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ABSTRACT. By means of Adams operations in algebraic K-theory we study
the order of differentials in the Brown-Gersten-Quillen spectral sequence for
a scheme.

1. INTRODUCTION

Let X be a separated scheme of finite type over a field . We write X, for
the set of points in X of dimension p. There is the niveau spectral sequence

E;;,q = H KerqF(w) = Gerq(X)

IGX(F)

converging to the G-groups of X (the K-groups of the category M (X) of
coherent sheaves on X') with the topological filtration [0, §7, Th. 5.4]. The
term E;}_p coincides with the group of algebraic cycles of dimension p on X
and E? _ with the Chow group CH,(X) of classes of cycles of dimension p [T,
§7, Prop. 5.14].

The topological filtration on G, (X) is defined as follows. Write M,(X)
for the category of coherent sheaves on X supported on a closed subset of
dimension at most p. The image the homomorphism K, (Mp(X )) — Gp(X)
induced by the inclusion functor M,(X) — M (X) is the pth term G, (X)) of
the topological filtration on G, (X). The subsequent factors of the filtration
are denoted by Gy (X)p/p-1)-

The spectral sequence yields surjective homomorphisms

¢, : CHy(X) = Eg,_p — Go(X) /p-1)-

The kernel of ¢, is detected by the differentials of the spectral sequence arriving
at B, .

In the present paper we find some constraints on the order of the differentials
in the spectral sequence arriving at the Go- and G;-diagonals. We show that
for any prime integer [, the Adams operations in algebraic K-theory developed
in [@], [@], [B) and [, split the spectral sequence localized at [ into a direct
sum of [ — 1 summands. (For an analog in topology see [, p. 91].)

In the paper the word “scheme” means a quasi-projective scheme over a field
and a “variety” is an integral scheme.
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2. THE CATEGORY A,

For a prime integer [, let Zgy denote the localization of Z with respect to
the prime ideal (Z.

Lemma 2.1. Let f,g € Z [t] be polynomials such that f and g are coprime
over Q and the residues f and g are coprime over Z/IZ. Then f and g are
coprime over Zy, i.e., f and g generate the unit ideal in Z|t).

Proof. Let I be the ideal in Z[t] generated by f and g. By assumption, [
contains [* and a polynomial 1 — [k for some k& > 0 and h € Z[t]. Then
1 —1*h* € I and hence 1 € I. U

2.1. Definition of A;. Let [ be a prime integer. We define the category A; as
follows. An object of A; is a Z)-module M equipped with a filtration

e MO e MY e MO c MEY

by submodules such that M™ =0 for n >> 0 and M™ = M for n < 0, and
endomorphisms 9, € Endgz,, (M) for all integers k prime to [, satisfying:

(4) %, o bk, = B for all k and k' (in particular, 1%, and ¥%, commute).

(ii) For any k, we have %, (M®) c M® and 9%, acts on M® /M by
multiplication by k* for all .

A morphism between two objects M and N in A; is a Zg)-module homo-
morphism s : M — N such that s o ¢%, = % o s for all k. (We don’t assume
that s is compatible with the filtrations.)

Let M be an object of A, and r € Z. The define the shift M[r] of M

as the module M together with the shifted filtration M[r]® = MG+ and
the endomorphisms defined by wﬁ/[[r] = k™" - ¢k, Clearly, the assignment

M +— M]r] is an auto-functor of A;.

2.2. A decomposition. Let M € A; and let a < b be two integers such that
M@ = M and M® = 0. The set J of all integers j such that a < j < b is
called an interval of M.

Let £ > 1 be an integer such that the congruence class [k]; of & modulo [
is a generator of (Z/IZ)*. Write A = Z/(l — 1)Z. For any congruence class
p € A, consider the polynomial

(1) fo= 11 t=#)
jepnd
over Zy, where J is an interval of M, and set
f= pr:H(t_kj)‘
pEA jeJ

It follows from (i) that (¢%, — k7) (M) C MUY for any j, hence
(2) f@Wi) = 0.
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By construction, every pair of distinct polynomials f, and f, are coprime
over Q and the residues fp and fp/ are coprime over Z/IZ. By Lemma P, f,
and f, are coprime over Z). By the Chinese Remainder Theorem, the factor
ring Z[t]/(f) is canonically isomorphic to the product of the rings Z [t]/( f,)
over all p € A. Note that the image of f, in Zg)[t]/(f) is zero if p" = p and
invertible otherwise.

It follows then from (B) that M has a natural structure of a module over
Zy[t]/(f), where t acts by ¢,. Therefore,

(3) M =] M,
peEA
with M, = Ker f,(¢%,).
We claim that the submodules M, do not depend on the choice of the in-
terval J of M. Indeed, let J* be another interval of M containing .J, f, the

polynomials constructed for J and M), = Ker f;(wﬂ) Then f, divides f,, and
hence

M, = Ker fp(¢M) - Kerf (¢M) M/
Therefore, in view of (B), both for M, and M, we deduce that M, = M.
For any p € A set ]/C;, = f/f, € Zy|t]. Then the polynomials {]?p}pe/\ are
coprime.

