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1. Introduction

The essential dimension of an algebraic object is an integer that measures the
complexity of the object. For example, let Q = (a, b)K be a quaternion algebra
over a field extension K of a base field F of characteristic not 2. That is, let Q
be a 4-dimensional algebra over K with basis {1, i, j, ij} and multiplication table
i2 = a, j2 = b, ij = −ji, where a and b are nonzero elements in K. Thus, Q is
determined by two parameters a and b. Equivalently, we can say that the algebra
Q is defined over the subfield K ′ = F (a, b) of K, namely, Q ≃ Q′ ⊗K′ K for the
quaternion algebra Q′ = (a, b)K′ over the field K ′ of transcendence degree at most
2 over F .

On the other hand, if a and b are two variables over an algebraic closure Falg of
F and K = Falg(a, b), then Q = (a, b)K is a division algebra over K that cannot be
defined over a subfield K ′ of K of transcendence degree at most 1 over F since by
Tsen’s theorem, there are no division quaternion algebras over the subfield K ′Falg ⊂
K. We say that the essential dimension of the class of quaternion algebras is equal
to 2. Informally speaking, the essential dimension of a class of algebraic objects is
the minimal number of algebraically independent parameters one needs to define
any object in the class.

The notion of the essential dimension was introduced by J. Buhler and Z. Reich-
stein in [7] for the class of finite Galois field extensions with a given Galois group G
and later in [37], it was extended to the class of principal homogeneous G-spaces for
a linear algebraic group G. Many classical algebraic objects, such as simple algebras,
quadratic and hermitian forms, algebras with involutions, Cayley algebras, Jordan
algebras, etc., are closely related to the principal homogeneous spaces of algebraic
groups. For example, to give a quaternion algebra is the same as to give a principal
homogeneous space of the group PGL2.

The only property of a class of algebraic objects needed to define the essential
dimension is that for every field extension K/F , we have a set F(K) of isomorphism
classes of objects (quaternion algebras, for example), and for every field homomor-
phism K → L over F , a change of field map F(K)→ F(L) (e.g., the change of field
operation Q 7→ Q ⊗K L for quaternion algebras). In other words, F is a functor
from the category FieldsF of field extensions of F to the category Sets of sets. The
essential dimension for an arbitrary functor FieldsF → Sets was defined in [5].

One of the applications of the essential dimension is as follows. Suppose we would
like to check whether a classification conjecture for the class of objects given by a
functor F holds. Usually, a classification conjecture assumes another functor L (a
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conjectural classification list) together with a morphism of functors L → F , and the
conjecture asserts that this morphism is surjective, i.e., the map L(K) → F(K) is
surjective for every field extension K/F . In other words, every object of type F is
on the list L up to isomorphism.

Suppose we can compute the essential dimensions of L and F , and it turns out
that ed(L) < ed(F), i.e., the functor F is “more complex” than L. This means that
no morphism between L and F can be surjective and the classification conjecture
fails. Thus, knowing the essential dimension allows us to predict the complexity of
the structure. We have examples of this in the quadratic form theory (Section 9a)
and in the theory of simple algebras (Corollaries 10.8 and 10.10).

Typically, the problem of computing the essential dimension of a functor splits
into two problems of finding upper and lower bounds. Miraculously, in many cases
the upper and lower bounds match.

The essential p-dimension for a prime integer p is the version of the essential
dimension that ignores “prime to p effects”. Usually, the essential p-dimension is
easier to compute than the ordinary essential dimension.

If the algebraic structures given by a functor F are classified (parameterized),
then the essential dimension of F can be estimated by counting the number of alge-
braically independent parameters in the classification. (This is how we determined
the essential dimension of the class of quaternion algebras.) But the essential di-
mension can be computed in many cases where no classification theorem is available!
The most impressive example is the structure given by principal homogeneous spaces
of the even Clifford group Clif+n (equivalently, non-degenerate quadratic forms of
dimension n with trivial discriminant and Clifford invariant). The classification the-
orem is available for n ≤ 14 only, but the exact value of the essential dimension was
computed for every n and this value is exponential in n.

The canonical dimension is a special case of the essential dimension. The canonical
dimension of a variety measures its compressibility. This can be studied by means
of algebraic cycles.

The notion of the essential dimension of a functor can be naturally extended to
the categories fibered in groupoids (such as stacks and gerbes). This allows us to
unite the definitions of the essential dimension of algebraic varieties and algebraic
groups.

Essential dimension, which is defined in elementary terms, has surprising connec-
tions with many areas of algebra such as algebraic geometry, algebraic K-theory,
Galois cohomology, representation theory of algebraic groups, theory of fibered cat-
egories and valuation theory.

2. Principal homogeneous spaces and torsors

In this section we provide some basic definitions and facts about principal homo-
geneous spaces and torsors.

2a. Principal homogeneous spaces. Let G be a (linear) algebraic group, i.e., a
smooth affine group scheme of finite type over a field F . We can view G as a (closed)
subgroup of the general linear group GLn over F for some n.

A G-variety is an algebraic variety E together with an action of G on E. For
example, the variety E = G with the left G-action on itself is a G-variety. Every
G-variety that is isomorphic to G with the left G-action is called a trivial principal
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homogeneous G-space. If E is a G-variety over F , then for a field extension K/F , the
K-variety EK := E ×F SpecK is a GK-variety. We will simply call EK a G-variety
over K.

A principal homogeneous G-space is a G-variety E such that EK is a trivial prin-
cipal homogeneous G-space for some field extension K/F . A principal homogeneous
G-space is trivial if and only if E has a point over F , i.e., E(F ) ̸= ∅. In particular,
all principal homogeneous G-spaces are trivial if the base field F is algebraically
closed.

Example 2.1. For every nonzero real number a, let Ea be the circle given by the
equation x2 + y2 = a on the complex plane. We view Ea as a variety over R. The
complex multiplication makes G := E1 (the unit circle) an algebraic group over R
and every Ea a principal homogeneous G-space. All Ea with a > 0 have real points,
hence are trivial principal homogeneous G-spaces. If a < 0, all Ea are nontrivial
(but isomorphic to each other) principal homogeneous G-spaces without real points.

Let G be an algebraic group over F . If K/F is a field extension, we write
G-PHS(K) for the set of isomorphism classes of principal homogeneous G-spaces
over K. If L/K are field extensions of F , we have a change of field map

G-PHS(K)→ G-PHS(L),

taking an E to EL = E ×K SpecL.
In other words, the assignment K 7→ G-PHS(K) can be viewed as a functor

from the category FieldsF of (not necessarily finite) field extensions of F and field
homomorphisms over F to the category Sets of sets. We write

G-PHS : FieldsF → Sets.

Example 2.2. Let G be a finite group. We can view G as a constant algebraic
group over a field F . A principal homogeneous G-space over a field extension K/F
is of the form Spec(M)→ Spec(K), where M is a Galois G-algebra over K. If M is
a field, it is a Galois extension of K with Galois group G. The change of field map
for a field extension L/K takes an algebra M to the tensor product M ⊗K L that is
a Galois G-algebra over L.

Let A be an “algebraic object” over F “based” on a vector space over F , such as
an F -algebra, quadratic form over F , a quasi-projective variety over F , an algebraic
group over F , etc. Suppose that the change of field operation is defined and the
automorphism group G = Aut(A) has the structure of an algebraic group such that
G(K) = AutK(AK) for every field extension K/F . We say that an object B is a
twisted form of A if B is isomorphic to A over a field extension K of F : BK ≃ AK .

If B is a twisted form of A, there is a natural action of the group G on the variety
of isomorphisms E ≃ Iso(B,A) making E a principal homogeneous G-space over F .
Conversely, if E is a a principal homogeneous G-space over F , then the “diagonal”
action of G on E ×A descends to a twisted form B = (E ×A)/G of A.

Thus, we have a bijection

G-PHS(F ) ←→ Isomorphism classes of
twisted forms of A



4 ALEXANDER S. MERKURJEV

Example 2.3. 1. Every automorphism of the matrix algebraMn(F ) is inner. There-
fore, Aut

(
Mn(F )

)
= PGLn, the projective linear group. Twisted forms of Mn(F )

are central simple F -algebras of degree := square root of the dimension = n.
Also, PGLn is the automorphism group of the projective space Pn−1

F . Twisted

forms of Pn−1
F are Severi-Brauer varieties of dimension n− 1. We have bijections

Central simple algebras
of degree n over F

↔ PGLn -PHS(F ) ↔ Severi-Brauer varieties
of dimension n− 1 over F

The Severi-Brauer variety corresponding to a central simple F -algebra A of degree
n is the variety of right ideals in A of dimension n.

