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For any algebraic variety X of dimension d over a field F, one
can define the following complex [7]:

U K,F(x)= U K,4F(x)—>...> UdK _aF(x)

xeX® xeX! xeX

where X! is the set of points of codimension i in X. Cohomology
groups of this complex we'll denote by Hi(X,K,) and call K-
cohomology groups. In particular, the group H/(X,K;) coincides
with the Chow group of the cycles of codimension i [7]. The
group of K,-zero-cycles H4X,K, .4) we'll denote by Ho(X,Kp).

Let X be a Severi-Brauer variety associated with a central
simple F-algebra D [2]. In the case when the index of D is a prime
number, some K-cohomology groups were computed in [3]. The
group of zero-cycles Ho(X,Kq) was computed in [5] for any Severi-
Brauer variety X. The present paper is devoted to the
computation of the group Ho(X,Ky) also for any Severi-Brauer
variety X.

- For any n 2 0 we construct a homomorphism
pa:Ho(X,K,) - K,D.

The result of Panin mentioned above shows that pg is an

isomorphism. It is not difficult to show that for n 2 3 in general
p» is neither injective nor surjective. The main result of the
present paper is the proof of bijectivity of p;. It seems reasonable
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that p; is also always an isomorphism. (At least this is true for
one-dimensional Severi-Brauer varieties).

The paper is organized as follows. In the first section the
technique of specialization is developed. In Section 2 we define
the homomorphism Px (the definition of py and p; is possible
without using the higher algebraic K-theory). The rest of the
paper is devoted to the construction of the inverse map to pq
which at first is defined with help of the technique of
specialization of some "dense" subset (Section 3) and then is
extended to the whole group K;D.

Some words about notation. If X is a variety over a field F, D
is any F-algebra then for any commutative F-algebra B we write:

X = Xx S eCB,DB =D®p B.
B SpecFoP

1. Specialization

In this section we develop the technique which will be used
in consequence. Let X be an algebraic variety over a field F, R be
an F-algebra which is a discrete valuation ring with residue field
k and fraction field K, = € R be any prime element, and D be a
central simple F-algebra. We construct the homomorphisms of
specialization in the following three situations:

1. The category of coherent X x-modules M (Xx) is equivalent to
the factor category M(Xg)/B, where B is the full subcategory in
M(X4) consisting of the sheaves with support in x;C Xg [1].
Hence we can define the following connecting homomorphisms

7
a:K'-.H (XK) - K' (B) =K' (Xk)'
The composition

SRIK'# (XK) - K""+l (XK)'J—-) =K' (Xk)'
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~ where the first homomorphism is the multiplication by the
‘inverse image of the prime element n in the map
Ky1(K)— Ky(X,) is called the specialization homomorphism.

2. The category of finitely generated Dk-modules Dg-mod is
equivalent to the factor category Dg-mod/C, where C is the full

subcategory in Dg-mod, consisting of all torsion Dg-modules.
Hence we can define the following connecting homomorphism

71
8: Kw_ﬂ + (Dk) - K»(C) = K:-(Dk)
The composition
5x:Ke(Dg) = Koy (Di) == K (Dy),

‘where the first homomorphism is the multiplication by the

prime element =n is also called the specialization
homomorphism.

3. The exact sequence of complexes

0- U KFx)» U KFx)> U KF(x)—0

xeX, **! xe€Xgs xeXg»
induces the following connecting homomorphism
3:H'(Xk,Key1) = H' (X, K).
The composition

SuZHi(XK,Kx-) -3 Hi(XK,K:-+1)—9-—)Hi(Xk,K:),
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where the first homomorphism is the multiplication by
neH 0(XK,Kl) is also called the specialization homomorphism.

Let ueH'(X,K.); for any field extension L/F by
up € H(X;,K.) we denote the image of u under the
homomorphism Hi(X,K.) - Hi(XL,K.).

Lemma 1. For any prime element 1 of the ring R the equality
sg:(ux) =u; holds.

Proof. By the product formula s, (ug) =9(ugsm) = u+9(r) = u;
since 3(n) =1e HY(X,K,).

