ADAMS OPERATIONS AND THE BROWN-GERSTEN-QUILLEN SPECTRAL SEQUENCE

ALEXANDER MERKURJEV

ABSTRACT. By means of Adams operations in algebraic K-theory we study the order of differentials in the Brown-Gersten-Quillen spectral sequence for a scheme.

1. Introduction

Let X be a separated scheme of finite type over a field F. We write $X_{(p)}$ for the set of points in X of dimension p. There is the niveau spectral sequence

$$E_{p,q}^1 = \coprod_{x \in X_{(p)}} K_{p+q} F(x) \Rightarrow G_{p+q}(X)$$

converging to the G-groups of X (the K-groups of the category M(X) of coherent sheaves on X) with the topological filtration [10, §7, Th. 5.4]. The term $E_{p,-p}^1$ coincides with the group of algebraic cycles of dimension p on X and $E_{p,-p}^2$ with the Chow group $\operatorname{CH}_p(X)$ of classes of cycles of dimension p [10, §7, Prop. 5.14].

The topological filtration on $G_n(X)$ is defined as follows. Write $M_p(X)$ for the category of coherent sheaves on X supported on a closed subset of dimension at most p. The image the homomorphism $K_n(M_p(X)) \to G_n(X)$ induced by the inclusion functor $M_p(X) \to M(X)$ is the pth term $G_n(X)_{(p)}$ of the topological filtration on $G_n(X)$. The subsequent factors of the filtration are denoted by $G_n(X)_{(p/p-1)}$.

The spectral sequence yields surjective homomorphisms

$$\varphi_p: \mathrm{CH}_p(X) = E^2_{p,-p} \to G_0(X)_{(p/p-1)}.$$

The kernel of φ_p is detected by the differentials of the spectral sequence arriving at $E_{p,-p}^*$.

In the present paper we find some constraints on the order of the differentials in the spectral sequence arriving at the G_0 - and G_1 -diagonals. We show that for any prime integer l, the Adams operations in algebraic K-theory developed in [4], [5], [6] and [11], split the spectral sequence localized at l into a direct sum of l-1 summands. (For an analog in topology see [1, p. 91].)

In the paper the word "scheme" means a quasi-projective scheme over a field and a "variety" is an integral scheme.

I would like to thank Marc Levine for useful discussions.

Date: May, 2009.

The work has been supported by the NSF grant DMS #0652316.

2. The category A_l

For a prime integer l, let $\mathbb{Z}_{(l)}$ denote the localization of \mathbb{Z} with respect to the prime ideal $l\mathbb{Z}$.

Lemma 2.1. Let $f, g \in \mathbb{Z}_{(l)}[t]$ be polynomials such that f and g are coprime over \mathbb{Q} and the residues \bar{f} and \bar{g} are coprime over $\mathbb{Z}/l\mathbb{Z}$. Then f and g are coprime over $\mathbb{Z}_{(l)}$, i.e., f and g generate the unit ideal in $\mathbb{Z}_{(l)}[t]$.

Proof. Let I be the ideal in $\mathbb{Z}_{(l)}[t]$ generated by f and g. By assumption, I contains l^k and a polynomial 1 - lh for some k > 0 and $h \in \mathbb{Z}_{(l)}[t]$. Then $1 - l^k h^k \in I$ and hence $1 \in I$.

2.1. **Definition of** A_l . Let l be a prime integer. We define the category A_l as follows. An object of A_l is a $\mathbb{Z}_{(l)}$ -module M equipped with a filtration

$$\cdots \subset M^{(2)} \subset M^{(1)} \subset M^{(0)} \subset M^{(-1)} \subset \cdots$$

by submodules such that $M^{(n)} = 0$ for $n \gg 0$ and $M^{(n)} = M$ for $n \ll 0$, and endomorphisms $\psi_M^k \in \operatorname{End}_{\mathbb{Z}_{(l)}}(M)$ for all integers k prime to l, satisfying:

- (i) $\psi_M^k \circ \psi_M^{k'} = \psi_M^{kk'}$ for all k and k' (in particular, ψ_M^k and $\psi_M^{k'}$ commute).
- (ii) For any k, we have $\psi_M^k(M^{(i)}) \subset M^{(i)}$ and ψ_M^k acts on $M^{(i)}/M^{(i+1)}$ by multiplication by k^i for all i.