2. The symmetric group Sn acts by permutation of the components of the F -
algebra Fn := F × F × · · · × F (n times) and moreover, AutF−alg(F

n) = Sn.
Twisted forms of Fn are étale (or, equivalently, commutative separable) F -algebras
of dimension n. Such algebras are finite products of finite separable field extensions
of F . Therefore, we have a bijection

Sn-PHS(F ) ←→ Étale algebras of
dimension n over F

3. Let q be a non-degenerate quadratic form of dimension n over a field F of
characteristic not 2. The automorphism group of q is the orthogonal group O(q).
A twisted form of q is also a non-degenerate quadratic form over F of the same
dimension n. We then have a bijection

O(q)-PHS(F ) ←→ Non-degenerate quadratic
forms of dimension n over F

4. The automorphism group of the (split) 8-dimensional Cayley algebra C is a
simple group with Dynkin diagram G2. A twisted form of C is a Cayley-Dickson
algebra. Thus, we have a bijection

G2-PHS(F ) ←→ Cayley-Dickson
algebras over F

For an algebraic group G over F , there is a bijection between pointed sets

G-PHS(F ) ≃ H1(F,G),

where H1(F,G) is the first cohomology set of the absolute Galois group Gal(Fsep/F )
with values in G(Fsep) (here Fsep is a separable closure of F , see [43]).

2b. Torsors. Informally speaking, a G-torsor for an algebraic group G over a field
F is a family of principal homogeneous G-spaces with the base a variety over F .
That is, let f : X → Y be a morphism of G-varieties such that G acts trivially on
the base Y . We say that X is a G-torsor over Y if there is a faithfully flat base
change Y ′ → Y such that the morphism X ×Y Y ′ → Y ′ is a trivial G-torsor, i.e.,
it is isomorphic to the projection G × Y ′ → Y ′. In particular, f is flat and for
every point y ∈ Y (K) for a field extension K/F , the fiber of f over y is a principal
homogeneous G-space over K. Thus, a torsor can be viewed as a flat family of
principal homogeneous G-spaces.
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A principal homogeneous G-space X over F yields a G-torsor X → Spec(F ) over
the point Spec(F ) and the converse is also true.

Example 2.4. LetX be the open subvariety of the complex plane given by x2+y2 ̸=
0 viewed as a variety over R. The unit circle G acts on X by complex multiplication.
Write Y for the affine real line without the origin. The morphism f : X → Y taking
a point (b, c) to b2 + c2 is a G-torsor. The scheme-theoretic fiber of f over a point
a is the variety Ea defined in Example 2.1. Thus, f provides a family of principal
homogeneous G-spaces Ea when a varies in Y .

Example 2.5. If G is a (closed) subgroup of an algebraic group G′, by a theorem of
Chevalley, the factor variety G′/G of (left) cosets exists and the natural morphisms
G′ → G′/G is a G-torsor.

A G-variety X is called generically free if the scheme-theoretic stabilizer of the
generic point of X is trivial. By [10, Exposé V, Théorème 8.1], this is equivalent to
saying that there is a nonempty open G-invariant subvariety U ⊂ X and a G-torsor
U → Y with Y a variety over F .

A nonempty G-invariant open subvariety of a generically free G-variety is also a
generically free G-variety.

A finite dimensional linear representation V of G is called generically free if the
affine space A(V ) is generically free as a G-variety. If G is finite, a representation is
generically free if and only if it is faithful.

Example 2.6. Generically free G-representations exist. Indeed, embed G as a
subgroup into a general linear group U := GLn for some n. Then U can be viewed
as an open subvariety of the affine space V := Mn(F ) of all n× n matrices over F .
The group U (and therefore, G) acts linearly on V by left translations. Moreover,
G acts on the open set U with trivial stabilizers and the factor variety U/G exists
by Example 2.5.

A G-torsor f : X → Y is called versal is for every field extension K/F with K
infinite (this holds automatically if F is infinite), for every principal homogeneous
G-space E → Spec(K) and for every nonempty open subvariety W ⊂ Y , there is a
point y ∈ W (K) such that the fiber of f over y is isomorphic to E as a G-variety.
In other words, every principal homogeneous G-space is isomorphic to (many) fibers
of the versal G-torsor and the union of such fibers is dense in X.

An application of Hilbert Theorem 90 yields the following result.

Proposition 2.7. Let V be a generically free representation of an algebraic group
G, U ⊂ V a nonempty open G-invariant subvariety and U → Y a G-torsor with Y
a variety over F . Then the torsor U → Y is versal.

3. Evolution of the definition of the essential dimension

In this section, we describe four steps of the evolution of the notion of essential
dimension.

Step 1. The definition of the essential dimension of an algebraic group G was given
by J. Buhler and Z. Reichstein in [7] when G is finite and by Z. Reichstein in [37]
for an arbitrary G. The original approach to the essential dimension of algebraic
groups used the language of equivariant compressions of algebraic varieties.
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Let X be an irreducible generically free G-variety. A G-compression of X is a
G-equivariant dominant rational morphism X 99K X ′ to a generically free G-variety
X ′. We write ed(X,G) for the smallest integer

dim(X ′)− dim(G)

over all generically free G-varieties X ′ such that there is G-compression X 99K X ′.
The following proposition is a direct consequence of the definition of versality.

Proposition 3.1. Let X and X ′ be two irreducible generically free G-varieties such
that X ′ is versal. Then ed(X,G) ≤ ed(X ′, G).

It follows from the proposition that the integer ed(X,G) is independent of the
choice of the generically free versal G-variety X. This integer is called the essential
dimension ed(BG) of G. (The notation BG will be explained in Example 3.6.)

If V is a generically free representation of G, then V is versal by Proposition 2.7.
Therefore, the essential dimension of G is equal to ed(V,G).

Step 2. One can define the essential dimension of a group G in terms of principal
homogeneous spaces only. Let X be an irreducible generically free G-variety and
U ⊂ X a nonempty open G-invariant subvariety such that there exists a G-torsor
U → Y over F .

The generic fiber E := U ×Y Spec F (Y ) of U → Y , where F (Y ) is the function
field of Y , is a principal homogeneous G-space over F (Y ) independent of the choice
of the open set U . We write F (X)G for the field F (Y ). The transcendence degree
tr. degF (F (X)G) of the field F (X)G over F is equal to dim(X)−dim(G) = ed(X,G).

Conversely, every principal homogeneous G-space over a finitely generated field
extension K/F extends to a G-torsor X → Y for a variety Y over F with F (Y ) ≃ K.

Let K/F be a field extension, E a principal homogeneous G-space over K and
K ′ ⊂ K a subfield containing F . We say that E is defined over K ′ (or that K ′ is a
field of definition of E) if there is a principal homogeneous G-space E′ over K ′ such
that E ≃ E′ ×K′ Spec(K).

A G-compression X 99K X ′ of irreducible generically free G-varieties yields an
embedding of fields F (X ′)G ↪→ F (X)G. Moreover, the generic fiber E for the G-
variety X is obtained via change of field from the generic fiber E′ for X ′, i.e.,

E ≃ E′ ×F (X′)G Spec
(
F (X)G

)
.

Therefore, the smallest transcendence degree of the field of definition of E is equal
to ed(X,G).

We then have the following definition of the essential dimension of G in terms of
principal homogeneous G-spaces. Let K/F be a field extension and E a principal
homogeneous G-space over K. Let ed(E) denote the smallest transcendence degree
of a field of definition of E. If E is the generic fiber for a generically free G-variety
X, then ed(E) = ed(X,G). The essential dimension ed(BG) of G is the supremum
of ed(E) over all principal homogeneous G-spaces E over all field extensions K/F .

Let X be a generically free versal G-variety. The generic fiber Egen for X is called
a generic principal homogeneous G-space. We have ed(Egen) = ed(X,G) = ed(BG),
i.e., the essential dimension of G coincides with the essential dimension of a generic
principal homogeneous G-space.

Step 3. The only property of principal homogeneous spaces used in the definition
of the essential dimension of an algebraic group G in Step 2 was the existence of the
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natural change of field operation. We can then define the essential dimension in a
much more general abstract situation (see [5]).

Suppose for every field extension K/F , we have a set F(K) and for every field
extension L/K we have a map of sets F(K) → F(L) natural for towers of field
extensions. In other words, we are given a functor

F : FieldsF → Sets.

Let K/F be a field extension, x ∈ F(K) and K ′ ⊂ K a subfield containing F .
We say that x is defined over K ′ (or K ′ is a field of definition of x) if x belongs to
the image of the map F(K ′)→ F(K) induced by the inclusion of K ′ into K.

We define the essential dimension ed(x) of x by

ed(x) := min tr. degF (K
′),

where the minimum is taken over all fields of definition K ′ of x. In other words, the
essential dimension of x is the smallest transcendence degree of a field of definition
of x.

We also define the essential dimension ed(F) of the functor F by

ed(F) := sup ed(x),

where the supremum is taken over all field extensions K/F and all x ∈ F(K).

Remark 3.2. The essential dimension of the class x ∈ F(K) of an algebraic object
can be viewed as the minimal number of algebraically independent parameters one
needs to define the object.

Example 3.3. The essential dimension of the functor G-PHS defined in Section 2a
for an algebraic group G coincides with the essential dimension of G as defined in
Step 2.

