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1. Introduction

Cohomological invariants, introduced by J.-P. Serre in [10], allow us to study
algebraic objects by means of Galois cohomology groups.

In this paper we study cohomological invariants of central simple algebras
over field extensions of a base field F . The tautological degree 2 invariant
takes a cental simple algebra A over a field K to its class [A] in the Brauer
group Br(K) = H2(K,Q/Z(1)). Using cup-products, one can construct in-
variants of higher degree: if a ∈ F×, then the cup-product (a) ∪ [A] yields a
degree 3 invariant of A in H3(K,Q/Z(2)). We call such degree 3 invariants
decomposable. Are there indecomposable degree 3 invariants of central simple
algebras?

We also study cohomological invariants of tuples of central simple algebras
with linear relations in the Brauer group. For example, consider k-tuples of
quaternion algebras Q = (Q1, Q2, . . . , Qk) over a field K such that

[Q1] + [Q2] + · · ·+ [Qk] = 0

in Br(K). It turns out that if k ≥ 3, then there is a nontrivial degree 3 and
exponent 2 indecomposable invariant of such tuples defined as follows. Let φj

be the reduced norm quadratic form of Qj. The sum φ of the forms φj in the
Witt group W (K) of K belongs to the cube of the fundamental ideal of W (K).
The Arason invariant of φ in H3(K,Q/Z(2)) yields a nontrivial degree 3 and
exponent 2 nontrivial invariant Ark of k-tuples Q (see Example 7.2).

Let n1, n2, . . . , nk be a sequence of positive integers and D ⊂
⨿k

j=1(Z/njZ) a
subgroup. For a field extension K/F , let CSAD(K) be the set of isomorphism
classes of k-tuples of central simple K-algebras A = (A1, A2, . . . , Ak) with
deg(Aj) = nj such that

∑
j dj[Aj] = 0 in the Brauer group Br(K) for all

tuples d = (dj + njZ) ∈ D. Thus, D is the group of relations between the
classes of the algebras Aj.

Let d ∈ D be a relation such that 2dj is divisible by nj for every j, i.e., d
is of exponent 2 in D. For every A ∈ CSAD(K), the class dj[Aj] in Br(K) is
represented by a quaternion algebra Qj. Then the relation d yields a degree
3 nontrivial indecomposable invariant of CSAD(K) taking a tuple A to the
cohomology class Ark(Q). In Theorem 7.1, we prove that every degree 3 in-
decomposable invariant of CSAD is of this form and compute the group of all
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invariants. In particular, we show that there are no nontrivial indecomposable
invariants of k-tuples of simple algebras with relations for k ≤ 2 and there are
no nontrivial indecomposable invariants of CSAD of odd exponent.

This result is similar to the one on the invariants of étale algebras: Serre
proved (see [6, Part 1, Chapter VII]) that étale algebras have no cohomological
invariants modulo odd primes, but there are nontrivial invariants of exponent
2 (the Stiefel-Whitney classes of the trace form of the algebra).

We use the following approach to the problem. For every group of relations
D there is a reductive algebraic group Gred such that the set of isomorphism
classes of Gred-torsors over an arbitrary field extension K over F is bijective to
the set CSAD(K). We study degree 3 cohomological invariants of CSAD via
the invariants of Gred using earlier results on degree 3 cohomological invariants
of algebraic groups.

Note that every split semisimple group of type A (i.e., every connected com-
ponent of the Dynkin diagram ofG is An for some n) is embedded to a reductive
group Gred corresponding to some group of relations D. Moreover, the group
of invariants of Gred is identified with the subgroup of reductive invariants
of G (see Section 3). Thus, we study degree three reductive cohomological
invariants of all split semisimple groups of type A.

2. Preliminaries

2.1. Symmetric square and Tor groups. Let A be an abelian group. We
write S2(A) for the symmetric square of A, the factor group of A⊗ A by the
image of 1−σ, where σ : A⊗A → A⊗A is the exchange map, σ(a⊗a′) = a′⊗a.
We write aa′ for the image of a⊗ a′ in S2(A).

The polar homomorphism

polA : S2(A) → A⊗ A

is defined by pol(aa′) = a⊗ a′ + a′ ⊗ a.
Let A and B be two abelian groups. We write A∗B for the group TorZ1 (A,B).

The group (Z/nZ) ∗ (Z/mZ) is cyclic of order gcd(n,m) with a canonical
generator. Write wn for the canonical generator of (Z/nZ) ∗ (Z/nZ). If a ∈ A
and b ∈ B are two elements of exponent n, we write [a, n, b] for the image of
wn under the homomorphism (Z/nZ) ∗ (Z/nZ) → A ∗ B given by the maps
a : Z/nZ → A and b : Z/nZ → B. The elements [a, n, b] generate A ∗ B and
are subject to the following relations (see [5, §62]):

1. [a, n, b] is bi-additive in a and b,

2. [a, nm, b] = [a, n,mb] if na = 0 and nmb = 0.

