COHOMOLOGICAL INVARIANTS OF CENTRAL SIMPLE ALGEBRAS

ALEXANDER S. MERKURJEV

1. INTRODUCTION

Cohomological invariants, introduced by J.-P. Serre in [10], allow us to study algebraic objects by means of Galois cohomology groups.

In this paper we study cohomological invariants of central simple algebras over field extensions of a base field F. The tautological degree 2 invariant takes a cental simple algebra A over a field K to its class [A] in the Brauer group $Br(K) = H^2(K, \mathbb{Q}/\mathbb{Z}(1))$. Using cup-products, one can construct invariants of higher degree: if $a \in F^{\times}$, then the cup-product $(a) \cup [A]$ yields a degree 3 invariant of A in $H^3(K, \mathbb{Q}/\mathbb{Z}(2))$. We call such degree 3 invariants decomposable. Are there indecomposable degree 3 invariants of central simple algebras?

We also study cohomological invariants of tuples of central simple algebras with linear relations in the Brauer group. For example, consider k-tuples of quaternion algebras $Q = (Q_1, Q_2, \ldots, Q_k)$ over a field K such that

$$[Q_1] + [Q_2] + \dots + [Q_k] = 0$$

in Br(K). It turns out that if $k \geq 3$, then there is a nontrivial degree 3 and exponent 2 indecomposable invariant of such tuples defined as follows. Let φ_j be the reduced norm quadratic form of Q_j . The sum φ of the forms φ_j in the Witt group W(K) of K belongs to the cube of the fundamental ideal of W(K). The Arason invariant of φ in $H^3(K, \mathbb{Q}/\mathbb{Z}(2))$ yields a nontrivial degree 3 and exponent 2 nontrivial invariant Ar_k of k-tuples Q (see Example 7.2).

Let n_1, n_2, \ldots, n_k be a sequence of positive integers and $D \subset \coprod_{j=1}^k (\mathbb{Z}/n_j\mathbb{Z})$ a subgroup. For a field extension K/F, let $\operatorname{CSA}_D(K)$ be the set of isomorphism classes of k-tuples of central simple K-algebras $A = (A_1, A_2, \ldots, A_k)$ with $\operatorname{deg}(A_j) = n_j$ such that $\sum_j d_j[A_j] = 0$ in the Brauer group $\operatorname{Br}(K)$ for all tuples $d = (d_j + n_j\mathbb{Z}) \in D$. Thus, D is the group of *relations* between the classes of the algebras A_j .

Let $d \in D$ be a relation such that $2d_j$ is divisible by n_j for every j, i.e., dis of exponent 2 in D. For every $A \in CSA_D(K)$, the class $d_j[A_j]$ in Br(K) is represented by a quaternion algebra Q_j . Then the relation d yields a degree 3 nontrivial indecomposable invariant of $CSA_D(K)$ taking a tuple A to the cohomology class $Ar_k(Q)$. In Theorem 7.1, we prove that every degree 3 indecomposable invariant of CSA_D is of this form and compute the group of all

The work has been supported by the NSF grant DMS #1160206.

invariants. In particular, we show that there are no nontrivial indecomposable invariants of k-tuples of simple algebras with relations for $k \leq 2$ and there are no nontrivial indecomposable invariants of CSA_D of odd exponent.

This result is similar to the one on the invariants of étale algebras: Serre proved (see [6, Part 1, Chapter VII]) that étale algebras have no cohomological invariants modulo odd primes, but there are nontrivial invariants of exponent 2 (the Stiefel-Whitney classes of the trace form of the algebra).

We use the following approach to the problem. For every group of relations D there is a reductive algebraic group $G_{\rm red}$ such that the set of isomorphism classes of $G_{\rm red}$ -torsors over an arbitrary field extension K over F is bijective to the set $\mathrm{CSA}_D(K)$. We study degree 3 cohomological invariants of CSA_D via the invariants of $G_{\rm red}$ using earlier results on degree 3 cohomological invariants of algebraic groups.

Note that every split semisimple group of type A (i.e., every connected component of the Dynkin diagram of G is A_n for some n) is embedded to a reductive group G_{red} corresponding to some group of relations D. Moreover, the group of invariants of G_{red} is identified with the subgroup of *reductive* invariants of G (see Section 3). Thus, we study degree three reductive cohomological invariants of all split semisimple groups of type A.

2. Preliminaries

2.1. Symmetric square and Tor groups. Let A be an abelian group. We write $S^2(A)$ for the symmetric square of A, the factor group of $A \otimes A$ by the image of $1-\sigma$, where $\sigma : A \otimes A \to A \otimes A$ is the exchange map, $\sigma(a \otimes a') = a' \otimes a$. We write aa' for the image of $a \otimes a'$ in $S^2(A)$.

The *polar* homomorphism

$$\operatorname{pol}_A: S^2(A) \to A \otimes A$$

is defined by $pol(aa') = a \otimes a' + a' \otimes a$.

Let A and B be two abelian groups. We write A*B for the group $\operatorname{Tor}_1^{\mathbb{Z}}(A, B)$. The group $(\mathbb{Z}/n\mathbb{Z}) * (\mathbb{Z}/m\mathbb{Z})$ is cyclic of order $\operatorname{gcd}(n,m)$ with a canonical generator. Write w_n for the canonical generator of $(\mathbb{Z}/n\mathbb{Z}) * (\mathbb{Z}/n\mathbb{Z})$. If $a \in A$ and $b \in B$ are two elements of exponent n, we write [a, n, b] for the image of w_n under the homomorphism $(\mathbb{Z}/n\mathbb{Z}) * (\mathbb{Z}/n\mathbb{Z}) \to A * B$ given by the maps $a : \mathbb{Z}/n\mathbb{Z} \to A$ and $b : \mathbb{Z}/n\mathbb{Z} \to B$. The elements [a, n, b] generate A * B and are subject to the following relations (see [5, §62]):

1. [a, n, b] is bi-additive in a and b,

2. [a, nm, b] = [a, n, mb] if na = 0 and nmb = 0.

Let $\tau : A * A \to A * A$ be the exchange map. Write $\Delta^2(A)$ for the factor group of A * A by Ker $(1-\tau)$ and $\Sigma^2(A)$ for $(A * A) / \operatorname{Im}(1-\tau)$. If A is a cyclic group, we have $\tau = 1$ and $\Delta^2(A) = 0$. Moreover, $\Delta^2(A \oplus B) \simeq \Delta^2(A) \oplus (A * B) \oplus \Delta^2(B)$. It follows that if A is a direct sum of cyclic groups of order n_1, n_2, \ldots, n_k , respectively, then $|\Delta^2(A)| = \prod_{i < j} d_{ij}$, where $d_{ij} = \operatorname{gcd}(n_i, n_j)$.

If A is a cyclic group, we have $\Sigma^2(A) = A * A$.

Lemma 2.1. Let a be an element of prime order p in an abelian group A. Then $[a, p, a] \notin \text{Im}(1 - \tau)$, i.e., the coset of [a, p, a] in $\Sigma^2(A)$ is not trivial.