Example. Let C be an irreducible curve over the field F,ceC
be a nonsingular ‘point, R = Oc.be the local ring of the point c. In

this case k = F(c), K = F(C) and we have the following
Corollary. For any nonsingular rational point ceC, prime

element ne0c, and u e H(X,K.) the equality sn(up(c)) =u holds,

ie. the result of the specialization inthis case does not depend

on the choice of ¢ and =.
The category M(X) has the following filtration:

M(X), c M(X), c...c M(X), = M(X)where d = dim X and M(X);is

the full subcategory in M(X) consisting of all sheaves G such that

dimsuppG <i.Since K,,(M(x),-/M(x),._l) = UK-F(x) [7] the
xeX,-

inclusion M(X),  M(X) induces the homomorphism
t:Ho(X,K:r) — K's (X) .

Lemma 2. For any discrete valuation ring R with the fraction
field K and the residue field k for any prime element neR the
following diagram
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Hy(Xg, Ke) —> K's(Xk)
Ls, A
Ho(X;, Ke) —— K'(X})

is commutative.
Proof. 1t is clearly sufficient to prove the commutativity of

the following diagram:

Ho(Xg, Kep1) — K'eq(Xk)
la la

Ho(Xp, Ke) —=  Ka(Xg)

Since M(Xg), = M(Xy), the functor M(Xg); - M(Xg) = M(Xx)

induces the functor M(Xg),/M(Xg), - M(Xg), = M(Xg).
Therefore we have the following commutative diagram

M(XR)O - M(XR)1 - M(XR)1/M(XR)0

I
M(X,), l M(X),
! l
M(X)—» M(Xg)— M(Xk),

which induces the commutative diagram

Koyt (M(Xg), /M(Xg),) —2> Ke(M(Xg)o)

N3 I
Ke,1(M(Xk)o) K‘(Mixk)")
,

Ke,1(Xk) —  Ke(Xy)
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By definition of 9 the following diagram

K‘+1(M(XR)1/M(XR)0) — K+(M(Xg)o)

4 I
Key1(M(Xx)o) K+(M(X)o)
Hy(X,,Ke,,) -2, Ho(X;, K+)

is commutative. Comparing the two last diagrams we get the
result we need.

2. The definition of p,:H,(X(D),K,) - K,D

Let X = X(D) be a Severi-Brauer variety over a field F,
associated to the central simple F-algebra D of dimension n2, ] be
the canonical locally free O,-module of rank n,and D = Endy ()

[79].
For any commutative F-algebra B consider the full
subcategory M'(Xp) in M(X B) consisting of Xg-modules G such

that R'(J®x G)=0 for any i > 0, where f:Xp — SpecB is the
structural morphism. By this theorem of Quillen [7] the
inclusion M'(Xpg) in M (Xg) induces an isomorphism

Ke(M'(Xp)) = K«(Xp).
It is clear that for any G e M(X3) B-module £(J®xG) has a
structure of the left Dg-module. The exact functor

j8:M'(Xp) - Dp —mod, G:— fi(J ® G)

induces the homomorphism K. (M'(Xp)) = K+(Dg). We define B
as a composition
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pg:Ho(Xp, Ke)—> Ks(Xp) = Ks(M'(Xp)) = K+(D3)

Let R be a discrete valuation ring with the fraction field K
and the residue field k, and te R be any prime element. The
following statement shows that the homomorphism pk and py
are compatible with the specialization.

Prapbsition 1. The diagram
Ho(XK,Kt) ——EL‘) K:(DK)

ls,t s

T
Hy(Xy,Ke) —E> Ke(Dy)
is commutative.

Proof. By Lemma 2 it is sufficient to prove that the following
diagram is commutative

Kiy1(XiK) —  Keyy(Dg)
la g
Ke(Xy) >  Ke(Dy)

But this follows from the commutative diagram of fu_nctc‘)rs |
M(X)>  M(Xg)-  M(Xg)
ik Lir ik

Dy -mod - Dp-mod— D;-mod.

