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Abstract. Given an algebraic group G defined over a (not necessarily algebraically closed)
field F and a commutative ring R we associate the subcategory M(G,R) of the category of
Chow motives with coefficients in R that is the Tate pseudo-abelian closure of the category
of motives of projective homogeneous G-varieties. We show that M(G,R) is a symmetric
tensor category, i.e., the motive of the product of two projective homogeneous G-varieties is
a direct sum of twisted motives of projective homogeneous G-varieties. We also study the
problem of uniqueness of a direct sum decomposition of objects in M(G,R). We prove that
the Krull-Schmidt theorem holds in many cases.

1. Introduction

V. Voevodsky has introduced the notion of an Artin-Tate motive. A Chow motive M
is called an Artin-Tate motive if there exists a finite collections of motives Mi such that
any tensor power ofM is a direct sum of Tate twists of the motivesMi. The subcategory
of Artin-Tate motives contains many important motives such as Tate motives, motives
of finite separable extensions of the base field, motives of quadrics, motives of Severi-
Brauer varieties and generalized Rost motives. One of the aims of this paper is to show
that the motive of any projective homogeneous variety is an Artin-Tate motive.

In fact we prove more than that. Let X and X ′ be two projective homogeneous
varieties of a semisimple group G defined over a field F . In general, the diagonal action
of G on the product X ×X ′ is not transitive, hence X ×X ′ is not a homogeneous G-
variety. Nevertheless we prove that the Chow motive of X ×X ′ is a direct sum of some
Tate twists of motives of projective homogeneous G-varieties (Theorem 16). The main
ingredient of the proof is Proposition 13 stating that for every orbit of the G-action on
X × X ′ there is a flat morphism of that orbit to a projective homogeneous G-variety
with all fibers affine spaces. Description of all the orbits and the associated projective
homogeneous G-varieties is given in the combinatorial terms of the root system of G.

Thus, given a commutative ring R we can associate the subcategory M(G,R) of the
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category of Chow motives with coefficients in R that is the Tate pseudo-abelian closure
of the category of motives of projective homogeneous G-varieties. Our result then says
that M(G,R) is a symmetric tensor category consisting of Artin-Tate motives.

In the second part of the paper we address the problem of uniqueness of a direct sum
decomposition of the motive of a projective homogeneous variety into indecomposable
objects in the category of Chow motives (the Krull-Schmidt theorem). Our category
M(G,R) contains a subcategory generated by some finite separable extensions of the
base field. This subcategory of zero-dimensional varieties is equivalent to the category
of permutation RΓ-lattices where Γ is the finite group canonically associated to the
so-called ⋆-action on G. The question whether the Krull-Schmidt theorem holds for
RΓ-lattices was studied intensively in the context of the representation theory of finite
groups and orders. We refer for the results and history of this important question to
the book of C. Curtis and I. Reiner [7].

Example 32 shows that the Krull-Schmidt theorem does not hold in general for
integral motives of projective homogeneous varieties. On the other hand, when dealing
with a particular motive (such as a projective quadric or a Severi-Brauer variety) the
coefficient ring Z can be replaced by a localization when all “insufficient” integers are
inverted. For example, in the case of a quadric one can invert all odd integers, i.e.,
replace the ring Z by its localization Z(p) for p = 2 not losing essential information. The
situation with the motives of projective homogeneous varieties is better over the ring
Z(p): we prove the Krull-Schmidt theorem in many cases (Corollary 35), for example
when G is a simple group or a group of inner type. If one replaces the coefficient ring
Z(p) by its completion, the Krull-Schmidt theorem holds without restrictions.

1.1. Notation

Basic reference are [2] and [12]. Let Gqs be an adjoint semisimple quasi-split algebraic
group defined over a field F . Choose a maximal quasi-split torus T of Gqs and a Borel
subgroup B defined over F such that T ⊂ B. Let Σ be the root system of Gqs with
respect to T and Π ⊂ Σ the system of simple roots corresponding to B. Let Σ+ (resp.
Σ−) be the set of positive (resp. negative) roots with respect to the basis Π. We write
U for the unipotent radical of B and Uα for the root subgroup of α ∈ Σ.

Denote by W the Weyl group of Σ. The group W is generated by the set V of
reflections with respect to all roots in Π.

Let Fsep be a separable closure of F and set ΓF = Gal(Fsep/F ). The group ΓF acts
on T , B, W , Σ, Π. This action is called the ⋆-action.

If S is a subset of Π, we denote by PS the standard parabolic subgroup of Gqs

corresponding to S. Recall that PS is generated by B and the root subgroups U−α

for all α ∈ S. We will say that PS is a parabolic subgroup of type S. Any parabolic
subgroup Q of Gqs is conjugate to PS for a unique S ⊂ Π. We will say that Q has type
S. If P is a parabolic subgroup we denote by RuP the unipotent radical of P .

We denote by HS the variety of all parabolic subgroups of Gqs of type S, so that
HS ≃ Gqs/PS . The variety HS is defined over F if and only if S is invariant under the
⋆-action. For example, HΠ = SpecF and H∅ is the variety of all Borel subgroups of
Gqs. Any projective homogeneous Gqs-variety defined over F is isomorphic to HS for a
unique subset S ⊂ Π invariant under the ⋆-action. If S ⊂ S′ ⊂ Π are two ⋆-invariant
subsets then there is a canonical morphism HS → HS′ defined over F .



