OPERATIONS IN CONNECTIVE K-THEORY
ALEXANDER MERKURJEV AND ALEXANDER VISHIK

ABSTRACT. In this article we classify additive operations in connective K-theory with
various torsion-free coefficients. We discover that the answer for the integral case re-
quires understanding of the Z one. Moreover, although integral additive operations are
topologically generated by Adams operations, these are not reduced to infinite linear
combinations of the latter ones. We describe a topological basis for stable operations
and relate it to a basis of stable operations in graded K-theory. We classify multiplicative
operations in both theories and show that homogeneous additive stable operations with
Z-coefficients are topologically generated by stable multiplicative operations. This is not
true for integral operations.

1. INTRODUCTION

Let k be a field of characteristic 0. An oriented cohomology theory A* over k is a
functor from the category Sm;” of smooth quasi-projective varieties over k to the category
of Z-graded commutative rings equipped with a push-forward structure and satisfying
certain axioms. In this article, we study the, so-called, small theories. For these, the
appropriate choice is [11, Definition 2.1] which employs a strong form of the localisation
axiom and is some breed of the axioms of Panin-Smirnov [8, 9] and that of Levine-Morel
[7, Definition 1.1.2]. In particular, every oriented cohomology theory A* admits a theory
of Chern classes ¢ of vector bundles. Among such theories there is the universal one
- the algebraic cobordism of Levine-Morel Q* [7]. We will work with the free theories,
i.e. theories obtained from 2* by change of coefficients. These are exactly the theories of
rational type for which the results of [11] apply.

Examples of free oriented cohomology theories are:

e Chow theory CH™ that assigns to a smooth variety X over k the Chow ring CH*(X);
e Graded K-theory K, taking X to the Laurent polynomial ring Ko(X)[t,t~"] (graded
by the powers of the Bott element t of degree —1) over the Grothendieck ring Ko(X);
o Connective K-theory taking a smooth variety X to the ring CK*(X) of X (see [3] and
5)).

The connective K-theory is the “smallest” oriented cohomology theory “living” above
Chow theory and graded K-theory: there are natural graded morphisms

CK*(X)

TN

CH*(X) K (X)
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that yield graded isomorphisms
CK*(X)/t CK*"'(X) = CH*(X) and CK*(X)[t™'] & K}.(X).

Moreover, multiplication CK""(X) < CK"(X) by the Bott element ¢ € CK (k) is an
isomorphism if n < 0. The map CK’(X) — K (X) = Ko(X) is also an isomorphism, so
we can identify CK"(X) with Ky(X) for all n < 0.

For any n > 0 the image of CK"(X) SN CK"(X) = Ky(X) is the subgroup Kén)(X) C
Ky(X) generated by the classes of coherent O y-modules with codimension of support at
least n. Note that the map " may not be injective in general if n > 1.

Let A* and B* be two oriented cohomology theories. An additive operation G : A* — B*
is a morphism between functors A* and B* considered as contravariant functors from
Smy to the category of abelian groups. Examples of additive operations are Adams
operations in algebraic K-theory and Steenrod operations in the Chow groups modulo a
prime integer.

If A* is an oriented cohomology theory and R is a commutative ring, we write A%(X)
for A"(X) ®z R and OP;™(A) for the R-module of R-linear operations A% — A%.

It is proved in [11, §6.3] that every free oriented cohomology theory A* admits the
Adams operations WA € OP%"(A) for all n and m. The operation ¥2 in OP}'(A)
satisfies

Ui (' (L)) = e (L°™)
for a line bundle L. Moreover, there is an R-linear map

Ad, : R[[z]] — OP""(A)

taking the power series (1 — 2)™ to the Adams operation W for all m € Z.
In general, the map Ad,, is neither injective not surjective. But it is shown in [11, §6.1]
that Ad, is an isomorphism if A* is the graded K-theory, thus,

OP}"(K,,) = R[]

Since the power series (1 — )™ generate R[[x]] as topological group in the z-adic topol-
ogy, we can say that the R-module OP%"(K,,) is topologically generated by the Adams
operations in the graded K-theory. Moreover, since multiplication by the Bott element is

an isomorphism in K7, we have OPR™ (K, ) = R[[z]] - t"™™.

In the present paper we study the groups OP%™ := OP%™(CK) of operations in the
connective K-theory over R. We write for simplicity OP™™ for OPZ"™.

The groups CK"(X) for n < 0 are identified with Ky(X), hence translating the above
result on the operations in graded K-theory, we see that Ad, : R[[z]] — OP%" is an
isomorphism for n < 0.

The Adams operation W is trivial on CK% for n > 1, i.e. Ad,(1) =0, so we consider
the restriction Ad/, : xR[[x]] — OP%" of the map Ad,. The R-module CKL(X) is a
canonical direct summand of CK%(X) = Ky(X)g with the complement R - 1. This leads
to a ring isomorphism OP%’ ~ R x OP}'. Moreover, the map Ad} : zR[[z]] — OPR' is
an isomorphism.
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The structure of the groups OP%" with n > 1 is much more delicate and depends on
the base ring R. The homomorphisms Ad), : zR[[z]] — OP’;" for n > 2 are not surjective
in general.

It came as a surprise to us that the structure of OP;" is very simple over the ring of

~

profinite integers Z = lim(Z/nZ):
Theorem. The map Adj, : R[[z]] — OPL" is an isomorphism if n > 1. In particular,
the Z-module OP%’” is topologically generated by the Adams operations.

Over Z the map Ad/, is not surjective if n > 2.

Theorem. The group OP™" of integral operations is isomorphic canonically to a subgroup
of OP%”. Moreover, there is an exact sequence

0 = 2Z[[]] 2 oP™ 5 (Z/Z)" ' = 0
ifn>1.

Thus, the group Z also shows up in the computation of OP™" over Z. For example,
OP*? as a subgroup of OP%’2 = xZ[[z]] is generated by zZ[[z]] and the power series

D oiso 2t for all ¢ € Z and integers ¢; such that ¢ — ¢; is divisible by ¢ for all ¢ > 0, i.e.,
¢; in Z represents congruence class of ¢ modulo 1.

We prove that the rings OP™" and OP%’” are commutative. Moreover, the rings OP™"
are “almost” integral domains: the only zero divisors are the multiples of Wy + ¥ _;.

An operation G : A* — B* is called multiplicative if G is a morphism of functors
Sm; — Rings. Examples are twisted Adams operations ¥y defined as follows. Let b € Z
and ¢ € Z*. Then the operation W§ is homogeneous and equal to ¢™" - Wy, on CKZ, where
Uy, is the (generalized) Adams operation with the power series (1 — z)%. We classify all
multiplicative operations on CK3 in Section 5.

The notion of “stability” in topology can be considered in algebraic setting as follows
(see [11, §3.1]). Let SmOp be a category whose objects are pairs (X, U), where X € Smy
and U is an open subvariety of X. Any theory A* extends from Smj to SmOp by the
rule:

A*((X,U)) := Ker(A*(X) — A*(U)).
and every additive operation A* — B* on Sm,; extends uniquely to an operation on
SmOp. There is an identification

of  AN((X,U)) —> AT (20 (X, ),

where Y7(X,U) := (X, U) A (P!, P1\0).
For any additive operation G : A* — B* we define its desuspension as the unique
operation ¥7'G : A* — B* such that

A __ B -1
Goop=0p0%X G.

A stable additive operation G : A* — B* is the collection {G™|n > 0} of operations
A* — B* such that G™ = R~1G0+),
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In Section 6 we classify stable operations in connective K-theory over Z. We prove that
under the identification R
<0
oprn — § 2l ifn<0;
z xZ([x]], ifn>1
the desuspension map is given by the formula

1 d(G), if n < 1;
x(6) = { B(G) — B(G)(0), ifn> 1.

dG@

where G € OPZ" and ®(G) = (v — 1)d— Thus, the desuspension map X! yields a
x

tower of injective maps

Z[[z]] = OPY’ +> OPL' «> ... <> OPL" ¢ ...

The group of homogeneous degree 0 stable operations CK5 — CK5 is canonically isomor-
phic to the group

S := N, Im(®") C Z[[z]].
We identify this group in Section 6. In particular we prove that S is the closure in the
z-adic topology of Z[[z]] of the set of all (finite) Z-linear combinations of the Adams
power series A, for r € Z*. The Z-module S and its integral version Sy appear to be of
an uncountable rank. We describe a topological basis for them.
We call a multiplicative operation G stable if the constant sequence (G,G,G,...) is
stable. We prove that stable multiplicative operations CK; — CK% are exactly operations

ve, for c € Zx. Thus, we obtain:

Theorem. Homogeneous degree 0 stable additive operations on CK% are topologically
generated by the stable multiplicative operations there.

Similarly, stable multiplicative operations on CK* are Wi'. This time though, they
don’t generate the group of stable additive operations which is of uncountable rank.

Recall that operations in (graded) K-theory were determined in [11, §6.1]. In the
present paper we determine stable and multiplicative operations in K,.. We describe
a basis of the group of stable K -operations and relate it to the basis of stable CK-
operations. The ring of stable operations is dual to the Hopf algebra of co-operations
defined over Z and therefore has a structure of (topological) Hopf algebra. The Hopf
algebra of co-operations coincides with Ky(K) in topology and has been studied in [1],
[2], [4], [6] and [10].

The main tool used in our proofs is the general result of the second author [11, Theorem
6.2] that asserts, when applied to the connective K-theory, that an operation G € OP’;™
for n > 1 is given by a sequence of symmetric power series G; € R[[z1,...,x]] foralll > n
satisfying certain conditions. In particular, G; divisible by ... z; and —G4; = 0(G)),
the partial derivative of G| (see Definition 2.1) for all [ > n, i.e., all power series G, are
determined by G,. We show that if R is torsion free, then G, can be integrated over
K = R® Q: there is a unique power series H € xK[[z]] such that G,, = 0" *(H). Thus,
the operation G is determined by a power series H in one variable over K such that
"1 (H) € R[[x1,...,7,]]
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The article is organized as follows. In Section 2 we prove general results which will
permit us to integrate the multivariate symmetric power series and reduce the classifica-
tion of operations to the description of power series in one variable with certain integrality
properties. These properties are then studied and the respective power series are classified
in Section 3. In Section 4 we apply the obtained results in combination with [11, Theorem
6.2] to produce a description of additive operations in CK with integral and Z-coefficients.
We describe the ring structure on the set of homogeneous operations. The description of
operations in K, comes as an easy by-product. In the latter case, we also describe the
dual bi-algebra of co-operations. Multiplicative operations in CK and K, are studied in
Section 5. Finally, Section 6 is devoted to the computation of stable operations.

2. SYMMETRIC POWER SERIES

2.1. Partial derivatives. Let F'(z,y) be a (commutative) formal group law over a com-
mutative ring R. We write zxy := F(x,y).
Let G(xy,...,x,) € R[[z1,...,2,]] be a power series in n > 1 variables.

Definition 2.1. The partial derivative of G (with respect to F) is the power series

(0G)(x1, e, ..., k1) = G(xr*T9, 23, ..., Tye1) — G(x1, T3, ..., Tpi1)
— G(IQ, T3y ,In+1) + G(O, T3y w'En—i—l) S R[[l'l, .. ,In+1]].

Note that the partial derivative is always taken with respect to the first variable (in
this case x1) in the list of variables. Write 0™ for the iterated partial derivative. We also
set (0°G)(z1, ..., 2n) = G(x1,.. ., 20) — G(0, 29, ..., 2,).

For a subset I C [1,m+1] :={1,...,m+ 1} write ; for the *-sum of all z; with i € I.
In particular, £y = 0. Then

(0’”G)(a:1, - -xm—i-n) = Z<_1)|I|G(x17 Tm+42,- - - 7~Tm+n) € R[[xb Lo, ... axm-i-n]]a

where the sum is taken over all 2™ subsets I C [1,m + 1]. In particular, ™G is
symmetric with respect to the first m + 1 variables.

Observation 2.2. If G € R[[xy,...,x,]] is so that G is symmetric power series, then
0™G is symmetric for all m > 1.

Indeed, since IG is symmetric, 0™G = 0™ (JG) is symmetric with respect to the last
n variables. But 0™G is symmetric with respect to the first m + 1 variables, hence it is
symmetric.

Notation 2.3. For any commutative Q-algebra K write

ley(z) = log(1 - 2) = - ¥ % € K]

i>1 1

and for any n > 0,
lg,(¢) = - (lgy(2)" € Kle]].

In particular, 1g,(z) = 1.
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For the rest of this section * denotes the multiplicative formal group law, i.e., xxy =
rT+y—zry.

The power series lg;(x) belongs to the kernel of . Moreover, we have the following
statement.