Proof. Let A' be the cyclic subgroup of A of order p generated by a. Choose a homomorphism $f: A \to C$ to a cyclic group C such that $f(a) \neq 0$, i.e., the composition $A' \hookrightarrow A \xrightarrow{f} C$ is injective. Then the composition

$$A' * A' = \Sigma^2(A') \to \Sigma^2(A) \to \Sigma^2(C) = C * C$$

is injective since Tor is a left exact functor. As [a, p, a] is a generator of the cyclic group A' * A' of order p, the class of [a, p, a] in $\Sigma^2(A)$ is not trivial. \Box

An exact sequence of abelian groups

$$0 \to A \to B \xrightarrow{\varphi} C \to 0$$

(we identify A with a subgroup of B) yields a commutative diagram with the exact column

where $\rho = 1 - \tau$, $\gamma(\varphi(b), n, c) = nb \otimes c$, $\alpha = \gamma \circ \rho$, $\beta(a \otimes \varphi(b)) = ab + S^2(A)$ and δ is given by the composition $(1_B \otimes \varphi) \circ \text{pol}_B$.

Lemma 2.2. If C is finite and B is a free abelian group of finite rank, then the two rows of the diagram are exact.

Proof. The lower sequence is exact since B is free. The map α is injective since so are γ and ρ . The map $C \otimes C \to \operatorname{Coker}(\beta)$ taking $\varphi(b) \otimes \varphi(b')$ to the coset of bb' yields an inverse of the map $\operatorname{Coker}(\beta) \to S^2(C)$, whence the exactness of the top row in the term $S^2(B)/S^2(A)$. The top row is a complex that is acyclic in all terms but possibly $A \otimes C$.

Choose a \mathbb{Z} -basis x_1, x_2, \ldots, x_s for B such that $n_1x_1, n_2x_2, \ldots, n_sx_s$ is a basis for A for some positive integers n_i . Then x_ix_j with $i \leq j$ is a basis for $S^2(B)$ and $n_in_jx_ix_j$ is a basis for $S^2(A)$. It follows that $|S^2(B)/S^2(A)| =$ $(\prod_i n_i)^{s+1}$. We also have $|\Delta^2(A)| = \prod_{i < j} d_{ij}$, where $d_{ij} = \gcd(n_i, n_j)$ and $|A \otimes C| = (\prod_i n_i)^s, |S^2(C)| = (\prod_i n_i) \cdot \prod_{i < j} d_{ij}$. A calculation implies that $|\Delta^2(A)| \cdot |S^2(B)/S^2(A)| = |A \otimes C| \cdot |S^2(C)|$. This proves the exactness of the top row in the term $A \otimes C$.

Suppose the conditions of Lemma 2.2 hold and we are given an element $q \in S^2(B)$ and we would like to know the conditions under which $q \in S^2(A)$. Clearly, the image of q in $S^2(C)$ should be trivial and $\delta(q)$ should be zero.

If these two conditions hold, a diagram chase yields a unique element $\varepsilon(q)$ in $\Sigma^2(C)$ such that $q \in S^2(A)$ if and only if $\varepsilon(q) = 0$.

Example 2.3. Let $B = \mathbb{Z}^n/\mathbb{Z}$ with \mathbb{Z} embedded diagonally into \mathbb{Z}^n . Write x_1, \ldots, x_n for the canonical generators for B, so that $x_1 + \cdots + x_n = 0$. Consider the quadratic form $q = -\sum_{i < j} x_i x_j \in S^2(B)$. Note that $2q = \sum_i x_i^2$. Let $A \subset B$ be a subgroup containing $x_i - x_j$ for all i and j and set C = B/A. Write \bar{x} for the common image of the x_i 's in C, so C is a cyclic group of exponent n generated by \bar{x} . Since $\sum_i (x_i - x_1)^2 = 2q + nx_1^2$ and $x_i - x_1 \in A$, we have $2q = -nx_1^2$ in $S^2(B)/S^2(A)$. Therefore, $\beta(nx_1 \otimes \bar{x}) = nx_1^2 = -2q$ and $nx_1 \otimes \bar{x} = \gamma[\bar{x}, n, \bar{x}]$. Thus, $\varepsilon(2q) = -[\bar{x}, n, \bar{x}]$ in $\Sigma^2(C)$.

Let A be an additively written abelian group. We write elements of the group ring $\mathbb{Z}[A]$ in the exponential form: $u = \sum_{i} r_i e^{a_i}$ for $r_i \in \mathbb{Z}$ and $a_i \in A$. The rank rank(u) of u is $\sum_{i} r_i$.

2.2. Chern classes. Let A be a lattice. There are (abstract) Chern class maps (see $[8, \S3c]$)

$$c_i: \mathbb{Z}[A] \to S^i(A).$$

The first Chern class $c_1 : \mathbb{Z}[A] \to A$ is a homomorphism, $c_1(\sum_i r_i e^{a_i}) = \sum_i r_i a_i$. The second Chern class satisfies

$$c_2\left(\sum_i e^{a_i}\right) = \sum_{i < j} a_i a_j.$$

and $c_2(u+v) = c_2(u) + c_1(u)c_1(v) + c_2(v)$.

Suppose A is a W-module for a finite group W. Then the Chern classes are W-equivariant. If $a \in A$, we write We^a for the sum $e^{a_1} + e^{a_2} + \cdots + e^{a_k}$ in $\mathbb{Z}[A]$, where $\{a_1, a_2, \ldots, a_k\}$ is the W-orbit of a. Then $We^a \in \mathbb{Z}[A]^W$ and

$$c_2(We^a) = \sum_{i < j} a_i a_j.$$

We write Dec(A) for the subgroup of $S^2(A)^W$ generated by $c_2(\mathbb{Z}[A]^W)$. The group Dec(A) is generated by elements of the following types (see [7, §5]):

- 1) $\sum_{i < j} a_i a_j$, where $\{a_i\}$ is the *W*-orbit of an element in *A*,
- 2) aa', where $a, a' \in A^W$.

Thus, Dec(G) is the subgroup of the "obvious" elements in $S^{2}(A)^{W}$.

If $A^W = 0$, the first Chern class is trivial on $\mathbb{Z}[A]^W$, hence the restriction $\mathbb{Z}[A]^W \to S^2(A)^W$ of c_2 is a homomorphism. We will use the following formula proved in [6, §10.14].

Lemma 2.4. If $A^W = 0$, we have $c_2(uv) = c_2(u) \operatorname{rank}(v) + c_2(v) \operatorname{rank}(u)$ for all $u, v \in \mathbb{Z}[A]^W$.