MOTIVIC DECOMPOSITION 3

Let G be an arbitrary adjoint semisimple group. It is an inner form of a quasi-split
group Gqs unique up to isomorphism. That is the groups G(Fsep) and Gqs(Fsep) can
be identified and ΓF acts on G(Fsep) = Gqs(Fsep) by the formula σ(g) = gσσ

⋆(g)g−1
σ

where (gσ) is a 1-cocycle of ΓF with values in Gqs(Fsep).
Let FG be the subfield of Fsep corresponding to the kernel of the ⋆-action on Π. Thus,

FG/F is a finite Galois extension and FG is the smallest field extension of F such that
the group GFG

is of inner type. In particular G is of inner type if and only if FG = F .
For a subgroup H ⊂ G and an element g of G we denote by gH the subgroup gHg−1.
We write CHp(X) for the Chow group of classes of dimension p algebraic cycles on

an algebraic variety X.

2. Product of two homogeneous projective varieties

Let S, S′ be two subsets of Π invariant with respect to the ⋆-action of ΓF . We denote
by P and P ′ the standard parabolic subgroups of G corresponding to S and S′. Let GP

(resp. GP ′ ) be the subgroup of G generated by U±α, α ∈ S (resp. S′). The groups GP

and GP ′ are the semisimple parts of Levi subgroups of P and P ′. The root systems ΣP

and ΣP ′ of GP and GP ′ with respect to the tori TP = T ∩GP and TP ′ = T ∩GP ′ are
the root subsystems in Σ generated by S and S′. The Weyl groups WP and WP ′ of GP

and GP ′ are the subgroups of W generated by the sets VS and VS′ of reflections with
respect to the roots in S and S′.

Let X = HS and X ′ = HS′ be the projective homogeneous G-varieties. Since S, S′

are stable with respect to the ⋆-action, the varieties X, X ′ are defined over F . We
consider the diagonal action of G on X ×X ′. The orbits of this action are defined over
Fsep but may not be defined over F . The Galois group ΓF acts on the set of orbits.
Note that this action coincides with the ⋆-action.

Lemma 1. (cf. [3], Corollary 5.20) The assignment w 7→ (P, wP ′) gives rise to a ΓF -
equivariant bijection between the set of double cosets WP \W/WP ′ and the set of G-orbits
in X ×X ′.

Proof. Since X = G/P and X ′ = G/P ′ the assignment g 7→ (P, gP ′) induces a ΓF -
equivariant bijection between P\G/P ′ and the set of G-orbits in X ×X ′.

Consider the natural map

γ : WP \W/WP ′ → P\G/P ′, γ(WP wWP ′) = P wP ′.

Since G is a disjoint union of Bruhat cells BwB, it follows that γ is surjective. Assume
that Pw1P

′ = Pw2P
′ for some w1, w2 ∈ W . Then we have

w1 ∈ Pw2P
′ ⊂

∪
(wp,wp′ )∈WP×WP ′

BwpBw2Bwp′B. (1)

Recall that for every reflection wα with respect to a simple root α ∈ Π and every w ∈ W
one has

wαBw ⊂ BwB ∪BwαwB and wBwα ⊂ BwB ∪BwwαB.

Therefore there exist wp ∈ WP , wp′ ∈ WP ′ such that w1 ∈ Bw′
pw2w

′
p′B where w′

p, w
′
p′

are subwords of wp, wp′ respectively. Since any subword of wp (resp. wp′) belongs to
WP (resp. WP ′), we deduce that w1 ∈ WPw2WP ′ . This implies that γ is injective.
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In the following statement we give necessary and sufficient conditions of a transitive
G-action on X ×X ′.

Corollary 2. Let Σ1, . . . ,Σm be simple components of Σ and let Πi = Π ∩ Σi for
i = 1, 2, . . . ,m be their bases. Then G acts transitively on X ×X ′ if and only if each
Πi is contained in either S or S′.

Proof. By Lemma 1, the number of G-orbits in X×X ′ is 1 if and only if W = WP WP ′ .
Assume that Πi is contained in S or S′. Then the corresponding Weyl group WΠi is
contained in WP or WP ′ . Since W is directly generated by its subgroups WΠ1 , . . . ,WΠm

we easily get W = WP WP ′ .
Conversely, let W = WPWP ′ . Assume that Πi ∩ S ̸= Πi and Πi ∩ S′ ̸= Πi for some

i. Replacing Π by Πi, S and S′ by Πi ∩ S and Πi ∩ S′ respectively we may assume
that Σ is irreducible and that S ̸= Π, S′ ̸= Π. Consider a positive root α such that its
decomposition α = n1α1 + · · ·+ nsαs, where α1, . . . , αs ∈ Π and n1, . . . , ns are positive
integers, contains simple roots from Π \ S and Π \ S′.

Let w ∈ W be the reflection with respect to α and let w = w1w2 where w1 ∈
WP , w2 ∈ WP ′ . Then w(α) = −α is a negative root. On the other hand, by [5, Lemma
5.2], w2(Σ

+ \ Σ+
S′) ⊂ Σ+. In particular, since the decomposition of α contains a simple

root from Π \ S′, the root w2(α) is positive. Analogously, w−1
1 (Σ− \ Σ−

S ) ⊂ Σ− and
hence w−1

1 (−α) is a negative root. This contradicts the equality w2(α) = w−1
1 (−α).

Corollary 3. If G is a simple group and none of X and X ′ is a point, then G does not
act transitively on X ×X ′.