Proposition 2.4. For any commutative Q-algebra K and any n > 0, the kernel of 0" ! :
K[[z]] = K[[z1,...,x,]] is equal to

> K-lg,(z).

osr<n

Proof. We change the variables: y; = lg,(z;) = log(1 — z;), where z; = x. The multiplica-
tive group law * translates to the additive one. In the new variables the partial derivative
is homogeneous and lowers the degree in y; by 1. Therefore, the kernel of 9" is spanned
by 1L,yi,...,y0 D

The following formula is very useful.

Proposition 2.5. Let K be a Q-algebra, G € K|[[z]] and n a positive integer. Then

n > 1 n—1 kde k
(8 G)(:I:l,xg,...an)Z ZH 0 <<1—.§L’) W)(Il,l’g,...,l’n)'wnJA.
k=1 K T
Proof. Note that both sides don’t contain monomials T := x{'25? - - - ;71" if at least one

«; is zero. We prove that for every multi-index o with a; > 0 for all 4, the T%- coefficients
of both sides are equal. Set k = a;,11.

The T*-coefficient of the left hand side is the same as the T%coefficient of
G(x1*xo% - - -xx,41). To determine this coefficient, we differentiate (in the standard way)
k times the series G(x1*xo*- - -*Tpy1) by x,01, plug in x,.; = 0 and divide by k!. Note

that
d

d$n+1
It follows that the z®-coefficient in the left hand side is equal to the z{*z3*---2%"-
coefficient of

(x1kxok- - xpyq) = (1 — 1) (1 —x) -+ - (1 — x).

k k pd*G
On the other hand, note that the x®-coefficient of the right hand side is equal to the
dk*G
a{twy? - - - xon-coefficient of 9" ((1 — x)kﬂ> (1,22, ...,x,). This is the same as the
: x
xtwy? - - xim-coefficient of

1 1
E(l—xl*xg*- k2 ) FG®) (g kxox- - xy,) = E(l—xl)k(l—:pg)k o (1=my,)F

d*G
@(Zﬂl*"tg*- . *xn)

0

For a nonzero power series H € R[[z1,...,2,]] denote by v(H) the smallest degree of
monomials in H. Set also v(0) = oc.

Observation 2.6. Suppose that a commutative ring R is torsion free. A direct calculation
shows that for positive integers n and m, we have v(9" '(z™)) = m if m > n. It follows
that v(0"1(G)) = v(G) for every G € R|[z]] such that v(G) > n.
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2.2. Integration of symmetric power series.

Definition 2.7. A power series G € R|[x1,...,x,]] is called double-symmetric if G itself
and OG are both symmetric.

In the following proposition we prove that double-symmetric power series can be sym-
metrically integrated over any commutative Q-algebra.

Proposition 2.8. Let K be a commutative Q-algebra and G € K|[xy,...,x,]], n > 2, be
a symmetric power series divisible by x1 - ... x,. The following are equivalent:

1) G is double-symmetric;

2) All derivatives 0™(G), m > 0, are symmetric power series;

3) There is a power series L € K[[z]] such that G = 9" *(L);

4) There is H € K[[x1,...,2n_1]] such that O(H) = G;

5) There is a unique symmetric H € K|[xy,...,T,_1]|, divisible by x1-. .. - x,_q, with
zero coefficient at xy - ... xy,_1 and such that O(H) = G.

Proof. Note that (1) < (2) by Observation 2.2. We will prove the equivalence of all
statements by induction on n. The implication (3) = (2) is clear, (2) = (1) and (3) = (4)
are trivial.

(5) = (3) follows by induction applied to H.

(1) or (4) = (5) Over a commutative Q-algebra every formal group law is isomorphic

to the additive one. So we may assume that the group law is additive, i.e., the derivative
is defined by

(0G)(z,y,t) = Gz +y,t) = G(x,t) — Gy, 1) + G(0, 7).

We first prove uniqueness. Indeed if 0H = 0, then H is linear in x;, and since H is
symmetric and divisible by z; - ... - z,_1, we must have H = 0.

Case n = 2: The implication (4) = (5) is obvious. We prove (1) = (5). We may
assume that G is a homogeneous polynomial of degree d > 1. The symmetry of the
derivative of G(x,y) results in the following cocycle condition:

Gz +y,2)+Gxy) =G+ 2y + Gz, 2).
In particular, we have the following equalities:

Glz+y,z+y)+Gx,y) =G2x+y,y) + Gz, x +vy),
G2z +vy,y) + G(2x,y) = G(2z,2y) + G(y,v),
G(r,z+y)+ G(z,y) = G(2z,y) + G(z, ).
It follows that
G (z,2))(z,y) =Gz +y,z+y) - Gx,z) — Gy, y)
= G(22,2y) — 2G(z,y)
= (29 - 2)(G(z,y)),
hence G(x,y) = 9(H), where H(z) = G(z,z)/(2¢ — 2).
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Case n = 3: Write G(x,y,2) = Y .o, Gi(z,y)z". Clearly, all Gy(x,y) satisfy (1) or
(4) and hence (5) by induction. Integrating each G;(x,y), we get a power series H =
D ij>1@ijr'y’ in two variables such that 0H = G.

Note that we can change H by any series Y, ¢;zy’ without changing 9H. This way, we
can make H = Zm)l ai,jxiyj with a;1 = a1, and a; 1 = 0. We claim that H is symmetric.
Indeed, from the symmetry of OH, we have:

i+k j+k
i) Qitks = 0y ) Qatkis

for any 4, 5, k > 1. This implies that

1 [i+1
T\ Qitr1—1,1 = Qg

and so, a;; = a;;, for any 7,0 > 2. This shows that H is symmetric. Observe that such
symmetric integration is unique provided a; ; = 0.

Case n > 3: Write G = Y., G; - o}, with G; € K[[zy,...,2,1]]. The slices G; of
G are double-symmetric. By the inductive assumption, these can be uniquely integrated
to symmetric power series H; € K|[[z1,...,x, o]] as in (5). Putting these power series
together, we obtain

H = Z H’L . ':Bfm—l S K[[Z’l, ceey xn—l“

i>1
such that O0H = G. Write

J— 7;1 7:nfl
H = Z Aiy,cfin_1Ly -+ L1+

11 5ensln—1

Modifying H by 1 ...x, 1L(z,_1) for an appropriate power series L, we may assume
that Qi1,..1 = AaA11,...4 for all 7.
We claim that H is symmetric. The zi'...z'-coefficient of G = OH is equal to

(llzz‘Z)ailHQ,ig,N,,iH. Therefore, since G is symmetric, H is symmetric with respect to

o, ...,Tn_1, if i1 > 1. Recall than H is also symmetric in x1,...,2z,_o. Therefore, it
suffices to show that the coefficient a, , . does not change if we interchange 7,1 with
iy for some k=2,....n— 2.

Suppose all indices 71, ... ,17,_1 but one are equal to 1. Then the statement follows from
the equality a1 1. ; = a;1,..1 = a1, 1 for all ¢. Otherwise, at least two indices, say i, = u
and ¢, = v with k£ < [ are greater than 1.

Ifl <n—1,set w=r1, 1. We have (here and below we indicate only the indices which

are permuted, hidden indices remain unchanged):

~~7in—1

A1 uvw = Avulw = Qvw,lu = Alww,u,
so we interchanged iy and i,,_1. If | =n — 1, we can write
Al up = Ayl = AQuou,l = Quul = Ay 1y = A1 vu,

i.e., we again interchanged i; and 7,,_1. 0
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3. THE GROUPS QY

The formal group law is multiplicative in this section. Let R be a commutative ring
and K = R ®z Q. We assume that R is torsion free (as abelian group), i.e., R can be
identified with a subring of K.

Definition 3.1. For any integer n > 1, let us denote by Q% the R-module of power series
G in xK[[z]], for which ""!(G) € R|[[xy, ..., x,]]. For example, Q% = xR|[[z]]. We also set
L= R[[z]] if n <O0.

Note that zR[[z]] and > ,_,_, K -1g.(x) are contained in Q% in view of Proposition
2.4.

Lemma 3.2. Suppose R has no nontrivial Z-divisible elements. Then
RN ( X K-lg(0) =0,
0<r<n

Proof. Observe that

(lg.(z)) =1g,_1 (7).

Suppose Y o, @ - 18,.(x) € zR[[z]], where ¢, € K and let r be the largest index such
that ¢, # 0. Applying ®"~! to the sum we see that ¢._1 + ¢, lg,(x) € R[[z]]. Let n € N
be a natural number such that ng._; € R and ng,. € R. It follows that nq, € iR for every
integer i« > 0, i.e., ng, is a nonzero Z-divisible element in R, a contradiction. Il

B(1g, () = (1) -

T

Definition 3.3. Let n and m be integers. If n > 0 denote by Q%™ the submodule of
"% consisting of all power series G such that v(0"*G) = m. If n < 0, set Q™ =
mmaX(O,m) . RHJE]]
Since v(0"'G) = n for every G € QF with n > 0, we have Q3™ = QF" = Q} if
n > m. Note also that Qp™ = 2™ . R[[z]].
3.1. The groups Q2. In this section we determine the structure of the modules QZ over
the ring Z= lim(Z/nZ). We write CA) for Z® Q. Note that (3 = 2—{—Q and Z = 2ﬂQ in 6

Lemma 3.4. Let by, bs,... b, € Z be such that b; = b; (mod j) for every i divisible by
j. Then there is b € Z such that b = b; (mod i) for alli=1,...,m.

Proof. Let p1,ps,...,ps be all primes at most m. For every k, let g, = p;* be the largest
power of pp such that g, < m. By Chinese Remainder Theorem, we can find b € Z such
that b = b,, (mod qy) for all k. We claim that b works. Take any ¢ < m. We prove that
b = b; (mod i). Write ¢ as the product ¢ = [[ ¢, where ¢}, is a power of p;. Clearly, g
divides q;. We have

by =b; (mod gq,) by assumption,
by, = by (mod gq;) by assumption,
b=b, (mod q;) by construction.

It follows that b = b; (mod q;,) for all k, hence b = b; (mod 7). O
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Let G(z) = 3°°°, ;2" with a; € Q.

i=1

Lemma 3.5. For positive integers j < s, the x’y*-coefficient of OG is equal to
j .
1\ S+ S )
P G [ L

1d° o0 - .
G = Z (Sjl)as+ixl.

g dﬂfs i=0
The statement follows from Proposition 2.5. U

Set b; = ia; for all 7 > 1.

Corollary 3.6. If 0G € 2[[1;,3;]] then b; — by € Z for alli > 1. In particular, if ay € 2,
then all b; are in Z.

Proof. The xzy’-coefficient of OG is equal to bj, 1 — b;. O

Proof. We have

Proposition 3.7. Let G € Q% and let n > 1 be an integer such that a; € Z for alli < n.
Let pt < n be power of a prime integer p such that p' divides n. Then p* divides b,,.

Proof. Take j = p' and s = n—p' > p'. By Lemma 3.5, the 27y*-coefficient of G is equal

to .
J .
_1\j—i S+ S ' =~
B () Jore
By assumption, all terms in the sum but the last one belong to 2, hence so does the last
one: (;)an € Z. But (;)an = (;:11) b,/p", hence (;Lf_ll) b, is divisible by p'. As (;ff_ll) is
prime to p, the coefficient b,, is divisible by p’. U

Proposition 3.8. We have
Q4 = Q- lgy(z) © 2Z[[a].
Proof. Let G(z) = >22, a;a’ € Q% and set as before b; = ia;. Adding a;1g;(z) to G(x)

we may assume that a; = 0. By Corollary 3.6, b; € Z for all 4.

We claim that for every positive integers ¢ < n such that ¢ divides n we have b, = b;
modulo 2. We prove this by induction on n. By Lemma 3.4 applied to m = n — 1, there
is b € Z such that b = b; modulo 7 for all i < n. Subtracting blg,(z) from G(z), we may
assume that b; is divisible by 7 for all ¢ < n, or equivalently, a; € Z for all i < n. We
prove that b,, is divisible by .

Case 1: n = p* is a power of a prime p. Then i = p’ is a smaller power of p. By
Proposition 3.7, ¢ divides b,.

Case 2: n is not power of a prime. Write n as a product of powers of distinct primes:
n = qiqz2---qs. By Proposition 3.7, ¢, divides b, for every k, hence n divides b,,. In
particular, ¢ divides b,. The claim is proved.

Let b € Z be such that b = b, (mod n) for all n. We have

b, —b
G =blg () + >

n=1 n

2" e Z g, (x) + xZ][[x]). O
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Corollary 3.9. Let G(z) = ax + ... € Q% be a power series with a € Z. Then G(z) €
2 gy («) + o2{[2]).

Lemma 3.10. Let H(z,y) = >, o ai;x'y’ € Q[[z, y]] be such power series that both

0-partial derivatives of H have coefficients in Z and a;1 as well as ay; are in 2, for all 7.
Then H(z,y) € Z[[z,y]].