4

3. Cohomological invariants

Let $\Phi : Fields_F \longrightarrow PSets$ be a functor, where $Fields_F$ is the category of field extensions of F, and PSets is the category of pointed sets. Let n and j be two integers. For a field extension K/F, write $H^n(K, \mathbb{Q}/\mathbb{Z}(j))$ for the Galois cohomology group of the absolute Galois group of K with values in $\mathbb{Q}/\mathbb{Z}(j)$. If $p \neq \operatorname{char}(F)$, the p-primary component of $\mathbb{Q}/\mathbb{Z}(j)$ is defined as the colimit over n of the twisted groups of roots of unity $\mu_{p^n}^{\otimes j}$. If $p = \operatorname{char}(F) >$ 0, then the definition of the p-primary component of the cohomology group $H^n(K, \mathbb{Q}/\mathbb{Z}(j))$ requires special care (e.g., see [3, §3b]).

A normalized degree n cohomological invariant of Φ with coefficients in $\mathbb{Q}/\mathbb{Z}(j)$ is collection of maps of pointed sets

$$\Phi(K) \to H^n(K, \mathbb{Q}/\mathbb{Z}(j))$$

for all field extensions K/F, natural in K, i.e., an invariant is a morphism of functors $\Phi \to H^n(-, \mathbb{Q}/\mathbb{Z}(j))$. We write $\operatorname{Inv}^n(\Phi, \mathbb{Q}/\mathbb{Z}(j))$ for the group of all normalized cohomological invariants of Φ of degree n with coefficients in $\mathbb{Q}/\mathbb{Z}(j)$.

The cup-product in cohomology yields a pairing

$$F^{\times} \otimes \operatorname{Inv}^{n-1}(\Phi, \mathbb{Q}/\mathbb{Z}(j-1)) \to \operatorname{Inv}^n(\Phi, \mathbb{Q}/\mathbb{Z}(j)).$$

The cokernel $\operatorname{Inv}^n(\Phi, \mathbb{Q}/\mathbb{Z}(j))_{\text{ind}}$ of this pairing is the group of *indecomposable* invariants.

Let G be a linear algebraic group over a field F and Φ_G is the functor taking a field K to the set $H^1(K, G)$ of isomorphism classes of principal homogeneous G-spaces (G-torsors) over K. A cohomological invariant of Φ_G is also called an *invariant of* G.

We write $\operatorname{Inv}^n(G, \mathbb{Q}/\mathbb{Z}(j))$ for $\operatorname{Inv}^n(\Phi_G, \mathbb{Q}/\mathbb{Z}(j))$ and $\operatorname{Inv}^n(G, \mathbb{Q}/\mathbb{Z}(j))_{\text{ind}}$ for $\operatorname{Inv}^n(\Phi_G, \mathbb{Q}/\mathbb{Z}(j))_{\text{ind}}$. By [3, Theorem 2.4], the group $\operatorname{Inv}^2(G, \mathbb{Q}/\mathbb{Z}(1))$ is isomorphic to $\operatorname{Pic}(G)$ if G is reductive. In this paper we consider cohomological invariants of degree 3. The group of degree 3 indecomposable invariants of split reductive groups was computed in [7, Theorem 5.1.]:

Theorem 3.1. Let G_{red} be a split reductive group, $T \subset G_{\text{red}}$ a split maximal torus. Then there is an isomorphism

$$\operatorname{Inv}^{3}(G_{\operatorname{red}}, \mathbb{Q}/\mathbb{Z}(2))_{\operatorname{ind}} \simeq S^{2}(T^{*})^{W}/\operatorname{Dec}(T^{*}),$$

where W is the Weyl group of G and $\text{Dec}(T^*)$ is the subgroup of $S^2(T^*)^W$ defined in Section 2.2.

Let G be a split semisimple group over a field $F, S \subset G$ a split maximal torus. A reductive envelope of G is a split reductive group G_{red} over F with the commutator subgroup G. Choose a split maximal $T \subset G_{\text{red}}$ such that $T \cap G = S$. We have a natural homomorphism

$$\varphi: \mathcal{S}^2(T^*)^W \to \mathcal{S}^2(S^*)^W.$$

A reductive envelope G_{red} of G is called *strict* if the center of G_{red} is a torus (see [9, Section 9]). If G_{red} is strict, the image of φ is the smallest possible and it is independent of the choice of the strict envelope G_{red} . We write $S^2(S^*)_{\text{red}}^W$ for $\text{Im}(\varphi)$.

We have the following commutative diagram

$$\mathbb{Z}[T^*]^W \longrightarrow \mathbb{Z}[S^*]^W$$

$$\downarrow^{c_2} \qquad \qquad \downarrow^{c_2}$$

$$S^2(T^*)^W \xrightarrow{\varphi} S^2(S^*)^W.$$

The top homomorphism in the diagram is surjective (see the proof of [9, Lemma 5.2]). Hence, we have

$$\operatorname{Dec}(S^*) \subset S^2(S^*)^W_{\operatorname{red}} \subset S^2(S^*)^W.$$

By [9, Proposition 6.1], the restriction homomorphism

 $\operatorname{Inv}^{3}(G_{\operatorname{red}}, \mathbb{Q}/\mathbb{Z}(2))_{\operatorname{ind}} \to \operatorname{Inv}^{3}(G, \mathbb{Q}/\mathbb{Z}(2))_{\operatorname{ind}}$

is injective (see [9]). Its image is the subgroup $\operatorname{Inv}^3(G, \mathbb{Q}/\mathbb{Z}(2))_{\operatorname{red}}$ of *reductive* invariants. Thus, the reductive invariants of G are those indecomposable invariants of G that can be extended to indecomposable invariants of a strict envelope G_{red} of G.

Theorem 3.1 identifies $\operatorname{Inv}^3(G, \mathbb{Q}/\mathbb{Z}(2))_{\operatorname{red}}$ with the subgroup $S^2(S^*)_{\operatorname{red}}^W/\operatorname{Dec}(S^*)$ of $S^2(S^*)^W/\operatorname{Dec}(S^*)$.

Let G be a split semisimple simply connected group over F. Then $G = G_1 \times G_2 \times \cdots \times G_k$, where G_j are (almost) simple simply connected groups. Let $S_j \subset G_j$ be a maximal torus, W_j the Weyl group of G_j . Then $S = S_1 \times S_2 \times \cdots \times S_k$ is a maximal torus of G and $W = W_1 \times W_2 \times \cdots \times W_k$ is the Weyl group of G.

The group $S^2(S^*)^W$ can be viewed as the group of *W*-invariant integer quadratic forms on the lattice of co-characters S_* . The group $S^2(S^*)^W$ is free with a canonical basis q_1, q_2, \ldots, q_k , where q_j is (the only) W_j -invariant quadratic form on $(S_j)_*$ that has value 1 on a short co-root of G_j (see [6, Part 2, §10]).

We have the second Chern class homomorphism (note that $(S^*)^W = 0$)

$$c_2: \mathbb{Z}[S^*]^W \to \mathcal{S}^2(S^*)^W.$$

If $u \in \mathbb{Z}[S^*]^W$, we write

(1)
$$c_2(u) = N_1(u)q_1 + N_2(u)q_2 + \dots + N_k(u)q_k$$

with unique $N_i(u) \in \mathbb{Z}$.