A morphism between two objects M and N in A_l is a $\mathbb{Z}_{(l)}$ -module homomorphism $s: M \to N$ such that $s \circ \psi_M^k = \psi_N^k \circ s$ for all k. (We don't assume that s is compatible with the filtrations.)

Let M be an object of A_l and $r \in \mathbb{Z}$. The define the *shift* M[r] of M as the module M together with the shifted filtration $M[r]^{(i)} = M^{(i+r)}$ and the endomorphisms defined by $\psi_{M[r]}^k = k^{-r} \cdot \psi_M^k$. Clearly, the assignment $M \mapsto M[r]$ is an auto-functor of A_l .

2.2. A decomposition. Let $M \in A_l$ and let $a \leq b$ be two integers such that $M^{(a)} = M$ and $M^{(b)} = 0$. The set J of all integers j such that $a \leq j < b$ is called an *interval of* M.

Let k > 1 be an integer such that the congruence class $[k]_l$ of k modulo l is a generator of $(\mathbb{Z}/l\mathbb{Z})^{\times}$. Write $\Lambda = \mathbb{Z}/(l-1)\mathbb{Z}$. For any congruence class $\rho \in \Lambda$, consider the polynomial

$$(1) f_{\rho} = \prod_{j \in \rho \cap J} (t - k^j)$$

over $\mathbb{Z}_{(l)}$, where J is an interval of M, and set

$$f = \prod_{\rho \in \Lambda} f_{\rho} = \prod_{j \in J} (t - k^{j}).$$

It follows from (ii) that $(\psi_M^k - k^j)(M^{(j)}) \subset M^{(j+1)}$ for any j, hence

$$f(\psi_M^k) = 0.$$

By construction, every pair of distinct polynomials f_{ρ} and $f_{\rho'}$ are coprime over \mathbb{Q} and the residues \bar{f}_{ρ} and $\bar{f}_{\rho'}$ are coprime over $\mathbb{Z}/l\mathbb{Z}$. By Lemma 2.1, f_{ρ} and $f_{\rho'}$ are coprime over $\mathbb{Z}_{(l)}$. By the Chinese Remainder Theorem, the factor ring $\mathbb{Z}_{(l)}[t]/(f)$ is canonically isomorphic to the product of the rings $\mathbb{Z}_{(l)}[t]/(f_{\rho})$ over all $\rho \in \Lambda$. Note that the image of f_{ρ} in $\mathbb{Z}_{(l)}[t]/(f_{\rho'})$ is zero if $\rho' = \rho$ and invertible otherwise.

It follows then from (2) that M has a natural structure of a module over $\mathbb{Z}_{(l)}[t]/(f)$, where t acts by ψ_M^k . Therefore,

$$(3) M = \coprod_{\rho \in \Lambda} M_{\rho}$$

with $M_{\rho} = \operatorname{Ker} f_{\rho}(\psi_{M}^{k}).$

We claim that the submodules M_{ρ} do not depend on the choice of the interval J of M. Indeed, let J' be another interval of M containing J, f'_{ρ} the polynomials constructed for J' and $M'_{\rho} = \operatorname{Ker} f'_{\rho}(\psi^k_M)$. Then f_{ρ} divides f'_{ρ} , and hence

$$M_{\rho} = \operatorname{Ker} f_{\rho}(\psi_{M}^{k}) \subset \operatorname{Ker} f_{\rho}'(\psi_{M}^{k}) = M_{\rho}'.$$

Therefore, in view of (3), both for M_{ρ} and M'_{ρ} , we deduce that $M_{\rho} = M'_{\rho}$.

For any $\rho \in \Lambda$ set $\widehat{f}_{\rho} = f/f_{\rho} \in \mathbb{Z}_{(l)}[t]$. Then the polynomials $\{\widehat{f}_{\rho}\}_{\rho \in \Lambda}$ are coprime.

Lemma 2.2. Ker
$$f_{\rho}(\psi_M^k) = \operatorname{Im} \widehat{f_{\rho}}(\psi_M^k)$$
 for all $\rho \in \Lambda$.

