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Abstract. By means of Adams operations in algebraic K-theory we study
the order of differentials in the Brown-Gersten-Quillen spectral sequence for
a scheme.

1. Introduction

Let X be a separated scheme of finite type over a field F . We write X(p) for
the set of points in X of dimension p. There is the niveau spectral sequence

E1
p,q =

⨿
x∈X(p)

Kp+qF (x) ⇒ Gp+q(X)

converging to the G-groups of X (the K-groups of the category M(X) of
coherent sheaves on X) with the topological filtration [10, §7, Th. 5.4]. The
term E1

p,−p coincides with the group of algebraic cycles of dimension p on X

and E2
p,−p with the Chow group CHp(X) of classes of cycles of dimension p [10,

§7, Prop. 5.14].
The topological filtration on Gn(X) is defined as follows. Write Mp(X)

for the category of coherent sheaves on X supported on a closed subset of
dimension at most p. The image the homomorphism Kn

(
Mp(X)

)
→ Gn(X)

induced by the inclusion functor Mp(X) →M(X) is the pth term Gn(X)(p) of
the topological filtration on Gn(X). The subsequent factors of the filtration
are denoted by Gn(X)(p/p−1).

The spectral sequence yields surjective homomorphisms

φp : CHp(X) = E2
p,−p → G0(X)(p/p−1).

The kernel of φp is detected by the differentials of the spectral sequence arriving
at E∗

p,−p.
In the present paper we find some constraints on the order of the differentials

in the spectral sequence arriving at the G0- and G1-diagonals. We show that
for any prime integer l, the Adams operations in algebraic K-theory developed
in [4], [5], [6] and [11], split the spectral sequence localized at l into a direct
sum of l − 1 summands. (For an analog in topology see [1, p. 91].)

In the paper the word “scheme” means a quasi-projective scheme over a field
and a “variety” is an integral scheme.
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2. The category Al

For a prime integer l, let Z(l) denote the localization of Z with respect to
the prime ideal lZ.

Lemma 2.1. Let f, g ∈ Z(l)[t] be polynomials such that f and g are coprime
over Q and the residues f̄ and ḡ are coprime over Z/lZ. Then f and g are
coprime over Z(l), i.e., f and g generate the unit ideal in Z(l)[t].

Proof. Let I be the ideal in Z(l)[t] generated by f and g. By assumption, I
contains lk and a polynomial 1 − lh for some k > 0 and h ∈ Z(l)[t]. Then
1− lkhk ∈ I and hence 1 ∈ I. �

2.1. Definition of Al. Let l be a prime integer. We define the category Al as
follows. An object of Al is a Z(l)-module M equipped with a filtration

· · · ⊂M (2) ⊂M (1) ⊂M (0) ⊂M (−1) ⊂ . . .

by submodules such that M (n) = 0 for n >> 0 and M (n) = M for n << 0, and
endomorphisms ψk

M ∈ EndZ(l)
(M) for all integers k prime to l, satisfying:

(i) ψk
M ◦ ψk′

M = ψkk′
M for all k and k′ (in particular, ψk

M and ψk′
M commute).

(ii) For any k, we have ψk
M(M (i)) ⊂ M (i) and ψk

M acts on M (i)/M (i+1) by
multiplication by ki for all i.

A morphism between two objects M and N in Al is a Z(l)-module homo-
morphism s : M → N such that s ◦ ψk

M = ψk
N ◦ s for all k. (We don’t assume

that s is compatible with the filtrations.)
Let M be an object of Al and r ∈ Z. The define the shift M [r] of M

as the module M together with the shifted filtration M [r](i) = M (i+r) and
the endomorphisms defined by ψk

M [r] = k−r · ψk
M . Clearly, the assignment

M 7→M [r] is an auto-functor of Al.

2.2. A decomposition. Let M ∈ Al and let a ≤ b be two integers such that
M (a) = M and M (b) = 0. The set J of all integers j such that a ≤ j < b is
called an interval of M .

Let k > 1 be an integer such that the congruence class [k]l of k modulo l
is a generator of (Z/lZ)×. Write Λ = Z/(l − 1)Z. For any congruence class
ρ ∈ Λ, consider the polynomial

(1) fρ =
∏

j∈ρ∩J

(t− kj)

over Z(l), where J is an interval of M , and set

f =
∏
ρ∈Λ

fρ =
∏
j∈J

(t− kj).