4. Central simple algebras with relations

Let n_1, n_2, \ldots, n_k be positive integers and D a subgroup of $\coprod_{j=1}^k (\mathbb{Z}/n_j\mathbb{Z})$. Consider a functor

 CSA_D : Fields_F \longrightarrow PSets

 $\mathbf{6}$

that takes a field extension K/F to the set $\operatorname{CSA}_D(K)$ of k-tuples of central simple K-algebras (A_1, A_2, \ldots, A_k) with $\operatorname{deg}(A_j) = n_j$ such that $\sum_j d_j[A_j] = 0$ in the Brauer group $\operatorname{Br}(K)$ for all tuples $(d_j + n_j\mathbb{Z}) \in D$. We call D the group of relations between classes of central simple algebras.

We show that the functor Φ is isomorphic to the functor $\Phi_{G_{\text{red}}}$ for a reductive group G_{red} . The group $\coprod_{j=1}^{k} (\mathbb{Z}/n_{j}\mathbb{Z})$ is the character group of $\boldsymbol{\mu} := \prod_{j=1}^{k} \boldsymbol{\mu}_{n_{j}}$. Let $Z \subset \boldsymbol{\mu}$ be a subgroup such that $Z^{*} = \boldsymbol{\mu}^{*}/D$.

Write G for the factor group of the product $\prod_{j=1}^{k} \mathbf{SL}_{n_j}$ by Z and set $G_{\text{red}} = (\prod_{j=1}^{k} \mathbf{GL}_{n_j})/Z$. Then G_{red} is a strict envelope of G. Note that D is naturally isomorphic to the character group of the center of G.

The natural surjection $G_{\text{red}} \to \prod_{i=1}^{k} \mathbf{PGL}_{n_i}$ yields a map

$$\rho: H^1(K, G_{\mathrm{red}}) \to \prod_{j=1}^k H^1(K, \mathbf{PGL}_{n_j})$$

for every field extension K/F. Recall that the set $H^1(K, \mathbf{PGL}_n)$ is naturally bijective to the set of isomorphism classes of central simple algebras of degree n. Therefore, a G_{red} -torsor over K yields a tuple of central simple K-algebras (A_1, A_2, \ldots, A_k) with $\deg(A_j) = n_j$.

Proposition 4.1. [4, Theorem A1] The map ρ establishes a bijection between $\Phi_{G_{\text{red}}}(K) = H^1(K, G_{\text{red}})$ and the set $\text{CSA}_D(K)$ for every field extension K/F.

The group of invariants $\operatorname{Inv}^n(G_{\operatorname{red}}, \mathbb{Q}/\mathbb{Z}(j))$ is identified with the subgroup of reductive invariants $\operatorname{Inv}^n(G, \mathbb{Q}/\mathbb{Z}(j))_{\operatorname{red}}$ in $\operatorname{Inv}^n(G, \mathbb{Q}/\mathbb{Z}(j))$. Thus, we can view $\operatorname{Inv}^n(G, \mathbb{Q}/\mathbb{Z}(j))_{\operatorname{red}}$ as the group of cohomological invariants of the set of k-tuples of central simple algebras of given degrees n_j and satisfying linear relations given by the group of relations D.

5. Simple groups of type A

5.1. Case $G = \mathbf{SL}_n$. Write *B* for the character group of the maximal torus of diagonal matrices. Then $B = \mathbb{Z}^n / \mathbb{Z} = \sum_i \mathbb{Z} x_i$ (see Example 2.3) and *B* is the weight lattice of the root system A_{n-1} . The root sublattice $\Lambda_r \subset B$ is generated by roots $x_i - x_j$. The Weyl group *W* is the symmetric group S_n acting by permutations on the x_i 's. The factor group B/Λ_r is equal to $(\mathbb{Z}/n\mathbb{Z})\hat{x}$, where \hat{x} is the class of x_i (it is independent of *i*). For every character $y \in B$ we write $\hat{y} = a\hat{x}$ for its residue in $(\mathbb{Z}/n\mathbb{Z})\hat{x}$.

Choose a character $y \in B$. Some of the components of y may coincide. Let y have distinct components $a_1 > a_2 > \cdots > a_k$ which repeat r_1, r_2, \ldots, r_k times respectively, so that $n = \sum r_i$ and $\hat{y} = a\hat{x}$ with $a = \sum_i r_i a_i$. We denote the character y by $(r_1, \ldots, r_k; a_1, \ldots, a_k)$ or simply by (\mathbf{r}, \mathbf{a}) (see [6, Part 2, §11]).

The stabilizer of $y = (\mathbf{r}, \mathbf{a})$ in the Weyl group $W = S_n$ is isomorphic to the product $S_{r_1} \times S_{r_2} \times \cdots \times S_{r_k}$ of symmetric groups. Hence the rank of We^y ,

i.e., the number of characters in the W-orbit of y is equal to

(2)
$$\operatorname{rank}(We^y) = \frac{n!}{r_1! r_2! \cdots r_k!}.$$

Write v_p for the *p*-adic valuation for a prime *p*.

Lemma 5.1. Let $\hat{y} = a\hat{x}$ for $y \in B$. Then $v_p(\operatorname{rank}(We^y)) \ge v_p(n) - v_p(a)$ for every prime p.

Proof. Write $y = (\mathbf{r}, \mathbf{a})$ as above. Let $l = \min_i v_p(r_i)$. Since $a \equiv \sum_i r_i a_i$ modulo n and $n = \sum_{i} r_i \in p^l \mathbb{Z}$, we have $v_p(a) \ge l$. By [6, Lemma 11.3],

$$v_p\left(\frac{n!}{r_1!\,r_2!\cdots r_k!}\right) \ge v_p(n) - l.$$

The result follows from (2).

Recall that $c_2(We^y) = N(We^y)q$, where $q = -\sum_{i < j} x_i x_j \in S^2(B)^W$ (see (1)).

Lemma 5.2. Let $y \in B$ be such that $\hat{y} = a\hat{x}$ with $v_p(a) \leq v_p(n)$, then $v_p(N(We^y)) \ge v_p(a).$

Proof. Write $y = (\mathbf{r}, \mathbf{a})$. By [6, Lemma 11.4], the gcd of $\sum_i r_i a_i$ and n divides $v_p(N(We^y))$. Since $a \equiv \sum_i r_i a_i$ modulo n, the result follows from the assumption on a.

The following statement shows that the inequalities in Lemmas 5.1 and 5.2are sharp.