Let τ : A∗A → A∗A be the exchange map. Write ∆2(A) for the factor group
of A∗A by Ker(1−τ) and Σ2(A) for (A∗A)/ Im(1−τ). If A is a cyclic group, we
have τ = 1 and ∆2(A) = 0. Moreover, ∆2(A⊕B) ≃ ∆2(A)⊕ (A∗B)⊕∆2(B).
It follows that if A is a direct sum of cyclic groups of order n1, n2, . . . , nk,
respectively, then |∆2(A)| =

∏
i<j dij, where dij = gcd(ni, nj).

If A is a cyclic group, we have Σ2(A) = A ∗ A.
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Lemma 2.1. Let a be an element of prime order p in an abelian group A.
Then [a, p, a] /∈ Im(1− τ), i.e., the coset of [a, p, a] in Σ2(A) is not trivial.

Proof. Let A′ be the cyclic subgroup of A of order p generated by a. Choose
a homomorphism f : A → C to a cyclic group C such that f(a) ̸= 0, i.e., the

composition A′ ↪→ A
f−→ C is injective. Then the composition

A′ ∗ A′ = Σ2(A′) → Σ2(A) → Σ2(C) = C ∗ C

is injective since Tor is a left exact functor. As [a, p, a] is a generator of the
cyclic group A′ ∗ A′ of order p, the class of [a, p, a] in Σ2(A) is not trivial. �

An exact sequence of abelian groups

0 → A → B
φ−→ C → 0

(we identify A with a subgroup of B) yields a commutative diagram with the
exact column

0 // ∆2(C)
� _

ρ

��

α // A⊗ C
β // S2(B)/S2(A)

δ
��

// S2(C)

polC
��

// 0

0 // C ∗ C γ //

��

A⊗ C // B ⊗ C // C ⊗ C // 0

Σ2(C)

where ρ = 1 − τ , γ(φ(b), n, c) = nb ⊗ c, α = γ ◦ ρ, β(a ⊗ φ(b)) = ab + S2(A)
and δ is given by the composition (1B ⊗ φ) ◦ polB.

Lemma 2.2. If C is finite and B is a free abelian group of finite rank, then
the two rows of the diagram are exact.

Proof. The lower sequence is exact since B is free. The map α is injective since
so are γ and ρ. The map C ⊗ C → Coker(β) taking φ(b)⊗ φ(b′) to the coset
of bb′ yields an inverse of the map Coker(β) → S2(C), whence the exactness
of the top row in the term S2(B)/S2(A). The top row is a complex that is
acyclic in all terms but possibly A⊗ C.

Choose a Z-basis x1, x2, . . . , xs for B such that n1x1, n2x2, . . . , nsxs is a basis
for A for some positive integers ni. Then xixj with i ≤ j is a basis for
S2(B) and ninjxixj is a basis for S2(A). It follows that |S2(B)/S2(A)| =
(
∏

i ni)
s+1. We also have |∆2(A)| =

∏
i<j dij, where dij = gcd(ni, nj) and

|A ⊗ C| = (
∏

i ni)
s, |S2(C)| = (

∏
i ni) ·

∏
i<j dij. A calculation implies that

|∆2(A)| · |S2(B)/S2(A)| = |A⊗ C| · |S2(C)|. This proves the exactness of the
top row in the term A⊗ C. �

Suppose the conditions of Lemma 2.2 hold and we are given an element
q ∈ S2(B) and we would like to know the conditions under which q ∈ S2(A).
Clearly, the image of q in S2(C) should be trivial and δ(q) should be zero.
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If these two conditions hold, a diagram chase yields a unique element ε(q) in
Σ2(C) such that q ∈ S2(A) if and only if ε(q) = 0.

Example 2.3. Let B = Zn/Z with Z embedded diagonally into Zn. Write
x1, . . . , xn for the canonical generators for B, so that x1+· · ·+xn = 0. Consider
the quadratic form q = −

∑
i<j xixj ∈ S2(B). Note that 2q =

∑
i x

2
i . Let

A ⊂ B be a subgroup containing xi − xj for all i and j and set C = B/A.
Write x̄ for the common image of the xi’s in C, so C is a cyclic group of
exponent n generated by x̄. Since

∑
i(xi − x1)

2 = 2q + nx2
1 and xi − x1 ∈ A,

we have 2q = −nx2
1 in S2(B)/S2(A). Therefore, β(nx1 ⊗ x̄) = nx2

1 = −2q and
nx1 ⊗ x̄ = γ[x̄, n, x̄]. Thus, ε(2q) = −[x̄, n, x̄] in Σ2(C).

Let A be an additively written abelian group. We write elements of the
group ring Z[A] in the exponential form: u =

∑
i rie

ai for ri ∈ Z and ai ∈ A.
The rank rank(u) of u is

∑
i ri.

2.2. Chern classes. Let A be a lattice. There are (abstract) Chern class
maps (see [8, §3c])

ci : Z[A] → S i(A).

The first Chern class c1 : Z[A] → A is a homomorphism, c1(
∑

i rie
ai) =

∑
i riai.