Example 3.4. ([29, Corollary 1.4]) Every variety X over F can be viewed as a
functor taking a field extension K/F to the set X(K) of K-points of X. We have
ed(X) = dim(X).

Step 4. In many examples of functors F : FieldsF → Sets, the sets F(K) are
isomorphism classes of objects in certain categories. It is convenient to consider
these categories which usually form what is called a category fibered in groupoids.

Let SchemesF be the category of schemes over F , π : X → SchemesF a functor,
a an object of X and X = π(a). We say that a is an object over X. For every
scheme X over F , all objects over X form the fiber category X (X) with morphisms
f satisfying π(f) = 1X .

Let f : a→ b be a morphism in X and α := π(f) : X → Y , so that a is an object
over X and b is over Y . We say that the morphism f is over α.

The category X equipped with a functor π is called a category fibered in groupoids
over F (CFG) if the following two conditions hold:

(1) For every morphism α : X → Y in SchemesF and every object b in X over Y ,
there is an object a in X over X and a morphism a→ b over α.

(2) For every pair of morphisms α : X → Y and β : Y → Z in SchemesF and
morphisms g : b → c and h : a → c in X over β and β ◦ α, respectively, there is a
unique morphism f : a→ b over α such that h = g ◦ f .
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It follows from the definition that the object a in (1) is uniquely determined by b
and α up to canonical isomorphism. We will write α∗(b) for a. The fiber categories
X (X) are groupoids for every X, i.e., every morphism in X (X) is an isomorphism.

Informally speaking, a CFG over F is a collection of groupoids X (X) for all
schemes X over F and a collection of “base change” functors X (Y ) → X (X), b 7→
α∗(b), for all morphisms α : X → Y of schemes over F .

Example 3.5. Every scheme X over F can be viewed as a CFG as follows. An
object of X (as a CFG) is a scheme Y over X, i.e., a morphism Y → X over F .
A morphism between two objects is a morphism of schemes over X. The functor
π : X → SchemesF takes a scheme Y over X to Y and a morphism between two
schemes over X to itself. Note that the fiber groupoids X(Y ) = Mor(Y,X) are sets,
i.e., every morphism in X(Y ) is the identity.

Example 3.6. Let G be an algebraic group and let X be a G-variety over F . We
define X/G as a CFG as follows. An object of X/G is a diagram

E

ρ

��

φ // X

Y

,

where ρ is a G-torsor and φ is a G-equivariant morphism. A morphism between two
such diagrams is a morphism between the G-torsors satisfying the obvious compat-
ibility condition. The functor π : X/G→ SchemesF takes the diagram to Y .

If E → Y is a G-torsor, then E/G ≃ Y .
If X = Spec(F ), we write BG for X/G. This is the category of all G-torsors

over arbitrary bases and the fiber category BG(Y ) for a scheme Y is the category
of G-torsors E → Y over Y . Sometimes BG is called the classifying space of G.

Example 3.7. Let K/F be a finite Galois field extension with Galois group H and
f : G → H a surjective homomorphism of finite groups with kernel N . Then G
acts on Spec(K) via f . An object of the fiber of the category X := Spec(K)/G
over Spec(F ) is a principal homogeneous G-space E → Spec(F ) together with an

isomorphism E/N
∼→ Spec(K) of H-spaces. By Example 2.2, E ≃ Spec(L), where

L/F is a Galois extension with Galois group G such that LN ≃ K. In other words,
L/F is a solution of the embedding problem in Galois theory given by K/F and f
(see [17]).

Example 3.8. Let f : G → H be a surjective homomorphism such that the sub-
group C := Ker(f) of G is central. Let E be a principal homogeneous H-space
over F . The category E/G is called a gerbe banded by C. It is uniquely deter-
mined by a class in the cohomology group H2(F,C), the image of the class of E
under the connecting map H1(F,H) → H2(F,C) induced by the exact sequence
1→ C → G→ H → 1.

An object of the fiber of the category E/G over Spec(F ) is a principal homoge-
neous G-space E′ over F together with an isomorphism E ≃ E′/C of H-varieties,
i.e., the principal homogeneous G-space E′ is a lifting of E.

The essential dimension of a category fibered in groupoids was defined by R. Lötscher
in [28] as follows. Let X be a CFG over F , x an object in the fiber X (K) of X
over Spec(K) and K ′ ⊂ K a subfield over F . We say that x is defined over K ′ (or
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that K ′ is a field of definition of x) if there exists an object x′ in X (K ′) such that
x ≃ α∗(x′), where α : K ′ → K is the inclusion.

Define

ed(x) := min tr. degF (K
′),

where the minimum is taken over all fields of definition K ′ of x.
If the fiber category X (X) is essentially small for everyX, i.e, isomorphism classes

of objects of X (X) form a set, we have a functor FX : FieldsF → Sets taking a field
K to the set of isomorphism classes in F(K) and a field extension α : K → L to the
map [x] 7→ [α∗(x)], where [x] denotes the isomorphism class of a. It follows from the
definitions that

ed(X ) = ed(FX ).

Thus, the notion of the essential dimension of a CFG generalizes the one of a functor
given in Step 3.

Example 3.9. If G is an algebraic group over F , then ed(BG), where BG is defined
in Example 3.6, coincides with the essential dimension of G as defined in Step 2.

Example 3.10. If X is a variety over X, the essential dimension of X viewed as
CFG in Example 3.5, coincides with the essential dimension ofX viewed as a functor
and thus is equal to dim(X) by Example 3.4.

Thus, the language of fibered categories unites the two seemingly different cases
of the essential dimension of an algebraic variety and an algebraic group.

3a. Simple properties and examples. The following proposition is a straight-
forward consequence of the definition of the essential dimension of a functor.

Proposition 3.11 ([29], Proposition 1.3). If α : F → F ′ is a surjective morphism
of functors from FieldsF to Sets, then ed(F) ≥ ed(F ′).

The problem of computing the essential dimension of a functor F very often splits
into two problems of finding a lower and an upper bound for ed(F), and in some
cases the bounds match.

Example 3.12. For an integer n > 0 and a field extension K/F , let F(K) be the
set of similarity classes of all n × n matrices over K, or, equivalently, the set of
isomorphism classes of linear operators in an n-dimensional vector space over K.
The rational canonical form of a linear operator suggests that it suffices to give n
parameters to define an operator, so ed(F) ≤ n. On the other hand, the coefficients
of the characteristic polynomial of an operator yield a surjective morphism of func-
tors F → An

F , where An
F is the affine space of dimension n, hence by Example 3.4

and Proposition 3.11, ed(F) ≥ ed(An
F ) = dim(An

F ) = n. Therefore, the upper and
lower bounds match and ed(F) = n.

Let F : FieldsF → Sets be a functor. A variety X over F is called classifying for
F if there is a surjective morphism of functors X → F .

Corollary 3.13. Let F : FieldsF → Sets be a functor and X a classifying variety
for F . Then dim(X) ≥ ed(F).
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3b. Essential p-dimension. Let p be a prime integer. The idea of the essential
p-dimension is to “ignore field extensions of degree prime to p” (see [39]).

We say that a field extension L/K is a prime to p extension if L/K is finite and
the degree [L : K] is prime to p.

Let F : FieldsF → Sets be a functor, K/F a field extension, x ∈ F(K). We define
the essential p-dimension of x:

edp(x) := min ed(xL),

where L runs over all prime to p extensions ofK and we let the essential p-dimension
of the functor F be defined as

edp(F) := max edp(x),

where the maximum is taken over all field extensions K/F and all x ∈ F(K).
We have the inequality edp(F) ≤ ed(F) for every p.

3c. Special groups. The index nX of a variety X is the greatest common divisor
of the degrees [F (x) : F ] over all closed points x ∈ X.

LetG be an algebraic group over F . The torsion index tG of G is the least common
multiple of the indices nX over all principal homogeneous G-spaces X → Spec(K)
as K ranges over the field extensions of F . Prime divisors of tG are called torsion
primes for G [42, 2.3].

An algebraic group G over F is called special if for any field extension K/F , every
principal homogeneous G-space over SpecK is trivial. Clearly, special groups have
no torsion primes. Examples of special groups are GLn, SLn, Sp2n and quasi-split
tori.

The last statement of the following proposition was proven in [38, Proposition
5.3] in the case when F is algebraically closed.

Proposition 3.14. [29, Proposition 4.4] Let G be an algebraic group over F . Then

(1) A prime integer p is a torsion prime for G if and only if edp(BG) > 0.
(2) An algebraic group G is special if and only if ed(BG) = 0.

4. Canonical dimension

The canonical dimension is a special case of the essential dimension. It turns
out to be related to the incompressibility property of algebraic varieties and can be
studied by means of algebraic cycles.

4a. Definition of the canonical dimension. The notion of canonical dimension
of G-varieties was introduced by G. Berhuy and Z. Reichstein in [4]. In this section,
we give a more general definition of the canonical dimension of a functor (see [23, §2]
and [29, §1.6]). A more general definition of the canonical dimension of a category
fibered in groupoids was given in [28].