3. The type of the parabolic subgroup RuP · (P ∩ wP ′)

The main result in this section, Proposition 8, is standard and can be found in [4],
Theorem 2.7.4 and Proposition 2.8.4. For the reader’s convenience we include the proof.
We keep the notation of the previous section. In particular, P and P ′ denote the
standard parabolic subgroups of types S and S′. By [2, Proposition 14.22], for every
w ∈ W the subgroup RuP ·(P ∩ wP ′) of G is parabolic and we are going to determine its
type. If w ∈ W , we let l(w) denote the length of w with respect to the set of generators
V of W .

Lemma 4. Assume that w is an element of minimal length in the double coset D =
WPwWP ′ ⊂ W . Then any element w1 ∈ WPwWP ′ can be written in the form w1 =
awa′ with a ∈ WP , a

′ ∈ WP ′ such that l(w1) = l(a) + l(w) + l(a′). In particular, D
contains a unique element of minimal length.

Proof. Apply the same argument as in [5, Proposition 3.4].

Lemma 5. In the notation above we have w(Σ+
S′) ⊂ Σ+ and w−1(Σ+

S ) ⊂ Σ+.

Proof. Apply the same argument as in [5, Lemma 5.1].

Remark 6. In the notation of the previous section, every G-orbit of X ×X ′ contains a
unique element of the form (P, wP ′) where w ∈ W is the element of minimal length in
the double coset WPwWP ′ .
Let D ∈ WP \W/WP ′ be a double coset and let w ∈ D be the element of minimal length.
Denote by R the parabolic subgroup RuP · (P ∩ wP ′).
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Lemma 7. One has B ⊂ R, in particular R is a standard parabolic subgroup.

Proof. Since RuP ⊂ R, it suffices to show that for every root α ∈ S one has Uα ⊂ wP ′

or equivalently w−1

Uα ⊂ P ′. Since w−1

Uα = Uw−1(α), the required result follows from
Lemma 5.

Consider the following subset of the set of simple roots:

RD = {α ∈ S | w−1(α) ∈ Σ+
S′} ⊂ Π.

Note that in the case w = 1, i.e., D = WSWS′ , we have RD = S ∩ S′.

Proposition 8. The parabolic subgroup R of G has type RD.

Proof. Since R is standard, it suffices to show that the set consisting of simple roots
α ∈ Π such that U±α ⊂ R coincides with RD.

Clearly, for every α ∈ RD we have U±α ⊂ R. Conversely, let α be a root with this
property. Since RuP is contained in the unipotent radical of R we first conclude that
U±α ∈ GP ∩ wP ′, in particular α ∈ S. Since

U±w−1(α) =
w−1

U±α ⊂ P ′,

we have w−1(α) ∈ ΣS′ . By Lemma 5, w−1(α) ∈ Σ+ ∩ ΣS′ = Σ+
S′ implying α ∈ RD.

4. Structure of G-orbits on X ×X ′

Since S, S′ are ⋆-stable, the ⋆-action on W extends to the set of double cosets
WP \W/WP ′ . Let D ∈ WP \W/WP ′ and let OD be the corresponding G-orbit in X×X ′

(Lemma 1). Denote by ZD the projective homogeneous G-variety HRD
and consider

the G-equivariant map

λD : OD → ZD, λD(Q,Q′) = RuQ · (Q ∩Q′).

Clearly, λD is induced by the canonical morphism G/(P ∩ wP ′) → G/R, where w ∈ D
is the element of minimal length, and therefore, λD is a flat morphism of varieties.

Proposition 9. Assume that the double coset D is ⋆-stable. Then the varieties OD,
ZD and the morphism λD are defined over F .

Proof. The element ⋆(w) belongs to D and has the same length as w. It follows that
⋆(w) = w. Hence the set RD is ⋆-stable and therefore, ZD is defined over F . By Lemma
1, the orbit OD is ΓF -stable, hence OD is defined over F . It follows from the definition
that λD is ΓF -equivariant and hence is also defined over F .

Remark 10. Since RD ⊂ S, there is a canonical morphism ZD → X.
Let D ∈ WP \W/WP ′ be an arbitrary double coset. Let FD be the finite separable

field extension of F corresponding to the stabilizer of D in ΓF (with respect to the
⋆-action). By Proposition 9, the varieties OD and ZD and the morphism λD are de-
fined over FD. Let OD → SpecFD and ZD → SpecFD be the corresponding structure
morphisms. We consider OD and ZD as schemes over F with respect to the composites
OD → SpecFD → SpecF and ZD → SpecFD → SpecF . By Proposition 9, we can view
λD : OD → ZD as a morphism of schemes defined over F .
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Proposition 11. Let z ∈ ZD be a point (not necessary closed). Then λ−1
D (z) is iso-

morphic to the affine space over F (z) of dimension l(w).

Proof. Replacing F by F (z) we may assume that ZD has a point over F . This point
corresponds to a parabolic subgroup in G conjugate to R. Replacing T,B,U and etc.
by the corresponding conjugate objects we may assume that z = R. Since R is defined
over F , we have gσσ

⋆(R)g−1
σ = gσRg−1

σ = R, hence gσ ∈ R ⊂ P for all σ ∈ ΓF .
It follows that P is defined over F . Since D and w are ΓF -invariant and R ⊂ wP ′,
analogously, wP ′ is defined over F .

Since λD is G-equivariant, by definition of R,

λ
−1

D (z) ≃ R/(P ∩ wP ′) ≃ RuP/(RuP ∩ wP ′).

The next step is to show that

dim RuP/(RuP ∩ wP ′) = l(w).

Set

Σ′ = (Σ+ \ Σ+
S ) ∩ w(Σ− \ Σ−

S′), Σ′
w = {α ∈ Σ+ | w−1(α) ∈ Σ−}.

Note that

|Σ′
w| = l(w) and |Σ′| = dim RuP/(RuP ∩ wP ′).