It follows from (ii) that (ψk
M − kj)

(
M (j)

)
⊂M (j+1) for any j, hence

(2) f(ψk
M) = 0.
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By construction, every pair of distinct polynomials fρ and fρ′ are coprime
over Q and the residues f̄ρ and f̄ρ′ are coprime over Z/lZ. By Lemma 2.1, fρ
and fρ′ are coprime over Z(l). By the Chinese Remainder Theorem, the factor
ring Z(l)[t]/(f) is canonically isomorphic to the product of the rings Z(l)[t]/(fρ)
over all ρ ∈ Λ. Note that the image of fρ in Z(l)[t]/(fρ′) is zero if ρ′ = ρ and
invertible otherwise.

It follows then from (2) that M has a natural structure of a module over
Z(l)[t]/(f), where t acts by ψ

k
M . Therefore,

(3) M =
⨿
ρ∈Λ

Mρ

with Mρ = Ker fρ(ψ
k
M).

We claim that the submodules Mρ do not depend on the choice of the in-
terval J of M . Indeed, let J ′ be another interval of M containing J , f ′

ρ the

polynomials constructed for J ′ andM ′
ρ = Ker f ′

ρ(ψ
k
M). Then fρ divides f

′
ρ, and

hence

Mρ = Ker fρ(ψ
k
M) ⊂ Ker f ′

ρ(ψ
k
M) =M ′

ρ.

Therefore, in view of (3), both for Mρ and M ′
ρ, we deduce that Mρ =M ′

ρ.

For any ρ ∈ Λ set f̂ρ = f/fρ ∈ Z(l)[t]. Then the polynomials {f̂ρ}ρ∈Λ are
coprime.

Lemma 2.2. Ker fρ(ψ
k
M) = Im f̂ρ(ψ

k
M) for all ρ ∈ Λ.

Proof. Let ψ = ψk
M . Since fρ(ψ)f̂ρ(ψ) = f(ψ) = 0, we have Im f̂ρ(ψ) ⊂

Ker fρ(ψ). As fρ and f̂ρ are coprime, there are polynomials g and h in

Z(l)[t] such that fρg + f̂ρh = 1. Then for any m ∈ Ker fρ(ψ), we have

m = f̂ρ(ψ)h(ψ)(m) ∈ Im f̂ρ(ψ), i.e., Ker fρ(ψ) ⊂ Im f̂ρ(ψ). �
We also prove that the decomposition (3) does not depend on the choice

of the integer k. Let k′ > 1 be an integer such that the congruence class

[k′]l is a generator of (Z/lZ)×. Define the polynomials f, f ′
ρ and f̂ ′ in Z(l)[t]

as above with k replaced by k′. Then M is a direct sum of the submodules
M ′

ρ = Ker f ′
ρ(ψ

k′
M) over all ρ ∈ Λ.

Lemma 2.3. Mρ =M ′
ρ for all ρ ∈ Λ.

Proof. Take any ρ ∈ Λ and j ∈ J . If j ∈ ρ, then t − (k′)j divides f ′
ρ. If

j /∈ ρ, then t − (k)j divides f̂ρ. It follows that f ′
ρ(ψ

k′
M)f̂ρ(ψ

k
M) = 0 and hence

by Lemma 2.2,

Mρ = Ker fρ(ψ
k
M) = Im f̂ρ(ψ

k
M) ⊂ Ker f ′

ρ(ψ
k′

M) =M ′
ρ.

By symmetry, M ′
ρ ⊂Mρ. �

Thus, the submodules Mρ in the decomposition (3) depend only on the
object M in the category Al.
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Let s :M → N be a morphism in Al. Choose a common interval J for both
M and N and let fρ be the polynomials defined by (1). Then s ◦ fρ(ψk

M) =
fρ(ψ

k
N) ◦ s, hence

s
(
Mρ

)
= s

(
Ker fρ(ψ

k
M)

)
⊂ Ker fρ(ψ

k
N) = Nρ,

i.e., s induces a Z(l)-module homomorphism Mρ → Nρ. Thus for every ρ ∈ Λ,
we have a functor from Al to the category of Z(l)-modules taking an object M
to Mρ.

Proposition 2.4. For an object M in Al and an integer r, we have M [r]ρ =
Mρ+r for all ρ ∈ Λ.