Proof. Consider some j-th row of H: o/ -3, aia". We /k\now that .., ai,jfi € Q.
By Corollary 3.9, > .., a; ;2" is equal to ¢; - 1g;(x) modulo xZ][z]] for some ¢; € Z. Hence
c_?- = a;; (mod 2) for all 7. Applying the same considerations to the i-th column, we

obtain:

&

Ci

L (mod Z),

.|

i

for certain d; € Z. Let us show that all ¢;’s (and d;’s) are zeros. Indeed, we have:

je; = id; (modij).
Hence, jc; is divisible by 7, for any ¢ and, hence ¢; = 0. This implies that a, ; € Z for any
i,]. O
Lemma 3.11. Suppose, H(x1,...,Tn) = Y5 i oGy, iny - T € Qllz1, ..., ] be
such a power series that all O-partial derivatives of H with respect to all variables have

coefficients in Z and a;, .. ;, € Z as long as all i;’s but one are equal to 1. Then H has
coefficients in Z.

Proof. Induction on n. For n = 1 there is nothing to prove. For n = 2 this is Lemma 3.10.
We can assume that n > 3. Suppose we know the statement for » < n. Note, that all the
cells of H (where we set certain i;’s to be 1) also satisfy the conditions of the Lemma.

By our assumption, these have all coefficients in Z. That is, a4, € Z provided, at
least, one of i;’s is 1. Consider a hyper-slice H;, of H (we fix i1). Then H;, satisfies the

conditions of the Lemma (note that n > 3). Thus, H;, has coefficients in Z and so does
H. O

The following theorem is a generalization of Proposition 3.8.

Theorem 3.12. For everyn > 1,
Q2= [I Q-lg.(z)®aZ][[x]].
0<r<n

Proof. The statement is clear if n < 0. Now assume that n > 1. It follows from Lemma

3.2 that [[,.,., Q- lg,(z) N Z[[z]] = 0.
We prove the rest by induction on n. For n = 1 this is so by definition and for n = 2

this is given by Proposition 3.8.
n=n+1: Let G € Ql;“l. Consider the power series H(z1, ..., z,) = 0" '(G). Let

_ 11 i
H(zy, ) = Y. Giy g @1 e Ty
U1yeeyin 21
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Note that the smallest term of 9" !(Ig,(z)) is (—1)"zy - ... - z,. By subtracting an
appropriate Q—multiple of lg, (z) from G, we may assume that a;_; = 0.

As O(H) has coefficients in 2, the “ray” 2@1 a1, 125 is a power series with terms
of degree > 2 whose 0-derivative is integral. By Corollary 3.9, up to a power series in
Z[[z1]], it is equal to ¢ - 1g, (z1), for some ¢ € Z.

Since

" g, ) (w1, ., xy) =gy (z1) - ... - gy (),
subtracting from G(z) an appropriate multiple of lg,,(z), we may assume that the co-
efficients a;;,. 1 are in 2, for all © > 1. Since H is symmetric, by Lemma 3.11, all

-----

coefficients of the power series H are in Z. By the induction hypothesis, G(z) € Q" =
H0<T‘<’I’L Q ) 1g1”(x) + l‘Z[[ZL’H |:|

3.2. The groups 9Q". Write Q" for Q% C Q%.

We define a homomorphism R

O : Qn N anl
for n > 1 as the composition (see Theorem 3.12)
Q"= Q= I Q-lg(a)®aZ[la] = 1 Q-lg,(x)~Q""
0<r<n 0<r<n

We will show that the map p,, is surjective.

As in the proof of Lemma 3.13 below we deduce that

g, (1) = (-1 Y = (1L (mod ™).

0<ig < oo liiyr 41 " wee " U rl
For a sequence of a = (a;);>1 in Z let us denote by a-lg.(z) € (Ag[[x]] the power series

GRS Aot xT = (—1)T%xr (mod z"t1).

0<ig < ool 01 oo " U r.

If all a; € Z, we have a -1g,.(z) € Q[[z]].

Lemma 3.13. For every sequence a, we have

(6= 1) (015, (2) = -l (0).

Proof. Write (—1)"a-1g,(z) = > bz’ and (—1)"ta-lg,_,(z) = >_ c;z'. We need to prove
that (m + 1)b,,1 — mb,, = ¢, for every m. We have

(m + 1)bm+1 = L

0<in <o <ip<mA1 01 +e " Uy

The sum of the terms with i, < m is equal to mb,,. The sum of the terms with i, = m
coincides with ¢,,. O

Lemma 3.14. For every c € Z and every integer v > 0 there is a sequence ¢ = (¢;)i>1 of
integers ¢; € Z such that ¢; = ¢ (mod i) for all i and

(c— @) -1g,(x) € Z[[x]]

foralli=1,...,r, where c — ¢ is the sequence (¢ — ¢;)i>1-
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Proof. Take any collection ¢ = (¢;);>1 of integers. Note that for every ¢ > 1 and k =

1,...,r, the z7* L coefficient of ¢-1g, () is a linear combination of ¢, . .., ¢; with rational
coefficients where the c;-coefficient is equal to (=1)%/(i(i +1)...(i + k — 1)).

We will modify ¢y, ¢, . .. inductively to make all coefficients of the power series

G = (c—¢) - lgg(x)

integral for all k = 1,...,r. Let ¢; be an integer congruent to ¢ modulo r!, so the z*-
coefficient of Gy, is integer for every k = 1,...,r. Suppose we have modified ¢y, ... ¢, so
that the z7-coefficient of G}, is integral for all k =1,...,r and j <n+k — 1.

By induction on k = 1, ..., 7, we will modify c,4; to make integral the z"**-coefficient

of Gj. Note that the integral 2/-coefficients of G}, for j < n + k — 1 will not change. If
k =1 we don’t modify ¢, 1: the power series GG; is already integral.
k = k+ 1: By Lemma 3.13,

dGiq1
dx

Hence, if Gy, = 3, bir* and Gyy1 = >, ai’, then

Apyir1 = #llﬂ(bk + ot bugi)

for all [.

By induction, b, ..., b,k are integral. Recall that these are linear combinations of the
¢;’s, where ¢; = ¢ — ¢; and ¢, appears only in b,yr. We modify ¢, by adding to ¢,
the integer t(n + 1)(n + 2)...(n + k) with some t € Z. Note that by, ..., b, 1 remain
unchanged and b, changes to b, + t, so it stays integral. Choose t to make a1 51
integral.

Note that c/,,; comes with coefficient (—1)!/((n 4+ 1)...(n +1)) in the 2" -coefficient
of G;. Since (n+1)...(n+1) divides (n+1)...(n + k) when [ < k, the 2"+ -coefficient
of G; remains integral for [ < k. O

Now we prove that the map p,, : Q" — 6”’1 is surjective. Since ¢-1g, € Q" for all ¢ € Q
and r = 1,...,n — 1, we have Q"~! C Im(p,). It suffices to show that Z"~! C Im(p,).

Choose ¢, € Z forr = l,...,n—1. By Lemma 3.14, there are sequences of integers ¢,
such that (¢, — ¢&,) - lg,(x) € Z][[z]].
As

Cr lgr(‘r) =G lgr(w) - (CT - 67") ’ lgr(x)7
we have p, (3 o< cn G - 18,(2)) = (¢;)r=1,..n—1 proving that p, is surjective.

Note that the kernel of p,, is equal to zZ[[z]] N Q[[z]] = zZ[[z]]. Thus, we have an exact
sequence

(3.15) 0 — 2Z[[z]] —» Q" 2% Q" — 0.

We have proved that if n > 1, the group Q" is generated by zZ[[z]] and the power
series (¢ — ¢) - lg,.(z) as in Lemma 3.14, where c€ Zand r =1,...,n — 1.

The power series in Q" can be approximated by polynomials as follows:
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Lemma 3.16. For every m > 0 and n, we have

Q" C Z[alem + >0 Q-lg,(x) +2™Q[[]],

0<r<n

where Z[x)<m—1 is the group of integral polynomials of degree at most m — 1.

Proof. We may assume that n > 1. In view of (3.15), the group Q™ modulo
wZ[[z]]+ >0 Q-lg.(z)

0<r<n

is generated by power series of the form ¢ -lg,.(z), where r = 1,...,n — 1 and ¢ is the

collection of integers such that ¢; = ¢ (mod 4) for all i for an element ¢ € Z as in Lemma
3.14.
Let d be an integer congruent to ¢ modulo the least common multiple of the denom-

inators of the x’-coefficients of 1g,(x) for all i = 1,...,m — 1. Then the z™-truncation
F of (¢ —d) -1g,(z) is contained in Z[x]<,,—1 and ¢ - lg,(x) is congruent to F' modulo
Z - 1g,(2) + 2"Qlla]. O

4. OPERATIONS

Let k£ be a field of characteristic 0 and write Smy, for the category of smooth quasi-
projective varieties over k. An oriented cohomology theory A* over k is a functor from
Sm;” to the category of Z-graded commutative rings equipped with a push-forward struc-
ture and satisfying certain axioms (see [11, Definition 2.1]). We write

AT(X) = 1 A"(X)
neZ
for a variety X in Smy, and let A*(k) denote the coefficient ring A*(Speck).

Let A* be an oriented cohomology theory. There is a (unique) associated formal group

law

Fa(z,y)= > afjxiyj =2+ y+ ay1 - vy + higher terms € A*(k)|[[z, y]]

ij>1
that computes the first Chern class of the tensor product of two line bundles L and L’
(see, for example, [7, §1.1] or [11, §2.3]):

e (L® L) = Fa(ei' (L), i (L')).
Example 4.1. The Chow theory CH* takes a smooth variety X to the Chow ring CH*(X)
of X. We have CH*(k) = Z and Fepu(x,y) = © + y is the additive group law.

Example 4.2. (see [7, Example 1.15]) The graded K-theory K, takes X to the Laurent

polynomial ring Ko(X)[t,t™!] (graded by the powers of the Bott element t of degree —1)
over the Grothendieck ring Ko(X) of X. We have K},.(k) = Z[t,t™'] and F,, (z,y) =
x4y — try is the multiplicative group law.

Example 4.3. (see [3] and [5]) The connective K-theory takes X to the ring CK*(X) of
X. We have CK*(k) = Z[t] and Feg(z,y) = x +y — tay.
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All cohomology theories in these examples are of rational type (see [11, §4.1]).

If A* is an oriented cohomology theory and R a commutative ring, the functor A%
defined by A%L(X) = A*(X) ®z R is also an oriented cohomology theory with values in
the category of graded R-algebras.

Definition 4.4. Let A* and B* be two oriented cohomology theories. An R-linear opera-
tion G : A}, — Bp is amorphism between functors Aj and B}, considered as contravariant
functors from Smy to the category of R-modules (cf. [11, Definition 3.3]). Note that G
may not respect the gradings on A}, and Bj,.

Let n,m € Z. A morphism G : A}, — Bj between contravariant functors from Smy, to
the category of R-modules can be viewed as an R-linear operation via the obvious compo-
sition A, —» A% — B} < Bj. All such operations form an R-module OP;™(A*, B*).
The composition of operations yields an R-linear pairing

OPL™(A*, B*) @r OPR"(B*,C*) — OPR"(A*, C).
In particular, OP%"(A*) := OP"(A*, A*) has a structure of an R-algebra.

Example 4.5. (see [3] and [5]) Multiplication by ¢ yields an operation CK;t' — CK%
that is an isomorphism if n < 0. There are graded R-linear operations

CKyr — CHR and CKj — (K, )R-
The sequence
CK™'(X) - CK™(X) — CH"(X) — 0
is exact for every n and X.
If n > 0 the image of the homomorphism CK"(X) — K (X) = Ko(X)t™" >~ Ko(X)

is generated by the classes of coherent Ox-modules with codimension of support at least
n. If n < 0 this map is an isomorphism.

The following fundamental theorem was proved in [11, Theorem 6.2].

Theorem 4.6. Let A* be a cohomology theory of rational type and B* be any oriented
cohomology theory over k. Let R be a commutative ring. Then there is a 1-to-1 corre-
spondence between the set OPR™(A*, B*) of R-linear operations G : A% — B and the
set consisting of the following data {G,l € Z>}:

G, € Homp (A" (k) ® R, B*(k)[[z1, ..., 20)|m) ® R)  satisfying

(1) Gi() is a symmetric power series for all | and o € A" (k) @ R,

(2) Gi(«) is divisible by x1 - ... - x; for all | and «,

(3) Gil)(y +B 2,@2, .., 1) = D G- aiy) (Y™, 2%, a9, ..., 1p), where af;
are the coefficients of the formal group law of A* and the sum y+pg z is taken with
respect to the formal group law of B*.

Here B*(k)[[1, ..., Zn]](m) is the subgroup in B*(k)[[z1,. .., x,]] consisting of all homo-
geneous degree m power series (all the x;’s have degree 1).

The functions G, are determined by the operation G as follows (see [11, §5]). Write L;
for the pull-back of the canonical line bundle on P> with respect to the i-th projection
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(P>)! — P>, Then

(4.7) Gi(a) (P (La),. ...l (L) = G(a- (L) - ... - c(Ly)),
where ¢; is the first Chern class.