Let now B=F,x e X be any closed point. We want to compute
the following composition

r: KeF(x) = Hy(X, Ke)—E— Ku(D),
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where p = pr. Consider the diagram of functors

F(x)J: mod —-) Dg(x)-mod

M(X) —5 D-mod,

where i:SpecF(x) — X is the closed immersion, right functor is
induced by the inclusion D C Dp(y) and the top arrow sends
F(x)-module M to Dp(,) - module J(x) ®,,, M. Since
dimp,) J(x)=n,](x) is a simple Dp(;;-module and therefore the

top arrow is the equivalence of categories. The commutativity of
the diagram following from the natural isomorphism

] ®, (i:M) = 1}( J(x) ®y) M) for any F(x)-module M shows that ry
is induced by the functor

F(x)-mod - D - mod; M: ](x) @, M
and therefore can be decomposed as follows:
rx:K‘F(x) b 4 K‘(DF(I)) — K« (D),

where the first map is an isomorphism induced by the
equivalence of categories and the second map is the
homomorphism of transfer.

Let now D be a skew field and x be a point of degree n. We
embed F(x) in D as a maximal subfield. Since F(x)-modules J(x)

and D are isomorphic, ](x)®p(x)M=D®F(x)M for any F(x)-
module M and therefore the homomorphism r,:K«F(x) - K«(D)
is induced by the inclusion of F(x) in D. -

Lemma 3.1f D is split then P:Hy(X,Ks) > K«(D) is an
isomorphism.
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Proof. In this case X = PFn-1 is the projective space. Let x e X
be any rational point. In the commutative diagram

K-F(x) —  Ke(Df(y))
| .

R \J

HO(X,K:&) —p—) K«D

the vertical maps are isomorphisms since X is a projective space
[8], F(x) = F and therefore p is an isomorphism too.

Now we formulate the main result of the present paper.

Theorem. Let X be a Severi-Brauer variety corresponding to
the central simple algebra D. Then the homomorphism
p1:Ho(X,K;) = K;(D) is an isomorphism.

The rest of the paper is devoted to the proof of this theorem.

3. The map 4:5(D) — Hy(X(D), K, )

The idea is to construct the inverse map to p = p;. In this
section we build the "first approach” of this inverse map.

Let R be a commutative ring, B be an Azumaya algebra over
R of rank n2, and X = X(B) be a Severi-Brauer scheme associated
to B. For any commutative R-algebra S the set X(S) of S—points of
X coincides with the set of direct summands of the rank n of S-
module B®g S which are right ideals [9].

Let A< B be a commutative R-subalgebra in B. Considering B
as an A-module with respect to the right multiplication define
the following homomorphism )

f:B®g A — End 4(B); f(x ® a)(b) = xba.

Suppose that
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1. A is the direct summand of the A-module B.
2. f is an isomorphism.

Then A-module B = Homy(A,B) is the direct summand of the
projective A-module End4B) = B®; A and therefore is
projective. Since f is an isomorphism, rank 4B =n. Hence
Hom4(B,A) is the right ideal of rank n and the direct summand
in EndA(B) = B®g A and therefore defines the element in the set
of points X(A), i.e. the morphism SpecA — X.

Note that this construction is functional: for any R-algebra S
the subalgebra A®; S in B®; S satisfies the conditions 1 and 2
and the corresponding morphism Spec(A ®; S) — X; is the base
change in the morphism SpecA — X. |

Let D be a central skewfield of dimension n2 over a field F,
L <D be a maximal subfield. Then the subalgebra A = L satisfies
1 and 2 [6] and therefore defines the morphism
SpecL — X =X(D). Denote by xe X the image of the unique
point in SpecL. Since the field F(x) splits D, we have [F(x):F]2n.
On the other hand, our morphism induces the embedding F(x)
in L. Therefore this embedding is an isomorphism. We'll denote
the point x by [L]. So [L] is the closed point of degree n with the
residue field isomorphic to L.

Let u € D; the ring F[u] generated by u over Fis a subfield in
D. We define the set S(D) of all elements u € D* such that F [u] is

- the maximal subfield in D. Since there exists a separable over F
maximal subfield [6] and this subfield is generated by one
element, the set S(D) is not empty. Note also that u € S(D) if and
only if Cayley-Hamilton polynomial of u [4] is irreducible.