A functor F : FieldsF → Sets is called a detection functor if the set F(K) has
at most one element for every field extension K/F . Every detection functor F
determines a class CF of field extensions of F consisting of all K/F such that F(K)
is non-empty. The class CF is closed under extensions: if K ∈ CF and L/K is a field
extension, then L ∈ CF . Conversely, every class C of field extensions of F closed
under extensions determines a unique detection functor F such that C = CF . Thus,
to give a detection functor FieldsF → Sets is the same as to give a class of field
extensions of F closed under extensions.
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Let F : FieldsF → Sets be an arbitrary functor. We can associate with F a

detection functor F̂ defined by

F̂(K) =

{
{K}, if F(K) ̸= ∅;
∅, otherwise.

The corresponding class CF := CF̂ of field extensions of F consists of all K/F such
that F(K) is not empty.

We define the canonical dimension cdim(F) of the functor F by

cdim(F) := ed(F̂).
If C is a class of field extensions of F closed under extensions, we write

cdim(C) := ed(F),
where F is the detection functor associated with C.

By definition, the integer cdim(C) is the supremum of the integers cdim(K) over
all fields K ∈ C, where

cdim(K) := min tr. degF (K
′),

where the minimum is taken over all subfield K ′ ⊂ K containing F such that K ′ ∈ C.
Since there is a natural surjection F → F̂ , we have

cdim(F) ≤ ed(F)
by Proposition 3.11.

As in the case of the essential dimension, we can define the p-canonical dimension
of a functor for a prime integer p by

cdimp(F) := edp(F̂).

4b. Canonical dimension and incompressibility of a variety. Let X be a
variety over F . Viewing X as a functor from FieldsF to Sets, we have the canonical
dimension cdim(X) and the canonical p-dimension cdimp(X) of X defined. In other
words, cdim(X) is the canonical dimension of the class of fields

CX = {K ∈ FieldsF such that X(K) ̸= ∅}.
We have cdim(X) ≤ ed(X) = dim(X).

The canonical dimension of X can be much smaller than dim(X). For example,
if X has a rational point, i.e., X(F ) ̸= ∅, then CX coincides with the class of all field
extensions of F . Therefore, cdim(X) = 0.

We say that an irreducible variety X is incompressible if every rational morphism
X 99K X is dominant, i.e, X cannot be “compressed” rationally to a proper closed
subvariety.

A relation between the canonical dimension and the incompressibility property
of an irreducible variety X can be seen as follows. Let xgen ∈ X(F (X)) be the
generic point (over the function field F (X)) and let f : X 99K X be a rational
morphism with closure of the image being a closed irreducible subvariety Z ⊂ X.
The morphism f identifies the function field F (Z) with a subfield of F (X), and X
has a point over F (Z), the generic point of Z, i.e., X(F (Z)) ̸= ∅. If one can choose
a non-dominant rational map f , then Z is smaller than X and by the definition of
the canonical dimension,

cdim(xgen) ≤ tr. degF (F (Z)) = dim(Z) < dim(X).
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In fact, one can prove that cdim(X) < dim(X). A more precise statement is the
following proposition.

Proposition 4.1 ([32], Proposition 4.3). Let X be an irreducible variety over F .
Then X is incompressible if and only if cdim(X) = dim(X).

We say that an irreducible variety X over F is p-incompressible if for any variety
X ′ over F , admitting a dominant morphism X ′ → X of degree prime to p, every
morphism X ′ → X is dominant or, equivalently, cdimp(X) = dim(X). Every p-
incompressible variety is incompressible.

The canonical dimension and p-dimension of regular complete varieties can be
determined as follows.

Proposition 4.2 ([22], Corollary 4.11). Let X be an irreducible regular complete
variety over F . Then cdimp(X) is the least dimension of the image of a morphism
X ′ → X, where X ′ is a variety over F admitting a dominant morphism X ′ → X of
degree prime to p. Similarly, cdim(X) is the smallest dimension of the image of a
rational morphism X 99K X.

The study of algebraic cycles proved to be very useful while studying the incom-
pressibility property of algebraic varieties.

Let X and Y be varieties over F and d = dim(X). A correspondence from X to
Y , denoted α : X  Y , is an element α ∈ CHd(X × Y ) of the Chow group of classes
of algebraic cycles of dimension d on X × Y . If dim(Y ) = d, we write αt : Y  X
for the image of α under the exchange isomorphism CHd(X × Y ) ≃ CHd(Y ×X).

Let α : X  Y be a correspondence. Assume that Y is complete. The projection
morphism p : X × Y → X is proper and hence the push-forward homomorphism

p∗ : CHd(X × Y )→ CHd(X) = Z · [X]

is defined [13, § 1.4]. The integer mult(α) ∈ Z such that p∗(α) = mult(α) · [X]
is called the multiplicity of α. For example, if α is the class of the closure of the
graph of a rational morphism X 99K Y of varieties of the same dimension, then
mult(α) = 1 and mult(αt) := deg(f), where deg(f) indicates the degree of f .

Proposition 4.3 ([21], Lemma 2.7). Let p be a prime integer and X an irreducible
complete variety. Suppose that for every correspondence α : X  X such that
mult(α) is not divisible by p, the integer mult(αt) is also not divisible by p. Then X
is p-incompressible.

Example 4.4. Proposition 4.3 can be used to prove the following (see [18] or [19]).
Let A be a central simple F -algebra of degree pn, where p is a prime integer. Let
X = SB(A) be the Severi-Brauer variety of right ideals in A of dimension pn (see
Example 2.3.1). The variety X has a point over a field extension K/F if and only
if the algebra A⊗F K is split, i.e., isomorphic to the matrix algebra Mpn(K). Then
cdim(X) = cdimp(X) = pm − 1, where pm ≤ pn is the index of A, i.e., the smallest
degree of a splitting field of A. In particular, X is p-incompressible if and only if
ind(A) = pn = deg(A) if and only if A is a division algebra.

In general, the product of incompressible varieties may not be incompressible.
The following generalization of the previous example has been used in the proof

of Theorem 6.3.
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Example 4.5. Let p be a prime integer and B ⊂ Br(F ) a p-elementary finite
subgroup. Let A1, A2, . . . , An be central division algebras such that the classes [Ai]
form a basis of B over Z/pZ. Let Xi be the Severi-Brauer variety of Ai. Then the
productX := X1×X2×· · ·×Xn is p-incompressible if and only if the sum

∑
i deg(Ai)

is the smallest possible over all choices of a basis [A1], [A2], . . . , [An] for B. This was
originally shown in [23, Theorem 2.1] with the help of algebraic K-theory. For the
proof in the context of algebraic cycles, see [20].

The algebras Ai providing a p-incompressible X can be constructed by induction
as follows. Let [A1] be a nonzero class in B of the smallest index. If the classes
[A1], . . . , [Ai−1] are already chosen for some i, we take [Ai] to be the class of the
smallest index among the classes in B \ span([A1], . . . , [Ai−1]).

Surprisingly, the incompressibility of Severi-Brauer varieties of algebras of rela-
tively prime degrees is a more difficult problem. The following conjecture is still
wide open.

Conjecture 4.6. Let A1, A2, . . . , Ar be central division F -algebras of degree q1, q2, . . . , qr,
respectively, where qi are powers of distinct primes. Let Xi be the Severi-Brauer va-
riety of Ai. Then the product X = X1 ×X2 × · · · ×Xr is incompressible.

This conjecture was proved in the case when r = 1, i.e., when deg(A) is a power of
a prime integer (Example 4.4) and in the case n = 6 if char(F ) = 0 (see [9, Theorem
1.3]). The proof uses the classification of rational surfaces. In particular, del Pezzo
surfaces of degree 6 were used.

If the conjecture were true, we would know the canonical dimension of an arbitrary
Severi-Brauer variety. That is, if A is a central simple F -algebra, we can write the
class of A in the Brauer group of F as the sum of classes of central division F -
algebras A1, A2, . . . , Ar of degree q1, q2, . . . , qr, respectively, where qi are powers of
distinct primes. Then, Conjecture 4.6 would imply that

cdim
(
SB(A)

)
=

r∑
i=1

(qi − 1).

5. Essential dimension of algebraic groups

Let G be an algebraic group over a field F . The essential dimension ed(BG) of the
group G is defined as the essential dimension of the category fibered in groupoids
BG of G-torsors (see Example 3.9), or equivalently, as the essential dimension of the
functor G-PHS : FieldsF → Sets (Example 3.3). Thus, the integer ed(BG) measures
the complexity of the class of principal homogeneous G-spaces.

Let V be a generically free representation of G. By Step 1 in Section 2, ed(BG) =
ed(V,G) ≤ dim(V ) − dim(G). Therefore, we have the following upper bound for
ed(BG).

Proposition 5.1. Let G be an algebraic group over a field F . Then

ed(BG) ≤ mindim(V )− dim(G),

where the minimum is taken over all generically free representation V of G over F .