Lemma 5.3. Let a be an integer with $v_p(a) < v_p(n)$ for a prime p. Then there is a character $y \in B$ such that

- (1) $\hat{y} = a\hat{x}$ in $(\mathbb{Z}/n\mathbb{Z})\hat{x}$,
- (2) $v_p(\operatorname{rank}(We^y)) = v_p(n) v_p(a),$ (3) $v_p(c_2(We^y)) = v_p(a).$

Proof. Write $a = p^u v$ for an integer v prime to p and $u = v_p(a)$. Consider the character $z = x_1 + x_2 + \cdots + x_{p^u} \in B$. By [2, Section 4.2], we have $v_p(c_2(We^z)) =$ $v_p(a)$. If y := vz then $\hat{y} = vp^u \hat{x} = a\hat{x}$ and $c_2(We^y) = v^2 c_2(We^z)$, hence $v_p(c_2(We^y)) = v_p(c_2(We^z)) = v_p(a)$. Finally, rank $(We^x) = \binom{n}{n^u}$ and

$$v_p(\operatorname{rank}(We^y)) = v_p(\operatorname{rank}(We^x)) = v_p\binom{n}{p^u} = v_p(n) - u = v_p(n) - v_p(a). \quad \Box$$

5.2. Case $G = \mathbf{SL}_n / \boldsymbol{\mu}_m$. Let *m* be a divisor of *n* and set $G = \mathbf{SL}_n / \boldsymbol{\mu}_m$. Let $A \subset B = \mathbb{Z}^n / \mathbb{Z} = \sum_i \mathbb{Z} x_i$ be the character group of the maximal torus S of classes of diagonal matrices. Thus A is the subgroup of B containing the root lattice Λ_r . The factor group $C = B/A = (\boldsymbol{\mu}_m)^*$ is equal to $(\mathbb{Z}/m\mathbb{Z})\bar{x}$, where \bar{x} is the cos t $x_i + A$ in C. The Weyl group W trivially on C, hence A is a W-submodule of B. We have the following groups:

$$\operatorname{Dec}(A) \subset S^{2}(A)_{\operatorname{red}}^{W} \subset S^{2}(A)^{W} \subset S^{2}(B)^{W} = \mathbb{Z}q,$$

8

where $q = -\sum_{i < j} x_i x_j \in S^2(B)^W$.

Lemma 5.4. If $kq \in S^2(A)_{\text{red}}^W$, then $k \in m\mathbb{Z}$.

Proof. The class \bar{x} in $C = (\mathbb{Z}/m\mathbb{Z})\bar{x}$ of first fundamental weight x_1 of G has order m. By [9, Proposition 10.6] or [7, Proposition 7.1], k is divisible by m.

Lemma 5.5. We have $2nq \in Dec(A)$.

Proof. Consider the character $x = x_1 - x_2 \in A$. By [8, Section 4b], $c_2(We^x) = -2nq \in \text{Dec}(A)$.

Lemma 5.6. 1. For every odd prime p, there is an integer k prime to p such that $kmq \in Dec(A)$.

2. Suppose that either n is odd or $v_2(m) < v_2(n)$. Then there is an odd integer k such that $kmq \in Dec(A)$.

Proof. Let p be a prime integer. Suppose first that $v_p(m) < v_p(n)$. Let $r = v_p(m)$. By Lemma 5.3 applied to the integer a = m, there is a character $y \in B$ such that $v_p(N(We^y)) = v_p(m)$ and $\bar{y} = m\bar{x} = 0$ in $(\mathbb{Z}/m\mathbb{Z})\bar{x}$. In particular, $y \in A$ and $c_2(We^y) = kmq$ with k prime to p.

Now let p be an odd prime with $v_p(m) = v_p(n)$. By Lemma 5.5, $(2n/m)mq \in Dec(A)$ and 2n/m is prime to p.

Finally, let n be odd. We have $mx_1 \in A$ and $c_2(We^{mx_1}) = m^2 q \in Dec(A)$ and m is odd as it divides n.

Now we are going to use the invariant ε defined in Section 2.

Lemma 5.7. If k is divisible by m and $v_2(m) = v_2(n) > 0$, we have $\varepsilon(kq) = \left\lfloor \frac{k}{2}\bar{x}, 2, \frac{k}{2}\bar{x} \right\rfloor$ in $\Sigma^2(C)$.

Proof. Since n/m is odd and $m\bar{x} = 0$, we have by Example 2.3:

$$\varepsilon(mq) = -\frac{m}{2} \left[\bar{x}, n, \bar{x} \right] = -\left[\frac{m}{2} \bar{x}, 2, \frac{n}{2} \bar{x} \right] = -\left[\frac{m}{2} \bar{x}, 2, \frac{m}{2} \bar{x} \right] = \left[\frac{m}{2} \bar{x}, 2, \frac{m}{2} \bar{x} \right].$$
It follows that $\varepsilon(kq) = \left[\frac{k}{2} \bar{x}, 2, \frac{k}{2} \bar{x} \right]$ since both sides are equal to $\varepsilon(mq) = \left[\frac{k}{2} \bar{x}, 2, \frac{k}{2} \bar{x} \right]$

 $\left[\frac{m}{2}\bar{x}, 2, \frac{m}{2}\bar{x}\right]$ if k/m is odd and is equal to zero if k/m is even.

Proposition 5.8. Let $G = \mathbf{SL}_n / \boldsymbol{\mu}_m$ and S a maximal split torus of G. Then

$$\operatorname{Dec}(S^*) = \mathcal{S}^2(S^*)_{\operatorname{red}}^W = \begin{cases} 2m\mathbb{Z}q, & \text{if } v_2(m) = v_2(n) > 0; \\ m\mathbb{Z}q, & \text{otherwise.} \end{cases}$$

Proof. The second case follows from Lemmas 5.4 and 5.6. Suppose $v_2(m) = v_2(n) > 0$. It follows from Lemmas 5.5 and 5.6 that $2mq \in \text{Dec}(A)$. It suffices to show that if $kq \in S^2(A)_{\text{red}}^W$, then $k \in 2m\mathbb{Z}$. By Lemma 5.4, k is divisible by m. Recall that \bar{x} has order m in C = B/A. In view of Lemma 5.7, $\varepsilon(kq) = \left[\frac{k}{2}\bar{x}, 2, \frac{k}{2}\bar{x}\right]$ in $\Sigma^2(C)$. By Lemma 2.1, $\frac{k}{2}\bar{x} = 0$ in C, i.e., $k \in 2m\mathbb{Z}$.

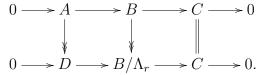
It follows from Proposition 5.8 that every reductive invariant of $\mathbf{SL}_n / \boldsymbol{\mu}_m$ is trivial (see [7, §7]) or, equivalently, central simple algebras of degree n and exponent dividing m have no indecomposable degree 3 invariants.

6. Semisimple groups of type A

Let n_1, n_2, \ldots, n_k be positive integers and D a subgroup of relations in $\coprod_{j=1}^k (\mathbb{Z}/n_j\mathbb{Z})$. Let $Z \subset \mu$ be the subgroup such that $Z^* = \mu^*/D$ and $G = (\prod_{j=1}^k \mathbf{SL}_{n_j})/Z$ as in Section 4.

