BG) can be identified with a subring of

CH(BT ) = Z[x′
1, . . . , x

′
n, x1, . . . , xn]

σ/J :

Theorem 7.6. The ring homomorphism CH(BG) → CH(BT ) is injective. Moreover,
CH(BG) is naturally isomorphic to the image of the homomorphism

Z[c′1, . . . , c′n, c1, . . . , cn]σ → Z[x′
1, . . . , x

′
n, x1, . . . , xn]

σ/J

taking c′i (respectively, ci) to the class of the ith elementary symmetric function in x′
1, . . . , x

′
n

(respectively, x1, . . . , xn). �
Remark 7.7. Using Theorem 1.1 (describing the additive structure of CH(BG)) and
projection formula, it is also easy to understand the multiplicative structure of CH(BG).
Indeed,

N(c) · d2m = N(c · res(d2m))
for any c ∈ Z[c1, . . . , cn] and any m ≥ 0, where

res(d2m) = c0c2m − c1c2m−1 + · · ·+ (−1)mc2m + · · · − c2m−1c1 + c2mc0.

Similarly, one shows for any monomials a, b ∈ Z[c1, . . . , cn] that

N(a) ·N(b) =

{
2N(ab), if a and b are of even degrees;

0, otherwise.
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