Proof. Let J be an interval of M . Then J ′ = J − r is an interval of M [r].
Let {fρ}ρ∈Λ and {f ′

ρ}ρ∈Λ be the polynomials constructed in (1) for J and J ′,
respectively. Then

fρ+r

(
ψk
M

)
=

∏
j∈(ρ+r)∩J

(
ψk
M − kj

)
=

∏
i∈ρ∩J ′

(
krψk

M [r] − ki+r
)
= krd · f ′

ρ

(
ψk
M [r]

)
,

where d = deg(fρ). It follows that

M [r]ρ = Ker f ′
ρ

(
ψk
M [r]

)
= Ker fρ+r

(
ψk
M

)
=Mρ+r. �

3. Spectral sequences in K-theory

3.1. Adams operations. LetM be a scheme and Z ⊂M a closed subscheme.
We write KZ

m(M) for the K-groups of M with support in Z and F i
γK

Z
m(M) for

the ith term of the (finite) gamma-filtration on KZ
m(M) (see [11, §4]). If M is

a regular scheme, there exists a canonically isomorphism

Gm(Z) ≃ KZ
m(M),

where Gm(Z) is the K-group of the category of coherent sheaves on Z [3,
Th.2.14].

For any integer k, there is the Adams operation ψk on KZ
m(M) satisfying

the following properties [11], [7, §9]:
• ψk is a group endomorphism of KZ

m(M).
• ψk respects the gamma-filtration F i

γK
Z
m(M).

• ψk acts as multiplication by ki on the subsequent factor F
(i/i+1)
γ KZ

m(M).
• ψkψk′ = ψkk′ , in particular, φk and φk′ commute.

Let l be a prime integer. Then the Z(l)-module KZ
m(X)⊗Z(l) together with

the gamma-filtration and the Adams operations ψk on it yield an object of the
category Al. Therefore, K

Z
m(X)⊗ Z(l) decomposes as in (3) into a direct sum

of submodules
(
KZ

m(X)⊗ Z(l)

)
ρ
over all ρ ∈ Λ = Z/(l − 1)Z.

Let Z be a scheme. For any integer k > 0, there is a well-defined map (see
[11, §4]):

θk : K0(Z) → K0(Z),

natural in Z, satisfying:
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• For an exact sequence of vector bundles 0 → E ′ → E → E ′′ → 0 over
Z, we have θk[E] = θk[E ′] · θk[E ′′].

• For a line bundle L over Z,

θk[L] = 1 + [L−1] + [L−2] + · · ·+ [L−k+1].

In particular, rank θk(α) = krank(α) for every α ∈ K0(Z).
The following variant of the Riemann-Roch formula was proven in [11, Th.

3] (see also [9, 2.6.2]):

Proposition 3.1. Let M be a regular variety of dimension d and let Z ⊂ M
be a regular closed subvariety of dimension p. Let N be the normal bundle (of
rank d−p) for the closed embedding f : Z →M . Then there is an isomorphism

f∗ : K∗(Z) = KZ
∗ (Z)

∼→ KZ
∗ (M)

such that
f∗
(
ψk(θk(N) · α)

)
= ψk

(
f∗(α)

)
for any α ∈ K∗(Z) and any k.

Corollary 3.2. Suppose that, in addition, N is a trivial bundle. Then θ(N) =
kd−p and hence

f∗
(
kd−p · ψk(α)

)
= ψk

(
f∗(α)

)
.

Thus, for a prime integer l, f∗ induces an isomorphism(
K∗(Z)⊗ Z(l)

)
[p− d]

∼→ KZ
∗ (M)⊗ Z(l)

in the category Al.

3.2. Localization exact sequence and the niveau spectral sequence.
Let M be a regular scheme. If Z ′ ⊂ Z are closed subscheme of M , then there
is an exact localization sequence [7, 9.3]:

(4) · · · → KZ′

m (M) → KZ
m(M) → KZ\Z′

m (M \ Z ′) → KZ′

m−1(M) → . . .

that is isomorphic to the localization exact sequence [10, §7, Prop. 3.2]:
(5) · · · → Gm(Z

′) → Gm(Z) → Gm(Z \ Z ′) → Gm−1(Z
′) → . . .

The homomorphisms in (4) commute with the Adams operations by [7,
Remark 9.6(1)]. Then, localizing at a prime integer l, we can view (4) and (5)
as sequences of morphisms in the category Al.

Let X be a scheme. We embed X into a regular variety M of dimension d
as a closed subscheme. For a pair of integers p and q set

E1
p,q = colimK

Z\Z′

p+q (M \ Z ′) = colimGp+q(Z \ Z ′),

where the colimit is taken over all pairs (Z ′, Z) with Z a closed subscheme of
X of dimension p and Z ′ a closed subscheme of Z of dimension p − 1. Note
that for any such a Z one can find a Z ′ such that Z \ Z ′ is regular and the
normal bundle of Z \ Z ′ in M \ Z ′ is trivial. It follows that

E1
p,q =

⨿
x∈X(p)

Kp+qF (x)
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and for any prime integer l,

E1
p,q ⊗ Z(l) ≃

⨿
x∈X(p)

(
Kp+qF (x)⊗ Z(l)

)
[p− d]

in Al by Corollary 3.2. It follows from Proposition 2.4 that for any ρ ∈ Λ,

(6)
(
E1

p,q ⊗ Z(l)

)
ρ
=

⨿
x∈X(p)

(
Kp+qF (x)⊗ Z(l)

)
ρ+p−d

.