The second Chern class satisfies

c2

(∑
i

eai
)
=

∑
i<j

aiaj.

and c2(u+ v) = c2(u) + c1(u)c1(v) + c2(v).
Suppose A is a W -module for a finite group W . Then the Chern classes are

W -equivariant. If a ∈ A, we write Wea for the sum ea1 + ea2 + · · · + eak in
Z[A], where {a1, a2, . . . , ak} is the W -orbit of a. Then Wea ∈ Z[A]W and

c2(Wea) =
∑
i<j

aiaj.

We write Dec(A) for the subgroup of S2(A)W generated by c2(Z[A]W ). The
group Dec(A) is generated by elements of the following types (see [7, §5]):

1)
∑

i<j aiaj, where {ai} is the W -orbit of an element in A,

2) aa′, where a, a′ ∈ AW .

Thus, Dec(G) is the subgroup of the “obvious” elements in S2(A)W .

If AW = 0, the first Chern class is trivial on Z[A]W , hence the restriction
Z[A]W → S2(A)W of c2 is a homomorphism. We will use the following formula
proved in [6, §10.14].

Lemma 2.4. If AW = 0, we have c2(uv) = c2(u) rank(v) + c2(v) rank(u) for
all u, v ∈ Z[A]W .
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3. Cohomological invariants

Let Φ : FieldsF −→ PSets be a functor, where FieldsF is the category of
field extensions of F , and PSets is the category of pointed sets. Let n and
j be two integers. For a field extension K/F , write Hn

(
K,Q/Z(j)

)
for the

Galois cohomology group of the absolute Galois group of K with values in
Q/Z(j). If p ̸= char(F ), the p-primary component of Q/Z(j) is defined as the
colimit over n of the twisted groups of roots of unity µ⊗j

pn . If p = char(F ) >
0, then the definition of the p-primary component of the cohomology group
Hn

(
K,Q/Z(j)

)
requires special care (e.g., see [3, §3b]).

A normalized degree n cohomological invariant of Φ with coefficients in
Q/Z(j) is collection of maps of pointed sets

Φ(K) → Hn
(
K,Q/Z(j)

)
for all field extensions K/F , natural in K, i.e., an invariant is a morphism
of functors Φ → Hn

(
−,Q/Z(j)

)
. We write Invn

(
Φ,Q/Z(j)

)
for the group of

all normalized cohomological invariants of Φ of degree n with coefficients in
Q/Z(j).

The cup-product in cohomology yields a pairing

F× ⊗ Invn−1
(
Φ,Q/Z(j − 1)

)
→ Invn

(
Φ,Q/Z(j)

)
.

The cokernel Invn
(
Φ,Q/Z(j)

)
ind

of this pairing is the group of indecomposable
invariants.

Let G be a linear algebraic group over a field F and ΦG is the functor taking
a field K to the set H1(K,G) of isomorphism classes of principal homogeneous
G-spaces (G-torsors) over K. A cohomological invariant of ΦG is also called
an invariant of G.

We write Invn
(
G,Q/Z(j)

)
for Invn

(
ΦG,Q/Z(j)

)
and Invn

(
G,Q/Z(j)

)
ind

for Invn
(
ΦG,Q/Z(j)

)
ind

. By [3, Theorem 2.4], the group Inv2
(
G,Q/Z(1)

)
is

isomorphic to Pic(G) if G is reductive. In this paper we consider cohomological
invariants of degree 3. The group of degree 3 indecomposable invariants of split
reductive groups was computed in [7, Theorem 5.1.]:

Theorem 3.1. Let Gred be a split reductive group, T ⊂ Gred a split maximal
torus. Then there is an isomorphism

Inv3
(
Gred,Q/Z(2)

)
ind

≃ S2(T ∗)W/Dec(T ∗),

where W is the Weyl group of G and Dec(T ∗) is the subgroup of S2(T ∗)W

defined in Section 2.2.

Let G be a split semisimple group over a field F , S ⊂ G a split maximal
torus. A reductive envelope of G is a split reductive group Gred over F with
the commutator subgroup G. Choose a split maximal T ⊂ Gred such that
T ∩G = S. We have a natural homomorphism

φ : S2(T ∗)W → S2(S∗)W .
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A reductive envelope Gred of G is called strict if the center of Gred is a torus
(see [9, Section 9]). If Gred is strict, the image of φ is the smallest possible and
it is independent of the choice of the strict envelope Gred. We write S2(S∗)Wred
for Im(φ).

We have the following commutative diagram

Z[T ∗]W

c2
��

// Z[S∗]W

c2
��

S2(T ∗)W
φ // S2(S∗)W .

The top homomorphism in the diagram is surjective (see the proof of [9, Lemma
5.2]). Hence, we have

Dec(S∗) ⊂ S2(S∗)Wred ⊂ S2(S∗)W .

By [9, Proposition 6.1], the restriction homomorphism

Inv3
(
Gred,Q/Z(2)

)
ind

→ Inv3
(
G,Q/Z(2)

)
ind

is injective (see [9]). Its image is the subgroup Inv3
(
G,Q/Z(2)

)
red

of reduc-
tive invariants. Thus, the reductive invariants of G are those indecomposable
invariants of G that can be extended to indecomposable invariants of a strict
envelope Gred of G.