Proof. Let $\psi = \psi_M^k$. Since $f_{\rho}(\psi)\widehat{f_{\rho}}(\psi) = f(\psi) = 0$, we have $\operatorname{Im}\widehat{f_{\rho}}(\psi) \subset \operatorname{Ker} f_{\rho}(\psi)$. As f_{ρ} and $\widehat{f_{\rho}}$ are coprime, there are polynomials g and h in $\mathbb{Z}_{(l)}[t]$ such that $f_{\rho}g + \widehat{f_{\rho}}h = 1$. Then for any $m \in \operatorname{Ker} f_{\rho}(\psi)$, we have $m = \widehat{f_{\rho}}(\psi)h(\psi)(m) \in \operatorname{Im}\widehat{f_{\rho}}(\psi)$, i.e., $\operatorname{Ker} f_{\rho}(\psi) \subset \operatorname{Im}\widehat{f_{\rho}}(\psi)$.

We also prove that the decomposition (3) does not depend on the choice of the integer k. Let k'>1 be an integer such that the congruence class $[k']_l$ is a generator of $(\mathbb{Z}/l\mathbb{Z})^{\times}$. Define the polynomials f, f'_{ρ} and $\widehat{f'}$ in $\mathbb{Z}_{(l)}[t]$ as above with k replaced by k'. Then M is a direct sum of the submodules $M'_{\rho} = \operatorname{Ker} f'_{\rho}(\psi_M^{k'})$ over all $\rho \in \Lambda$.

Lemma 2.3. $M_{\rho} = M'_{\rho}$ for all $\rho \in \Lambda$.

Proof. Take any $\rho \in \Lambda$ and $j \in J$. If $j \in \rho$, then $t - (k')^j$ divides f'_{ρ} . If $j \notin \rho$, then $t - (k)^j$ divides \widehat{f}_{ρ} . It follows that $f'_{\rho}(\psi_M^{k'})\widehat{f}_{\rho}(\psi_M^k) = 0$ and hence by Lemma 2.2,

$$M_{\rho} = \operatorname{Ker} f_{\rho}(\psi_{M}^{k}) = \operatorname{Im} \widehat{f_{\rho}}(\psi_{M}^{k}) \subset \operatorname{Ker} f_{\rho}'(\psi_{M}^{k'}) = M_{\rho}'.$$
 By symmetry, $M_{\rho}' \subset M_{\rho}$.

Thus, the submodules M_{ρ} in the decomposition (3) depend only on the object M in the category A_{l} .

Let $s: M \to N$ be a morphism in A_l . Choose a common interval J for both M and N and let f_{ρ} be the polynomials defined by (1). Then $s \circ f_{\rho}(\psi_{M}^{k}) =$ $f_{\rho}(\psi_N^k) \circ s$, hence

$$s(M_{\rho}) = s(\operatorname{Ker} f_{\rho}(\psi_{M}^{k})) \subset \operatorname{Ker} f_{\rho}(\psi_{N}^{k}) = N_{\rho},$$

i.e., s induces a $\mathbb{Z}_{(l)}$ -module homomorphism $M_{\rho} \to N_{\rho}$. Thus for every $\rho \in \Lambda$, we have a functor from A_l to the category of $\mathbb{Z}_{(l)}$ -modules taking an object Mto M_{ρ} .

Proposition 2.4. For an object M in A_l and an integer r, we have $M[r]_{\rho} =$ $M_{\rho+r}$ for all $\rho \in \Lambda$.

Proof. Let J be an interval of M. Then J' = J - r is an interval of M[r]. Let $\{f_{\rho}\}_{{\rho}\in\Lambda}$ and $\{f'_{\rho}\}_{{\rho}\in\Lambda}$ be the polynomials constructed in (1) for J and J', respectively. Then

$$f_{\rho+r}(\psi_M^k) = \prod_{j \in (\rho+r) \cap J} (\psi_M^k - k^j) = \prod_{i \in \rho \cap J'} (k^r \psi_{M[r]}^k - k^{i+r}) = k^{rd} \cdot f_\rho'(\psi_{M[r]}^k),$$

where $d = \deg(f_{\rho})$. It follows that

$$M[r]_{\rho} = \operatorname{Ker} f_{\rho}'(\psi_{M[r]}^k) = \operatorname{Ker} f_{\rho+r}(\psi_M^k) = M_{\rho+r}.$$