Set
D1

p,q = colimKZ
p+q(M) = colimGp+q(Z),

where the colimit is taken over all closed subschemes Z of X of dimension p.
Taking colimits of the exact sequences (4) and (5) we get the exact sequences:

· · · → E1
p,q → D1

p−1,q → D1
p,q−1 → E1

p,q−1 → . . . .

The later yields an exact couple and therefore, a (homological) Brown-Gersten-
Quillen spectral sequence:

(7) E1
p,q =

⨿
x∈X(p)

Kp+qF (x) ⇒ Gp+q(X).

It is supported in the area 0 ≤ p ≤ dim(X) and p + q ≥ 0. In particular, all
the differentials arriving at Es

p,q with p + q < 0 are trivial. We shall get some
information on the differentials arriving at Es

p,q with p+ q = 0 or 1.

Lemma 3.3. For any prime integer l and any ρ ∈ Λ, we have(
Es

p,q ⊗ Z(l)

)
ρ
=

{
Es

p,q ⊗ Z(l), if ρ = [d+ q]l−1;
0, otherwise

for any s ≥ 1 if p+ q ≤ 2.

Proof. By [11, §2], for a field L and m ≤ 2, we have Fm
γ Km(L) = Km(L) and

Fm+1
γ Km(L) = 0, hence ψk acts on Km(L) by multiplication by km. Therefore,(

Km(L)⊗ Z(l)

)
ρ
=

{
Km(L)⊗ Z(l), if ρ = [m]l−1;
0, otherwise.

The statement now follows from (6). �
Theorem 3.4. Let X be a scheme. Let

∂ : Es
p,q → Es

p−s,q+s−1

be the differential in the spectral sequence (7) with p + q ≤ 2. Then the order
of every element a ∈ Ker(∂) is finite and if l is a prime divisor of ord(a), then
l ≤ p and l − 1 divides s− 1.

Proof. If s > p, then ∂ = 0 since Es
p−s,q+s−1 = 0, so we may assume that s ≤ p.

We claim that if l is a prime integer such that ∂⊗Z(l) ̸= 0, then l−1 divides
s − 1. For if let ρ = [q + d]l−1 ∈ Λ. By Lemma 3.3, the (nonzero) image of
∂⊗Z(l) is contained in (Es

p−s,q+s−1⊗Z(l))ρ and therefore, ρ+d = [q+d+s−1]l−1,
i.e., l − 1 divides s− 1. The claim is proved.
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Taking l > s, we get ∂ ⊗ Z(l) = 0 from the claim, i.e., ∂ has finite order.
Let l be a prime divisor of ord(∂). Then ∂⊗Z(l) ̸= 0 and hence by the claim,

l − 1 divides s− 1. In particular, l ≤ s ≤ p. �

Example 3.5. Let X be the Severi-Brauer variety of right ideals of dimension
l of a central simple algebra of a prime degree l over F . Since over a splitting
field extension of degree l the variety X is isomorphic to the projective space
Pl−1, and the BGQ spectral sequence for a projective space degenerates at E2,
all the differentials of the BGQ spectral sequence for X are l-torsion. Since
dim(X) = l − 1, it follows from Theorem 3.4 that all the differentials arriving
at the G0- and G1-diagonals are trivial. This result was proved in [8] with the
help of higher Chern classes.

3.3. Motivic spectral sequence. Let X be a smooth scheme. We write
H i(X,Z(j)) for the motivic cohomology groups [12].

The following (cohomological) motivic spectral sequence was constructed in
[2]:

(8) Ep,q
2 = Hp−q(X,Z(−q)) ⇒ K−p−q(X)

The spectral sequence in compatible with the Adams operations ψk and ψk

acts by multiplication by kq on Ep,q
2 [7, Th. 9.7].

Theorem 3.6. Let X be a smooth scheme. Let

∂ : Ep,q
s → Ep+s,q−s+1

s

be the differential in the spectral sequence (8). Then the order of every element
a ∈ Ker(∂) is finite and if l is a prime divisor of ord(a), then l ≤ dim(X)− p
and l − 1 divides s− 1.

Proof. The proof is parallel to the one of Theorem 3.4. One remarks that
∂ = 0 if s > dim(X)− p. �
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