Theorem 3.1 identifies Inv3
(
G,Q/Z(2)

)
red

with the subgroup S2(S∗)Wred/Dec(S
∗)

of S2(S∗)W/Dec(S∗).
Let G be a split semisimple simply connected group over F . Then G =

G1 × G2 × · · · × Gk, where Gj are (almost) simple simply connected groups.
Let Sj ⊂ Gj be a maximal torus, Wj the Weyl group of Gj. Then S =
S1 × S2 × · · · × Sk is a maximal torus of G and W = W1 ×W2 × · · · ×Wk is
the Weyl group of G.

The group S2(S∗)W can be viewed as the group of W -invariant integer qua-
dratic forms on the lattice of co-characters S∗. The group S2(S∗)W is free with
a canonical basis q1, q2, . . . , qk, where qj is (the only) Wj-invariant quadratic
form on (Sj)∗ that has value 1 on a short co-root of Gj (see [6, Part 2, §10]).

We have the second Chern class homomorphism (note that (S∗)W = 0)

c2 : Z[S∗]W → S2(S∗)W .

If u ∈ Z[S∗]W , we write

(1) c2(u) = N1(u)q1 +N2(u)q2 + · · ·+Nk(u)qk

with unique Nj(u) ∈ Z.

4. Central simple algebras with relations

Let n1, n2, . . . , nk be positive integers and D a subgroup of
⨿k

j=1(Z/njZ).
Consider a functor

CSAD : FieldsF −→ PSets



COHOMOLOGICAL INVARIANTS OF CENTRAL SIMPLE ALGEBRAS 7

that takes a field extension K/F to the set CSAD(K) of k-tuples of central
simple K-algebras (A1, A2, . . . , Ak) with deg(Aj) = nj such that

∑
j dj[Aj] = 0

in the Brauer group Br(K) for all tuples (dj + njZ) ∈ D. We call D the group
of relations between classes of central simple algebras.

We show that the functor Φ is isomorphic to the functor ΦGred
for a reductive

group Gred. The group
⨿k

j=1(Z/njZ) is the character group of µ :=
∏k

j=1µnj
.

Let Z ⊂ µ be a subgroup such that Z∗ = µ∗/D.

Write G for the factor group of the product
∏k

j=1 SLnj
by Z and set Gred =

(
∏k

j=1GLnj
)/Z. Then Gred is a strict envelope of G. Note that D is naturally

isomorphic to the character group of the center of G.
The natural surjection Gred →

∏k
j=1PGLnj

yields a map

ρ : H1(K,Gred) →
k∏

j=1

H1(K,PGLnj
)

for every field extension K/F . Recall that the set H1(K,PGLn) is naturally
bijective to the set of isomorphism classes of central simple algebras of degree
n. Therefore, a Gred-torsor over K yields a tuple of central simple K-algebras
(A1, A2, . . . , Ak) with deg(Aj) = nj.

Proposition 4.1. [4, Theorem A1] The map ρ establishes a bijection between
ΦGred

(K) = H1(K,Gred) and the set CSAD(K) for every field extension K/F .

The group of invariants Invn
(
Gred,Q/Z(j)

)
is identified with the subgroup

of reductive invariants Invn
(
G,Q/Z(j)

)
red

in Invn
(
G,Q/Z(j)

)
. Thus, we can

view Invn
(
G,Q/Z(j)

)
red

as the group of cohomological invariants of the set
of k-tuples of central simple algebras of given degrees nj and satisfying linear
relations given by the group of relations D.

5. Simple groups of type A

5.1. Case G = SLn. Write B for the character group of the maximal torus of
diagonal matrices. Then B = Zn/Z =

∑
i Zxi (see Example 2.3) and B is the

weight lattice of the root system An−1. The root sublattice Λr ⊂ B is generated
by roots xi − xj. The Weyl group W is the symmetric group Sn acting by
permutations on the xi’s. The factor group B/Λr is equal to (Z/nZ)x̂, where
x̂ is the class of xi (it is independent of i). For every character y ∈ B we write
ŷ = ax̂ for its residue in (Z/nZ)x̂.

Choose a character y ∈ B. Some of the components of y may coincide. Let y
have distinct components a1 > a2 > · · · > ak which repeat r1, r2, . . . , rk times
respectively, so that n =

∑
ri and ŷ = ax̂ with a =

∑
i riai. We denote the

character y by (r1, . . . , rk; a1, . . . , ak) or simply by (r, a) (see [6, Part 2, §11]).
The stabilizer of y = (r, a) in the Weyl group W = Sn is isomorphic to the

product Sr1 × Sr2 × · · · × Srk of symmetric groups. Hence the rank of Wey,
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i.e., the number of characters in the W -orbit of y is equal to

(2) rank(Wey) =
n!

r1! r2! · · · rk!
.

Write vp for the p-adic valuation for a prime p.

Lemma 5.1. Let ŷ = ax̂ for y ∈ B. Then vp(rank(Wey)) ≥ vp(n)− vp(a) for
every prime p.