3. Spectral sequences in K-theory

3.1. Adams operations. Let M be a scheme and $Z \subset M$ a closed subscheme. We write $K_m^Z(M)$ for the K-groups of M with support in Z and $F_{\gamma}^i K_m^Z(M)$ for the *i*th term of the (finite) gamma-filtration on $K_m^Z(M)$ (see [11, §4]). If M is a regular scheme, there exists a canonically isomorphism

$$G_m(Z) \simeq K_m^Z(M),$$

where $G_m(Z)$ is the K-group of the category of coherent sheaves on Z [3, Th.2.14].

For any integer k, there is the Adams operation ψ^k on $K_m^Z(M)$ satisfying the following properties [11], [7, §9]:

- ψ^k is a group endomorphism of $K_m^Z(M)$. ψ^k respects the gamma-filtration $F_{\gamma}^i K_m^Z(M)$.
- ψ^k acts as multiplication by k^i on the subsequent factor $F_{\gamma}^{(i/i+1)}K_m^Z(M)$. $\psi^k\psi^{k'}=\psi^{kk'}$, in particular, φ^k and $\varphi^{k'}$ commute.

Let l be a prime integer. Then the $\mathbb{Z}_{(l)}$ -module $K_m^Z(X) \otimes \mathbb{Z}_{(l)}$ together with the gamma-filtration and the Adams operations ψ^k on it yield an object of the category A_l . Therefore, $K_m^Z(X) \otimes \mathbb{Z}_{(l)}$ decomposes as in (3) into a direct sum of submodules $(K_m^Z(X) \otimes \mathbb{Z}_{(l)})_{\rho}$ over all $\rho \in \Lambda = \mathbb{Z}/(l-1)\mathbb{Z}$.

Let Z be a scheme. For any integer k > 0, there is a well-defined map (see $[11, \S 4])$:

$$\theta^k: K_0(Z) \to K_0(Z),$$

natural in Z, satisfying:

- For an exact sequence of vector bundles $0 \to E' \to E \to E'' \to 0$ over Z, we have $\theta^k[E] = \theta^k[E'] \cdot \theta^k[E'']$.
- For a line bundle L over Z,

$$\theta^{k}[L] = 1 + [L^{-1}] + [L^{-2}] + \dots + [L^{-k+1}].$$

In particular, rank $\theta^k(\alpha) = k^{\operatorname{rank}(\alpha)}$ for every $\alpha \in K_0(Z)$.

The following variant of the Riemann-Roch formula was proven in [11, Th. 3] (see also [9, 2.6.2]):

Proposition 3.1. Let M be a regular variety of dimension d and let $Z \subset M$ be a regular closed subvariety of dimension p. Let N be the normal bundle (of rank d-p) for the closed embedding $f: Z \to M$. Then there is an isomorphism

$$f_*: K_*(Z) = K_*^Z(Z) \xrightarrow{\sim} K_*^Z(M)$$

such that

$$f_*(\psi^k(\theta^k(N)\cdot\alpha)) = \psi^k(f_*(\alpha))$$

for any $\alpha \in K_*(Z)$ and any k.

Corollary 3.2. Suppose that, in addition, N is a trivial bundle. Then $\theta(N) = k^{d-p}$ and hence

$$f_*(k^{d-p} \cdot \psi^k(\alpha)) = \psi^k(f_*(\alpha)).$$

Thus, for a prime integer l, f_* induces an isomorphism

$$(K_*(Z) \otimes \mathbb{Z}_{(l)})[p-d] \stackrel{\sim}{\to} K_*^Z(M) \otimes \mathbb{Z}_{(l)}$$

in the category A_l .

3.2. Localization exact sequence and the niveau spectral sequence. Let M be a regular scheme. If $Z' \subset Z$ are closed subscheme of M, then there is an exact localization sequence [7, 9.3]:

$$(4) \qquad \cdots \to K_m^{Z'}(M) \to K_m^{Z}(M) \to K_m^{Z \setminus Z'}(M \setminus Z') \to K_{m-1}^{Z'}(M) \to \dots$$

that is isomorphic to the localization exact sequence [10, §7, Prop. 3.2]:

(5)
$$\cdots \to G_m(Z') \to G_m(Z) \to G_m(Z \setminus Z') \to G_{m-1}(Z') \to \cdots$$

The homomorphisms in (4) commute with the Adams operations by [7, Remark 9.6(1)]. Then, localizing at a prime integer l, we can view (4) and (5) as sequences of morphisms in the category A_l .