Define the following map:

4:5(D) — Hy(X,K;)

by the formula g(u) = u[L] where L = F[u] (we identify L and the
residue field of the point [L]).
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Lemma 4. For any u e S(D) the following equality holds:
p(q(1))=u mod[D*,D*] e KD = D*/[D*,D*].

Proof. Let x = [L]; the results of Section 2 imply that the
composition L*= F(x)* — Hy(X,K;)— K;(D) is induced by the
embedding L to D. Therefore p(q(u)) = p(ux)=u mod[D*,D*] in
K1D.

Now consider the behavior of 4 under the specialization. We
take an affine line Al = SpecF[T], rational point T=teF with a
local ring R = F[T}(t-y) and the prime element n =T —{R. It is clear
that R/xrR=F and F(T) is the fraction field of R. Consider the
specialization map s, associated with the discrete valuation ring
R. : : ;
- Proposition 2. Let St be the set of all polynomials u(T)e D[T]
such that u(t)e S(D). Then §, = S(D) and we have commutative
diagram .

5 )
‘LqP(T) ‘L‘I
HO(X(DF(T) )' K1) —= Hy(X(D),K;)

where the above homomorphism is the "value in the point T =
t". ‘

Proof. Let u(T)eS;, P(T,X)e F[T,X] be Cayley-Hamilton
polynomial of u(T) as an element of Azumaya algebra D[T] over
F[T]. Since the polynomial P(t,X) is irreducible, P(T,X) is also
irreducible and «(T) e S(D(T)).

The homomorphism s; coincides with the composition
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Ho(X(Dr(r)), Kl)_'_"_,HO(X(DF(T)),KZ)'—"-;HO(X(D),Kl).

Hence it 1is sufficient to prove the equality
{u(T), T - t}[E]) = u(t}L] where E= F(T)Yu(T)], L=F[u(t)].

Denote the ring R{u(T)] by A. It is clear that A is a discrete
valuation ring with the prime element =, fraction field E and
residue field L. We consider A as a commutative subalgebra in
Azumaya R-algebra B=D® R and show that the canonical
homorphism f:B®g A—>End,(B) is an isomorphism. L is the
maximal subfield in D, hence f is an isomorphism modulo
maximal ideal of R and by Lemma of Nakayama f is surjective.
Since E is the maximal subfield in D(T), the localization $-1f
with respect to the multiplicative set S of nonzero elements in R
is an isomorphism. Therefore f is injective and hence is an
isomorphism. '

Since A/mAS B/nB A-module B/A is torsionfree and
therefore B/ A is free A-module and A the direct summand in B.

So we have shown that algebra B and commutative
subalgebra A satisfy the conditions 1 and 2 and define the
morphism SpecA — X(B).. The functional property gives us the
commutative diagram

SpecL = SpecA/rA - X(B/nB)= X(D)

SpecA o X(B)
T T

SpecE=  Spec(s4) - X(s7'B)= x(D(T))

which induces the following commutative diagram
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K;)_E = Ho (SpecE, Kz) - HO(X(DF(T))’ Kz)
da lo Lo
KiL= Hpy(SpecL,K;)— HO(X(D),KI)

where 9 is the tame symbol associated to a discrete valuatmn
ring A. In particular 9({u(T), T - t}) = u(#). '
Consider another example of the specialization.
Proposition 3. Let KcD be a maximal subfield,

u(T) e K[T],u(t) # 0. Then s,,(u(T)[K(T)]) =u(t)[K].
roof. The functional property gives us the commutative
diagram ‘

SpecK(T) - X E(T)
d -
Speck - X

Denote [K] by xe X and [K(T)] by y e Xr(r)- The projection j is

~decomposed into the composition X,_.(T)—'—aXxA1 — X and the
closure of the point r(y) in Xx A1 equals xxAl. Since
u(T)eK[T]=F[xxA1] is a regular functor on xxA1, the

specification map sends the element u(T)y at first by the
multiplication on =T -t in {u(T),T-t}y and then by 9 to the
element u(t)x.