Proof. Write y = (r, a) as above. Let l = mini vp(ri). Since a ≡
∑

i riai
modulo n and n =

∑
i ri ∈ plZ, we have vp(a) ≥ l. By [6, Lemma 11.3],

vp

( n!

r1! r2! · · · rk!

)
≥ vp(n)− l.

The result follows from (2). �
Recall that c2(Wey) = N(Wey)q, where q = −

∑
i<j xixj ∈ S2(B)W (see

(1)).

Lemma 5.2. Let y ∈ B be such that ŷ = ax̂ with vp(a) ≤ vp(n), then
vp(N(Wey)) ≥ vp(a).

Proof. Write y = (r, a). By [6, Lemma 11.4], the gcd of
∑

i riai and n di-
vides vp(N(Wey)). Since a ≡

∑
i riai modulo n, the result follows from the

assumption on a. �
The following statement shows that the inequalities in Lemmas 5.1 and 5.2

are sharp.

Lemma 5.3. Let a be an integer with vp(a) < vp(n) for a prime p. Then there
is a character y ∈ B such that

(1) ŷ = ax̂ in (Z/nZ)x̂,
(2) vp(rank(Wey)) = vp(n)− vp(a),
(3) vp(c2(Wey)) = vp(a).

Proof. Write a = puv for an integer v prime to p and u = vp(a). Consider the
character z = x1+x2+· · ·+xpu ∈ B. By [2, Section 4.2], we have vp(c2(Wez)) =
vp(a). If y := vz then ŷ = vpux̂ = ax̂ and c2(Wey) = v2c2(Wez), hence
vp(c2(Wey)) = vp(c2(Wez)) = vp(a). Finally, rank(Wex) =

(
n
pu

)
and

vp(rank(Wey)) = vp(rank(Wex)) = vp

(
n

pu

)
= vp(n)− u = vp(n)− vp(a). �

5.2. Case G = SLn /µm. Let m be a divisor of n and set G = SLn /µm. Let
A ⊂ B = Zn/Z =

∑
i Zxi be the character group of the maximal torus S of

classes of diagonal matrices. Thus A is the subgroup of B containing the root
lattice Λr. The factor group C = B/A = (µm)

∗ is equal to (Z/mZ)x̄, where
x̄ is the coset xi + A in C. The Weyl group W trivially on C, hence A is a
W -submodule of B. We have the following groups:

Dec(A) ⊂ S2(A)Wred ⊂ S2(A)W ⊂ S2(B)W = Zq,
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where q = −
∑

i<j xixj ∈ S2(B)W .

Lemma 5.4. If kq ∈ S2(A)Wred, then k ∈ mZ.

Proof. The class x̄ in C = (Z/mZ)x̄ of first fundamental weight x1 of G has
order m. By [9, Proposition 10.6] or [7, Proposition 7.1], k is divisible by
m. �
Lemma 5.5. We have 2nq ∈ Dec(A).

Proof. Consider the character x = x1−x2 ∈ A. By [8, Section 4b], c2(Wex) =
−2nq ∈ Dec(A). �
Lemma 5.6. 1. For every odd prime p, there is an integer k prime to p such
that kmq ∈ Dec(A).

2. Suppose that either n is odd or v2(m) < v2(n). Then there is an odd
integer k such that kmq ∈ Dec(A).

Proof. Let p be a prime integer. Suppose first that vp(m) < vp(n). Let r =
vp(m). By Lemma 5.3 applied to the integer a = m, there is a character y ∈ B
such that vp(N(Wey)) = vp(m) and ȳ = mx̄ = 0 in (Z/mZ)x̄. In particular,
y ∈ A and c2(Wey) = kmq with k prime to p.

Now let p be an odd prime with vp(m) = vp(n). By Lemma 5.5, (2n/m)mq ∈
Dec(A) and 2n/m is prime to p.

Finally, let n be odd. We have mx1 ∈ A and c2(Wemx1) = m2q ∈ Dec(A)
and m is odd as it divides n. �

Now we are going to use the invariant ε defined in Section 2.

Lemma 5.7. If k is divisible by m and v2(m) = v2(n) > 0, we have ε(kq) =[
k
2
x̄, 2, k

2
x̄
]
in Σ2(C).

Proof. Since n/m is odd and mx̄ = 0, we have by Example 2.3:

ε(mq) = −m

2

[
x̄, n, x̄

]
= −

[m
2
x̄, 2,

n

2
x̄
]
= −

[m
2
x̄, 2,

m

2
x̄
]
=

[m
2
x̄, 2,

m

2
x̄
]
.

It follows that ε(kq) =
[
k
2
x̄, 2, k

2
x̄
]
since both sides are equal to ε(mq) =[

m
2
x̄, 2, m

2
x̄
]
if k/m is odd and is equal to zero if k/m is even. �

Proposition 5.8. Let G = SLn /µm and S a maximal split torus of G. Then

Dec(S∗) = S2(S∗)Wred =

{
2mZq, if v2(m) = v2(n) > 0;
mZq, otherwise.