We claim that Σ′ = Σ′
w. The inclusion Σ′ ⊂ Σ′

w follows from our construction. Con-
versely, let α ∈ Σ′

w. By Lemma 5, α ∈ Σ+ \ Σ+
S . Since w−1(α) is a negative root

and since w(−S′) ⊂ Σ− (Lemma 5) we also have w−1(α) ∈ Σ− \ Σ−
S′ that implies

α ∈ w(Σ− \ Σ−
S′). Thus α ∈ Σ′ as required.

It remains to show that RuP/(RuP ∩ wP ′) is isomorphic to an affine space over F .
We set Q′ = wP ′ and Ψ = Σ+ \ Σ+

S . Let Ψ1 be the subset in Ψ consisting of all roots
α such that the corresponding root subgroup Uα is contained in RuP ∩Q′. Clearly, Ψ1

is closed, i.e., if α, β ∈ Ψ1 and α+ β is a root, then α+ β ∈ Ψ1. Since RuP and Q′ are
defined over F , Ψ1 is ΓF -stable. Hence the subgroup U1 generated by Uα, α ∈ Ψ1 (it
coincides with RuP ∩Q′) is defined over F .

Let R−
uQ

′ be the negative unipotent radical of Q′. Let Ψ2 be the subset in Ψ consist-
ing of all roots α such that Uα is not contained in Q′ or equivalently Uα ⊂ RuP ∩R−

uQ
′.

As above, Ψ2 is closed and ΓF -stable. Let U2 be a subgroup generated by Uα, α ∈ Ψ2

(it coincides with RuP ∩R−
uQ

′).

Since Ψ1 ∩ Ψ2 = ∅ and Ψ = Ψ1 ∪ Ψ2 the product morphism U1 × U2 → RuP is an
F -isomorphism. It follows that the variety RuP/(RuP ∩ Q′) = RuP/U1 is isomorphic
to U2. By [3, Cor. 3.18], U2 is an F -split subgroup of G. In view of [2, Rem. 15.13],
any F -split subgroup as a variety is isomorphic to an affine space over F .

Corollary 12. There is only one closed orbit in X × X ′, namely OD where D =
WSWS′ .

Proof. The orbit is closed if and only if the affine fibers of the projection OD → ZD are
trivial, or equivalently, l(w) = 0, i.e., w = 1 and D = WSWS′ .
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5. Filtration on X ×X ′

Recall that we fix two subsets S, S′ in Π invariant with respect to the ⋆-action of
ΓF . They determine the standard parabolic subgroups P, P ′ of G and the projective
homogeneous G-varieties X,X ′.

Consider the ⋆-action on the set of double cosets WP \W/WP ′ . Let ∆ be the set of
all ⋆-orbits in WP \W/WP ′ . For an orbit δ ∈ ∆, the length l(D) does not depend on
the choice of a representative D ∈ δ. We denote this number by lδ. The varieties OD

and ZD considered as schemes over F also do not depend on D ∈ δ. We denote them
by Oδ and Zδ respectively.

Proposition 13. One can number all elements δ1, δ2, . . . , δn of ∆ so that there exists
a filtration by closed subvarieties

∅ = V0 ⊂ V1 ⊂ . . . ⊂ Vn = X ×X ′

together with flat morphisms fi : Vi \ Vi−1 → Zδi of constant relative dimension lδi for
every i = 1, 2, . . . , n, with the property that the fiber of every fi over any point s ∈ Zδi

is isomorphic to the affine space over F (s) of dimension lδi .

Proof. Recall that we consider the diagonal G-action in X ×X ′. For every j ≥ 0 let V ′
j

be the union of all orbits of dimension at most j. Clearly V ′
j is closed in X ×X ′ and

defined over F . Thus we have a filtration by closed subvarieties

∅ = V ′
0 ⊂ V ′

1 ⊂ . . . ⊂ V ′
m = X ×X ′

such that for every j > 0, the variety V ′
j \V ′

j−1 is the union of G-orbits of the dimension
j. The Galois group ΓF permutes the orbits in V ′

j \ V ′
j−1 according to the ⋆-action on

the set of double cosets WP \W/WP ′ in view of Lemma 1. We can then rearrange the
filtration:

∅ = V0 ⊂ V1 ⊂ . . . ⊂ Vn = X ×X ′

in such a way that every Vi \ Vi−1 coincides with Oδ for an appropriate δ ∈ ∆. By
Proposition 9, there is a flat morphism λδ : Oδ → Zδ of constant relative dimension lδ.
In view of Proposition 11, every fiber of λδ is an affine space.

6. Category of Chow motives

Let J be a class of objects of an additive category A. The subcategory A′ generated by
J is the smallest full additive subcategory A′ ⊂ A containing all objects of J . Objects
of A′ are finite direct sums of objects from J .

An additive category A is called pseudo-abelian if every projector in A splits [1, Ch.
I, §3]. Let J be a class of objects of a pseudo–abelian category A. The pseudo–abelian
subcategory A′ generated by J is the smallest full pseudo–abelian subcategory A′ ⊂ A
containing all objects of J . Objects of A′ are direct summands of finite direct sums of
objects from J .

We say that an additive category A is a Tate category if an additive endo-functor
T : A → A is given (called the Tate twist functor). We write A(n) = Tn(A) for every
A ∈ A and n ≥ 0. Let A be a Tate category. We say that a full subcategory A′ ⊂ A
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is a Tate subcategory if A′ is additive and closed under the Tate twist functor, that is,
if A ∈ A′ then A(n) ∈ A′ for every n ≥ 0. Let J be a class of objects of A. The Tate
subcategory of A generated by J is the smallest Tate subcategory of A containing all
objects of J . Objects of this subcategory are direct sums of objects of the form A(n)
where A ∈ J . A Tate category A is finitely generated if it is generated by a finite set of
objects as a Tate category.