4. The construction of the homomorphism 7:Ki(D) - Hy(X(D), Ky)

In this section we show how to extend the map 4 constructed
in Section 3 from the "dense" subset S(D) to the whole group D*,
This extension modulo the commutant appears to be the inverse

map to p = p;.
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We begin with the following abstract situation. Let G be any
group; a subset ScG is called dense in G if for any elements g;,
82 - 81 €G the intersection (1Sg; is not empty.

Lemma 5. Let S be a dense subset in group G such that

S=5"" and 4:5— B be a map to abelian group B. Suppose that
1. q(g"l) =—g(g) for any g e G.

2. 4(8182) =4q(81)+4(g2) for all gy, g, € S such that g;g, € .

Then there exists the unique homomorphism g4:G— B
extending the map g.

Proof. Let g € G; since SgMS1# @, we have: sg=teS for some
se€S;g=5""t.If ¢' extends q then q'(g) = —4(s)+ q(t) which proves
the uniqueness.

Now we prove the existence of the extension. Let $€G; as
before we find s,t€S such that g = s-1t. We define q' by the
formula 4'(g) = —4(s) + ¢(#). To prove that q' is well defined, take
g=si' -t where st eS. Choose s, e SsNSs,NSg~'NS1 then

8=, heSand s;s7 =1t €S, 5,57 =t,t;! € S. Therefore

=4(s)+4(s2) = 4(s25™) = q(tat™) = (1) - (1),
=q(s1)+4(s2) = 4(5251'1) = q(tztfl) = ‘I(tz) -q(t),

hence —q(s)+4(t)=~q(s;)+4(t;) which proves that g' is well
defined.

IfgeSand g =57 for s,te S, then g'(g) = —4(s) + q(t) = q(s~1¢)
= 4(g), i.e. 4' is the extension of 4.

Finally we have to show that 4'(gh) = 4'(g) + 4'(h) for any g,
heG. Suppose at first that geS. Choose seSgNSh™NS1 then
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h=s"teS and g5 €S. We have: 4'(g) + 4'(h) = q(8) — q(s) +q(t)
= g(gs~1) + q(t) = 4'(gh) since gh = (sg~1)-1t. Now consider the
general case. Choose ¢t SgNSh'NS1 ie., s't=g,seSand theS.
Using the first case we have: ¢'(g) + q'(h) = —q(s) +4(t) +4'(h) =
—q(s) + q'(th) = —q(s) +q(th) = q'(gh) since gh = s~th.

Remark. 1t follows from the proof that G is generated by any
dense subset.

Let D be a central skewfield of dimension n2 over a field F, G
=D* S=5(D) cG.

Lemma 6. The set S satisfies the conditions of Lemma 5, i.e.
S~1=5and S is dense in G.

Proof. Since F[u-1] = Flul, S~1 = S. If F is a finite field, the
skewfield D is trivial [6] and therefore S = G is dense in G.

Suppose now that F is an infinite field. Note that the set S is
open in Zarisky topology of affine space D = A dim D. Indeed,
ueSiff the elements 1, u, 42, ...,.u™1 e D are linearly independent
over F if the rank of the matrix of coefficients of these elements
in some basis of D is lesser then n, i.e. the set D-S is closed in D
and S is open. Therefore, for any g1, §2,...,8n in G the sets Sg; are
open and nonempty and since the field F is infinite, the
intersection of these sets is not empty, i.e. S is dense in G.

Now consider the abelian group B = Hp(X(D),K1) and the map
4:S— B defined in Section 3. We prove that g4 satisfies the
conditions of Lemma 5. Let u€ S, L = Flu] ; since Flu=1] =L, q(u™1)
= (W IL] = —W(L]) = —4qW).

Finally we have to show that q(uv) = q(u) + 4(v) for u, veS
such that uv € S. Denote the polynomial vT + 1 - T by »(T). Since

v(1)=veS(D), it is clear that uv(T)e S(DF(T)). Consider the
element w = g(u)+4(v(T))-q(un(T)) HO(XF(T),KI'). By Lemma 4

p(w) = ur(T)uo(T))™ =1e K;(D(T)).
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Lemma 7. Let ueker(Ho(XF(T),Kl)—L)KIDF(T)>. Then the

image of the specialization s, (u) € Hy(X,K;) in the rational point

T =t e F does not depend on the choice of ¢ and =.
Proof. Let L/F be any splitting field of D. From the
commutative diagram