Lemma 2.2. Ker f,(4%,) = Im f,(4%,) for all p € A.

Proof. Let 1 = 4%, Since fp(v,/z)]/c;,(@/}) = f(y) = 0, we have Imﬁ(@b) C
Ker f,(¢). As f, and fp are coprime, there are polynomials ¢ and h in

Z(l)[] such that f,g + fp = 1. Then for any m € Ker f,(¢), we have
m = f,()h(¥)(m )Elmfp(¢) Le., Ker fy(¢) C Im fp(1)). O

We also prove that the decomposition (B) does not depend on the choice
of the integer k. Let k' > 1 be an integer such that the congruence class
[K']; is a generator of (Z/IZ)*. Define the polynomials f, f, and f’ in Z|[t]
as above with k replaced by k’. Then M is a direct sum of the submodules
M) = Ker f/ (1) over all p € A.

Lemma 2.3. M, = M, for all p € A.

Proof. Take any p € A and Je J. If j € p, then t — (K')7 divides f). If

(K
J & p, then t — (k)7 divides fp It follows that f, (1/1M)fp(¢ ) = 0 and hence
by Lemma P22,

Mp = Kel"fp(ﬁbﬁ/[) - Imfp(¢§4) - Kerf;(lp%) = M;)
By symmetry, M, C M,. O

Thus, the submodules M, in the decomposition (B) depend only on the
object M in the category A.
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Let s : M — N be a morphism in A;. Choose a common interval J for both
M and N and let f, be the polynomials defined by (W). Then s o f,(¢},) =

fo(%) o s, hence
s(M,) = s(Ker f,(¢5,)) C Ker f,(¢k) = N,
i.e., s induces a Zgy-module homomorphism M, — N,. Thus for every p € A,

we have a functor from A; to the category of Z)-modules taking an object M
to M,.

Proposition 2.4. For an object M in A, and an integer v, we have M|r], =
M., for all p € A.

Proof. Let J be an interval of M. Then J' = J — r is an interval of M|r]|.
Let {f,},ea and {f,},ea be the polynomials constructed in () for J and J',
respectively. Then

Foer (W) = T Whi %)= T B¢k — &) =& f1(dh).

Jj€(p+r)NJ icpnJ’
where d = deg(f,). It follows that
M[r]p = Ker f; (Qpﬁﬂr]) = Ker fp-i-r (%’Q) = Mp—i—r- U

3. SPECTRAL SEQUENCES IN K-THEORY

3.1. Adams operations. Let M be a scheme and Z C M a closed subscheme.
We write K//(M) for the K-groups of M with support in Z and F! K7, (M) for
the ith term of the (finite) gamma-filtration on KZ(M) (see [T, §4]). If M is
a regular scheme, there exists a canonically isomorphism

Gm(Z) = K (M),

where G,,(Z) is the K-group of the category of coherent sheaves on Z [B,
Th.2.14].
For any integer k, there is the Adams operation ¥* on KZ(M) satisfying
the following properties [[T], [@, §9]:
e % is a group endomorphism of KZ(M).
e " respects the gamma-filtration FIK7 (M).
e ¥ acts as multiplication by k on the subsequent factor F\”/"™™ KZ (M).
o YFYF = * in particular, ¥ and ¢* commute.

Let [ be a prime integer. Then the Zgy-module KZ(X) ® Z ) together with
the gamma-filtration and the Adams operations ¥* on it yield an object of the
category A;. Therefore, KZ(X) ® Z( decomposes as in (B) into a direct sum
of submodules (K7 (X) ® Z(l))p overall pe A=2Z/(l - 1)Z.

Let Z be a scheme. For any integer k > 0, there is a well-defined map (see
[T, §4]):

0" : Ko(Z) — Ko(2),

natural in Z, satisfying:
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e For an exact sequence of vector bundles 0 -+ E' — E — E” — 0 over
Z, we have 0%[E] = 6*[E'] - 0*[E"].
e For a line bundle L over Z,
O L) =1+ (L] + [L7) 4+ [L7],

In particular, rank 6% (o) = k™) for every a € Ko(Z).
The following variant of the Riemann-Roch formula was proven in [, Th.
3] (see also (8, 2.6.2]):

Proposition 3.1. Let M be a regular variety of dimension d and let Z C M
be a regular closed subvariety of dimension p. Let N be the normal bundle (of
rank d—p) for the closed embedding f : Z — M. Then there is an isomorphism

fo 1 KJ(Z) = KZ(Z) = KZ(M)
such that

Fo (08 (N) - a)) = 9" (fu(a))
for any o € K.(Z) and any k.

Corollary 3.2. Suppose that, in addition, N is a trivial bundle. Then O(N) =

k4P and hence
Lo (B2 (@) = 4" (fu(@).

Thus, for a prime integer |, f, induces an isomorphism
(Ko(Z2)®@Zg))lp— d] = KZ (M) ® Zg,
in the category A;.