Let $B = B_1 \oplus B_2 \cdots \oplus B_k$ denote the character group of a split maximal torus of G with the B_j 's as in Section 5.2. Write A for the kernel of the natural surjection $B \to C =: Z^*$, so A is the character lattice of a split maximal torus of G. For every j, the image of the projection $Z \to \mu_{n_j}$ is the subgroup μ_{m_j} of μ_{n_j} for a divisor m_j of n_j . We have then natural homomorphisms $G \to \operatorname{SL}_{n_j}/\mu_{m_j}$. Write \bar{x}_j for the canonical generator of the cyclic group $(\mu_{m_j})^* \subset B/A = C$ of order m_j . Thus, C is generated by the \bar{x}_j 's.

The group D is the kernel of the natural surjection $B/\Lambda_r \to C$, so D is the character group of the center of G. We have the following diagram with the exact rows:



Note that $B/\Lambda_r = \coprod_j (\mathbb{Z}/n_j\mathbb{Z})\hat{x}_j$, where \hat{x}_j is the class of a canonical generator of B_j in B/Λ_r . The image of \hat{x}_j under the homomorphism $B/\Lambda_r \to C$ is equal to \bar{x}_j .

The Weyl group W of G is the product of symmetric groups $W_j = S_{n_j}$. Write $q_j \in S^2(B_j)^{W_j} \subset S^2(B)^W$ for the canonical quadratic forms (see Section 5.2). Then $\{q_1, q_2, \ldots, q_k\}$ is a \mathbb{Z} -basis for $S^2(B)^W$.

Below is a generalization of Lemma 5.4.

Lemma 6.1. If $\sum_{j} k_j q_j \in S^2(A)_{\text{red}}^W$, then $k_j \in m_j \mathbb{Z}$ for all j.

Proof. The class in C of first fundamental weight of the *j*th component of G has order m_j . By [9, Proposition 10.6] or [7, Proposition 7.1], k_j is divisible by m_j .

Consider the subset $J \subset \{1, 2, ..., k\}$ of all j such that $v_2(m_j) = v_2(n_j) > 0$. Write D' for the subgroup of D of all elements having zero components outside J, i.e.,

$$D' = D \cap \prod_{j \in J} (\mathbb{Z}/n_j \mathbb{Z}) \hat{x}_j.$$

Let $q = \sum_{j \in J} k_j q_j \in S^2(B)^W$ be such that $k_j \in m_j \mathbb{Z}$ for every j. By Lemma 5.7,

$$\varepsilon(q) = \sum_{j \in J} [\tilde{k}_j \bar{x}_j, 2, \tilde{k}_j \bar{x}_j]$$
 in $\Sigma^2(C)$,

where $k_j = k_j/2$. Let $x \in B$ be a character with $\hat{x} := \sum_{j \in J} k_j \hat{x}_j \in B/\Lambda_r$. Since

$$[\bar{x}, 2, \bar{x}] = \sum_{j \in J} [\tilde{k}_j \bar{x}_j, 2, \tilde{k}_j \bar{x}_j] + \sum_{j \neq i} [\tilde{k}_j \bar{x}_j, 2, \tilde{k}_i \bar{x}_i]$$

and

 $[\tilde{k}_{i}\bar{x}_{i}, 2, \tilde{k}_{i}\bar{x}_{i}] + [\tilde{k}_{i}\bar{x}_{i}, 2, \tilde{k}_{i}\bar{x}_{i}] = [\tilde{k}_{i}\bar{x}_{i}, 2, \tilde{k}_{i}\bar{x}_{i}] - [\tilde{k}_{i}\bar{x}_{i}, 2, \tilde{k}_{i}\bar{x}_{i}] \in \mathrm{Im}(1-\tau)$ for $j \neq i$, we have

(3)
$$\varepsilon(q) = [\bar{x}, 2, \bar{x}]$$
 in $\Sigma^2(C)$.

Proposition 6.2. Let $q = \sum_j k_j q_j \in S^2(B)^W$. The following conditions are equivalent:

- (1) $q \in S^2(A)_{\text{red}}^W$, (2) $q' := \sum_{j \in J} k_j q_j \in S^2(A)_{\text{red}}^W$ and $k_j \in m_j \mathbb{Z}$ for every j,
- (3) k_j is even for every $j \in J$ and $\sum_{j \in J} \frac{k_j}{2} \hat{x}_j \in D'$ and $k_j \in m_j \mathbb{Z}$ for all j.

Proof. Set $\hat{x} := \sum_{j \in J} \tilde{k}_j \hat{x}_j \in B/\Lambda_r$.

(1) \Rightarrow (2): By Lemma 6.1, $k_j \in m_j \mathbb{Z}$ for all j. If $j \notin J$, then by Proposition 5.8, $k_j q_j \in S^2(A_j)_{\text{red}}^{W_j} \subset S^2(A)_{\text{red}}^W$. It follows that $q' \in S^2(A)_{\text{red}}^W$.

 $(2) \Rightarrow (3)$: By (3), $0 = \varepsilon(q') = [\bar{x}, 2, \bar{x}]$ in $\Sigma^2(C)$. In view of Lemma 2.1, $\bar{x} = 0$ in C, i.e, $\hat{x} \in D$. Then $\hat{x} \in D'$.

(3) \Rightarrow (1): We have $\hat{x} \in D'$ and $k_j \in m_j \mathbb{Z}$ for all $j \in J$. In particular, k_j is even. It follows from (3) that $\varepsilon(q') = [\bar{x}, 2, \bar{x}] = 0$ in $\Sigma^2(C)$, hence $q' \in S^2(A)_{\text{red}}^W$. If $j \notin J$, then by Proposition 5.8, $k_j q_j \in S^2(A)_{\text{red}}^W$. Thus, $q \in S^2(A)_{\text{red}}^W$. \Box

Consider a homomorphism

$$\alpha : {}_{2}D' \to \mathcal{S}^{2}(A)^{W}_{\mathrm{red}}/\mathrm{Dec}(A),$$

where $_{2}D'$ is the subgroup of exponent 2 elements in D', defined as follows. Let $x \in {}_{2}D'$, i.e., $\hat{x} := \sum_{j \in J} \frac{k_{j}}{2} \hat{x}_{j}$ with $k_{j} \in n_{j}\mathbb{Z}$. Set

$$\alpha(\hat{x}) = \sum_{j \in J} k_j q_j + \operatorname{Dec}(A).$$

We have α well defined by Proposition 6.2.

Lemma 6.3. There are no elements in $_2D'$ with exactly one nonzero component.

Proof. Suppose that $\frac{n_j}{2}\hat{x}_j \in {}_2D'$ for some $j \in J$. Then $\frac{n_j}{2}\bar{x}_j = 0$ in C. It follows that m_j divides $\frac{n_j}{2}$ since the order of \bar{x}_j in C is equal to m_j . This is a contradiction since $v_2(m_j) = v_2(n_j)$ for j in J.

Let E be the subgroup of $_2D'$ generated by all elements with exactly two nonzero components.

Lemma 6.4. We have $\alpha(E) = 0$.