An object A of an additive category is called indecomposable if A is not isomorphic
to the direct sum of two nonzero objects. If A is pseudo-abelian, A is indecomposable
if and only if the ring EndA(A) has no nontrivial idempotents.

We say that the Krull-Schmidt theorem holds for an additive category A if any two
finite direct sum decompositions of an object of A into indecomposable objects are
isomorphic. Recall that a ring S is called local if whenever a + b = 1 for a, b ∈ S then
either a or b is invertible in S. We will be using the following

Theorem 14. [1, Ch. I, Th. 3.6] Let A be a pseudo-abelian category. Suppose that
the endomorphism ring of every indecomposable object is local. Then the Krull-Schmidt
theorem holds for A.

Let F be a field and let Var be the category of smooth complete varieties over F . For
any commutative ring R we define the additive category C(R) of correspondences with
coefficients in R as follows. The objects of C(R) are the same as in Var. The group of
morphisms between X and Y in the case when X is integral of dimension d is equal to

MorC(R)(X,Y ) = CHd(X × Y )⊗Z R.

In general, MorC(R)(X,Y ) is the direct sum of MorC(R)(Xi, Y ) over all irreducible
(connected) components Xi of X. The composition of α ∈ MorC(R)(X,Y ) and β ∈
MorC(R)(Y,Z) is defined as

β ◦ α = p13∗
(
p∗12(α) · p∗23(β)

)
,

where p12, p23 and p13 are the projections of X × Y × Z on X × Y , Y × Z and X × Z
respectively.

The direct sum of X and Y in C(R) is the disjoint union X + Y .
We have the functor Var → C(R) that is the identity on objects and takes a morphism

f to the class of the cycle [Γf ]⊗ 1R where Γf ⊂ X × Y is the graph of f .
The category of (effective) Chow motives M(R) with coefficients in R is the pseudo-

abelian closure of C(R). The objects of M(R) (called the motives) are the pairs (X, ρ)
where X is a smooth complete variety over F and ρ ∈ EndC(R)(X) is an idempotent
(projector). The R-module of all morphisms between (X, ρ) and (X ′, ρ′) is the submod-
ule

ρ′ ◦MorC(R)(X,X ′) ◦ ρ ⊂ MorC(R)(X,X ′).

The direct sum operation is given by the disjoint union of varieties:

(X, ρ)⊕ (X ′, ρ′) = (X +X ′, ρ+ ρ′).

The category M(R) is a symmetric tensor additive category with respect to the
tensor product defined by

(X, ρ)⊗ (X ′, ρ′) = (X ×X ′, ρ× ρ′).
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The composition of functors Var → C(R) → M(R) takes any X to the motive
M(X) = (X, idX) of X.

The motive (P1, ρ) in M(R), where ρ is given by the cycle x × P1 ⊂ P1 × P1 for a
rational point x ∈ P1, is denoted by R(1) and called the Tate motive. Let R(n) for
n ≥ 0 be the n-th tensor power of R(1). In particular, R(0) = M(SpecF ). We have

HomM(R)

(
R(i), R(j)

)
=

{
R, if i = j;
0, otherwise.

(2)

For a motive M in M(R) we set M(n) = M ⊗ R(n). In particular, M(0) = M .
Clearly, M(R) is a Tate category with respect to the Tate twist functor M 7→ M(1).

Example 15. (Projective bundle theorem [11, §7]) Let E be a vector bundle of rank
r + 1 over X in Var and let P(E) be the associated projective bundle. Then in M(R):

M(P (E)) ≃ M(X)⊕M(X)(1)⊕ . . .⊕M(X)(r).

For any two motives M and M ′ the natural homomorphism

MorM(R)(M,M ′) → MorM(R)

(
M(n),M ′(n)

)
is an isomorphism for every n ≥ 0. In particular, the endomorphism rings of M and
M(n) are isomorphic for every n ≥ 0. Hence the motive M is indecomposable if and
only if M(n) is indecomposable.

We keep the notation of Section 5. The theorem below is a corollary of Proposition
13 and results of N. Karpenko [9, Th. 6.5, Cor. 6.11] (see also [5, Th. 7.2, Rem. 7.3]).

Theorem 16. Let X and X ′ be projective homogeneous varieties of a semisimple group
G over F . There is an isomorphism in M(R):

M(X ×X ′) =
⨿
δ∈∆

M(Zδ)(lδ),

where each Zδ is a projective homogeneous G-variety.

Remark 17. The variety Zδ is defined over the field FD for D ∈ δ. Note that FD ⊂ FG.

Remark 18. By Corollary 12, the direct sum contains exactly one term with the zero
Tate twist - the motive of the closed orbit OD = ZD for D = WSWS′ . We have
OD ≃ ZD = HS∩S′ . Moreover, the canonical morphism HS∩S′ → HS × HS′ = X ×X ′

induces an isomorphism between HS∩S′ and the orbit OD.

Remark 19. There are canonical morphisms Zδ → X over F (Remark 10). Interchang-
ing the roles of X and X ′ we can get another decomposition

M(X ×X ′) =
⨿
δ∈∆

M(Z ′
δ)(lδ),

where Z ′
δ are projective homogeneousG-varieties equipped with the morphisms Z ′

δ → X ′

(see Remark 10).
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7. Motives of zero-dimensional varieties

Let L/F be a finite Galois field extension with the Galois group Γ. Denote by C(R)L

the additive subcategory of C(R) generated by all zero-dimensional varieties X = SpecE
where E is a field such that F ⊂ E ⊂ L.