Remark 4.8. Theorem 4.6 was proved in [11, Theorem 6.2] in the case R = Z. The
general case readily follows. Indeed, multiplication by an element r € R yields operations
r: A — A% and r : B} — Bf. An additive operation G : A} — Bj is R-linear if and
only if Gor =roG for all » € R. The latter is equivalent to the equality G;or =10 G,
for all [, i.e., that all (G; are R-linear.

Example 4.9. (see [11, §6.3]) Let A* be a cohomology theory of rational type and m € Z.
Consider the power series [m](z) ==z +4 ... +a4 2 € A*(k)[[z]] (m times). The Adams
operation WA € OP%” is determined by (G));s0, where G; is multiplication by the power
series [m](x1) - ... [m](x;). The Adams operations satisfy the relations

Uilo Wl =W, =) oWy
for all £ and m.

4.1. Operations in connective K-theory. We would like to determine the R-module
OP’%;™ of all R-linear operations G : CK%; — CKJ; for any pair of integers n and m. By
Theorem 4.6, G is given by a collection of power series Gi(a) € R[t][[x1,. .., %p]](m), Where
a € CK% (k) and [ > 0, satisfying conditions of the theorem. The group CK% (k) is
trivial if | < n and CK; (k) = R - #'~™ otherwise. (Recall that ¢ has degree —1.) In the
first case G;(a)) = 0 and in the latter case the power series Gj(«) are uniquely determined
by Gi(t'™). We will simply write G; for G;(t'™").
If I > max(1,n), condition (3) in Theorem 4.6 reads as follows:

Gl(x +y - tl‘y, 2) = Gl(l’, 2) + Gl(yv 2) - Gl-l—l(xv Y, 2)
In other words,
(4.10) G = —0,Gy,

where the derivative 0, is taken with respect to Fek(x,y) = = + y — try. Thus, Gy is
uniquely determined by G;.

If n > 0, the operation G yields the double-symmetric power series G, € R[t][[x1, . .., Zp]](m)
that is divisible by 1 -...-z,. Conversely, if H € R[t|[[x1, ..., %y]]m) is a double-symmetric
power series divisible by z; - ... - z,, then setting G, := (=1)'0{(H) for all i > 0, we
get a sequence of power series that determines an R-linear operation G (see Observation
2.9).

If n < 0 the operation G is determined by Gy € R[t],, and power series G; € R[t][[x]]n
that is uniquely determined by (G)|i=1 € ™™ R[[z]]. If m > 0 then Gy = 0,
otherwise Gy € R -t™™ and we can combine Gy and G together into the power series
H = (Go — G1)|i=1 € R[[z]].

If L € R[t][[x1, ..., 2n]](m), then v(L|,—1) > m. Conversely, for every J € R[[x1,...,2y]]
with v(J) > m, there is a unique homogeneous power series L € Rlt][[x1,...,x,]] of
degree m such that L|;,—; = J. If L is double-symmetric and divisible by zy - .. .- x,, then
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so is L|4=1 (with respect to the derivative 0 given by the formal group law z + y — zy)
and conversely.
We have proved the following statement.

Proposition 4.11. Let R be a commutative ring and let n and m be two integers. An
R-linear operation G : CKy — CKY% is determined by
(1) A power series H € x> R[[z]] ifn < 0. In this case Gy = H(0)-t™™ and G, €
cR[t)[[x]](m) is a unique homogeneous power series such that H = (Go — G1)i=1
and Gy = (—=1)7107H(GY) for 1> 1,

(2) A double-symmetric power series J € R[[x1, ..., x,|| divisible by x1 - ... - x, such
that v(J) = m if n>0. In this case G, = 0 forl = 0,...,n — 1 and G, €
R[t][[x1,...,2n)]m) 95 @ unique homogeneous power series such that Gyl = J

and G; = (=1)""0"(G,,) for I > n.

Let R be a commutative ring that is torsion free as abelian group. Define an R-module

homomorphism
Anm : QT — OPR™

as follows. If n < 0, A\,,n(H) for H € QU™ = pmax(©m) . R[[7]] is the operation given
by Proposition 4.11(1). If n > 0, \,,,(H) for H € Q™™ is the operation given by the
polynomial J = (—1)"9""'(H) as in Proposition 4.11(2).

The following theorem determines the R-module of operations OP;™ in terms of the
modules Q%™ of power series in one variable.

Theorem 4.12. Let R be a commutative ring that is torsion free as abelian group and
K = R® Q. The homomorphisms \,m yield an R-linear isomorphisms between OPZ™
and the factor module of Q™ by the K-subspace spanned by lg;(x), i =1,...,n—1. In
particular, OP;™ o~ x> ©Om) . Rl[2]] if n < 0 and OPR™ ~ z™=(Lm) . R[[z]].

Proof. The surjectivity of A, ,, follows from Propositions 2.8 and 4.11. The kernel of A, ,,
is determined in Proposition 2.4. O

Corollary 4.13. The map A, ,, yields an isomorphism
Qf N ™™ Onm) . K[[z]] S oP;™.

Proof. The case m < n follows from the theorem. Otherwise, by Observation 2.6,
v(0" ') =i for all i > n. O
Let n,m € Z and 17, j non-negative integers. We define an R-linear homomorphism
Q™ > Qi

as follows. If n < 0,m <0 and n+ ¢ > 0 the map
®" = Rl[z]] = «Rl[[z]] < Qp™"

takes H to 9°(H) = H — H(0). Otherwise, Q"™ C Q57 and the map we define is
the inclusion.
Multiplication by t* yields an operation CK?’“ — CKJ% and therefore, the homomor-

phisms OP%;™ — OP';™™ 7 for all 4,5 > 0.
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Proposition 4.14. The diagram

Q%m Qz+i,mfj

An,m\j L)\n+i,mj

OP}™ —— OP;""" 7,

18 commautative.
Proof. The case i = 0 follows directly from the definition. It remains to consider the case
t=1and j=0. o

Suppose first that n > 0. Let H € Q5™ C Qp™™ ™7 and G = \,.,(H) € OPE™. In
particular, G,|,—; = (—1)""'0""*(H). Denote by G’ the image of G' in OP;™""™. Write
L; for the pull-back of the canonical line bundle on P> with respect to the i-th projection
(Pe°)n 1 — P>, The power series G}, is determined by the equality (see (4.7))

Ghiilei(Ln), .. ei(Lng)) = Ger(Ly) - er( L))
— Gter(L) - ... e1(Los))
= Gnya(t)(er(L), - - - e1(Lnta))
= Gpi(ci(Ly), ..., c1(Lngr)),

hence G, | = Gp41. It follows from (4.10) that
Gritlimr = Gupilim = =(0:G)li=1 = —0(Grli=1) = —0((=1)"0" "' (H)) = (=1)"'9"(H),
and therefore, G' = A\ 11.m(H).

If n <0orifn=0and m > 0 we have Q3™ C Q%H’m and the statement follows
immediately from the definitions. It remains to consider the case n = 0 and m < 0. Let
H e Q%™ = R[[z]] and G = A\g,n(H) € OP%™. In particular, H = (Go — G4)|i=1. Denote
by G’ the image of G in OP}%’m. A computation as above shows that G| = G. Hence

GI1’t:1 = G1|t:1 = —(H - H(O))
Therefore, G' = A\y,(H — H(0)) and H — H(0) is the image of H in Q3™ O

Corollary 4.13 and Proposition 4.14 yield:

Corollary 4.15. If m < n then the map OP" — OPR™ is an isomorphism.

In particular, there is a canonical ring homomorphism

OP}%" — OPL" 5 OPR
Example 4.16. Note that the identification OP%’ = R[[z]] is not a ring isomorphism.
The corresponding ring structure on R[[z]] will be described in Section 4.5. The natural
surjective homomorphism

R[[z]] = OP%’ — OP}' = zR[[z]]

takes a power series G(x) to G(z)—G(0). Its kernel is generated by 1. The complementary
operation G(z) — G(0) on CK° = Kj is an idempotent that takes the class of a vector
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bundle E to rank(FE) - 1, where 1 is the identity in Kj. In particular, we get a natural
R-algebra isomorphism OP%’0 ~ R X OPllQ’l.

4.2. Adams operations. Let R be a torsion free ring. We define the composition

)\n,n

Ad, : R[[z]] — Q} — OPY}",

where the first map is the identity if n < 0 and it is the composition of the projection
d° : R[[z]] = zR[[z]] and the inclusion of zR[[z]] into Q%. The image of Ad,, is denoted
OPY;"; and called the submodule of classical operations.

If n < 0, we have OP}", = OPR" = R[[z]]. If n > 1 it follows from Lemma 3.2
and Theorem 4.12 that in the case R has no nontrivial Z-divisible elements (for example.
R = Z or Z), the restriction of Ad,, on zR[[z]] is injective and therefore, OP}", ~ xR[[z]].

Let m be an integer. In the notation of the Example 4.9, [m](x) = (1 — (1 — tz)™)/t.

n,n

In view of Proposition 4.11, the Adams operations V,, € OPy ; are defined by
(4.17) Uy = Ad,((1 —x)™).

Since the power series (1 — )™ generate R[[z]] as topological group in the z-adic topol-
ogy, the group of classical operations OP%’ZZ is topologically generated by the Adams
operations.

By Proposition 4.14, the operations W, are compatible with the canonical homomor-
phisms OP’;" — OP%FH"

For every k > 0 consider additive operations YT, = Zfzo(—l)i@) V,. Then Y, =
Aan(2®) if & > 0. Recall that Tog = 0 if n > 1. It follows that the R-module OPEZZ
consists of all linear combinations ), ;- T with oy € R (cf. [11, Theorem 6.8]). If

R has no nontrivial Z-divisible elements, the coefficients ay, (where & > 0 if n < 0 and
k> 1if n > 1) are uniquely determined by the operation.

4.3. Operations over Z. In Section 3 we determined the modules Q% over the ring
R =Z. Theorems 3.12 and 4.12 yield:

Theorem 4.18. There are canonical isomorphisms

Z[[«)], ifn<0;

OP." = OPY" ~{ “L
z {xﬂhm ifn =1

ch -
In particular, the natural map OP%’" — OPZT " ig an isomorphism for all n > 1.
It follows from Theorem 4.12 that for any two integers n and m,

opz o { 20 - Zlal) if n < 0;
z T {G e zZ[[z] | v(@ (@) =m}, ifn>1.
4.4. Operations over Z. Now we turn to the case R = Z and for simplicity write OP™™

for OPZ"™.
Corollary 4.13 implies that the natural homomorphism OP™™ — OP;’m is injective.

In particular, we can identify OP™" with a subgroup of OPZ" = aZ[[z]] for all n > 1, so
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we have a sequence of subgroups
OP"' c OP*’ C...Cc OP™" C ... C zZ][[z]].

Recall (Theorem 4.12) that OP™™ ~ gmax(0m) . Z[[]] if n < 0 and OP™™ ~ OP™" if
m < n by Corollary 4.15.

Let m > n > 1. By Theorem 4.12, we can identify OP™™ with the factor group
of @™™ by the subgroup Z::ll Q- lg,.(z). It follows that the map p, in (3.15) yields a
homomorphism

OoP™™ — (Q/Q)" ' = (z/2)" .
By the proof of Lemma 3.16, this map is surjective. Its kernel is denoted OP;"™ and called
the subgroup of classical operations. In the case n = m this group coincides with the group
of classical operation defined earlier. In view of Corollary 4.13, OP;™ is identified with
the group (1172, Q- lg, (x) + 2Z[[z]]) N 2™Q[x]].

We view the group xZ[z]<,,_1 of integral polynomials of degree at most m—1 as a lattice
in the Q-space xQ[[z]]/(z™). Denote by £™™ the intersection of xZ|x]<,,—1 with the image
in zQ[[x]]/(z™) of the space [['—; Q - 1g,(x). Then L£™™ is a subgroup of zZ[x]<,, 1 of
rank n — 1.

We get the following description of the group of classical operations:

OP,™ = L™ & z"Z[[z]].
If m =n > 1, the map of Q-spaces is an isomorphism and £™" = xZ[x]|<,_1. It follows
that
OP))" = xZ[[x]].
Recall that OP);" = OP™" = Z[[z]] if n < 0 and OP™"™ = OP™" if m < n.
We summarize our results in the following statement.

Theorem 4.19. The natural homomorphism OP™™ — OP%’m s injective. For any
integers m > n > 1 there is an exact sequence

0 — OPL™ — OP™™ — (Z/Z)"~! -0,
where OP™ = L™ @ x™Z][x]]. Moreover, OP" = zZ[[z]].
Remark 4.20. Similar arguments yield the following formula for m > n > 1:
OPZ™ = L2 &« Z[[z]],
where E%’m = LM 7.

4.5. Composition. The R-module homomorphism Ad,, : R[[z]] — OP%" is not a ring
homomorphism. In this section we introduce a new product on R|[[x]] so that Ad,, becomes
an R-algebra homomorphism.