Example 5.2. Let G be an adjoint semisimple group (a semisimple group with a
trivial center). Then the adjoint representation of G on the direct sum of two copies
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of the Lie algebra Lie(G) of G is generically free. Hence,

ed(BG) ≤ 2 dimLie(G)− dim(G) = dim(G).

Note that, in contrast, the essential dimension of the spinor group Spinn is expo-
nential in n (see Section 9).

5a. Cohomological invariants. Cohomological invariants provide lower bounds
for the essential dimension (see [37]). Let M be a Galois module over F , i.e., M is
a (discrete) abelian group equipped with a continuous action of the absolute Galois
group ΓF := Gal(Fsep/F ) of F . For a field extension K/F , M can be viewed as
a Galois module over K via the restriction homomorphism ΓK → ΓF . For every
d ≥ 0, we have a degree d cohomological functor

H : FieldsF → AbelianGroups

K 7→ Hd(K,M).

A degree d cohomological invariant with values in M of a functor F : FieldsF →
Sets is a morphism of functors u : F → H, where we view H as a functor to Sets.
In other words, an invariant is a collection of maps of sets

F(K)→ Hd(K,M) := Hd(ΓK ,M)

for all field extensions K/F , natural in K.
An invariant u is called nontrivial if there is a field extension K/F containing an

algebraic closure of F and an element x ∈ F(K) such that uK(x) ̸= 0 in Hd(K,M).
A theorem of J.-P. Serre on vanishing of degree d Galois cohomology group of

a field extension of an algebraically closed field of transcendence degree less than
d yields the following statement that provides a lower bound for the essential p-
dimension of a functor.

Theorem 5.3 ([32], Theorem 3.4). Let F : FieldsF → Sets be a functor, M a torsion
p-primary Galois module over F , where p a prime integer. If F admits a nontrivial
degree d cohomological invariant with values in M , then ed(F) ≥ edp(F) ≥ d.

In the following two examples the upper and lower bounds for the essential di-
mension match.

Example 5.4. Denote by µn the group of nth roots of unity over a field F such
that n is not divisible by char(F ). For a field extension K/F , we have the Kummer
isomorphism

K×/K×n ∼→ H1(K,µn), aKn 7→ (a).

It follows that

(µn)
s-PHS(K) = (K×/K×n)s.

Therefore,
(
A1
F \{0})s is a classifying variety for (µn)

s. It follows that ed(µn)
s ≤ s by

Corollary 3.13. On the other hand, if p is a prime divisor of n, then the cohomological
degree s invariant

(a1, a2, . . . , as) 7→ (a1) ∪ (a2) ∪ · · · ∪ (as) ∈ Hs
(
K,µ⊗s

p

)
is not trivial [5, Corollary 4.9], hence edp(Bµ

s
n) = ed(Bµs

n) = s by Theorem 5.3.
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Example 5.5. Let On be the orthogonal group of a non-degenerate quadratic
form of dimension n over a field F with char(F ) ̸= 2. By Example 2.3.3, the set
On -PHS(K) is in bijection with the set of isomorphism classes of non-degenerate
quadratic forms of dimension n for a field extension K/F . Every such form q is
diagonalizable, i.e, q ≃ ⟨a1, a2, . . . , an⟩ with ai ∈ K×. It follows that

(
A1
F \ {0})n is

a classifying variety for On, hence ed(BOn) ≤ n by Corollary 3.13. On the other
hand, the cohomological degree n invariant (the nth Stiefel-Whitney class)

⟨a1, a2, . . . , an⟩ 7→ (a1) ∪ (a2) ∪ · · · ∪ (an) ∈ Hn(K,Z/2Z)
is well defined and nontrivial [14, §17], hence ed2(BOn) = ed(BOn) = n by Theorem
5.3.

Let H be a subgroup of an algebraic group G. Then every generically free
G-representation is also a generically free H-representation. This yields the fol-
lowing statement which can be viewed as a lower bound for ed(BG) and an upper
bound for ed(BH).

Proposition 5.6 ([6], Lemma 2.2). Let H be a subgroup of an algebraic group G.
Then

ed(BG) + dim(G) ≥ ed(BH) + dim(H).

In particular, if G is a finite group, then ed(BG) ≥ ed(BH).

6. Essential dimension of finite groups

By Example 2.2, to give a principal homogeneous G-space for a finite group G is
the same as to give a Galois G-algebra. Thus, the essential dimension of G measures
the complexity of the class of Galois extensions with Galois group G.

By Proposition 5.1, ed(G) ≤ mindim(V ) over all faithful (= generically free)
representation of G. When does the equality hold?

Example 6.1. We will see in Section 8 that the essential dimension of the symmetric
group S3 is equal to 1, but S3 has no 1-dimensional faithful representation, hence
the equality does not hold.

Example 6.2. Let G be a cyclic group of order 3. Since G ⊂ S3, we have ed(G) ≤
ed(S3) = 1 by Proposition 5.6. But G has no 1-dimensional faithful representation
over Q since there are no primitive cubic roots of unity in Q.

It turns out that if G is a p-group and the base field has pth roots of unity, then
equality holds. Equivalently, if V is a faithful representation of G of the smallest
dimension, then V is G-incompressible as a variety.

Theorem 6.3 ([23], Theorem 4.1). Let p be a prime integer, G be a p-group and
F a field of characteristic different from p containing a primitive pth root of unity.
Then

edp(BG) = ed(BG) = min dim(V ),

where the minimum is taken over all faithful representations V of G over F .

The proof of this theorem involves a lot of the machinery discussed in this paper,
in particular, categories fibered in groupoids (gerbes), canonical dimension, algebraic
cycles, algebraic K-theory, representation theory. The main steps of the proof are
the following:
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1. It suffices to construct a faithful representation V of G such that edp(BG) ≥
dim(V ). Let C be the p-socle of G, i.e., the subgroup of all central elements of
exponent p. By the assumption on the roots of unity, C is isomorphic to (µp)

s for
some s. Set H := G/C.

2. Choose a principle homogeneous H-space E over a field extension L of F .
Then the category E/G is a gerbe banded by C (see Example 3.8). An object of
this category is a lift of E to a principal homogeneous G-space. One readily deduces
the inequality edp(BG) ≥ edp(E/G).

3. There is a simple formula relating the essential and canonical p-dimensions of
the gerbe E/G, so we can switch to the canonical p-dimension of E/G. This integer
is easier to calculate since it depends only on the class C of field extensions K/L
such that the fiber of E/G over K has an object, i.e., E has a lift to a principal
homogeneous G-space over K. We have cdimp(E/G) = cdimp(C).

4. The gerbe E/G is determined by a class α in H2(C) = H2(L,µp)
s (see Ex-

ample 3.8). The group H2(L,µp) is identified with the subgroup Br(L) of classes
of exponent dividing p in the Brauer group Br(L) of L. Therefore, the element α
determines a finite p-elementary subgroup B ⊂ Br(L) generated by the images of
α under the homomorphisms H2(L,C) → H2(L,Gm) = Br(L) over all characters
C → Gm over L. Therefore, a field K/L belongs to the class C if and only if B is
split over K.

5. If we choose the principal homogeneous H-space in the step 2 to be trivial,
then D is split and we get cdimp(C) = 0. Since we are proving the lower bound for
ed(G), we need to pursue the opposite strategy and start with the “most generic”
E hoping to get largest possible dimensions of the algebras Ai. Each algebra Ai

arises from a character χi : C → Gm. An application of the equivariant K-theory
shows that for every i, the maximal value of the index of Ai over all L and E is
attained for the same choice of generic L and E. This maximal value is determined
by the representation theory of G. That is, max ind(Ai) is the smallest dimension
of a representation Vi of G such that the restriction to C is given by multiplication
by the character χi.

6. Choose generic L and E. Now we are in the setup of Example 4.5. Choose
central division algebras A1, A2, . . . , Ar such that the classes [Ai] form a basis of
B and the sum

∑
i deg(Ai) is the smallest possible over all choices of a basis

[A1], [A2], . . . , [An] forB. Then the productX = X1×X2×· · ·×Xr is p-incompressible
and cdimp(C) = dim(X) = min

∑
i(deg(Ai)− 1).

7. We end up in the following problem: choose a basis (χi) of the character group
of C and representations Vi of G as above with the smallest

∑
dim(Vi). Then the

direct sum V of all the Vi satisfies edp(BG) ≥ dim(V ), and, by construction, the
restriction of V to the p-socle C is faithful. Elementary group theory shows that
the G-representation V is faithful. Thus, we have found a faithful representation V
of G of the smallest dimension and ed(BG) = edp(BG) = dim(V ).