Recall that a RΓ-module P is called a permutation module if there is an R-basis of
P permuted by Γ. For a variety X ∈ C(R)L, the R-module

HomC(R)(SpecL,X) = CH0(XL)⊗R

has a natural structure of a permutation RΓ-module. For another variety Y ∈ C(R)L,
the composition law yields a homomorphism

HomC(R)(X,Y ) → HomΓ

(
CH0(XL)⊗R,CH0(YL)⊗R

)
.

This is an isomorphism since it can be obtained by taking the RΓ-invariant elements of
the two Γ-modules in the isomorphism (over L)

HomC(R)(XL, YL) → HomZ
(
CH0(XL)⊗R,CH0(YL)⊗R

)
.

Thus, the subcategory C(R)L is equivalent to the category of permutation RΓ-lattices.
An RΓ-module I is called invertible (see [6]) if it is a direct summand of a permutation

RΓ-module. The category Inv(RΓ) of invertible RΓ-modules is pseudo-abelian. It is
equivalent to the pseudo-abelian closure M(R)L of the category C(R)L.

If Γ is trivial, the category Inv(RΓ) coincides with the category P(R) of finitely
generated projective R-modules. Thus the category M(R)F is equivalent to P(R).

If R = Z and Γ is a cyclic group of prime order ≤ 19, the Krull-Schmidt theorem
holds for the category Inv(ZΓ) [7, Th. 34.31].

Consider the case of a local ring. LetR be a discrete valuation ring with maximal ideal
m and quotient field K. Denote by R̂ and K̂ the completions of R and K respectively.
Let Γ be a finite group of order relatively prime to charK, so that the group algebra
KΓ is semisimple. Let D1, D2, . . . , Ds be the endomorphism division K-algebras of all
simple K[Γ]-modules. The group Γ is called split if Di = K for all i.

We will be considering the following condition on Γ:

(∗) For all i, Di ⊗K K̂ is a division K̂-algebra.

The condition (∗) implies that if M is a simple K[Γ]-module, then M ⊗K K̂ is a

simple K̂[Γ]-module. The following statement was proved in [7, Th. 30.18]:

Proposition 20. Let Γ satisfy the condition (∗). Then the Krull-Schmidt theorem holds
for the category Inv(RΓ).

Remark 21. The condition (∗) holds in the following cases:

(1) Γ is a split group. For example, Γ = Sn the symmetric group;
(2) R = Z(p) and Γ is a p-group [7, Th. 36.1];
(3) R is complete.
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Remark 22. The automorphism group Γ of a connected Dynkin diagram satisfies (∗)
over R = Z(p). Indeed, Γ is either a cyclic group of order ≤ 3 or the symmetric group
S3.

Remark 23. In general, the Krull-Schmidt theorem does not hold for Inv(RΓ) over a
discrete valuation ring R. The following example is due to E. Beneish.

Let R = Z(p) for a prime p ≥ 5 and let Γ be the semi-direct product of a cyclic group
Λ of order p with its automorphism group Φ. Let τ ∈ Φ be a generator (of order p− 1).
Consider the ring L = R[ξ] where ξ is a primitive (p − 1)-th root of unity. We regard
L as a RΓ-module of rank φ(p− 1) via the composition RΓ → RΦ → L where the first
map is induced by the canonical homomorphism Γ → Φ and the second one takes τ
to ξ. Since LK = L ⊗R K is a field, the RΓ-module L is indecomposable. Since the
homomorphism RΦ → L splits, L is a direct summand of RΦ and therefore is invertible.

Let θ ∈ R̂ be a primitive root of unity of degree p−1. For every k with (k, p−1) = 1

let Lk be the R̂Γ-module of rank 1 so that Λ acts trivially on Lk and τ acts by the
multiplication by θk. We have

LR̂ = L⊗R R̂ =
⨿

1≤k<p−1,

(k,p−1)=1

Lk.

Consider M = R[Γ/Φ] as a (permutation) RΓ-module of rank p and let V be the

kernel of the augmentation Γ-homomorphism M → R. Over the field K̂,

MK̂ = M ⊗R K̂ = VK̂ ⊕ K̂. (3)

The dimension count shows that VK̂ is the only (up to isomorphism) indecomposable

(irreducible) K̂Γ-module of rank p − 1. Therefore, VK̂ ⊗ Lk
K̂

≃ VK̂ for every k with

(k, p−1) = 1. The decomposition (3) does not descent to R̂, henceMR̂ is indecomposable

over R̂.
Consider the following direct sums of indecomposable R̂Γ-modules:

C = L1 ⊕
⨿

1<k<p−1,

(k,p−1)=1

(M ⊗R Lk), C ′ = (M ⊗R L1)⊕
⨿

1<k<p−1,

(k,p−1)=1

Lk.

Since
CK̂ ≃ V

φ(p−1)−1

K̂
⊕ LK̂ , C ′

K̂
≃ VK̂ ⊕ LK̂ ,

the modules CK̂ and C ′
K̂

are defined over K. By [7, Cor. 30.10], there are RΓ-modules

D and D′ such that DR̂ ≃ C and D′
R̂
≃ C ′. We have

DR̂ ⊕D′
R̂
≃ C ⊕ C ′ ≃ (MR̂ ⊗ LR̂)⊕ LR̂,

By [7, Prop. 30.17],
D ⊕D′ ≃ (M ⊗ L)⊕ L.

Note that since p ≥ 5, we have LR̂ ̸= L1, hence L is not a direct summand of D or D′

even over R̂ since the Krull-Schmidt theorem holds over R̂Γ by [7, Th. 30.18].
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8. Category M(G,R)

Let G be a semisimple algebraic group defined over F . Recall that FG is the subfield
of Fsep corresponding to the kernel of the ⋆-action.

Let J be the class of all projective homogeneous varieties X over L of the group
GL for all fields L such that F ⊂ L ⊂ FG, where X is considered as a variety over
F via the natural morphism SpecL → SpecF . Denote by M(G,R) the Tate pseudo-
abelian subcategory of M(R) generated by the motives of varieties from J . An object
of M(G,R) is a direct summand of a motive of the form

⨿
M(Xi)(ni) where all Xi ∈ J

and ni ≥ 0.
Theorem 16 and Remark 17 imply that the tensor product of two motives M(X) and

M(Y ) for two projective homogeneous varieties X and Y is an object of M(G,R). In
other words the following holds:

Theorem 24. The category M(G,R) is a symmetric tensor category.

We will be using the following generalization of the Nilpotence theorem [5, Th. 8.2]:

Theorem 25. Let M be an object of M(G,R). Then for every field extension L/F ,
the kernel of the natural ring homomorphism End(M) → End(ML) is a nil ideal.

Proof. We may assume that M is a direct sum of motives of the form M(Y )(i) for
a projective homogeneous G-variety Y . The motive M(Y )(i) is a direct summand of
M(Y × Pi) (Example 15). Hence we are reduced to the case when M = M(X) where
X is the disjoint union of varieties of the form Y × Pi. Note that Y × Pi is a projective
homogeneous variety of G× SLi+1. The statement follows from [5, Th. 8.2] (note that
the proof goes through if X is not connected).

Corollary 26. Let M be an object of M(G,R) and let L/F be a field extension such
that ML = 0. Then M = 0.

Proof. The identity endomorphism idM is zero over L, hence it is nilpotent, and there-
fore zero.

The category M(G,R) contains R(0) = M(SpecF ). Let M(G,R)s be the Tate
pseudo-abelian subcategory of M(G,R) generated by R(0). By (2), M(G,R)s is equiv-
alent to the direct sum of the full subcategories M(R)F (n) over all n ≥ 0 and hence it
is equivalent to the direct sum of countably many copies of the category P(R):

M(G,R)s ≃ P(R)N. (4)

where N = {0, 1, 2, . . .}.
If G is split, the inclusion M(G,R)s ↪→ M(G,R) is an equivalence of categories

(see Lemma 29 below). If G is arbitrary, for any motive M ∈ M(G,R), the motive
Msep = M⊗F Fsep of the split group Gsep defines then a sequence of projective modules
Pn ∈ P(R), n ≥ 0, almost all zero. Suppose that SpecR is connected. Then rank(Pn) ∈
N of every Pn is well defined. For every n ≥ 0 set

rankn(M) = rank(Pn) ∈ Z.

We have rankn(M ⊕M ′) = rankn(M) + rankn(M
′) for any two motives M and M ′.
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Proposition 27. Let Spec(R) be connected. A motive M ∈ M(G,R) is zero if and
only if rankn(M) = 0 for all n ≥ 0.

Proof. Let rankn(M) = 0. Since the category M(Gsep, R) is equivalent to M(Gsep, R)s,
in view of the equivalence (4) we get Msep = 0, hence M = 0 by Corollary 26.

Theorem 28. Let Spec(R) be connected. Then

(1) Every motive in M(G,R) is isomorphic to a finite direct sum of indecomposable
motives.

(2) Suppose the Krull-Schmidt theorem holds for M(G,R). Then the category M(G,R)
is finitely generated as a Tate category.

Proof. (1) Let M ∈ M(G,R). We proceed by induction on

r(M) =
∑
n≥0

rankMn.

If N is a nontrivial direct summand of a motive M then rankn(N) ≤ rankn(M) for all
n, and it follows from Proposition 27 that the strict inequality holds for at least one n.
Hence r(N) < r(M) and the first statement holds for N by induction.

(2) Let J be the finite set of indecomposable direct summands ofM(X) for all (finitely
many up to isomorphism) projective homogeneous varieties of G over (finitely many)
fields between F and FG. The set J generates M(G,R). Indeed, an indecomposable
object M is a direct summand of a motive of the form

⨿m
i M(Xi)(ni) where Xi are

projective homogeneous G-varieties. By the Krull-Schmidt theorem, M is isomorphic
to N(ni) for some N ∈ J and ni ≥ 0.

9. Krull-Schmidt theorem

Let M(G,R)qs be the Tate subcategory of M(G,R) generated by the motives of
zero-dimensional varieties Spec(L) where L is a field such that F ⊂ L ⊂ FG. Set
Γ = Gal(FG/F ).

From the discussion in Sections 6 and 7 we get an equivalence of categories

M(G,R)qs ≃ Inv(RΓ)N. (5)

Lemma 29. Let G be a quasi-split group. Then the inclusion M(G,R)qs ↪→ M(G,R)
is an equivalence of categories.

Proof. Let L be a field such that F ⊂ L ⊂ FG. By [5, Th. 7.5], the motive of a
projective homogeneous GL-variety over L is a direct sum of the twisted motives of
anisotropic projective homogeneous varieties defined over fields E between L and FG.
Since GE is quasi-split, we have X(E) ̸= ∅ for any projective homogeneous G-variety
X. Hence every anisotropic homogeneous variety X over E is the point SpecE.

Proposition 30. Let G become quasi-split over a separable field extension of degree n.
If n is invertible in R then the category M(G,R) is equivalent to Inv(RΓ)N.
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Proof. Consider first the case when G is quasi-split. By Lemma 29, the category
M(G,R) is equivalent to M(G,R)qs and therefore to Inv(RΓ)N by (5).

In the general case, let L/F be a separable field extension of degree n such that GL

is quasi-split. For any two projective homogeneous G-varieties X and Y , the homology
groups of the Čech complex

0 → CH∗(X × Y )⊗R → CH∗(XL × YL)⊗R → CH∗(XL⊗L × YL⊗L)⊗R

have exponent n. Since n is invertible in R, the complex is acyclic, hence the group
Mor

(
M(X),M(Y )

)
is isomorphic to the kernel of

Mor
(
M(XL),M(YL)

)
→ Mor

(
M(XL⊗L),M(YL⊗L)

)
.

Let Gqs be a quasi-split twisted form of G. Recall that a quasi-split form of G is
unique up to an isomorphism and that two groups G and Gqs have the same ⋆-action
of ΓF on the root systems of G and Gqs. The projective homogeneous varieties X,Y
determine uniquely the subsets SX and SY in Π. These subsets in turn determine
uniquely the projective homogeneous varieties Xqs and Y qs of Gqs. Since the groups
Gqs

L and GL are isomorphic, then the group Mor
(
M(Xqs),M(Y qs)

)
is isomorphic to the

same kernel. Thus, the categories M(G,R) and M(Gqs, R) are equivalent. The result
follows then from the first part of the proof.

Corollary 31. The Krull-Schmidt theorem holds for M(G,R) in the following cases:

(1) G is split and every finitely generated projective R-module is free;
(2) R is a discrete valuation ring and G is quasi-split such that Γ satisfies condition

(∗). For example, G is a simple quasi-split group.

Proof. The first statement follows from Proposition 30 since n = 1. The second follows
from Proposition 20.

The following example shows that the Krull-Schmidt theorem does not hold over
R = Z even for a group G of inner type.

Example 32. Let A and B be two central simple F -algebras generating the same
subgroup in the Brauer group Br(F ). Let X and Y be the corresponding Severi-Brauer
varieties. We can view X and Y as projective homogeneous varieties of the group
G = PGL1(A) × PGL1(B) of inner type. By assumption, the projections of X × Y
to X and Y are projective vector bundles. By the projective bundle theorem (Example
15),

M(X × Y ) ≃ M(X)⊕M(X)(1)⊕ . . .⊕M(X)(m),

M(X × Y ) ≃ M(Y )⊕M(Y )(1)⊕ . . .⊕M(Y )(n),

where n = dimX and m = dimY . If A and B are division algebras then the motives
M(X) and M(Y ) are indecomposable by [8, Th. 2.2.1]. On the other hand, the integral
motives of X and Y are not isomorphic if A is not isomorphic to B or the opposite
algebra Bop [10, Criterion 7.1].

Remark 33. A. Vishik proved in [13] that the Krull-Schmidt theorem holds for the
integral motives of projective quadrics.

We use the notation of Section 7.
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Theorem 34. Let R be a discrete valuation ring and let G be a semisimple group such
that the group Γ satisfies the condition (∗). Then

(1) The Krull-Schmidt theorem holds for M(G,R).
(2) The category M(G,R) is finitely generated as a Tate category.

Proof. The second statement follows from (1) and Theorem 28. Let M be an inde-
composable motive in M(G,R). By Theorem 14, it suffices to show that the ring
End(M) is local. Let S be the image of End(M) under the R-algebra homomorphism
f : End(M) → End(Msep). Since G is split over Fsep, the R-module End(Msep) is
finitely generated, hence S is an R-order in S ⊗R K. By Theorem 25, the kernel of f is
a nil ideal. Therefore, it is sufficient to prove that S is a local ring.

The K-algebra S⊗RK is the endomorphism ring of MK in M(G,K). By Proposition
30 the category M(G,K) is equivalent to Inv(KΓ)N, hence S ⊗R K is isomorphic to a
product of rings of the form EndKΓ(N) for some finitely generated KΓ-module N . It
follows that the endomorphism ring of a simple S ⊗R K-module is isomorphic to the
K-algebra Di for some i. By the condition (∗), Di ⊗ K̂ is a division K̂-algebra. It is

proven in [7, Th. 30.18] that for every indecomposable S-lattice T , the Ŝ-lattice T̂ is

also indecomposable. Applying this statement to T = S we see that the ring Ŝ has
no nontrivial idempotents. The lifting property for the idempotents [1, Ch. III, Prop.

2.10] shows that the factor ring S/mS = Ŝ/mŜ has no nontrivial idempotents. The ring
S/mS is a finite dimensional algebra over the field R/mR and hence is local.

We are finally ready to prove that S is a local ring. Let a + b = 1 for a, b ∈ S.
Since the ring S/mS is local one of the residues ā or b̄ in S/mS, say ā, is invertible. By
Nakayama Lemma, the left and right multiplication endomorphisms by a of the finitely
generated R-module S are surjective, therefore, a is invertible in S and hence S is a
local ring.

Remarks 21 and 22 imply

Corollary 35. Let R be a discrete valuation ring. The Krull-Schmidt theorem holds
for M(G,R) in the following cases:

(1) R = Z(p) and G is a simple group.
(2) G has inner type.
(3) The group Gal(FG/F ) is split.
(4) R is complete.
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