Let H,H' € R[[z]], write H' = ", a;z* and define the composition in H and H' by
the formula

HoH =ag-H(0)+ > (=1)'a; - (0" " H)(2").
i>1

The composition o is distributive in H and H’ with respect to addition. (Note that the
usual substitution of power series is only one-sided distributive.) The polynomial 1 — x
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is the identity for the composition: (1 —x)o H = H = H o (1 — z) for all H. We view
R][z]] as an R-algebra with product given by the composition.

Lemma 4.21. The maps Ad,, : R[[z]] = OP%" are R-algebra homomorphisms.

Proof. In view of Proposition 4.14 it suffices to consider the case n = 0. Let H, H' €
R[[z]] and write H' = ). ax’. If Go,Gy,... € R[t][[x]] is the sequence of power series
corresponding to Ady(H) (see Proposition 4.11), then Gy = H(0) € R, H = (Gy— G1)|s=1
and G; = (—1)"719;7'(G,) for i > 1. Note that G,(t,x) = —H (tz) + H(0).

Write L for the canonical line bundle on P*. By (4.7) and (4.10),

Ado(H)(e1(L)') = Gi(er (L)) = (1)1 0 Gr)(en(L)*) = (=1)"(0 H) (tea (L) ).
Therefore, we have

(Ado(H) o Ado(H'))(e1(L)) = — Ado(H) (Y aier (L))

i>1

= — > ai(Ado(H))(er (L))

i>1

= > (=1 a; - (0" H)(tes (L)),

i>1
On the other hand, write H o H' = (G — GY)|t=1, where G} = ao - H(0) and
G = (=) a; - (0" H)(tz™).
i>1
It follow that
Ado(HoH')(ex(L)) = GY(er(L)) = 1(=1)""ap (0" H)(ter (L)) = (Ado(H)oAdo(H"))(c1(L))-
i>1
If r € R = CK%(k), then
Ado(H 9] Hl)(T) = Gg T =aqap - H(O) T = Ado(H)((IO : T') = (Ado(H) o Ado(Hl))(T)
Overall, Ado(H o H') = Ade(H) o Ado(H'). O

The polynomials A,, := (1 — )™ satisfy Ad,(A,,) = ¥,, in OP%". It follows from
Lemma 4.21 and Example 4.9 that

AkoAm :Akm :AmoAk
for all £ and m.

Proposition 4.22. Let R be a commutative ring and K a Q-algebra. Then

(1) The composition o in R[[x]] is commutative.
(2) The power series g, (z) € K[[z]], r = 0, are orthogonal idempotents that partition
the identity, that is, 1g,(v) olg,,(z) = 6pm - 1g,(7) and 1 —x =3 _(lg.(z).

Proof. (1) It follows from the definition that the power series 2" o G and G o z" are
contained in z"R][[z]] for all n and G. Let H,G € R|[z]]. Fix an integer n > 0 and write
H = H, + Hy and G = G + G5, where H; and (G; are linear combinations of the Adams
polynomials A; and Hs, Gy € 2" R[[z]]. As H, and G; commute, the remark above yields
HoG— GoH € z"R|[z]]. Since this holds for all n, we have H oG = G o H.
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(2) The iterated derivative 9" (lg,(x)) is zero if i > n and
(anil lgn>(‘r17 s wxn) = H log(l - xl)
i=1

It follows that lg,(z) o 2™ = 0 if m > n and

lg, (z) 0a™ = (=1)"(0" " 1g,)(z*") = (=1)"(log(1 — 2))" = (~1)"n!1g, (2).
This calculation together with the first part of the proposition show that the power series
lg,(z) are orthogonal idempotents.
Write 1 — 2 = >, a;lg;(v) for a; € K. Composing with lg, (r) we get a, = 1 for all
n. (l

Theorems 4.18 and 4.19 together with Proposition 4.22 yield the following corollary.
Corollary 4.23. The rings OP;’" and OP™" are commutative.

Let K be a Q-algebra. We view K[[z]] as a ring with respect to addition and compo-
sition. Let G € K[[z]] and write G = }_,.a;lg; for (unique) a; € K. Tt follows from
Proposition 4.22 that the map

(4.24) b: K[[z]] — K1,

taking G to the sequence (a;);>o is a ring isomorphism. It takes 2" K [[z]] onto K™ for
every n.

Example 4.25. The image of the polynomial A,,(z) = (1—x)™ is equal to (1,m,m?,...).
Indeed substituting y = log(1 — ) in the equality e™ = > ., U vields Ap(z) =
Zi}O m*lg;(z).

4.6. Topology. In this section we introduce three topologies on Z[[x]].

Proposition 4.26. Let G € OP%" and m > n. The following conditions are equivalent:
(1) G € Im(OPL™ — OP}");
(2) G is zero on every smooth variety of dimension < m.
Proof. (1) = (2) Since CKR(X) = 0, for any variety X of dimension < m, the operation
G is zero on X.

(2) = (1) Let n > 1. By Proposition 4.11(2), the operation G is given by a double-
symmetric power series H (21, ..., 2,) € R|[[21, ..., Zs]](n) such that H = (G,,)|i=1. We need
to prove that v(H) > m. We will show that any monomial z" = z}* - ... - zI» of H with
>, ri < mis zero.

Consider X7 := [[, P". This is a variety of dimension < m. Write z; for the first Chern
class in CK},(X+) of the pull-back of the canonical line bundle on P" with respect to the
i-th projection X7 — P"i. By formula (4.7),

0=G(xy ... xy) = Gulz1,...,2,) € CKR(X7).
By Projective Bundle Theorem,
CK%:(X7) = R[[z1, ..., 2]] /(o am ),

Therefore the monomial 7" of H is trivial.
The case n < 0 follows similarly (and easier) from Proposition 4.11(1). O
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Corollary 4.27. Let d > 0 be an integer and G € OP™". Then there is a Z-linear
combination G' € OP™" of the Adams operations V;, with k = 0,...,d such that G and
G’ agree on CK"(X) for all smooth varieties X of dimension < d.

Proof. By Lemma 3.16, applied to m = d + 1, there is a polynomial G’ € Z[z] of degree
at most d such that G — G' € > _,_, Q-lg, () + 27 Q[[z]]. Let X be a smooth variety
of dimension < d. As v(0" ' (G — G')) > d + 1, in view of Theorem 4.12, G — G’ €
Im(OP™™ — OP™"). Therefore, by Proposition 4.26, G — G’ is trivial on X. Finally, G’
is a linear combination of the Adams polynomials A, with £k =0,...,d. U

Definition 4.28. We introduce three topologies on Z|[x]]:
e 7, is generated by the neighborhoods of zero U,, consisting of power series divisible
by z™, for some m > 0, i.e., 7, is the x-adic topology.
e 7, is generated by the neighborhoods of zero U,, + Vi, where Vi consists of all
power series divisible by some N € N.
e 7, is generated by the neighborhoods of zero W,,, consisting of power series, where
the respective operation acts trivially on varieties of dimension < m.

Recall, that a topology ¢ is coarser than the topology v, denoted ¢ < 1, if any set
open with respect to ¢ is also open with respect to .

Proposition 4.29. 7, < 7, < 75.

Proof. Since v(G(x)) = m implies v(9"'G(z)) = m and hence G € Im(OPZ™ — OPZ")
by Theorem 4.12. Therefore, it follows from Proposition 4.26 that 7, < 7.

The topology 7, is generated by the neighborhoods of zero Uy, = (N,z™) C Z[[z]],
and 7, is generated by the neighborhoods of zero Wy, = {G € Z[[z]] | v(0" 1(G)) > k} by
Proposition 4.26. We need to show that for every N and m there is & with Wj, C Uy .

We have similar compact (Hausdorff) topology 7, on Z[[z1,...,%,]] so that the map
9"~ is continuous in 7,. Note that the map 0" : Z[[z]] = Z[[x1,...,x,]] is injective
and the induced map from Z[[z]] to the image of ! is a homeomorphism (since the
image of every closed subset is closed as Z[[z]] is compact and the target is Hausdorff).
In particular, if G, € 2[[1:]] is a sequence such that the sequence 0" Y(Gy) converges to

0, then the sequence G}, converges to 0 in Z[[z]].
Now we prove that for every N and m there is k with Wj, C Uy,,. Assume on the
contrary that for every k we can find Gy, € Wy, but Gy, ¢ Uy ,,. Then 0" (Gy) converges

to 0, but Gy does not converge to 0 in Z[[z]], a contradiction. O

Observation 4.30. 1) Forn=1, 71, =1
2) Forn > 1, 17, # 7, # Ts.

Proof. 1) This follows from Proposition 4.26, since n = 1.
2) For n > 1, W,, contains, in particular, all power series Y . a;z" € Z[[«]], where
ay = iay, for all 0 < ¢ < m, which is not contained in any U;, for [ > 1. Thus, 7, # 7.
For m > n > 1, W,,/U,, is a free Z-module of rank (n — 1), while (U,, 4+ Vi)/Un is a
free Z-module of rank (m —1). Hence, 7, # To. d
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We view OP™" and OP%’” as the topological rings for the topologies 7,, 7, and 7
respectively via the inclusions OP™" — OPZ" — Z[[z]).

Note that the z-adic topology 7 can be defined on R[[z]] for every R.

Consider the restriction b : R[[x]] — K[> of the map (4.24). We view K> as a
topological ring with the basis of neighborhoods of zero given by the ideals K> for all
n > 0, so that the map is continuous.

Proposition 4.31. The image of the map b : R[[x]] — K% is contained in RI*>).

Proof. By Example 4.25, the image of the Adams polynomial A,, under the map (4.24) is
contained in RI%>). But the set of all linear combinations of Adams polynomials is dense
in R[[z]] in the topology 7,. The statement follows since RI**>) is closed in K> O

Proposition 4.31 identifies the ring OPZ" C Z[[2]] with a subring of Z["*) and OP™"
with a subring of Z»*) if n > 0. Indeed, if n > 1 the kernel of the composition
Qz 2ty OPY" by 21000y Zineo)
is generated by lg, with 0 < r < n and all these logarithms are contained in the kernel of
A
7The ring OP™" is not a domain: we have (V; + WV _;)(¥; —V_;) = 0. Let
er =2(U, £0_;) € OP™" 1],
so ey and e_ are orthogonal idempotents and e, + e_ = 1. There is an embedding
OP™" — OP™" [1] = OP™" [3]e; x OP™" [{]e_.
Proposition 4.32. Ifn > 1 the rings OP™" [%}ei are domains.
Proof. Recall that there is an injective ring homomorphism
b: OP™" — ZI1)
such that b(¥,,) = (m,m? m3,...) for all m. In particular,
bley) =1(0,1,0,1,...) and b(e-)=(1,0,1,0,...).

Lemma 4.33. Let (a1, as,...) € Im(b). Then for any prime integer p, we have a; = a;
modulo p if i = j modulo p — 1.

Proof. 1t suffices to prove the statement for b(¥,,). We have a; —a; = m' —m/ =
m?(m*7 — 1). If m is not divisible by p, then m*= — 1 is divisible by p. O

Let G- H = 0in OP™". Set (aj,as,...) = b(G) and (by,bs,...) = b(H). We have
a;b; = 0 for all . To prove the statement it suffices to show that if a; # 0 for some 4, then
b; = 0 for all j =4 modulo 2.

Choose an odd prime p that does not divide a;. By Lemma 4.33, a; is not divisible by
p for all j such that ¢ = j modulo p — 1. In particular a; # 0, hence b; = 0. Thus, we
have proved that b; = 0 for all j =4 modulo p — 1.

Lemma 4.34. There are infinitely many primes q such that ged(q — 1,p — 1) = 2.
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Proof. Let ¢ be the odd part of p— 1 (that is (p — 1)/c is a 2-power). By Dirichlet, there
are infinitely many primes ¢ such that ¢ = 3 modulo 4 and ¢ = 2 modulo c¢. Clearly,
ged(q — 1,p — 1) = 2 for such q. O

Let j be such that j = ¢ modulo 2. We need to prove that b; = 0. Take any prime ¢ as in
Lemma 4.34. There are positive integers k and m such that ¢t := i+ (p—1)k = j+(¢g—1)m.
We have proved that b, = 0 since ¢ = 7 modulo p—1. By Lemma 4.33, 0 = b, = b; modulo
q, i.e., b; is divisible by g. We have proved that b; is divisible by infinitely many primes
q, hence b; = 0. U

4.7. Operations in graded K-theory. In this section we determine the R-module of
all R-linear operations G : K. p — KJp for any pair of integers n and m denoted by

OP%’m(K;‘T). Recall that K7, = KgTR T = CK% -t~", hence by Theorem 4.12,
OP}" () = OPYI(K;,) - 17" = OPY(CK") -1~ = Ra]] - 17"

Recall that product operation in the ring OPR™ (K}, ) = R|[z]] is the composition o (see
Section 4.5). Moreover, R[[z]] is a (topological) bi-algebra over R with co-product defined
by the rule (1 —z)" — (1 —2)" ® (1 — x)" for all n > 0 that reads ¥ — ¥ ® ¥ in the
language of operations.