Remark 6.4. In the proof, we don’t show directly that a faithful representation of
the smallest dimension is G-incompressible. Instead, we construct a representation
V such that edp(BG) ≥ dim(V ). It follows that V is a faithful representation of the
smallest dimension.
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The proof of Theorem 6.3 (see also Example 4.5) shows how to find a faithful
representation of G of the smallest dimension and compute the essential dimension
of G over F . For every character χ ∈ C∗ := Hom(C,Gm), choose a nonzero rep-
resentation Vχ of the smallest dimension such that the restriction to the p-socle C
is multiplication by the character χ. It appears as an irreducible component of the
smallest dimension of the induced representation IndGC(χ). We construct a basis
χ1, . . . , χs of C∗ by induction as follows. Let χ1 be a nonzero character with the
smallest dim(Vχ1). If the characters χ1, . . . , χi−1 are already constructed for some i,
then we take χi to be a character with minimal dim(Vχi) among all characters out-
side of the subgroup generated by χ1, . . . , χi−1. Then V is a faithful representation
of the smallest dimension and ed(BG) =

∑s
i=1 dim(Vχi).

As an example, the following corollary computes the essential dimension of a finite
abelian p-group.

Corollary 6.5 ([23], Corollary 5.2). Let F be a field as in Theorem 6.3 and G a
finite abelian group that is a direct sum of cyclic groups with orders pn1 , pn2 , . . . , pns.
Then

ed
(
BG) =

s∑
i=1

[
F (ξpni ) : F

]
,

where ξpm is a primitive pmth root of unity.

For cyclic groups Corollary 6.5 was proved earlier by M. Florence in [12].

7. Essential dimension of groups of multiplicative type

The essential dimension of groups of multiplicative type was considered in [27].
An algebraic group G over F is said to be of multiplicative type if over a separable

closure Fsep of F , Gsep is a subgroup of the group of diagonal matrices. If G is a
group of multiplicative type, the assignment

G 7→ G∗
sep := HomFsep(Gsep,Gm)

yields an anti-equivalence between the category of groups of multiplicative type and
the category of finitely generated ΓF -modules, where ΓF = Gal(Fsep/F ) (see [24,
20.17]).

Example 7.1. An algebraic torus is a group G of multiplicative type such that the
character group G∗

sep is a free abelian group of finite rank.

Let A be an étale F -algebra and TA be the torus of invertible elements in A. Then
the character ΓF -module of TA

sep is a permutation module, i.e., it has a ΓF -invariant
Z-basis. Conversely, every permutation module is the character ΓF -module of a
torus TA for an étale F -algebra A. The torus TA acts linearly on the affine space
of A and TA is equal to the open orbit of 1.

Let G be a group of multiplicative type. A presentation of G is a surjective ΓF -
homomorphism f : P → G∗

sep with P a permutation ΓF -module. Such a presentation

of G identifies G with a subgroup of TA with the character module P for an étale
F -algebra A. Therefore, the affine space of A is a generically free representation of
G. By Proposition 5.1,

ed(BG) ≤ dim(A)− dim(G) = rank
(
Ker(f)

)
.
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Does the equality hold for a presentation f of G with the smallest rank(P )? In
general, the answer is not known. But, as in the case of finite p-groups, the p-variant
of the question has a positive answer.

A representations V of G over F is called p-faithful if the kernel of V is a finite
group of order prime to p. The image of the natural homomorphism ΓF → Aut(G∗

sep)
is called the splitting group of G.

Theorem 7.2. [27, Theorem 1.1] Let F be a field and p an integer different from
char(F ). Let G be a group of multiplicative type over F such that the splitting group
of G and the factor group G/T by the maximal sub-torus T in G are p-groups. Then

edp(G) = ed(G) = min dim(V ),

where the minimum is taken over all p-faithful representations V of G over F .

The proof of this theorem is parallel to the one of Theorem 6.3. One consid-
ers restrictions of representations to the p-socle of G, the maximal subgroup of G
isomorphic to (µp)

s for some s.
Theorem 7.2 can be restated in terms of ΓF -modules. A homomorphism of ΓF -

modules P → G∗
sep with P a permutation ΓF -module and the finite cokernel of order

prime to p is called a p-presentation of G∗
sep.

Corollary 7.3. [27, Corollary 5.1] In the conditions of Theorem 7.2, let f : P →
G∗

sep be a p-presentation with the smallest rank(P ). Then edp(G) = ed(G) =

rank
(
Ker(f)

)
.

Example 7.4. Let p be a prime integer and L/F be a Galois field extension with
Galois p-elementary group Γ of order pr for some r > 0. Fix a basis γ1, . . . , γr of Γ
as a Z/pZ-space. Consider the torus T over F given by

T (K) = (L⊗F K)×/K×

for a field extension K/F . Hilbert’s Theorem 90 yields an isomorphism

T -PHS(K) ≃ Br(L⊗F K/K) := Ker
(
Br(K)→ Br(L⊗F K)

)
.

The character Galois module of T is the augmentation ideal I in the group ring Z[Γ],
i.e., I = Ker

(
Z[Γ] ε−→ Z

)
, where ε(γ) = 1 for every γ ∈ Γ. The surjective homomor-

phism f : Z[Γ]r → I, taking an r-tuple (xi) to
∑

r xi(γi − 1), is a presentation of
I = G∗

sep. By [31, Example 4.5], f is also a p-presentation of the smallest rank. It
follows that

ed(BT ) = edp(BT ) = rank(Z[Γ]r)− dim(T ) = (r − 1)pr + 1.

8. Essential dimension of symmetric groups

In this section, F is a field of characteristic zero.
The essential dimension of the symmetric group Sn for n ≤ 6 was computed in

[7, Theorem 6.5]. By Example 2.3.2, to give a principal homogeneous Sn-space over
a field extension K/F is to give a degree n étale K-algebra. Every such an algebra
A is generated by one element a, and the choice of a generator yields an algebra
isomorphism A ≃ K[X]/(fa), where fa ∈ K[X] is a monic separable polynomial.
The algebra A is defined over a subfield K ′ ⊂ K if and only if the generator a can
be chosen so that fa ∈ K ′[X]. Thus, the essential dimension of A is the smallest
transcendence degree of the field generated by the coefficients of fa over all generators
a of A.
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Remark 8.1. The problem of simplifying polynomials of degree n in one variable
may be viewed as an algebraic variant of Hilberts 13th problem.

Define a generic degree n étale algebra Agen as the factor algebra K[X]/(f),
where K = F (T1, T2, . . . , Tn) is the rational function field in n variables and f =
Xn + T1X

n−1 + · · ·+ Tn−1X + Tn is the “generic polynomial” over K. The algebra
Agen corresponds to the generic principal homogeneous Sn-space given by standard
n-dimensional permutation representation of Sn (see Step 2 in Section 2). Therefore,
the essential dimension of Sn coincides with ed(Agen).

Upper bounds for the essential dimension of Sn can be obtained as follows. If
fa = Xn + a1X

n−1 + · · · + an−1X + an for a generator a of an étale algebra A of
degree n, replacing a by a+ a1/n eliminates the term a1, hence ed(BSn) ≤ n− 1 if
n ≥ 2. Scaling a, we can get the equality an−1 = an. Therefore ed(BSn) ≤ n− 2 if
n ≥ 3.

The permutation Sn-action on the product X of n copies of the projective line
P1
F commutes element-wise with the diagonal action of the automorphism group

H := PGL2 of P1
F . The variety X is birationally Sn-isomorphic to the affine space

An
F with the standard linear action of Sn. By Proposition 2.7, the Sn-variety X is

versal. If n ≥ 5, the induced action of Sn on X/H is faithful, hence

ed(BSn) ≤ dim(X/H) = dim(X)− dim(H) = n− 3

for n ≥ 5.

The lower bound ed(BSn) ≥
[
n
2

]
follows from Proposition 5.6 applied to a maxi-

mal 2-elementary subgroup (Z/2Z)k ⊂ Sn, where k =
[
n
2

]
, see Example 5.4. Equiv-

alently, one can see that the kth Stiefel-Whitney class of the trace form of an étale
dimension n algebra yields a non-trivial degree k cohomological invariant of Sn.

Note that the upper and lower bound match for n ≤ 6 and yield an inequality
3 ≤ ed(BS7) ≤ 4.

The lower bound ed(BS7) ≥ 4 was proved by A. Duncan in [11] using the classifi-
cation of rationally connected 3-folds with a faithful A7-action given in [36, Theorem
1.5].

We put all the facts together in the following theorem. The values of ed(BSn) for
n ≥ 8 are not known.

Theorem 8.2. All known values of the essential dimension of Sn are collected in
the following table:

n 1 2 3 4 5 6 7

ed(BSn) 0 1 1 2 2 3 4

Moreover, we have the following inequalities (for n ≥ 7):

n− 3 ≥ ed(BSn) ≥
[n+ 1

2

]
.