Let X be a scheme. We embed X into a regular variety M of dimension d as a closed subscheme. For a pair of integers p and q set

$$E_{p,q}^1 = \operatorname{colim} K_{p+q}^{Z \setminus Z'}(M \setminus Z') = \operatorname{colim} G_{p+q}(Z \setminus Z'),$$

where the colimit is taken over all pairs (Z', Z) with Z a closed subscheme of X of dimension p and Z' a closed subscheme of Z of dimension p-1. Note that for any such a Z one can find a Z' such that $Z \setminus Z'$ is regular and the normal bundle of $Z \setminus Z'$ in $M \setminus Z'$ is trivial. It follows that

$$E_{p,q}^1 = \coprod_{x \in X_{(p)}} K_{p+q} F(x)$$

and for any prime integer l,

$$E_{p,q}^1 \otimes \mathbb{Z}_{(l)} \simeq \coprod_{x \in X_{(p)}} (K_{p+q}F(x) \otimes \mathbb{Z}_{(l)})[p-d]$$

in A_l by Corollary 3.2. It follows from Proposition 2.4 that for any $\rho \in \Lambda$,

(6)
$$(E_{p,q}^1 \otimes \mathbb{Z}_{(l)})_{\rho} = \coprod_{x \in X_{(p)}} (K_{p+q} F(x) \otimes \mathbb{Z}_{(l)})_{\rho+p-d}.$$

Set

$$D_{p,q}^1 = \operatorname{colim} K_{p+q}^Z(M) = \operatorname{colim} G_{p+q}(Z),$$

where the colimit is taken over all closed subschemes Z of X of dimension p. Taking colimits of the exact sequences (4) and (5) we get the exact sequences:

$$\cdots \to E_{p,q}^1 \to D_{p-1,q}^1 \to D_{p,q-1}^1 \to E_{p,q-1}^1 \to \cdots$$

The later yields an exact couple and therefore, a (homological) Brown-Gersten-Quillen spectral sequence:

(7)
$$E_{p,q}^{1} = \coprod_{x \in X_{(p)}} K_{p+q} F(x) \Rightarrow G_{p+q}(X).$$

It is supported in the area $0 \le p \le \dim(X)$ and $p+q \ge 0$. In particular, all the differentials arriving at $E_{p,q}^s$ with p+q<0 are trivial. We shall get some information on the differentials arriving at $E_{p,q}^s$ with p+q=0 or 1.

Lemma 3.3. For any prime integer l and any $\rho \in \Lambda$, we have

$$\left(E_{p,q}^s \otimes \mathbb{Z}_{(l)}\right)_{\rho} = \left\{ \begin{array}{ll} E_{p,q}^s \otimes \mathbb{Z}_{(l)}, & \textit{if } \rho = [d+q]_{l-1}; \\ 0, & \textit{otherwise} \end{array} \right.$$

for any $s \ge 1$ if $p + q \le 2$.

Proof. By [11, §2], for a field L and $m \leq 2$, we have $F_{\gamma}^{m}K_{m}(L) = K_{m}(L)$ and $F_{\gamma}^{m+1}K_{m}(L) = 0$, hence ψ^{k} acts on $K_{m}(L)$ by multiplication by k^{m} . Therefore,

$$(K_m(L) \otimes \mathbb{Z}_{(l)})_{\rho} = \begin{cases} K_m(L) \otimes \mathbb{Z}_{(l)}, & \text{if } \rho = [m]_{l-1}; \\ 0, & \text{otherwise.} \end{cases}$$

The statement now follows from (6).

Theorem 3.4. Let X be a scheme. Let

$$\partial: E^s_{p,q} \to E^s_{p-s,q+s-1}$$

be the differential in the spectral sequence (7) with $p + q \le 2$. Then the order of every element $a \in \text{Ker}(\partial)$ is finite and if l is a prime divisor of ord(a), then $l \le p$ and l - 1 divides s - 1.