Let us describe the dual bi-algebra A (over Z) of co-operations as follows. Let A be the
subring of the polynomial ring Q[s] consisting of all polynomials f such that f(a) € Z for
all a € Z. In particular, Z[s] C A. The polynomials

€n ::% (—3)(1—5)...(n—1—5):(—1)"<Z) cA

for all n > 0 form a basis of A as an abelian group. Consider a pairing
A® R[[z]] = R, a® G~ (a,G) € R,

such that (e, 2™) = 6,,,,,. This pairing identifies R[[z]] with the dual co-algebra for A via
the isomorphism
Homgz (A, R) = R|[[x]],

taking a homomorphism « : A — R to the power series ) ., a(e,)z".
Lemma 4.35. For every polynomial f € A, we have (f, (1 —x)™) = f(m).

Proof. We may assume that f = e, for some n. Then
(£ =2)™) = {en (L= 2)™) = (=1 (") = ea(m) = flm). O

The lemma shows that a co-operation f evaluated at the Adams operation V,, is equal
to f(m).
It follows from Lemma 4.35 that
(8", (1 — )"y = (km)™ = k" -m™ = (s", (1 — 2)F) - (s", (1 —2)™).
As the composition in R[[z]] satisfies (1 — x)¥ o (1 —x)™ = (1 — x)*™, the composition in
R][z]] is dual to the co-product of A taking s to s" ® s™ in A ® A.
The equality

(s (1 —2)™) =m™ =m'-m! = (5", (1 —2)™) - (s, (1 — 2)™)
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shows that the product in A is dual to the co-product in R[[z]]. Thus, the bi-algebra
R][x]] of operations is dual to the bi-algebra A of co-operations.

Remark 4.36. The polynomial ring Z[s] is a bi-algebra with respect to the co-product
s — s ® s. The dual bi-algebra over R is RI%*®). The dual of the embedding Z[s] — A is
the homomorphism b : R[[z]] — RI**) defined in Proposition 4.31 since by Lemma 4.35,

(s7, (1 —a)™) = m"™ = (s, b((1 = 2)™))
as b((1 —xz)™) = (1,m,...,m",...).

5. MULTIPLICATIVE OPERATIONS

Definition 5.1. A multiplicative operation G : A* — B* is a morphism of functors from
Smy, to the category of rings. That is, the ring structure is respected. (We don’t assume
that G is a graded ring homomorphism.)

If A* and B* are cohomology theories over k, to any multiplicative operation G : A* —
B* we can assign the morphism (pg,vq) @ (A*(k), Fa) — (B*(k), Fg) of the respective
formal group laws, where ¢ : A*(k) — B*(k) is the restriction of G to Spec(k) and
va(x) € xB*(k)[[z]] is defined by the condition:

G(c'(0(1))) = 16(c (0(1))) € B*(P®) = B*(k)[[]].
(The power series vg(z)/x is called the inverse Todd genus of G.)

Theorem 5.2. ([11, Theorem 6.9]) Let A* be a theory of rational type and B* any oriented
cohomology theory. Then the assignment G — (pa,Va) is a bijection between the set of
multiplicative operations G : A* — B* and the set of morphisms of formal group laws.

Example 5.3. Let R be either Z, Z, or Z and b € R. The Adams operation ¥, : CK} —
CK% is homogeneous and multiplicative. The corresponding map ¢ is the identity and

v = M If ¢ € R, write ¥§ for the homogeneous multiplicative twisted Adams

operation with ¢(t) = ¢t and v = % (in particular, ¥} = W;). It follows from the

equality U§(tx) = UE(t)U§(x) = ct-vy(x) = 1 — (1 — tz)* that on CK} the operation W¢ is
equal to ¢™"-W.. For any c € R, let ¥§ be the homogeneous multiplicative operation with
©(t) = ct and v = 0. This operation is zero in positive degrees and is equal to ¢" - rank
on CKR" = (Ky)g for n > 0.

Write © for the multiplicative operation CKj — CKj which is identity on CK%,
multiplication by ¢” : CK’; — CKY% if n > 0 and the canonical isomorphism CK’ — CK%
(inverse to multiplication by ¢~") if n < 0. This operation is not homogeneous and its
image is CK%. Set ‘Tfi := © o ¥¢. This is a multiplicative operation with image in CKY,.

The corresponding function ¢(t) = ¢ and 7 = L;m)bc

Introduced operations satisfy the following relations: W9 = W9 and
Wio Wi =i WioWg=Uhy  WioWi=Uih  Wiowi=U,

Over Q every formal group law is isomorphic to the additive one. Hence, for every
theory C*, we have isomorphisms of formal group laws.

(1d7 ech) : (C* Xz Q7 FC) (C* ®z Q7 Fadd) : (1d7 logC>
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Suppose that the coefficient ring B*(k) of the target theory has no torsion. Then the
composition (id,expg) o (¢g,7q) © (id, log 4 ) identifies the set of multiplicative operations
A* — B* with a subset of morphisms of formal group laws (A* ®z Q, F,u4) — (B* ®z
Q, F,44). The latter morphism is defined by (v,), where, in our case, ¥ = ¢ ®z Q, for
some ring homomorphism ¢ = ¢ : A*(k) — B*(k) and vy(z) = b - z, for some b € B*(k).
In other words, (¢g,7q) = (id,logg) o (g, ) o (id,exp,). Then

Ya(x) = @a(exp) (b - logg(x)).

5.1. Multiplicative operations in CK. For A* = B* = CK5 we have: A =B = 2[t],
Fy=Fg=x+y—try and

_ log(1 —tx) 1—e*

logek (7) = - expek (2) = ;

Note that a ring homomorphism ¢ from Z[t] to a ring T such that NpsonT = 0 is
uniquely determined by ¢(t) in T'. Indeed, suppose that ¢ and 1 satisfy ¢(t) = 1(t). For

any [ € z[t] and n > 0 write f = g+nh for some g € Z[t] and h € Z[t]. Then ¢(g) = ¥ (g)
and hence ¢(f) —1(f) € nT. Since this holds for all n > 0, we have ¢(f) — ¢ (f) = 0 for
all f.

Thus, the map ¢ : Z[t] — Z[t] is determined by ¢¢(t) = c(t) € Z[t]. Let b = b(t) €

Z[t]. Note that any choice of b(t) and ¢(t) gives a morphism of rational formal group laws
and so, a multiplicative operation G : CK5 ®zQ — CK5 ®zQ with

7G<t,m>=1_(1;<f)x> sy )

n>1 c(t) ’

which lifts to an operation CK5 — CK3 if and only if the coefficients of our power series

belong to Z. The coefficient at 2" is

(5.4) a, = (_1)n—1 b(t) Z;l (b(t)e(t) — kt)

n!

Denote as by(t), c,(t) the Z,-components of our polynomials. If deg(b,(t)c,(t)) > 1 for
some p, the leading term of our t-polynomial will be clearly non-integral (for some n).
Similarly, if for some p, the constant term of b,(f)c,(t) is non-zero, then the smallest
term of the p-component of our ¢-polynomial will be non-integral, for some n. Hence, the
polynomial b(t)c(t) is linear. Then, for a given prime p, either b,(t) = b, and ¢,(t) = c,t,
or b,(t) = byt and ¢,(t) = ¢,, for some b,,¢, € Z,. Then the Z,- component of our
coefficient is:
(bpcp—l)
(an), = (—1)”_1tmbp”T_1, where m =n — 1, or m = n.

If b, # 0, then this will be integral for all n if and only if ¢, € Z;;, while if b, = 0, then ¢,
can be an arbitrary element from Z,. Let us denote the (Z,-components of) operations

withm =n—1 as \Ifgz, while the ones with m = n as ‘iii (see Example 5.3; we suppress p
from notations). Here \Ilzz respects the grading on CKZ , while \TJZZ maps CKZ  to CK%p.
The pairs (b, ¢,) run over the set (Z,\0) x ZX U {0} x Z,, and, in addition, ¥§ = wo.
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Thus, any multiplicative operation G on CK5 = x,, CK7 splits into the product x,G ;)

of operations on CK7 , where each G(y) is one of the \IJZZ or \Tlgi . Let P will be the set
of prime numbers and J C P be the subset of those primes, for which (b,,¢,) # (0,0)
and G is U. Then the data (J,b,c), where the p-components of b, c € Z are b, and ¢,
determines our operation G. Let us call it 7W¢. Here (.J, b, c) runs over all possible triples
satisfying: 1) b, # 0 = ¢, € Z and 2) (b,,¢,) = (0,0) = p & J.

The operations w\lfé are (non-twisted) Adams operations with ¢g = id, which naturally
form a ring isomorphic to Z. These operations commute with every other operation. The
operations @\Ilf are invertible and form a group isomorphic to Z*. Below we will suppress
J = ) from notations and will denote the respective operations simply as W¢.

The formulas in Example 5.3 show that the monoid of multiplicative operations is
non-commutative.

5.2. Multiplicative operations in K, over Z. For A* = B* = K we have: A =
B =Z[t,t7Y], F4y = Fg = x+y—txy. Similar calculations as in the previous section show
that the coefficient a,, in (5.4) will belong to Z[t,t™!] for every n, if and only if b(¢)c(t) is
linear in ¢. Thus, c(t) = ct!, for c = &1 and [ € Z, and b(t) = bt*~!, for some b € Z.
Then the coefficient a,, is \
n—1yn—I (nc>
(=)™t =

Denote this operation as Z\Ifg. It scales the grading on K, by the coefficient [. So, only
the operations 'W§ are homogeneous.

The case c(t) = t and b(t) = b, that is, '¥} corresponds to the Adams operation ¥, -
see [11, Sect. 6.3]. In this case g = id. The operation ~'W! is an automorphism of order
2 acting identically on KJ), and mapping ¢ to t~".

We will omit [ and ¢ from the notation Z\Iff, when these will be equal to 1.

6. STABLE OPERATIONS

To be able to discuss stability of operations, we need the notion of a suspension. Follow-
ing Voevodsky and Panin-Smirnov we can introduce the category of pairs SmOp whose
objects are pairs (X, U), where X € Smy and U is an open subvariety of X - see [11, Def.
3.1], with the smash product:

(X, U)ANY, V) =X xY, X xVUUXY),

and the natural functor Sm;, — SmOp given by X — (X, ()). Then suspension can be
defined as:
Yr(X,U) := (X,U) A (P}, PN\0).
Any theory A* extends from Sm, to SmOp by the rule:
A*((X,U)) := Ker(A*(X) — A*(U)).
Any additive operation A* — B* on Sm,, extends uniquely to an operation on SmOp.
An element ¢ = ¢{'(O(1)) € A*((P!,P\0)) defines an identification:

of  A((X,U)) — A (S (X, U)),
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given by z — x A e

Definition 6.1. For any additive operation G : A* — B* we define its desuspension as
the unique operation ¥7'G : A* — B* such that

A _ _B -1
Goop =0p0X G.

Definition 6.2. A stable additive operation G : A* — B* is the collection {G™|n > 0}
of operations A* — B* such that G = £~ 1G"+D,

Proposition 6.3. Suppose, G : A* — B* is a multiplicative operation with yg(x) = bx
modulo x* for some b € B*(k). Then X7 'G =1b-G.

Proof. We have: G (04 (u)) = G(une?) = G(u)AG(e?) = G(u)A(b-eP) = cBZ(b-G(u)). O

We call a multiplicative operation G stable if the constant sequence (G,G,G,...) is
stable. By Proposition 6.3, G is stable if and only if the linear coefficient of 4 is equal
to 1 - cf. [11, Proposition 3.8].

For a commutative ring R define the operator

@ = by Rl = B], @) = (-5,

6.1. Stable operations in CK over Z. Recall that in the case A* = B* = CK3, the
group OPZ" of additive operations for n < 0 and n > 1 can be identified with Z[[]),

respectively, zZ[[z]].

Proposition 6.4. The desuspension operator ¥~ : OP;’" — OP%fl’"*1 is given by the

rule
-1 (I)(G)a yn<l
r(G) = { P(P(Q)) = d(G) — &(G)(0), ifn>1.

Proof. The Adams operation W}, is identified with the power series Ay(x) = (1 — x)* if
n < 0 and with (1 — 2)* — 1 if n > 0. By Proposition 6.3, X710, = kU, so the formula
holds for G = ¥,,.

The map X! is continuous in 7, and the map ® is continuous in 7,. Hence both maps
are continuous as the maps 7, — 7,. Since 7, is Hausdorff (as 7, is), it follows that
the set of power series where X! and ® coincide is closed in 7,. But the set of linear
combinations of Adams operations is everywhere dense in 7. Il

It follows from Proposition 6.4 that the desuspension map ¥.7! is injective and yields a
tower of injective maps in the other direction:

(6.5) Z[lz)) = OPY* &= oPy' & . Zopyn E

Moreover, the group OP%t of homogeneous degree 0 stable operations CK5 — CK5 that
is the limit of the sequence 6.5 is naturally isomorphic to the group

S =M, Im(®") = N, Im((S~H)") C Z[[]].