Ho(Xp(r):K1) —E>  KiDg(y
i \’
H, (XL(T)IKI) - KDy

and Lemma 3 we get that uekeri. The exact sequence of
complexes

0- U U KFx)-» U KF@x)-» U KFx)—0
yEAI, XEXP(y)‘~1 xe(xxAl)* XGXP(T)'

and isomorphism Hl(XxAl,Kz) =Hy(X,K;) [8] give us the
commutative diagram with the exact top row

Hy(X, k)% HO(XF(T)'KI) - UlHO(XF(V)'KO)
YeA
Li | lj

HO(XL(T)rKl)"') yeL‘JA]HO(XL(y)rKO)-

The homomorphism j is injective by the theorem of Panin [5].

Therefore u € im(k) and we can apply the Corollary to Lemma 1.
By Lemma 7 and Propositions 2 and 3 we have:

9(4) + 9(v) - q(uv) = s57_1 (w) = s7(w) = 9(u) - 4(u) = 0
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So we can apply Lemma 5 to construct the extension of g:
q':D* - Hy(X(D),K;)
which clearly factors through the homomorphism
k(D) - Ho(X(D)iKl )

that we'll denote by 4. .

Since the set S(D) generates D*, the composition poq is
identified by Lemma 4. In the rest of this section we prove that ¢
commutes with the specialization.

Lemma 8. For any teF the group Dgy* is generated by the
element T -t and set S;. "

Proof. It is clear that D(ry* is generated by T - ¢ and the set of
polynomials u(T)e D[T] such thatu(t) 0 . Since S(D) is a dense

subset in D*, we can find ve S(D) such that u(t)ve S(D). Then
v,u(T)ve S, and u(T) = (u(T)v)o".
Proposition 4. For any t e F the diagram

KiDgry — —T£s = KD

‘L‘IT lq
HO(XP(T),Kl) —Ts Hy(X,K)

is commutative.

Proof. By Lemma 8 the group Dp(r)* is generated by T -t and
the set S;. The commutativity for the elements of the set S was
proved in Proposition 2. Instead of element T - ¢ it is sufficient
to consider (T - t)u, where u is any element in S(D). Let L = Flul;
then F(T) [T - #)u] = L(T) and ~
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(s7-1087)(T - ) = Sp_, (T - L(T)]))=3({(T - t)u, T - [L(T)])
= a({—u,T - t}[L(T)]) = (-u)[L],‘
(805t (T ~t)u) = g(({(T - £}, T - £})) = g(-w) = (~u){L}.

5. Proof of the Theorem

We have only to show that the composition qop is identity.
Let xe X, and u € F(x)*. Consider the point ¥ e Xp(r) over x and
generic point of SpecF(T) and an element
u=uT+1-TeF(T)(X)=F(x)(T). Denote by w the element

q(p(iif))—ﬁic’eHO(XF(T),Kl). Since p(w) = 0, Lemma 7 all the
specializations of w in rational points coincide; in particular st_
1{w) = st(w). By Propositions 1 and 4 the homomorphisms p and
q commute with the specialization and we have:
sr-1(w) = Q(P(Sr-l(ﬁf )) —sr_1(@X) = q(P(“x)) —uxsince Sr_1(#%)=ux
and sT(w)=q(p(sr(ﬁf))—sT(ﬁ5c')=O since sp(%X)=0. Therefore,
q(p(ux)) = ux,i.e. gop=id.

So we have proved the Theorem in the case when D is a
skewfield. Now let A be any central simple F-algebra, A = M,,(D)
where D is a skewfield. Using the results of [5] one can find a
closed subvariety Z < X(A) such that Z =X(D) and a vector

bundle X(A)-Z - X(A') where A' = M ,,_1(D). Therefore,
Ho(X(A)-Z,K1) = 0 and the direct image

Ho(X(D), K1) = Ho(Z, K;)—=— Hy(X(A),K; )

is a surjective map. The Theorem follows from the
commutative diagram
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Hy(X(D),K;) — Ky(D)
~Li=. J«:

Hy(X(4),K1) — Kq(A).
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