The values of the essential p-dimension for p > 0 were computed in [33, Corollary
4.2]:

edp(BSn) =
[n
p

]
.
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9. Essential dimension of spinor groups

Let F be a field of characteristic different from 2. Let Qn(F ) be the set of
isomorphism classes of non-degenerate quadratic forms of dimension n over F . By
Example 2.3.3, Qn(F ) ≃ O(qn)-PHS(F ) for a non-degenerate quadratic form qn over
F . Every form in Qn(F ) is isomorphic to the diagonal quadratic form ⟨a1, a2, . . . , an⟩
with ai ∈ F×, i.e., every quadratic form in Qn(F ) up to isomorphism can be given
by n parameters. Moreover, by Example 5.5, ed(Qn) = ed(BO(qn)) = n.

If n is even, the discriminant of the quadratic form ⟨a1, a2, . . . , an⟩ is equal

to the class of (−1)n/2a1a2 . . . an in F×/F×2. Write Q1
n(F ) = Qn(F ) (only for

even n) and Q2
n(F ) for the subset in Q1

n(F ) of all forms with trivial discrimi-
nant. Clearly, every form in Q2

n(F ) can be given by n − 1 parameters. Moreover,
ed(Q2

n) = ed(BO+(qn)) = n − 1 for n ≥ 3, where O+(qn) is the special orthogonal
group, the connected component of the identity in O(qn).

The Clifford algebra Cl(q) of a quadratic form q in Q1
n(F ) is a central simple

algebra of degree 2n over F . The Clifford invariant of q is the class of Cl(q) in the
Brauer group Br(F ). Let Q3

n(F ) be the subset of Q2
n(F ) of all forms with trivial

Clifford invariant. Thus, Q3
n(F ) is the set of isomorphism classes of non-degenerate

quadratic forms of even dimension n over F with trivial discriminant and trivial
Clifford invariant.

For an even n write Spinn for the spinor group of a (unique up to isomorphism)
hyperbolic quadratic form of dimension n over F . The spinor group is the kernel
of the spinor norm homomorphism from the even Clifford group Clif+n to Gm. It
turns out that there is a bijection Q3

n(F ) ≃ Clif+n -PHS(F ).
The exact sequence

1→ Spinn → Clif+n → Gm → 1

yield a surjection

Spinn -PHS(K)→ Q3
n(K)

for every field extension K/F with a transitive action of K× on all the fibers of the
surjection. It follows that the integers ed(BSpinn) and ed(Q3

n) differ by at most 1.
That is,

ed(BSpinn) + 1 ≥ ed(Q3
n) ≥ ed(BSpinn).

There is a classification of quadratic forms in Q3
n(F ) for even n ≤ 14:

1. Every form in Q3
n(K) is hyperbolic for n ≤ 6, hence ed(Q3

n) = 0 for such n.

2. The forms q in Q3
8 (K) are multiples of 3-fold Pfister forms

⟨⟨a, b, c⟩⟩ := ⟨1,−a⟩ ⊗ ⟨1,−b⟩ ⊗ ⟨1,−c⟩,

i.e., q = d⟨⟨a, b, c⟩⟩ is given by 4 parameters. On the other hand, the degree 4
cohomological invariant (a) ∪ (b) ∪ (c) ∪ (d) ∈ H4(K,Z/2Z) is well defined and
non-trivial. It follows that ed(Q3

8 ) = 4.

3. Every form in Q3
10(K) is isomorphic to q ⊥ H, where H is a hyperbolic plane and

q ∈ Q3
8 (K). Hence ed(Q3

10) = 4.

4. By a theorem of A. Pfister, every form in Q3
12(K) is isomorphic to

⟨a, b⟩ ⊗ ⟨c, d,−cd,−e,−f, ef⟩
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for arbitrary 6 values of the parameters in K. Observing that the obvious degree 6
cohomological invariant (a)∪ (b)∪ (c)∪ (d)∪ (e)∪ (f) ∈ H6(K,Z/2Z) is well defined
and non-trivial, we deduce that ed(Q3

12) = 6.

5. By a theorem of M. Rost, every form in Q3
14(K) is isomorphic to the transfer

from a quadratic extension L/K of a 7-dimensional form q such that q ⊥ ⟨1⟩ is a
3-fold Pfister form over L. The quadratic extension L/F is given by one parameter
and the 3-fold Pfister form over L is given by 3 · 2 = 6 parameters over K. There is
a nontrivial invariant of degree 7 of Q3

14 (see [40]). Counting the parameters, we get
ed(Q3

14) = 7.
Note that for all even n ≤ 14, the forms in Q3

n can be parameterized by alge-
braically independent parameters. Equivalently, the classifying spaces BSpinn and
BClif+n are retract rational for n ≤ 14.

The essential dimension of the spinor groups Spinn for n ≤ 14 was computed by
S. Garibaldi in [15].

A classification of forms in Q3
n for n > 14 is not known (and cannot be simple if

there is one, see Remark 9.2). It is amazing that nevertheless, one can compute the
essential dimension of Spinn and it is exponential in n. P. Brosnan, Z. Reichstein,
and A. Vistoli computed ed(BSpinn) in the case n ≥ 15 and n is not divisible by 4.
In these cases, an upper and a lower bounds match!

For example, consider the case n > 14 and n ≡ 2 modulo 4. The Clifford algebra
of a hyperbolic form qn of dimension n is Z/2Z-graded. Its even component C0(qn)
(the even Clifford algebra) is a product of two matrix algebras Mk(F ) ×Mk(F ),

where k = 2(n−2)/2. The inclusion of the spinor group into the group of invertible
elements in the even Clifford algebra C0(qn) gives then two half-spin representations

V ± of Spinn of dimension 2(n−2)/2 each. Since n > 14, both representations V ±

are generically free (see [35] in the case char(F ) = 0 and [16] in general). Then by
Proposition 5.1,

ed(BSpinn) ≤ dim(V ±)− dim(Spinn) = 2(n−2)/2 − n(n− 1)

2
.

To get a lower bound one finds a finite 2-subgroup H ⊂ Spinn such that the restric-
tion of a half-spin representation of Spinn to H is a faithful representation of H of
the smallest dimension. By Proposition 5.6 and Theorem 6.3,

ed(BSpinn) ≥ ed(BH)−dim(Spinn) = dim(V ±)−dim(Spinn) = 2(n−2)/2−n(n− 1)

2
.

The case n ≥ 15 and n is not divisible by 4 required additional considerations and
it was completed in [29] and [8].

Theorem 9.1. Let F be a field of characteristic not 2. Then, for every integer
n ≥ 15 we have:

ed2(BSpinn) = ed(BSpinn) =


2(n−1)/2 − n(n−1)

2 , if n is odd;

2(n−2)/2 − n(n−1)
2 , if n ≡ 2 (mod 4);

2(n−2)/2 + 2m − n(n−1)
2 , if n ≡ 0 (mod 4),

where 2m is the largest power of 2 dividing n.

Below is the table of values of ed(BSpinn) for small n:
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n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ed(BSpinn) 0 0 0 0 4 5 5 4 5 6 6 7 23 24 120 103 341

The essential dimension of Q3
n was computed in [8] (if char(F ) = 0). For even

n ≥ 16, we have ed(Q3
n) = ed(Spinn) is n ≡ 2 modulo 4 and ed(Q3

n) = ed(Spinn)−1
if n is divisible by 4.

Below is the table of values of ed(Q3
n) for small even n:

n 4 6 8 10 12 14 16 18 20 22
ed(Q3

n) 0 0 4 4 6 7 23 103 326 793

The integers ed(Spinn) and ed(Q3
n) grow exponentially when n goes to infinity.

This behavior is not predicted by the tables for small values of n.

Remark 9.2. We have ed(Q3
14) = 7, ed(Q3

16) = 23, ed(Q3
18) = 103. A jump of

the value of ed(Q3
n) when n > 14 is probably related to the fact that there is

no simple classification of quadratic forms with trivial discriminant and Clifford
invariant of dimension greater than 14. Another possible reason is that the forms
in Q3

n for n > 14 cannot be parameterized by algebraically independent parameters,
or, equivalently, that the classifying space of Spinn and Clif+n are (conjecturally)
not retract rational.

9a. Pfister numbers. Consider the following application in the algebraic theory
of quadratic forms over a field F of characteristic different from 2 (see [6, §4]). Let
W (F ) be the Witt ring of classes of non-degenerate quadratic forms over F and
I(F ) to be the fundamental ideal in W (F ) of classes of even dimensional forms.

A quadratic form is called a general m-fold Pfister form over F if it is a multiple
of an m-fold Pfister form ⟨⟨a1, a2, . . . , am⟩⟩ with ai ∈ F×. Every form q in the mth
power Im(F ) of the fundamental ideal I(F ) is the sum of several m-fold Pfister
forms. The m-Pfister number of q is the smallest number of m-fold Pfister forms
appearing in such sum. The Pfister number Pfm(n) is the supremum of the m-
Pfister number of q, taken over all field extensions K/F and all n-dimensional forms
q ∈ Im(K).

One can check that Pf1(n) =
n
2 and Pf2(n) =

n
2 −1, i.e., these values of the Pfister

numbers are linear in n. The exponential lower bound for the essential dimension
of spinor groups implies that the value Pf3(n) is at least exponential in n. It is not
known whether Pfm(n) is finite for m ≥ 4.