Indeed, if {G™|n > 0} is a stable operation, then G(© = ®"(G™) for every n, hence
GO ¢ S. Conversely, given G € S, write G = ®"(H™) for every n. Since Ker(®")
consists of constant power series only, the sequence G™ = ®(H™*Y) is a stable operation.
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Lemma 6.6. Let G € xz[[x]] andn > 1. Then
(1) 0™(G) has coefficients in Z if and only if 0" 1 (®(G)) has coefficients in Z.
(2) v(0"(@)) = m for some m if and only if v(O" H(P(G))) = m — 1.

Proof. (=) Follows from Proposition 2.5 for both (1) and (2).
d*G
(<) Simply write Hy, for (z — 1)’“W. We claim that 0"~ (H}) has coefficients in Z in
x
case (1) and v(9" ' (Hg)) = m — k in case (2) for every k > 1. We prove the statements
by induction on k.
(k= k+1) We have Hy = ®(Hy) — kHy, hence

0" N (Hyyr) = 0" (®(Hy)) — k0" ' (Hy).

Then k0" '(Hy) has coefficients in Z in case (1) and v(k0" ' (H},)) > m — k in case (2)
by the induction hypothesis. As the derivative 0"(Hj,) has coefficients in Z in case (1)
and v(0"(Hy)) = m — k in case (2), it follows from Proposition 2.5, applied to the power
series Hy, that 0"~'(®(Hy)) also has coefficients in Z in case (1) and v (0"} (®(Hy))) >
m — k — 1 in case (2). It follows that 0" !'(Hjy,1) has coefficients in Z in case (1) and
v(0" Y (Hgy1)) = m —k — 1 in case (2). The claim is proved.

Note that all coefficient of Hj are divisible by k! in Z. Tt follows that the power series
50" 1(Hy) have coefficients in Z in case (1). By Proposition 2.5, 8"(G) has coefficients
in Z in case (1) and v(0"(G)) = m in case (2). O

In particular, we can describe the integral operations OP™™ as follows.

Proposition 6.7. Let G € 2Z[[z]] and m > n > 1. Then G € OP™™ if and only if
" (G) € Z[[z]] and v(P™(G)) = m —n.

Proof. Theorem 4.12 and iterated application of Lemma 6.6 show that G € OP™™ if and
only if °(®""1(@)) € Z[[z]] and v(3°(®""1(G))) = m —n + 1. Thus, it suffices to prove

the following for a power series H € Z[[z]] and integer k > 0:
1. °(H) € Z[[z]] <= ®(H) € Z][z]],
2. 0(°(H) 2 k+1 < v(P(H)) > k.

If °(H) € Z[[z]], then clearly ®(H) € Z[[z]]. Conversely, if ®(H) € Z[[z]], then
8°(H) € Q[[z]] N Z[[z]] = Z[[z]]. The second statement follows from the obvious equality
v(°(H)) = v(P(H)) + 1. O

Let m a positive integer. It follows from Lemma 6.6(2) that there is a tower of inclusions
as in (6.5):

m< - 0,m 1,m+1 n,n+m
(6.8) a"Z[[z]] = OPS" <= OPS"" «+ ...+ OP} —

and for every m the intersection of OP%’ner and OP%H’"Jrl in OP’%’" coincides with

1 1 .
OP;r L Therefore, we obtain:

Proposition 6.9. The group of homogeneous degree m stable operations CK5 — CK;”"

is naturally isomorphic to the intersection z™>*OmZ[[z]] N S.
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The map @ : 2[[93]] — 2[[$]] is continuous in 7, and the space Z[M] is compact
Hausdorff. Hence Im(®") is closed in Z[[z]] for any n. It follows that the set S is also
closed in Z[[z]] in the topology 7, and hence in 7, and 7,.

It follow from Proposition 4.26 and Lemma 6.6 that the topology on OP? induced by
7, is generated by the neighborhoods of zero W, consisting of all collections {G™|n > 0}
such that G™ acts trivially on varieties of dimension < n 4+ m. We still denote this
topology by 7,.

Let A.(x)=(1—2x)" € 2[[w]] for r € Z. Note that ®(A,) =r-A,. In particular, if r is
invertible in 2, then A, € S.

We can describe the set S via divisibility conditions on the coefficients of the power
series.

Theorem 6.10. The set S = N, Im(P") C 2[[$]] consists of all power series G =
Z@o a;xt satisfying the following property: for every prime p and every positive inte-
gers n and m such that m is divisible by p™, for every nonnegative j < m divisible by p,
the sum Z::l (;) a; is diwvisible by p".

Proof. Let n be a positive integer, G € S and write G = ®"(H) for some H € Z[[x]].
Consider the ideal I = (p",2™) C Z[[z]], where m is divisible by p". Note that ®(I) C I
since p" divides m.

Let G’ be the x™-truncation of G and H’ the z™-truncation of H. As G — G’ € [ and
H — H' € I, we have G' — ®"(H') € I. Since G’ and ®"(H') are polynomials of degree
less than m, we conclude that G' and ®"(H’) are congruent modulo p™.

We write G’ and H' as polynomials in y = x — 1. Since ®"(y') = i"y*, the y'-coefficients
of ®"(H') are divisible by p" for all i divisible by p. It follows that the same property
holds for G’. As

m—1 m—1 m—1 % . m—1 m—1 ,.
¢=Far' =T ar)=Yay(Jy=2Cv ¥ ()
i=0 i=0 =0 j=0 \J j=0 =5 M
the divisibility condition holds.

Conversely, as Z = [1Z,, it suffices to prove the statement over Z,. Let G € Z,[[]]
satisfy the divisibility condition in the theorem. Choose n and m such that m is divisible
by p™ and set I = (p™,2™) C Z,[[x]] as above. Recall that ®(/) C I. Let F be the
x™-truncation of G. By assumption, we can write F' = Y b;y* modulo p", where the sum
is taken over i < m that are prime to p. In particular, G = >_ b;y' modulo I.

Choose r > 0 and set F' = Y %y". Then & (F') = > by’ = G modulo I, ie., G is
in the image of ®” modulo I. As Im(®") is closed in Z,[[z]] in the topology T, we have
G € Im(®") for all 7, ie., G € S. O

6.2. Stable operations in CK over Z. Now we turn to the study of stable operations
over Z.

Proposition 6.11. The pre-image of OP™" under ¥ 71 : OP%H’"+1 — OP%’" is equal to
OP" 1L for every n > 0.

Proof. As X' =9%0®, forn > 1, and ! = ®, for n = 0, this follows immediately from
Proposition 6.7. U
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Thus, we have a tower
Z[[z]] = OP*? +-> OP" <~ ... <> OP™" ¢~ ...,

given by the desuspension and the group OP*" of stable homogeneous degree 0 integral
operations is identified with Sy := S N Z[[z]], where S is described by Theorem 6.10.
Applying Proposition 6.7 again we get:

Proposition 6.12. The group of homogeneous degree m stable operations CK* — CK*t™

is naturally isomorphic to the intersection ™0™ Z[[z]] N Sp.
We would like to determine the structure of Sy.

Lemma 6.13. For everyn > 0 there is a positive integer d such that da™ € S+a" ' Z][[x]].

Proof. Choose distinct elements rg, ..., 7, € Z* such that ri—r; € Zfor all i and j. The
z-coefficients with 4 = 0,1,...,n of the power series A, (r) = (1 — )% € S form an
(n+1) x (n+ 1) Van der Monde type matrix [(—1)"("7)]. Its determinant d is a nonzero

integer since all r; — r; are integers. It follows that there is a Z-linear combination of the
A,;’s that is equal to dx™ modulo L ([l

Note that any ideal in Z that contains a non-zero integer is generated by a positive
integer (the smallest positive integer in the ideal). It follows from Lemma 6.13 that for
every n 2 0 there exists a unique positive integer d,, such that the ideal of all a € Z with
the property az™ € S + 2""'Z[[z]] is generated by d,,. We will determine the integers d,,
below.

For every n > 0 choose a power series G, € S such that G,, = d, 2" modulo z"*!.

Lemma 6.14. Let G = ZM] a;x' € S be such that ag,...,an_1 € Z. Then there exist
b; € Z for alli = n such that G —> .. b;G; € S.

i=n

Proof. Find an integer a), such that a, — a}, is divisible by d,, thus, a,, = a, + d,b,, for

some b,, € Z. Then the zi-coefficients of G — b,G,, are integer for i = 0,...,n. Continuing
this procedure, we determine all b; for ¢ > n, so that all coefficients of G — Zi}n b;G; are
integers. U

Theorem 6.15. For all n > 0 there are power series F,, € Sy such that F, = d,z"
modulo x"T*. Moreover,

(1) The group Sy consists of all infinite linear combinations Z@O an F,, with a, € Z.

(2) The group of homogeneous degree m stable operations CK* — CK**™ is naturally
isomorphic to the group of all infinite linear combinations a, F,, with
a, € Z.

n>max(0,m)

PmOJi Fix an n > 0. The coefficient d,, of G, is integer. Applying Lemma 6.14, we find
bi € Zfor i > n+ 1 such that F, := G, — )., biGi € Sp. Statements (1) and (2) are
clear. 0
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6.3. The integers d,. Our next goal is to determine the integers d,,. Let n > 0 be an
integer. For an integer r write L, for the n-tuple of binomial coefficients:

(GD,(:),..,(nil>>::(1ﬂg.”)e;z¢

For a n-sequence a = (ay, ..., a,) of positive integers let d(a) be the determinant of the
n X n matrix with columns L,,, Lq,, ..., L,,. We have
n—1
(6.16) d(@) = (TI(as—a))/ I k' € Z.
s>t k=1

Let p be a prime integer. An n-sequence a is called p-prime if all its terms are prime
to p. Let amm be the “smallest” strictly increasing p-prime n-sequence

(L,2,...,p—1,p+1,...).
~(n)

min

Lemma 6 17. Let a be a p-prime n-sequence that differs from a
Then d(

at one term only.
) divides d(a) in the ring of p-adic integers Z,.

mm

Proof. Suppose a is obtained from amm by replacing a term a by b. It follows from (6.16)
that

d(a)/d(a,,,) = T1(b - a')/T1(a - o),
where the products are taken over all terms a’ of a;, but a. Since a is prime to p, the
product [[(a — a’) generates the same ideal in Z,, as a!(c — a)!, where c is the last term of

amin. Similarly, as b is prime to p, the product [[(b — a’) generates the same ideal in Z,
as

b@—m~-@—a+n-w—a—n-~w—c+nw—cy=p4yﬂm@_aﬂc)f‘ﬂ.D

a c—a

Corollary 6.18. The integer d( ) divides d(a (i1 " in Z,.

Proof. In the cofactor expansion (Laplace’s formula) of the determinant d(a mml)) along
the last row all minors are divisible by d(a Em)n) in view of Lemma 6.17. U

Write M,, for the Z,-submodule of (Z,)" generated by the tuples L,,, Lq,,...,L
~(n)

min*

an >

where (a1, as,...,a,) =a

Lemma 6.19. Let b be an integer prime to p. Then the n-tuple L is contained in M,.
In others words, the Z,-submodule of (Z,)" generated by Ly for all integers b > 0 prime
to p coincides with M,.

Proof. By Cramer’s rule, the solutions of the equation L, = x1L,, + ...+ 2,L,, are given
by the formula z; = d(ag)) /d(&l(;?n), where the sequence a; is obtained from amm by

replacing the i-th term with b. By Lemma 6.17, we have x; € Z,,. Il
The following statement is a generalization of Lemma 6.17.

Corollary 6.20. Let a be any p-prime n-sequence. Then d( divides d(a) in Z,. O

mll’l )
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Set
dy = d) = d(ay,V) fd(a,y).
By Corollary 6.18, d,, € Z,,.
Write n in the form n = (p — 1)k + 4, where i = 0,1...,p—2 and k = LI%J Then it
follows from (6.16) that

k- k!

Z
n!

(6.21) d,Z, = »,  or, equivalently w,(d,) =k + v,(k!) — v,(n!),

where v, is the p-adic discrete valuation.
Note that v,((n + k)!) = v,((pk + ©)!) = v,((pk)!) = k + v,(k!), hence d,,Z, = (":,k) Z,.
Observe that the function n — v,(d,) is not monotonic.

Proposition 6.22. An (n+ 1)-tuple (0,0,...,0,d) is contained in M, 1 if and only if d
is divisible by d,, in Z,.