3.2. Localization exact sequence and the niveau spectral sequence.
Let M be a regular scheme. If Z/ C Z are closed subscheme of M, then there
is an exact localization sequence [@, 9.3]:

(4) - KZ(M)— KZ(M) - K2\ (M\ Z') - KZ (M) — ...
that is isomorphic to the localization exact sequence [, §7, Prop. 3.2]:
(5) oo G2 =5 Gu(Z2) > G(Z\Z) = Gpa(Z) — ...

The homomorphisms in (@) commute with the Adams operations by @,
Remark 9.6(1)]. Then, localizing at a prime integer [, we can view (H) and (B)
as sequences of morphisms in the category A.

Let X be a scheme. We embed X into a regular variety M of dimension d
as a closed subscheme. For a pair of integers p and ¢ set

E, , = colim KPZJ}qZ/(M \ Z") = colim G, y(Z \ Z'),
where the colimit is taken over all pairs (Z', Z) with Z a closed subscheme of
X of dimension p and Z’ a closed subscheme of Z of dimension p — 1. Note
that for any such a Z one can find a Z’ such that Z \ Z’ is regular and the
normal bundle of Z\ Z' in M \ Z' is trivial. It follows that

El, = ]_[ K, oF(z)

(JCGX(p)
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and for any prime integer [,

E,@Zy =~ ] (KpoF(x) ®Zy)lp—d

r€X(p)

in A; by Corollary B2. It follows from Proposition 4 that for any p € A,
(6) (Bry®Zo),= I (EpiF(2)®2Za),,, s

CﬂGX@)
Set
D), = colim K7, (M) = colim Gp44(Z),
where the colimit is taken over all closed subschemes Z of X of dimension p.
Taking colimits of the exact sequences (H) and (H) we get the exact sequences:

1

1
T Ep,q — Dp—l,q

1 1
— Dp,q_1 — Ep,q_1 — ..

The later yields an exact couple and therefore, a (homological) Brown-Gersten-
Quillen spectral sequence:

(7) E;;,q = H KpioF(2) = Gpig(X).

xGX(p>

It is supported in the area 0 < p < dim(X) and p + ¢ > 0. In particular, all
the differentials arriving at £ with p + ¢ < 0 are trivial. We shall get some
information on the differentials arriving at £,  with p+¢ =0 or 1.

Lemma 3.3. For any prime integer | and any p € A, we have

s By, @ Ly, if p=1[d+qli;
— Psq
(EM ® Z(l))p { 0, otherwise

foranys>1ifp+q<2.
Proof. By [I1, §2], for a field L and m < 2, we have FI"K,,,(L) = K,,(L) and
FI"U K (L) = 0, hence ¢ acts on Ky, (L) by multiplication by &™. Therefore,

_ ) Kn(L) ®Zqy, if p=[m]i_1;
(Km(L) ® Z(l))p - { 0, otherwise.

The statement now follows from (B). O

Theorem 3.4. Let X be a scheme. Let
0: E;’q — B3

p—S,q+s—1
be the differential in the spectral sequence (@) with p 4+ q < 2. Then the order
of every element a € Ker(0) is finite and if | is a prime divisor of ord(a), then

[ <pandl—1 divides s — 1.

Proof. 1t s > p, then 0 = 0 since E;_, .. | = 0, so we may assume that s < p.

We claim that if [ is a prime integer such that 0®Zy # 0, then [ —1 divides
s — 1. For if let p = [¢ + d];-1 € A. By Lemma B3, the (nonzero) image of
0®Z) is contained in (E5_, .. 1®Zq)), and therefore, p+d = [g+d+s—1];_1,

i.e., [ — 1 divides s — 1. The claim is proved.
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Taking [ > s, we get 0 ® Z(;y = 0 from the claim, i.e., d has finite order.
Let I be a prime divisor of ord(9). Then d®Zy # 0 and hence by the claim,
[ — 1 divides s — 1. In particular, [ < s < p. U

Example 3.5. Let X be the Severi-Brauer variety of right ideals of dimension
[ of a central simple algebra of a prime degree [ over F. Since over a splitting
field extension of degree [ the variety X is isomorphic to the projective space
P'~! and the BGQ spectral sequence for a projective space degenerates at E,
all the differentials of the BGQ spectral sequence for X are [-torsion. Since
dim(X) =1 — 1, it follows from Theorem B4 that all the differentials arriving
at the G- and G;-diagonals are trivial. This result was proved in [B] with the
help of higher Chern classes.

3.3. Motivic spectral sequence. Let X be a smooth scheme. We write
H(X,Z(j)) for the motivic cohomology groups [[2].

The following (cohomological) motivic spectral sequence was constructed in
[2):

(8) Byt = H" (X, Z(=q)) = K_p—¢(X)

The spectral sequence in compatible with the Adams operations ¥* and *
acts by multiplication by k7 on E5? [@, Th. 9.7].

Theorem 3.6. Let X be a smooth scheme. Let
0 : EPd — prtsa—stl

be the differential in the spectral sequence (B). Then the order of every element
a € Ker(0) is finite and if l is a prime divisor of ord(a), then | < dim(X) —p
and | — 1 divides s — 1.

Proof. The proof is parallel to the one of Theorem B4. One remarks that
0=0if s> dim(X) — p. O
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