Proof. The second case follows from Lemmas 5.4 and 5.6. Suppose v2(m) =
v2(n) > 0. It follows from Lemmas 5.5 and 5.6 that 2mq ∈ Dec(A). It suffices
to show that if kq ∈ S2(A)Wred, then k ∈ 2mZ. By Lemma 5.4, k is divisible
by m. Recall that x̄ has order m in C = B/A. In view of Lemma 5.7,

ε(kq) =
[
k
2
x̄, 2, k

2
x̄
]
in Σ2(C). By Lemma 2.1, k

2
x̄ = 0 in C, i.e., k ∈ 2mZ. �
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It follows from Proposition 5.8 that every reductive invariant of SLn /µm

is trivial (see [7, §7]) or, equivalently, central simple algebras of degree n and
exponent dividing m have no indecomposable degree 3 invariants.

6. Semisimple groups of type A

Let n1, n2, . . . , nk be positive integers and D a subgroup of relations in⨿k
j=1(Z/njZ). Let Z ⊂ µ be the subgroup such that Z∗ = µ∗/D and

G = (
∏k

j=1 SLnj
)/Z as in Section 4.

Let B = B1 ⊕ B2 · · · ⊕ Bk denote the character group of a split maximal
torus of G with the Bj’s as in Section 5.2. Write A for the kernel of the natural
surjection B → C =: Z∗, so A is the character lattice of a split maximal torus
of G. For every j, the image of the projection Z → µnj

is the subgroup
µmj

of µnj
for a divisor mj of nj. We have then natural homomorphisms

G → SLnj
/µmj

. Write x̄j for the canonical generator of the cyclic group

(µmj
)∗ ⊂ B/A = C of order mj. Thus, C is generated by the x̄j’s.

The group D is the kernel of the natural surjection B/Λr → C, so D is the
character group of the center of G. We have the following diagram with the
exact rows:

0 // A

����

// B

����

// C // 0

0 // D // B/Λr
// C // 0.

Note that B/Λr =
⨿

j(Z/njZ)x̂j, where x̂j is the class of a canonical generator

of Bj in B/Λr. The image of x̂j under the homomorphism B/Λr → C is equal
to x̄j.

The Weyl group W of G is the product of symmetric groups Wj = Snj
.

Write qj ∈ S2(Bj)
Wj ⊂ S2(B)W for the canonical quadratic forms (see Section

5.2). Then {q1, q2, . . . , qk} is a Z-basis for S2(B)W .
Below is a generalization of Lemma 5.4.

Lemma 6.1. If
∑

j kjqj ∈ S2(A)Wred, then kj ∈ mjZ for all j.

Proof. The class in C of first fundamental weight of the jth component of G
has order mj. By [9, Proposition 10.6] or [7, Proposition 7.1], kj is divisible
by mj. �

Consider the subset J ⊂ {1, 2, . . . , k} of all j such that v2(mj) = v2(nj) > 0.
Write D′ for the subgroup of D of all elements having zero components outside
J , i.e.,

D′ = D ∩
⨿
j∈J

(Z/njZ)x̂j.

Let q =
∑

j∈J kjqj ∈ S2(B)W be such that kj ∈ mjZ for every j. By Lemma
5.7,

ε(q) =
∑
j∈J

[k̃jx̄j, 2, k̃jx̄j] in Σ2(C),
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where k̃j = kj/2. Let x ∈ B be a character with x̂ :=
∑

j∈J k̃jx̂j ∈ B/Λr.
Since

[x̄, 2, x̄] =
∑
j∈J

[k̃jx̄j, 2, k̃jx̄j] +
∑
j ̸=i

[k̃jx̄j, 2, k̃ix̄i]

and

[k̃jx̄j, 2, k̃ix̄i] + [k̃ix̄i, 2, k̃jx̄j] = [k̃jx̄j, 2, k̃ix̄i]− [k̃ix̄i, 2, k̃jx̄j] ∈ Im(1− τ)

for j ̸= i, we have

(3) ε(q) = [x̄, 2, x̄] in Σ2(C).

Proposition 6.2. Let q =
∑

j kjqj ∈ S2(B)W . The following conditions are
equivalent:

(1) q ∈ S2(A)Wred,
(2) q′ :=

∑
j∈J kjqj ∈ S2(A)Wred and kj ∈ mjZ for every j,

(3) kj is even for every j ∈ J and
∑

j∈J
kj
2
x̂j ∈ D′ and kj ∈ mjZ for all j.

Proof. Set x̂ :=
∑

j∈J k̃jx̂j ∈ B/Λr.

(1) ⇒ (2): By Lemma 6.1, kj ∈ mjZ for all j. If j /∈ J , then by Proposition

5.8, kjqj ∈ S2(Aj)
Wj

red ⊂ S2(A)Wred. It follows that q
′ ∈ S2(A)Wred.

(2) ⇒ (3): By (3), 0 = ε(q′) = [x̄, 2, x̄] in Σ2(C). In view of Lemma 2.1,
x̄ = 0 in C, i.e, x̂ ∈ D. Then x̂ ∈ D′.