10. Essential dimension of simple algebras

Let CSAn be the functor taking a field extension K/F to the set of isomorphism
classes CSAn(K) of central simple K-algebras of degree n > 1. By Example 2.3.1,
the functors CSAn and PGLn -PHS are isomorphic. In particular, ed(CSAn) =
ed(BPGLn).

The tautological degree 2 cohomological invariant with values in the Brayer group
yields a lower bound ed(CSAn) ≥ 2.

By Example 5.2, since G is an adjoint group,

ed(CSAn) ≤ dim(G) = n2 − 1.
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This upper bound was improved in [25, Proposition 1.6] and [26, Theorem 1.1]:

ed(CSAn) ≤
{

n2 − 3n+ 1, if n ≥ 4;
(n−1)(n−2)

2 , if n ≥ 5 is odd.

Let L/F be a cyclic field extension of degree n, σ be a generator of the Galois
group of L/F . Consider the twisted polynomial ring Lσ[X] in which tx = σ(x)t for
all x ∈ L. For every a ∈ F×, the factor algebra Lσ[X]/(tn − a) is a central simple
F -algebra of degree n called a cyclic algebra and it is denoted by (L/F, σ, a).

If F contains a primitive root ξ of degree n, then L = F (b1/n) for some b ∈ F×

and we write (a, b)n for (L/F, σ, a). For example, (a, b)2 is a quaternion algebra.
The cyclic algebra (a, b)n is given by two parameters. Therefore, ed(a, b)n ≤ 2.

Example 10.1. 1. n = 2. Every algebra in CSA 2 is cyclic (quaternion algebra).
The lower and upper bounds match, hence ed(CSA 2) = 2.

2. n = 3. Every central simple algebra is also cyclic. Since a cyclic group C3 of
order 3 is a subgroup of the symmetric group S3, we have ed(C3) ≤ ed(S3) = 1 and
hence ed(CSA 3) = 2.

3. n = 4. M. Rost proved that ed(CSA 4) = 5.

The value of ed(CSA 5) is not known. It is still an open question whether every
central simple algebra of prime degree p ≥ 5 is cyclic even if F contains a primitive
pth roots of unity. A positive answer to this question would imply that ed(CSA p) = 2
for a prime p over such fields. One could try to show that ed(CSA p) > 2 for a prime
p ≥ 5 to answer the question in the negative.

On the other hand, every central simple algebra of prime degree p is cyclic over a
finite field extension of degree prime to p. It follows that edp

(
CSAp

)
= 2 [39, Lemma

8.5.7].
Upper bounds for edp(CSA pr) with r ≥ 2 were obtained in [33], [34] and then

improved in [41].

Theorem 10.2 ([41], Theorem 1.2). For every prime p and r ≥ 2, we have

edp(CSA pr) ≤ p2r−2 + 1.

In order to get a lower bound for edp
(
CSA pr

)
, one can use the valuation method.

We “degenerate” the group PGLpr to a torus as follows.
Let F be a field and p a prime integer different from char(F ). Over a field exten-

sion L/F containing a primitive pth root of unity, let L′ = L(a
1/p
1 , a

1/p
2 , . . . , a

1/p
r ) for

some ai ∈ L× and choose a central simple L-algebra A of degree pr that is split by
L′. Over the rational function field L(t) := L(t1, t2, . . . tr), the algebra

B := AL(t) ⊗ (a1, t1)p ⊗ (a2, t2)p ⊗ · · · ⊗ (ar, tr)p,

is split by L′(t), hence there is a central simple algebra D of degree pr over L(t)
Brauer equivalent to B.

Consider the functor F : FieldsL → Sets that takes a field extension K/L to the
factor group of the relative Brauer group Br(L′ ⊗L K/K) modulo the subgroup of
decomposable elements of the form (a1, b1)p ⊗ · · · ⊗ (ar, br)p with bi ∈ K×. We can

view the algebra A as an element of F(L), denoted Ã. Using the theory of simple
algebras over complete discrete valued fields, one obtains the key inequality

edp
(
CSA pr

)
≥ edp(D) ≥ edp(Ã) + r.
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Note that the values of F are abelian groups. Moreover, there is a torus S over L

such that F ≃ S-PHS . For a generic choice of A, one has edp(Ã) = edp(S). The
value of edp(S) can be computed using Theorem 7.2 or Corollary 7.3.

Theorem 10.3 ([31], Theorem 6.1). Let F be a field and p a prime integer different
from char(F ). Then

edp
(
CSA pr

)
≥ (r − 1)pr + 1.

Remark 10.4. The torus T in Example 7.4 is a maximal torus in PGLpr . The
inclusion of T into PGLpr yields

T -PHS(K) = Br(L⊗F K/K) ⊂ CSA pr(K) = PGLn -PHS(K)

for every extension K/F , i.e., T -PHS is a sub-functor of PGLn -PHS . By Example
7.4, edp(BT ) = (r−1)pr+1. Note that the essential dimension of a sub-functor can
be larger than the essential dimension of the functor (see Remark 10.9).

Combining Theorem 10.3 with the upper bound in Theorem 10.2, we see that in
certain cases the upper and lower bound match.

Corollary 10.5 ([30], Theorem 1.1). Let F be a field and p a prime integer different
from char(F ). Then, edp

(
CSA p2

)
= p2 + 1.

Recall that M. Rost proved earlier that ed
(
CSA 4

)
= 5.

Corollary 10.6 ([41]). Let F be a field of characteristic different from 2. Then,
ed2

(
CSA8

)
= 17.

For every integers n,m ≥ 1, m dividing n, and a field extension K/F , let
CSAn,m(K) denote the set of isomorphism classes of central simple K-algebras of
degree n and exponent in the Brauer group dividing m. In fact, CSAn,m ≃ G-PHS ,
where G = GLn /µm.

Below we state upper and lower bounds for edp(CSA pr, ps) with s ≤ r for a prime
integer p obtained by the method of degeneration.

Theorem 10.7 ([3], Theorem 6.1). Let F be a field and p a prime integer different
from char(F ). Then, for any integers r ≥ 2 and s with 1 ≤ s ≤ r,

p2r−2 + pr−s ≥ edp(CSA pr, ps) ≥

{
(r − 1)2r−1 if p = 2 and s = 1,

(r − 1)pr + pr−s otherwise.

Corollary 10.8. Let p be an odd prime integer and F a field of characteristic
different from p. Then,

edp(CSA p2, p) = p2 + p.

By a theorem of A. Albert, every central simple algebra of degree 4 and exponent
2 is the tensor product (a1, b1)2 ⊗ (a2, b2)2 of two quaternion algebras. It follows
that ed

(
CSA 4, 2

)
= ed2

(
CSA 4, 2

)
= 4.

Corollary 10.8 recovers a result in [44] that for p odd, there exists a central simple
algebra of degree p2 and exponent p over a field K which is not decomposable as a
tensor product of two algebras of degree p over any finite extension of K of degree
prime to p. Indeed, if every central simple algebra of degree p2 and exponent p were
decomposable, then the essential p-dimension of CSA p2, p would be at most 4.
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Remark 10.9. Interestingly, for an odd prime p, the essential dimension p2 + p
of central simple algebras of degree p2 of exponent p is larger than the essential
dimension p2 + 1 of all algebras of degree p2.

Corollary 10.10. Let F be a field of characteristic different from 2. Then,

ed2(CSA 8, 2) = ed(CSA 8, 2) = 8.

The corollary recovers a result in [1] that there is a central simple algebra of
degree 8 and exponent 2 over a field F which is not decomposable as a tensor product
of three quaternion algebras over any finite extension of F of odd degree. Indeed,
if every central simple algebra of degree 8 and exponent 2 were decomposable, then
the essential 2-dimension of CSA 8, 2 would be at most 6.

In the case p = 2, one can get a better upper bound.

Theorem 10.11 ([2], Theorem 1.1). Let F be a field of characteristic different from
2. Then, for any integer n ≥ 3,

edp(CSA 2n, 2) ≤ 22n−4 + 2n−1.

Corollary 10.12. Let F be a field of characteristic different from 2. Then,

ed2(CSA 16, 2) = 24.
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[40] M. Rost, On the galois cohomology of spin(14), https://www.math.uni-bielefeld.de/ rost/data/spin-14.pdf

(2006).
[41] A. Ruozzi, Essential p-dimension of PGLn, J. Algebra 328 (2011), 488–494.
[42] J.-P. Serre, Cohomologie galoisienne: progrès et problèmes, Astérisque (1995), no. 227, Exp.
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[44] J.-P. Tignol, Algèbres indécomposables d’exposant premier, Adv. in Math. 65 (1987), no. 3,

205–228.



ESSENTIAL DIMENSION 27

Department of Mathematics, University of California at Los Angeles, Los Angeles,
California, 90095-1555, U.S.A.

E-mail address: merkurev@math.ucla.edu