Proof. If s > p, then $\partial = 0$ since $E^s_{p-s,q+s-1} = 0$, so we may assume that $s \leq p$. We claim that if l is a prime integer such that $\partial \otimes \mathbb{Z}_{(l)} \neq 0$, then l-1 divides s-1. For if let $\rho = [q+d]_{l-1} \in \Lambda$. By Lemma 3.3, the (nonzero) image of $\partial \otimes \mathbb{Z}_{(l)}$ is contained in $(E^s_{p-s,q+s-1} \otimes \mathbb{Z}_{(l)})_{\rho}$ and therefore, $\rho+d=[q+d+s-1]_{l-1}$, i.e., l-1 divides s-1. The claim is proved.

Taking l > s, we get $\partial \otimes \mathbb{Z}_{(l)} = 0$ from the claim, i.e., ∂ has finite order. Let l be a prime divisor of $\operatorname{ord}(\partial)$. Then $\partial \otimes \mathbb{Z}_{(l)} \neq 0$ and hence by the claim, l-1 divides s-1. In particular, $l \leq s \leq p$.

Example 3.5. Let X be the Severi-Brauer variety of right ideals of dimension l of a central simple algebra of a prime degree l over F. Since over a splitting field extension of degree l the variety X is isomorphic to the projective space \mathbb{P}^{l-1} , and the BGQ spectral sequence for a projective space degenerates at E_2 , all the differentials of the BGQ spectral sequence for X are l-torsion. Since $\dim(X) = l - 1$, it follows from Theorem 3.4 that all the differentials arriving at the G_0 - and G_1 -diagonals are trivial. This result was proved in [8] with the help of higher Chern classes.

3.3. Motivic spectral sequence. Let X be a smooth scheme. We write $H^i(X, \mathbb{Z}(j))$ for the motivic cohomology groups [12].

The following (cohomological) motivic spectral sequence was constructed in [2]:

(8)
$$E_2^{p,q} = H^{p-q}(X, \mathbb{Z}(-q)) \Rightarrow K_{-p-q}(X)$$

The spectral sequence in compatible with the Adams operations ψ^k and ψ^k acts by multiplication by k^q on $E_2^{p,q}$ [7, Th. 9.7].

Theorem 3.6. Let X be a smooth scheme. Let

$$\partial: E_s^{p,q} \to E_s^{p+s,q-s+1}$$

be the differential in the spectral sequence (8). Then the order of every element $a \in \text{Ker}(\partial)$ is finite and if l is a prime divisor of ord(a), then $l \leq \dim(X) - p$ and l-1 divides s-1.

Proof. The proof is parallel to the one of Theorem 3.4. One remarks that $\partial = 0$ if $s > \dim(X) - p$.

References

- [1] J. F. Adams, *Lectures on generalised cohomology*, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1–138.
- [2] E. Friedlander and A. Suslin, The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4) **35** (2002), no. 6, 773–875.
- [3] H. Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40 (1981), no. 3, 203–289.
- [4] H. L. Hiller, λ -rings and algebraic K-theory, J. Pure Appl. Algebra **20** (1981), no. 3, 241–266.
- [5] Ch. Kratzer, λ-structure en K-théorie algébrique, Comment. Math. Helv. 55 (1980), no. 2, 233–254.
- [6] Ch. Kratzer, Opérations d'Adams et représentations de groupes, Enseign. Math. (2) 26 (1980), no. 1-2, 141-154.
- [7] M. Levine, K-theory and motivic cohomology of schemes, http://www.math.uiuc.edu/K-theory/0336/ (1999).

- [8] A. S. Merkurjev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136.
- [9] I. Panin, Riemann-Roch theorems for oriented cohomology, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 261–333.
- [10] D. Quillen, Higher algebraic K-theory. I, (1973), 85–147. Lecture Notes in Math., Vol. 341
- [11] C. Soulé, Opérations en K-théorie algébrique, Canad. J. Math. 37 (1985), no. 3, 488–550.
- [12] V. Voevodsky, A. Suslin, and E. Friedlander, *Cycles, transfers, and motivic homology theories*, Princeton University Press, Princeton, NJ, 2000.

Alexander Merkurjev, Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

 $E ext{-}mail\ address: merkurev@math.ucla.edu}$