(3) ⇒ (1): We have x̂ ∈ D′ and kj ∈ mjZ for all j ∈ J . In particular, kj is
even. It follows from (3) that ε(q′) = [x̄, 2, x̄] = 0 in Σ2(C), hence q′ ∈ S2(A)Wred.
If j /∈ J , then by Proposition 5.8, kjqj ∈ S2(A)Wred. Thus, q ∈ S2(A)Wred. �

Consider a homomorphism

α : 2D
′ → S2(A)Wred/Dec(A),

where 2D
′ is the subgroup of exponent 2 elements in D′, defined as follows.

Let x ∈ 2D
′, i.e., x̂ :=

∑
j∈J

kj
2
x̂j with kj ∈ njZ. Set

α(x̂) =
∑
j∈J

kjqj +Dec(A).

We have α well defined by Proposition 6.2.

Lemma 6.3. There are no elements in 2D
′ with exactly one nonzero compo-

nent.

Proof. Suppose that
nj

2
x̂j ∈ 2D

′ for some j ∈ J . Then
nj

2
x̄j = 0 in C. It

follows that mj divides
nj

2
since the order of x̄j in C is equal to mj. This is a

contradiction since v2(mj) = v2(nj) for j in J . �
Let E be the subgroup of 2D

′ generated by all elements with exactly two
nonzero components.

Lemma 6.4. We have α(E) = 0.
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Proof. Every generator of E is of the form
nj

2
x̂j +

nk

2
x̂k with j ̸= k in J . We

want to show that njqj+nkqk ∈ Dec(A). By Lemma 5.3 applied to the integers
nj

2
and nk

2
, respectively, there are characters yj ∈ Bj and yk ∈ Bk such that

(1) ŷj =
nj

2
x̂j in (Z/njZ)x̂j, ŷk =

nk

2
x̂k in (Z/nkZ)x̂k,

(2) v2(rank(Wje
yj)) = 1, v2(rank(Wke

yk)) = 1,

(3) v2(N(Wje
yj)) = v2(nj)− 1, v2(N(Wke

yk)) = v2(nk)− 1.

Set y := yj + yk. As ŷ = ŷj + ŷk ∈ E ⊂ 2D
′, we have y ∈ A. It follows from

the equality
Wey = Wje

yj ·Wke
yk

and Lemma 2.4 that

c2(Wey) =c2(Wje
yj ·Wke

yk)

=c2(Wje
yj) rank(Wke

yk) + c2(Wke
yk) rank(Wje

yj)

=N(Wje
yj) rank(Wke

yk)qj +N(Wke
yk) rank(Wje

yj)qk

=tjqj + tkqk

for the integers tj and tk with v2(tj) = v2(nj) and v2(tk) = v2(nk). Recall that
2njqj and 2nkqk belong to Dec(A) by Lemma 5.5. It follows that njqj+nkqk ∈
Dec(A). �

It follows from Lemma 6.4 that α factors through a homomorphism

α′ : (2D
′)/E → S2(A)Wred/Dec(A).

We prove that α′ is an isomorphism by constructing the inverse map. Define
a homomorphism

β : S2(A)Wred → 2D
′

as follows. Let q =
∑

j kjqj ∈ S2(A)Wred. By Lemma 6.1, kj ∈ mjZ for all j.
Set

β(q) =
∑
j∈J

kjnj

2mj

x̂j.

By Proposition 6.2,
∑

j∈J
kj
2
x̂j ∈ D′. Since mjx̂j ∈ D′ and nj/mj is odd, we

have β(q) ∈ D′. Also, 2β(q) = 0 since njx̂j = 0, hence β(q) ∈ 2D
′.

Lemma 6.5. We have β(Dec(A)) ⊂ E.

Proof. We shall show that β(c2(Wey)) ∈ E for every y ∈ A. Write ŷ =
∑

j ajx̂j

for some aj ∈ Z (unique modulo nj). Since c2(Wety) = t2c2(Wey) for every
integer t, we may replace y by ty for every odd integer t. In particular, we
may assume that either aj = 0 or v2(aj) < v2(nj) for every j.

Let s be the number of indices j such that aj ̸= 0.

Case 1: s ≤ 2. In this case c2(Wey) has at most 2 nonzero j-components,
hence β(c2(Wey)) ∈ E.

Case 2: s ≥ 3. We show that β(c2(Wey)) = 0. Fix a k ∈ J . It suffices to
prove that v2 of the qk-coefficient Nk(Wey) of c2(Wey) is strictly larger than
v2(mk) = v2(nk). Set tj := v2(nj)− v2(aj) for all j such that aj ̸= 0.
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We claim that there is an i different from k such that

(4) ti ≥ tk.

Suppose that tk > ti for all i different from k. Then there is an odd integer s
such that s2tk−1ŷ = s2tk−1x̂k is a nonzero element in 2D

′ with only one nonzero
component, a contradiction by Lemma 6.3. The claim is proved.

Write y =
∑

j yj, where yj ∈ Bj. We have ŷj = ajx̂j for all j and

(5) Wey =
∏
j

Wje
yj = Wke

yk · z,

where z is the product of all Wje
yj but Wke

yk . Hence by Lemma 2.4,

c2(Wey) = Nk(Wke
yk) rank(z)qk + (linear combination of qj’s with j ̸= k).

By Lemma 5.2,

(6) v2(Nk(Wke
yk)) ≥ v2(ak).

Also, z is divisible by Wie
yi ·Wje

yj for i as in (4) and some j such that aj ̸= 0
(such exists since s ≥ 3). We have then

(7) rank(z) ∈ rank(Wie
yi) rank(Wje

yj)Z.
By Lemma 5.1,

(8) v2(rank(Wie
yi)) ≥ v2(ni)− v2(ai) = ti

and

(9) v2(rank(Wje
yj)) ≥ v2(nj)− v2(aj) > 0.

It follows from (4)−(9) that

v2(Nk(Wey)) =v2(Nk(Wke
yk)) + v2(rank(z)

≥v2(Nk(Wke
yk)) + v2(rank(c2(Wie

yi)) + v2(rank(c2(Wje
yj))

>v2(ak) + ti

≥v2(ak) + tk

=v2(nk). �
It follows from Lemma 6.5 that β factors through a homomorphism

β′ : S2(A)Wred/Dec(A) → (2D
′)/E.

Proposition 6.6. Let S be a maximal split torus of the group G = (
∏k

j=1 SLnj
)/Z.

Then the map α′ : (2D
′)/E → S2(S∗)Wred/Dec(S

∗) is an isomorphism.

Proof. We show that β′ is the inverse of α′. The composition β′◦α′ is the iden-
tity since nj/mj is odd for all j ∈ J . Let q =

∑
j kjqj ∈ S2(A)Wred. By Lemma

6.1, kj ∈ mjZ for all j. We have α′ ◦ β′(q) =
∑

j∈J
kjnj

mj
qj. It follows from

Proposition 5.8 that 2kjqj ∈ Dec(A) for j ∈ J , therefore,
kjnj

mj
qj is congruent

to kjqj modulo Dec(A) since nj/mj is odd.
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If j /∈ J , then by Proposition 5.8, kjqj ∈ Dec(A). It follows that α′ ◦ β′(q)
is equal to q modulo Dec(A). �

7. Main theorem

Let n1, n2, . . . , nk be a sequence of positive integers, D ⊂
⨿k

j=1(Z/njZ) a
subgroup of relations. Let CSAD be the functor that takes a field extension
K/F to the set of k-tuples of central simple K-algebras (A1, A2, . . . , Ak) with
deg(Aj) = nj such that

∑
j dj[Aj] = 0 in the Brauer group Br(K) for all tuples

(dj + njZ) ∈ D.
For every j, write mjZ/njZ = D∩ (Z/njZ) for a unique positive divisor mj

of nj. Consider the set J of all indices j such that v2(mj) = v2(nj) > 0 and let
D′ = D ∩

⨿
j∈J(Z/njZ). Let E be the subgroup of 2D

′ generated by elements
with exactly two nonzero components.

Combining Theorem 3.1 and Propositions 4.1 and 6.6, we get the following
main theorem of the paper.

Theorem 7.1. For every group of relations D, there is a natural isomorphism

(2D
′)/E

∼−→ Inv3
(
CSAD,Q/Z(2)

)
ind

.

Example 7.2. Let n1 = n2 = · · · = nk = 2 for k ≥ 3 and let D be the cyclic
subgroup (of order 2) generated by (1, 1, . . . , 1). Then CSAD(K) is the set of
k-tuples of quaternion K-algebras (Q1, Q2, . . . , Qk) such that

[Q1] + [Q2] + · · ·+ [Qk] = 0

in Br(K). We have 2D
′ = D = Z/2Z and E = 0, i.e., there is exactly one

indecomposable degree 3 invariant of CSAD. It is defined as follows (see [9,
Example 11.2]). Let φj be the reduced norm quadratic form of Qj. The sum
φ of the forms φj in the Witt group W (K) of K belongs to the cube of the
fundamental ideal of W (K) (this also makes sense when char(F ) = 2), i.e., φ
is the sum of 3-fold Prister forms ρ1, ρ2, . . . , ρs. The Arason invariant

∑
i e3(ρi)

of φ in H3(K,Q/Z(2)), where e3(ρi) is the class of ρi in H3(K,Q/Z(2)), yields
the only nontrivial degree 3 nontrivial invariant Ark of CSAD (see also [1]).

We can make explicit the isomorphism in Theorem 7.1. Let d ∈ 2D
′. Write

d =
∑

j djx̂j for integers dj such that 2dj ∈ njZ. The map of (Z/2Z)k to⨿k
j=1(Z/njZ)x̂j taking a tuple (bj) to

∑
j bjdjx̂j sends the generator (1, 1, . . . , 1)

from Example 7.2 to d. This describes the invariant Pd of CSAD corresponding
to d by Theorem 7.1 as follows. Let A = (A1, A2, . . . , Ak) be a tuple of cen-
tral simple algebras in CSAD(K). In particular,

∑
j dj[Aj] = 0 in Br(K). As

deg(Aj) = nj, the class dj[Aj] is represented by a quaternion algebra Qj, and
we have

∑
j[Qj] = 0. The invariant Pd is given by Pd(A) := Ark(Q), where

Q = (Qj) with Ark from Example 7.2.
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