Proof. As in the proof of Lemma 6.19, (0,0,...,0,d) € M, if and only if d - d(_ )
is divisible by d(a (n+1)) in Z, for all ¢, where the sequence ag is obtained from al") by

deleting the i-th term in afﬁql) We have d(a;)) = d(a (Y if i = n + 1 and by Corollary
6.20, all d(a(;) are divisible by d(a mln) whence the result. O

For an integer r, let as before A,.(z) = (1 —x)". Note that the n-tuple L, is the tuple of
coefficients (after appropriate change of signs) of the z™-truncation of the polynomial A,.
Denote by N® the Z,-submodule of Z,[x] generated by A, for all integers 7 > 0 prime
to p. We get an 1mmed1ate corollary from Lemma 6.19 and Proposition 6.22:

Proposition 6.23. Letd € Z, andn > 0. Then dx™ € NP +2"Z [2] if and only if d is
divisible by d,,. Moreover, there is a Zy-linear combination Gy, of the Adams polynomials

Aoy Aagy - A where (ay, a9, ..., G0pe1) = a"™™V  such that G, = dna" (mod ™).

min 7/
0

an+17

Proposition 6.24. The set Sz, = N, Im(®} ) contains a power series = dz"™ (mod x"*)
if and only if d is divisible by d,, in Z,,.
Proof. Suppose that G € Sz, and G = d2" modulo 2" Choose integers k > 0 such

that p* is divisible by d(a "ng ) and m > n divisible by p* and consider the ideal I =
(p*,2™) C Z,. We have G = ®F(G") for some G’ € Z,[[z]] and write

m—1
e ZO b’LAZ mOdulO xmzp[[«f]]

for some b; € Z,. Applying ®* and taking into account the equality ®*(A;) = i*A;, we
get G = ®F(G') € N®) 4 I. Taking the z"*'-truncations, we see that

dz" € NP 4 "7 [2] + p*Z, [x].

As p¥ is divisible by d(a™"), we conclude that p*Z,[z] € N® + 27*1Z [z], hence da" €
N®) 4 gn+17Z [2]. By Proposition 6.23, d is divisible by d,,. O
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Now we turn to the ring Z. The integers d,, defined before Lemma 6.14 are the products

of primary parts of d,, = d'?) determined as above for every prime p. In view of (6.21) we
have n n
vp(dn) = LFJ + Up(LEJ!) — vp(n!)
for every prime p. For example, dy = 1, d; = 2, dy = 2%2-3, d3 = 23, dy = 2*-3 -5,
d5:25'3, d6:26'32'7, d7:27'32.
Propositions 6.23 and 6.24 yield:

Theorem 6.25. Let n > 0 be an integer. Then

(1) There is a Z-linear combination G, of the Adams polynomials Agiy Aays oy Aaysy

for some ay,as, ..., an 1 € Z* such that G, = d,z™ modulo ™.
(2) The set S =N, Im(P%) contains a power series = dz" (mod ") if and only if d

1s divistble by d, in Z.

Remark 6.26. It follows from Proposition 6.23 that ay,as,...,a,411 € Z* can be chosen
so that for every prime p, we have ((a1)p, (a2)p, .-, (@ni1)p) = ag’j;” with respect to p.

In particular, a; = 1.

Proposition 6.27. The set S = N, Im(®") is the closure in the topology Ts, and hence,
in the topologies 1, and T, of the set of all (finite) Z-linear combinations of the power
series A, forr € Z*.

Proof. Denote as T, T,,, T, the closures of the mentioned set of linear combinations in our
three topologigs. As S is closed in 7, we have T, C T, C T,, C S.
Let G € 2*Z[[z]] N S. Then by Theorem 6.25, G = dz* (mod 2**!), where d = d}, - c,

A~ ~

for some ¢ € Z. We know that there exists a Z-linear combination G} of the power
series Aq,, Aay, - -, Ag, (with invertible a;’s) such that Gy = dz* (mod z*). Hence,
G —c- Gy, € 2F1Z[[z]] N S. Applying this inductively, we obtain that, for any G € S
and any positive integer m, there exists a finite Z-linear combination H of invertible A,’s,
such that G — H € 2™Z[[z]] N S. Therefore, T, = S and hence T, =T, = T, = S. O

6.4. Stable operations in K. Insection 4.7 we defined the bi-algebra A of co-operations
in K. Recall that for a commutative ring R, the bi-algebra of operations OP%" (K ) =

OP%’(CK) = R|[[z]] is dual to A. The same proof as in Proposition 6.4 shows that the
desuspension operator

571 R([2]] = OPR"(K,,) — OPR " (K,,) = Rl[x]]
coincides with ®. It follows that
OPj(K,y) = lim(R[[x]] < Rlla]] & Rfla]] ¢ ...
Lemma 6.28. The desuspension operator ® is dual to the multiplication by s in A.
Proof. As ®((1 —2)™) =m(1 — x)™, in view of Lemma 4.35 we have
{en, ®((1 = 2)™)) = (en,m(l —2)"™) = m - en(m) = (sen, (1 —x)™). 0
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The localization A[1] can be identified with colim(A = A = ...). Therefore,

OP%(K,,) ~ Hom(A E] ,R),
i.c., the bi-algebra OP%(K,,) of stable operations is dual to A[2].

The bi-algebra A[1] coincides with the algebra of degree 0 stable operations Ko(K)
in topology (see [6, Proposition 3] and [2]). Moreover, A[] is a free abelian group of
countable rank [1, Theorem 2.2] and can be described as the set of all Laurent polynomials
f € Qls,s™!] such that f(%) € Z[%] for all integers a and b # 0.

It follows that the bi-algebra A[2] admits an antipode s — s~! that makes A[1] a Hopf
algebra. It follows that OP%(K,,) is a (topological) Hopf algebra.

Remark 6.29. We have a diagram of homomorphisms of bi-algebras and its dual:

Z[s] A RO < R[]
Z[s,sw%A[E] JIH—OP;(KQA

The bottom maps are homomorphisms of Hopf algebras. The antipode of R? takes a
sequence 71; to r_;.

The group of degree 0 stable operations OP¥ (K, ) coincides with OP% (CK) = S whose
structure is determined in Theorem 6.25. Our nearest goal is to prove similar result for
OP%(K,,). We remark that this group is different from OP%(CK) = S N Z[[x]].

Let R be one of the following rings: Z, Z, or Z. Recall that we have an injective
homomorphism by : R[[z]] — R taking (1 — z)™ to the sequence (1,m,m?,...).
The operation ® on R[[x]] corresponds to the shift operation IT on RI>*) defined by
H(a)z = Aj11-

An n-interval of a sequence a in R%® or R? is the n-tuple (@i, Gix1y -y Qin—q) for
some 7. We say that this interval starts at 7.

For every n > 1, let M,, be the R-submodule of R" generated by the n-tuples 7 :=
(1,r,7%,...,r"7 1) for all integers r > 0. Note that M, is of finite index in R™.

Lemma 6.30. A sequence a € R belongs to the image of by if and only if for every
n > 0, the n-interval of a starting at 0 is contained in M,,.

Proof. The implication = is clear. For the converse note that by assumption a is contained
in the closure of Im(bg). On the other hand, if R = Z, or Z, the space R|[[z]] is compact
in 7, and R is Hausdorff, hence Im(bg) is closed, i.e., a € Im(bg). If R = Z, it
follows from the case R = Z that a = bs(G) for some G € Z[[z]]. Since at the same time
G € Q[[z]], we have G € Z][x]]. O

Let Tr C R? be the R-submodule of all sequences a € R? such that every n-interval
of a is contained in M, for all n > 1. If a € Ty, by Lemma 6.30, for every n > 0
there is G,, € R][z]] such that br(G,) = (a—p,a—pi1,...). Since ®(G,11) = G,, the
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sequence (G )n>o determines an element in OP% (K ). This construction establishes an
isomorphism OP%(K,,) ~ Tx. Note that 75 = OP$(CK) = S = N, Im(®").

For every n > 1, let N,, be the R-submodule of R" generated by the n-tuples 7 for all
r € R*. Then N,, is of finite index in R" if R = Z, or Z.

Note that every n-tuple r with r € R* extends to the sequence a with a; = r* that is
contained in 1.

Lemma 6.31. N, C M,, for alln > 1.

Proof. It suffices to consider the case R = Z,. Choose an integer m > 0 such that
p"-Zy C M,. Let r € Z;. Find an integer r’ > 0 congruent to r modulo p™. Then
the tuple 7 = (1,7, 7%, ..., r""!) is congruent to 7 modulo p™. Hence 7 = 7' + (7 — 7) €
M, +p"Z; C M,. O

It follows from Lemma 6.31 that every element in N, is an n-interval of a sequence in
Tr.

Proposition 6.32. If R = Z, or 2, the R-module Tx consists of all sequences a € R?
such that every n-interval of a is contained in N, for alln > 1.

Proof. We may assume that R = Z,,. Let a € T. In view of Lemma 6.31 it suffices to
show that every n-interval v of a starting at ¢ is contained in N,, for all n > 1. Take an
integer m > 0 and consider the (n+m)-interval w of II"™(a) starting at ¢, so that v is the
part of w on the right. Write w as a (finite) linear combination Y ¢,7 over positive integers
r, where t, € Z, and 7 = (1,r,7% ..., r""™ 1) € M, ,,_1. Applying II"™ to II"™(a) we
see that v = > t,r™7, where 7 = (1,7,7%,...,r" ') € M,,_;. As r™ is divisible by p™ if r
is divisible by p, it follows from the definition of N,, that v € N,, + p"M,,. Since N,, is of
finite index in M,,, we can choose m such that p" M, C N,, hence a € N,,. O

Denote by 6 : R4 — R# the reflection operation taking a sequence a to the sequence
Q(CL)Z = Q_;.

Corollary 6.33. The module Ty is invariant under 6.

Proof. In the case R = Z,, or Z it suffice to notice that if r € R*, the symmetric n-tuple
(r=t =2 e ) = e (e (e o (e )Y s contained in N, If R = Z the
statement follows from the equality Ty = T5 N Z%. O

Now let R = Z and n > 0. TNhe ideal of all ¢ € Z such that (0,...,0,t) € N, is generated
by a (unique) positive integer d,, = n!-d,,, where the integers d,, were introduced in Section
6.3. We know that

Up(dn) = vp((n + kp)!)
for all primes p, where k, = LI%J By Theorem 6.15, there are power series F,, € Sy =
S N Z[[z]] such that F, = d,z" modulo z"*1.
Let f(")~ € T be the image of F, under the map S = OP¥(K,) — Z* Thus,
(0,...,0,d,) is the n-interval of f™ starting at 0. For example, we can choose:

fO =0 ,1,1,1,1,...),
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O =(..,0,2,0,2,...).

As in the proof of Theorem 6.15, modifying f by adding multiples of the shifts of £
for m > n and their reflections we can obtain ™ € ZZ for all n.

Theorem 6.34. Fuvery sequence a € Tz ~ OPY(K,,) can be written in the form
a4 — Z |:b2ZH—29(f(21)) + b2i+1Hi(f(2i+1))]
i=0

for unique by, by, ... € Z.

Proof. We determine the integers by, by, . .. inductively so that for every m > 0 the sum
> it of the terms in the right hand side and the sequence a have the same 2m+2-intervals
starting at —m. U

Observe that {TI7'0(f29), IT(f*+Y) |i € Z0} is also a topological basis of OP¥(K,,).
Note that, at the same time, {f)|j € Z5o} form a topological basis for OP% (CK) and
OP¥(CK).

6.5. Stable multiplicative operations. We first consider stable multiplicative opera-
tions on CK%. From Proposition 5.3 we obtain:

Proposition 6.35. Stable multiplicative operations CK5 — CK5 are exactly operations

ve, forc e Z*. These are invertible and form a group isomorphic to Zx. Simalarly, stable
multiplicative operations on CK* form a group isomorphic to Z*.

Restricted to CKOZ, the operation U¢ is given by Gy = 1 (as it is multiplicative and so,
maps 1 to 1), while G(tx) = G(t)G(x) = ct - yg(x) = 1 — (1 — tz)° and so, our operation
corresponds to the power series A. = (1 — x)°. In other words, on CK%, operation W
coincides with the Adams operation W.. Then on CKZ it is equal to ¢™" - W,

Proposition 6.27 gives:

Corollary 6.36. The set of homogeneous stable additive operations on CK% 15 the clo-
sure in the topology T, of the set of (finite) Z-linear combinations of stable multiplicative
operations.

Remark 6.37. Note that the respective statement for Z-coefficients is not true, as there
are only two stable multiplicative operations on CK*, namely, U1 and W', while the
group of stable additive operations there has infinite (uncountable) rank.

Now we consider stable multiplicative operations on K, over Z.

Proposition 6.38. Stable multiplicative operations K, — K, are exactly operations W,
for ¢ = £1. These are invertible and form a group isomorphic to Z* = Z/2Z.

Proof. The linear coefficient of v for the operation Z\I/g is t'71b - see 5.2. This will be
equal to 1 exactly when [ =1 and b= 1. O

As above, the operation W{ corresponds to the power series A, = (1 — z)°. On K, it
coinsides with ¢ - Wl
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