Proof. Every generator of E is of the form $\frac{n_j}{2}\hat{x}_j + \frac{n_k}{2}\hat{x}_k$ with $j \neq k$ in J. We want to show that $n_jq_j + n_kq_k \in \text{Dec}(A)$. By Lemma 5.3 applied to the integers $\frac{n_j}{2}$ and $\frac{n_k}{2}$, respectively, there are characters $y_j \in B_j$ and $y_k \in B_k$ such that (1) $\hat{y}_j = \frac{n_j}{2}\hat{x}_j$ in $(\mathbb{Z}/n_j\mathbb{Z})\hat{x}_j$, $\hat{y}_k = \frac{n_k}{2}\hat{x}_k$ in $(\mathbb{Z}/n_k\mathbb{Z})\hat{x}_k$, (2) $v_2(\text{rank}(W_je^{y_j})) = 1$, $v_2(\text{rank}(W_ke^{y_k})) = 1$,

(3) $v_2(N(W_j e^{y_j})) = v_2(n_j) - 1, v_2(N(W_k e^{y_k})) = v_2(n_k) - 1.$

Set $y := y_j + y_k$. As $\hat{y} = \hat{y}_j + \hat{y}_k \in E \subset {}_2D'$, we have $y \in A$. It follows from the equality

$$We^y = W_j e^{y_j} \cdot W_k e^{y_k}$$

and Lemma 2.4 that

$$c_{2}(We^{y}) = c_{2}(W_{j}e^{y_{j}} \cdot W_{k}e^{y_{k}})$$

= $c_{2}(W_{j}e^{y_{j}}) \operatorname{rank}(W_{k}e^{y_{k}}) + c_{2}(W_{k}e^{y_{k}}) \operatorname{rank}(W_{j}e^{y_{j}})$
= $N(W_{j}e^{y_{j}}) \operatorname{rank}(W_{k}e^{y_{k}})q_{j} + N(W_{k}e^{y_{k}}) \operatorname{rank}(W_{j}e^{y_{j}})q_{k}$
= $t_{i}q_{i} + t_{k}q_{k}$

for the integers t_j and t_k with $v_2(t_j) = v_2(n_j)$ and $v_2(t_k) = v_2(n_k)$. Recall that $2n_jq_j$ and $2n_kq_k$ belong to Dec(A) by Lemma 5.5. It follows that $n_jq_j + n_kq_k \in \text{Dec}(A)$.

It follows from Lemma 6.4 that α factors through a homomorphism

$$\alpha': ({}_2D')/E \to \mathcal{S}^2(A)^W_{\mathrm{red}}/\operatorname{Dec}(A).$$

We prove that α' is an isomorphism by constructing the inverse map. Define a homomorphism

$$\beta: S^2(A)^W_{\mathrm{red}} \to {}_2D$$

as follows. Let $q = \sum_{j} k_{j} q_{j} \in S^{2}(A)_{\text{red}}^{W}$. By Lemma 6.1, $k_{j} \in m_{j}\mathbb{Z}$ for all j. Set

$$\beta(q) = \sum_{j \in J} \frac{k_j n_j}{2m_j} \hat{x}_j.$$

By Proposition 6.2, $\sum_{j \in J} \frac{k_j}{2} \hat{x}_j \in D'$. Since $m_j \hat{x}_j \in D'$ and n_j/m_j is odd, we have $\beta(q) \in D'$. Also, $2\beta(q) = 0$ since $n_j \hat{x}_j = 0$, hence $\beta(q) \in {}_2D'$.

Lemma 6.5. We have $\beta(\text{Dec}(A)) \subset E$.

Proof. We shall show that $\beta(c_2(We^y)) \in E$ for every $y \in A$. Write $\hat{y} = \sum_j a_j \hat{x}_j$ for some $a_j \in \mathbb{Z}$ (unique modulo n_j). Since $c_2(We^{ty}) = t^2 c_2(We^y)$ for every integer t, we may replace y by ty for every odd integer t. In particular, we may assume that either $a_j = 0$ or $v_2(a_j) < v_2(n_j)$ for every j.

Let s be the number of indices j such that $a_j \neq 0$.

Case 1: $s \leq 2$. In this case $c_2(We^y)$ has at most 2 nonzero *j*-components, hence $\beta(c_2(We^y)) \in E$.

Case 2: $s \geq 3$. We show that $\beta(c_2(We^y)) = 0$. Fix a $k \in J$. It suffices to prove that v_2 of the q_k -coefficient $N_k(We^y)$ of $c_2(We^y)$ is strictly larger than $v_2(m_k) = v_2(n_k)$. Set $t_j := v_2(n_j) - v_2(a_j)$ for all j such that $a_j \neq 0$.

12

We claim that there is an i different from k such that

(4)
$$t_i \ge t_k.$$

Suppose that $t_k > t_i$ for all *i* different from *k*. Then there is an odd integer *s* such that $s2^{t_k-1}\hat{y} = s2^{t_k-1}\hat{x}_k$ is a nonzero element in $_2D'$ with only one nonzero component, a contradiction by Lemma 6.3. The claim is proved.

Write $y = \sum_{j} y_{j}$, where $y_{j} \in B_{j}$. We have $\hat{y}_{j} = a_{j}\hat{x}_{j}$ for all j and

(5)
$$We^y = \prod_j W_j e^{y_j} = W_k e^{y_k} \cdot z,$$

where z is the product of all $W_i e^{y_i}$ but $W_k e^{y_k}$. Hence by Lemma 2.4,

$$c_2(We^y) = N_k(W_k e^{y_k}) \operatorname{rank}(z)q_k + (\text{linear combination of } q_j\text{'s with } j \neq k).$$

By Lemma 5.2,

(6)
$$v_2(N_k(W_k e^{y_k})) \ge v_2(a_k)$$

Also, z is divisible by $W_i e^{y_i} \cdot W_j e^{y_j}$ for i as in (4) and some j such that $a_j \neq 0$ (such exists since $s \geq 3$). We have then

(7)
$$\operatorname{rank}(z) \in \operatorname{rank}(W_i e^{y_i}) \operatorname{rank}(W_j e^{y_j}) \mathbb{Z}$$

By Lemma 5.1,

(8)
$$v_2(\operatorname{rank}(W_i e^{y_i})) \ge v_2(n_i) - v_2(a_i) = t_i$$

and

(9)
$$v_2(\operatorname{rank}(W_j e^{y_j})) \ge v_2(n_j) - v_2(a_j) > 0.$$

It follows from (4)-(9) that

$$v_{2}(N_{k}(We^{y})) = v_{2}(N_{k}(W_{k}e^{y_{k}})) + v_{2}(\operatorname{rank}(z) \\ \geq v_{2}(N_{k}(W_{k}e^{y_{k}})) + v_{2}(\operatorname{rank}(c_{2}(W_{i}e^{y_{i}})) + v_{2}(\operatorname{rank}(c_{2}(W_{j}e^{y_{j}})) \\ > v_{2}(a_{k}) + t_{i} \\ \geq v_{2}(a_{k}) + t_{k} \\ = v_{2}(n_{k}). \qquad \Box$$

It follows from Lemma 6.5 that β factors through a homomorphism

$$\beta': S^2(A)^W_{\text{red}} / \operatorname{Dec}(A) \to ({}_2D')/E.$$

Proposition 6.6. Let S be a maximal split torus of the group $G = (\prod_{j=1}^{k} \mathbf{SL}_{n_j})/Z$. Then the map $\alpha' : ({}_2D')/E \to \mathbf{S}^2(S^*)_{\mathrm{red}}^W/\mathrm{Dec}(S^*)$ is an isomorphism.

Proof. We show that β' is the inverse of α' . The composition $\beta' \circ \alpha'$ is the identity since n_j/m_j is odd for all $j \in J$. Let $q = \sum_j k_j q_j \in S^2(A)_{red}^W$. By Lemma 6.1, $k_j \in m_j \mathbb{Z}$ for all j. We have $\alpha' \circ \beta'(q) = \sum_{j \in J} \frac{k_j n_j}{m_j} q_j$. It follows from Proposition 5.8 that $2k_j q_j \in Dec(A)$ for $j \in J$, therefore, $\frac{k_j n_j}{m_j} q_j$ is congruent to $k_j q_j$ modulo Dec(A) since n_j/m_j is odd.

If $j \notin J$, then by Proposition 5.8, $k_j q_j \in \text{Dec}(A)$. It follows that $\alpha' \circ \beta'(q)$ is equal to q modulo Dec(A).

7. Main theorem

Let n_1, n_2, \ldots, n_k be a sequence of positive integers, $D \subset \coprod_{j=1}^k (\mathbb{Z}/n_j\mathbb{Z})$ a subgroup of relations. Let CSA_D be the functor that takes a field extension K/F to the set of k-tuples of central simple K-algebras (A_1, A_2, \ldots, A_k) with $\deg(A_j) = n_j$ such that $\sum_j d_j[A_j] = 0$ in the Brauer group $\operatorname{Br}(K)$ for all tuples $(d_j + n_j\mathbb{Z}) \in D$.

For every j, write $m_j \mathbb{Z}/n_j \mathbb{Z} = D \cap (\mathbb{Z}/n_j \mathbb{Z})$ for a unique positive divisor m_j of n_j . Consider the set J of all indices j such that $v_2(m_j) = v_2(n_j) > 0$ and let $D' = D \cap \coprod_{j \in J} (\mathbb{Z}/n_j \mathbb{Z})$. Let E be the subgroup of $_2D'$ generated by elements with exactly two nonzero components.

Combining Theorem 3.1 and Propositions 4.1 and 6.6, we get the following main theorem of the paper.

Theorem 7.1. For every group of relations D, there is a natural isomorphism $(_2D')/E \xrightarrow{\sim} \operatorname{Inv}^3(\operatorname{CSA}_D, \mathbb{Q}/\mathbb{Z}(2))_{\operatorname{ind}}.$

Example 7.2. Let $n_1 = n_2 = \cdots = n_k = 2$ for $k \ge 3$ and let D be the cyclic subgroup (of order 2) generated by $(1, 1, \ldots, 1)$. Then $\text{CSA}_D(K)$ is the set of k-tuples of quaternion K-algebras (Q_1, Q_2, \ldots, Q_k) such that

$$[Q_1] + [Q_2] + \dots + [Q_k] = 0$$

in Br(K). We have ${}_{2}D' = D = \mathbb{Z}/2\mathbb{Z}$ and E = 0, i.e., there is exactly one indecomposable degree 3 invariant of CSA_D. It is defined as follows (see [9, Example 11.2]). Let φ_{j} be the reduced norm quadratic form of Q_{j} . The sum φ of the forms φ_{j} in the Witt group W(K) of K belongs to the cube of the fundamental ideal of W(K) (this also makes sense when char(F) = 2), i.e., φ is the sum of 3-fold Prister forms $\rho_{1}, \rho_{2}, \ldots, \rho_{s}$. The Arason invariant $\sum_{i} e_{3}(\rho_{i})$ of φ in $H^{3}(K, \mathbb{Q}/\mathbb{Z}(2))$, where $e_{3}(\rho_{i})$ is the class of ρ_{i} in $H^{3}(K, \mathbb{Q}/\mathbb{Z}(2))$, yields the only nontrivial degree 3 nontrivial invariant Ar_{k} of CSA_D (see also [1]).

We can make explicit the isomorphism in Theorem 7.1. Let $d \in {}_2D'$. Write $d = \sum_j d_j \hat{x}_j$ for integers d_j such that $2d_j \in n_j \mathbb{Z}$. The map of $(\mathbb{Z}/2\mathbb{Z})^k$ to $\prod_{j=1}^k (\mathbb{Z}/n_j\mathbb{Z})\hat{x}_j$ taking a tuple (b_j) to $\sum_j b_j d_j \hat{x}_j$ sends the generator $(1, 1, \ldots, 1)$ from Example 7.2 to d. This describes the invariant P_d of CSA_D corresponding to d by Theorem 7.1 as follows. Let $A = (A_1, A_2, \ldots, A_k)$ be a tuple of central simple algebras in CSA_D(K). In particular, $\sum_j d_j[A_j] = 0$ in Br(K). As $\deg(A_j) = n_j$, the class $d_j[A_j]$ is represented by a quaternion algebra Q_j , and we have $\sum_j [Q_j] = 0$. The invariant P_d is given by $P_d(A) := \operatorname{Ar}_k(Q)$, where $Q = (Q_j)$ with Ar_k from Example 7.2.

References

[1] S. Baek, Chow groups of products of severi-brauer varieties and invariants of degree 3, To appear in Transactions of the American Mathematical Society (2015).

- [2] H. Bermudez and A. Ruozzi, Degree 3 cohomological invariants of split simple groups that are neither simply connected nor adjoint, J. Ramanujan Math. Soc. 29 (2014), no. 4, 465–481.
- [3] S. Blinstein and A. Merkurjev, Cohomological invariants of algebraic tori, Algebra Number Theory 7 (2013), no. 7, 1643–1684.
- [4] S. Cernele and Z. Reichstein, *Essential dimension and linear codes, with an appendix by athena nguyen*, To appear in Pacific J. Math.
- [5] L. Fuchs, *Infinite abelian groups. Vol. I*, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970.
- [6] R. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological invariants in galois cohomology, American Mathematical Society, Providence, RI, 2003.
- [7] D. Laackman and A. Merkurjev, Degree three cohomological invariants of reductive groups, Preprint (2015).
- [8] A. Merkurjev, Degree three cohomological invariants of semisimple groups, To appear in JEMS (2013).
- [9] A. Merkurjev, Unramified degree three invariants of reductive groups, LAG preprint server, http://www.math.uni-bielefeld.de/lag/ 543 (2014).
- [10] J.-P. Serre, Cohomologie galoisienne: progrès et problèmes, Astérisque (1995), no. 227, Exp. No. 783, 4, 229–257, Séminaire Bourbaki, Vol. 1993/94.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu