ESSENTIAL DIMENSION OF CENTRAL SIMPLE ALGEBRAS
SANGHOON BAEK AND ALEXANDER S. MERKURJEV

ABSTRACT. Let p be a prime integer, 1 < s < r integers and F' a field
of characteristic different from p. We find upper and lower bounds for the
essential p-dimension edp(A/gpr)ps) of the class Alg, ,. of central simple
algebras of degree p” and exponent dividing p®. In particular, we show that
eda(Algg ) = 8 and ed,(Alg,2 ) = p* + p for p odd.

1. INTRODUCTION

Let F : Fields/F — Sets be a functor from the category Fields/F of field
extensions over F' to the category Sets of sets. Let E € Fields/F and K C E a
subfield over F'. An element o € F(FE) is said to be defined over K (and K is
called a field of definition of «) if there exists an element 8 € F(K) such that
« is the image of 5 under the map F(K) — F(E). The essential dimension
of a, denoted ed” (a), is the least transcendence degree tr.deg,(K) over all
fields of definition K of a. The essential dimension of the functor F is

ed(F) = sup{ed” (a)},

where the supremum is taken over all fields E € Fields/F and all a € F(E)
(see B, Def. 1.2] or [B, Sec.1]). Informally, the essential dimension of F is the
smallest number of algebraically independent parameters required to define F
and may be thought of as a measure of complexity of F.

Let p be a prime integer. The essential p-dimension of a;, denoted edi,E (o), is

defined as the minimum of ed” (ag/), where E’ ranges over all field extensions
of E of degree prime to p. The essential p-dimension of F is

ed,(F) = sup{edf(oz)},

where the supremum ranges over all fields £ € Fields/F and all o € F(E).
By definition, ed(F) > ed,(F) for all p.

For every integer n > 1, a divisor m of n and any field extension E/F, let
Alg,, ,(E) denote the set of isomorphism classes of central simple E-algebras
of degree n and exponent dividing m. Equivalently, Alg,, ,,(E) is the subset of
the m-torsion part Br,,(E) of the Brauer group of F consisting of all elements a
such that ind(a) divides n. In particular, if n = m, then Alg,,(E) := Alg,, .(E)
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is the set of isomorphism classes of central simple E-algebras of degree n. We
view Alg,, ,, and Alg,, as functors Fields/F" — Sets.

In the present paper we give upper and lower bounds for edp(A/gmm) for
a prime integer p. Let p” (respectively, p*) be the largest power of p divid-
ing n (respectively, m). Then ed,(Alg,,,) = ed,(Alg,. ) and ed,(Alg,) =
ed,(Alg,-) (see Section B). Thus, we may assume that n and m are the p-
powers p" and p® respectively.

Using structure theorems on central simple algebras, we can compute the
essential (p)-dimension of Alg,. . for certain small values of 7, s or p as fol-
lows. As every central simple algebra A of degree p is cyclic over a finite field
extension of degree prime to p, A can be given by two parameters (see Section
20). In fact, ed,(Alg,) = 2 by [[3@, Lemma 8.5.7].

By Albert’s theorem, every algebra in Algy » is biquaternion and hence can
be given by 4 parameters. In fact, ed(Algs2) = ed2(Algs ) = 4 (see Remark
B3).

The upper and lower bounds for ed,(Alg,.) can be found in [[2] and [I|
respectively. In this paper (see Sections B and @), we establish the following
upper and lower bounds for ed,(Algyr ps):

Theorem. Let F be a field and p a prime integer different from char(F).
Then, for any integers r > 2 and s with 1 < s <,

—1)2! ifp=2and s=1
227"72_ 7'_|_ rfs>ed Al . > (T )
P P 2 edy(Algy ) 2 {(r— )p" 4+ p"—* otherwise.
Corollary. (cf. [A]) Let p be a prime integer and F a field of characteristic
different from p. Then

ed,(Alg,2) = p* + 1.

Corollary. Let p be an odd prime integer and F a field of characteristic
different from p. Then
ed,(Algy2 ,) = p° +p.

The corollary recovers a result in [2I] that for p odd, there exists a central
simple algebra of degree p? and exponent p which is not decomposable as a
tensor product of two algebras of degree p. Indeed, if every central simple
algebra of degree p? and exponent p is decomposable, then the essential p-
dimension of Algy2 , would be at most 4.

Corollary. Let F be a field of characteristic different from 2. Then
cdy(Algg o) = ed(Alggy) = 8.

The proof is given in Section B. The corollary recovers a result in [0] that
there is a central simple algebra of degree 8 and exponent 2 which is not
decomposable as a tensor product of three quaternion algebras. Indeed, if
every central simple algebra of degree 8 and exponent 2 is decomposable, then
the essential 2-dimension of Algg » would be at most 6.
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2. CHARACTER, BRAUER GROUP AND ALGEBRAIC TORI

2.1. Character and Brauer group. Let F' be a field, Fy, a separable closure
of F', I'r = Gal(Fip/F). For a (discrete) I'p- module M, we write H"(F, M)
for the Galois cohomology group H™(I'p, M).

If S is an algebraic group over F, we let H*(F, S) denote the set H' (T'p, S(Fiep))
(see [H]).

The character group of F' is defined by

Ch(F) := Homeon(I'r, Q/Z) = H'(F,Q/Z) ~ H*(F, 7).

The n-torsion character group Ch,(F) is identified with H'(F,Z/nZ). For a
character x € Ch(F), set F(x) = (Fup)¥™. The field extension F(x)/F is
cyclic of degree ord(x). If ¥ C Ch(F) is a finite subgroup, we set

F(0) = (Fyep)™ 70,

where the intersection is taken over all x € W. The Galois group G =
Gal(F(V)/F) is abelian and ¥ is canonically isomorphic to the character
group Hom(G,Q/Z) of G. Note that a character n € Ch(F) is trivial over
F(V) if and only if n € U,

We write Br(F) for the Brauer group H?(F, Fy5,) of F. If L/F is a field
extension and « € Br(F), we let o, denote the image of a under the natural
map Br(F) — Br(L). We say that L is a splitting field of o if a, = 0. The
index ind(«) of « is the smallest degree of a splitting field of a. The exponent
exp(«) is the order of o in Br(F). The integer exp(«) divides ind(«).

Let A be a central simple F-algebra. The degree of A in the square root of
dim(A). We write [A] for the class of A in Br(F'). The index of [A] divides
deg(A). If a € Br(F) and n is a positive multiple of ind(«), then there is a
central simple F-algebra A of degree n with [A] = .

The cup-product

Ch(F)® F* = H*(F,Z) @ H*(F,F})) — H*(F,F}) = Br(F)

sep sep

takes x ®b to the class xU(b) in Br(F) that is split by F(x). A class o € Br(F)
is called n-cyclic if a = x U (b) for a character y with nxy = 0. Such classes
belong to Br,(F). If n is prime to char(F), then Br,(F) ~ H*(F, j1,), where
fy, is the I'p-module of all n-th roots of unity in Fiep.

Let n be prime to char(F) and suppose that F' contains a primitive n-th
root of unity . For any a € F*, let x, € Ch(F) be a unique character with
values in 2Z/7Z C Q/Z such that

(@) = glmat) g1/

for all v € Gal(Fip/F). We write (a,b), for x, U (b). The symbol (a,b),
satisfies the following properties (see [[d, Chap. XIV, Prop.4]):

(a,b), + (', b), = (ad’,b),,

(CL, b)n = _(b7 a)Tn

(a,—a), =0.
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For a finite subgroup ® C Ch(F') write BI’(F((ID)/F)deC for the subgroup of
decomposable elements in Br(F(®)/F) generated by the elements yU(a) for all
X € @ and a € F*. The indecomposable relative Brauer group Br(F(®)/F) nd
is the factor group Br(F(®)/F)/Br(F(®)/F),... Similarly, if ® C Ch,(F) for
some n, then Brn(F(CI))/F) inq 18 the indecomposable n-torsion relative Brauer
group defined as the factor group Br, (F(®)/F)/Br(F(®)/F),,.-

Let E be a complete field with respect to a discrete valuation v and K
its residue field. Let p be a prime integer different from char(K’). There is
a natural injective homomorphism Ch(K){p} — Ch(E){p} of the p-primary
components of the character groups that identifies Ch(K){p} with the charac-
ter group of an unramified field extension of E. For a character x € Ch(K){p},
we write X for the corresponding character in Ch(E){p}.

By [@, §7.9], there is an exact sequence

0 — Br(K){p} 5 Br(E){p} 2 Ch(K){p} — 0.

If @ € Br(K){p}, then we write & for the element i(«) in Br(E){p}. For
example, if &« = x U (u) for some xy € Ch(K){p} and a unit u € E, then
@ = XU (u). In the case F' contains a primitive n-th root of unity, where n is
a power of p, if @ = (a,b), with a and b units in £, then @ = (a,b),.

If 8 =3a+ (YU (z)) for an element o € Br(K){p}, x € Ch(K){p} and
x € E* such that v(x) is not divisible by p, we have (cf. [[@, Prop. 2.4])

(1) ind(8) = ind(a(y)) - ord(x).

2.2. Representations of algebraic tori. Let T be an algebraic torus over
a field F, L/F a finite Galois splitting field for 7" with Galois group G.
The group G is called the decomposition group of T. The character group
T* := Homp (1%, Gy, 1) has the structure of a G-module. The torus 7" can be
reconstructed from 7™ by

T = Spec(L[T*]%).

A torus P over F split by L is called quasi-split if P* is a permutation G-
module, i.e., if there exists a G-invariant Z-basis X for P*. The torus P
is canonically isomorphic to the group of invertible elements of the étale F-
algebra A = Map, (X, L). The torus P acts linearly by multiplication on the
vector space A over F making A a faithful P-space (a linear representation
of P) of dimension dim(P). It follows that a homomorphism of algebraic tori
v: T — P with P a quasi-split torus yields a linear representation of T" of
dimension dim(P) that is faithful if v is injective.

Let P be a split torus over F', and P* its character group. As above, the
choice of a Z-basis X for P* allows us to identify P with the group of invertible
elements of a split étale F-algebra A and make A a faithful P-space over F'.
Let v : T — P be a homomorphism of split tori over F'. Suppose a finite
group G acts on T and P by tori automorphisms so that v is a G-equivariant
homomorphism. Then the map v* : P* — T* is a G-module homomorphism.
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Suppose that there is a G-invariant Z-basis X for P*, i.e., P* is permutation.
Then G acts on the algebra A by F-algebra automorphisms. The torus 1" acts
linearly on A via v. It follows that the semidirect product T' x GG acts linearly
on A making A a T x G-space.

Let L be a Galois G-algebra over F (for example, L/F is a Galois field
extension with Galois group G). Then 7 : Spec L — Spec F' is a G-torsor.
Twisting the split torus T" by the torsor v, we get the torus

T, = (T x Spec L) /G = Spec(L[T*]%)

that is split by L and T7 is isomorphic to 7" as G-modules.
By [B, Prop. 28.11], the fiber of H'(F,T x G) — H'(F,G) over the class of
7 is naturally bijective to the orbit set of the group G, (F) in H'(F,T,), i.e.,

2) HY(F,T % G) ~ [[ H'(F.T,) /G, (F),
where the coproduct is taken over all [y] € H'(F,G).

2.3. Generic torsors. Let T" be an algebraic torus split by a finite Galois
field extension L/F with G = Gal(L/F). Let P be a quasi-split torus split
by L and containing 7" as a subgroup. Set S = P/T. Then the canonical
homomorphism v : P — S is a T-torsor.

Proposition 2.1. The T-torsor v is generic, i.e., for every field extension
K/F with K infinite, every T-torsor ' : E — Spec K and every nonempty
open subset W C S, there is a morphism s : Spec K — S over F with Im(s) C
W such that the T-torsors ' and s*(vy) = v x s Spec K over K are isomorphic.

Proof. As P is quasi-split, the last term in the exact sequence
P(K) 25 S(K) % HY(K,T) — H'(K, P)

is trivial. Then there is s € S(K) with d(s) = [y/]. As K is infinite, the
K-points of P are dense in P and we can modify s by an element in the image
of vk so that s € W(K), i.e., Im(s) C W. Then the T-torsor 7' over K with
the class d(s) satisfies the required property. O

2.4. The algebraic tori P*, S®, T®, U® and V?. Let 1 < s < r be integers,
p a prime integer, F' a field with char(F') # p, ® a subgroup of Ch,(F’) of rank r
and L = F(®). Let G = Gal(L/F). Choose a basis x1, x2, - - -, X for ®. Each
X: can be viewed as a character of G, i.e., as a homomorphism y; : G — Q/Z.

Let 01,09, ...,0, be the dual basis for G, i.e.,
.l A/p)+2, iti=j;
Xi(oj) = { 0, otherwise.

Let R be the group ring Z[G]. Consider the surjective G-modules homomor-
phism € : R — Z/p°Z, defined by &(x) = e(x) + p°Z, where € : R — 7 is the
augmentation homomorphism given by e(p) = 1 for all p € G. Set J := Ker(é),
thus, we have an exact sequence

0—J—=R> Z/pZ — 0.
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Moreover, the G-module J is generated by I and p°, where [ := Ker(¢) is the
augmentation ideal in R.

Consider the G-module homomorphism h : R"*! — R taking the i-th canon-
ical basis element e; to 0; — 1 for 1 < ¢ < r and e,y to p°. The image of h
coincides with J.

Set N := Ker(h) and write w; = 1 +0; +0? +---+ 0" ' € Rfor 1 <i <r.
Consider the following elements in N

eij = (0i—1)ej — (05— Dei,  fi=wie;, and g = —pe;+ (07 — 1)epp
forall 1 <1,7 <.
Lemma 2.2. The G-module N is generated by e;;, fi and g;.

Proof. Consider the surjective morphism k : R — [ taking e; to 0; — 1 and
set N’ := Ker(k). Then we have the following commutative diagram

N'c R —E

[

Ne—— prtl o

RN

Ic R——>17

where R™! — R is the projection morphism to the last coordinate and ¢’ :
J — Z is given by £'(j) = <(j)/p°.

By the exactness of the first column of the diagram, N is generated by N’
and the liftings g; of o; — 1 in N. The module N’ is generated by e;; and f;
by [, Lemma 3.5]. This completes the proof. O

Let g; : R — Z be the i-th projection followed by the augmentation map
e. It follows from Lemma 22 that ¢;(N) = pZ for every i = 1,...,r. Moreover,
the G-homomorphism

qg:N—=7Z", x+— (sl(m)/p,...,er(x)/p)

is surjective. Set M := Ker(q) and Q := R""' /M.

Let P®, 8% T® U® and V® be the algebraic tori over F' with the character
G-modules R™, Q, M, J and N, respectively. The diagram of homomor-
phisms of G-modules with the exact columns and rows

(3) M=——=M

|

NC—> R7’+1 L))(]

|

Zc Q J
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yields the following diagram of homomorphisms of the tori

(4) T<I> [— T@

o

Y

V(b P<I> )U(I)

L

Grm S<I> D U(I)

Let K/F be a field extension and set KL := K ®p L. The commutative
diagram

0 I s Z —— 0

|

0 J > 2/p°7 —— 0
induces the commutative diagram of homomorphisms of algebraic groups
1 —— Ups — RL/F(Gm,L) Ue® 1
® | H |

1 —— Gm B RL/F(Gm,L) U > 1
and then the commutative diagram
0 —— HYK,U®) —— H*(K,p,) —— H*(KL,G,,)

© | | H

0 — HYK,U?®) — H*K,G,,) —— H*(KL,G,,).
Hence
(7) HY(K,U®) ~ Br,s(KL/K) and HYK,U'"®)~Br(KL/K).
Lemma 2.3. The map H'(K,U®) — HY(K,S?®) induces an isomorphism
HY(K,S®) ~ Brys(KL/K)ina-
Proof. Consider the following commutative diagram

1 > U® > S G,

| | |
1 , U , g el , 1,

where the bottom row is induced by the bottom row of the diagram (4) in [M].
This yields a commutative diagram

(K*) —— HYK,U®) —— HY(K,S%) —— 0

| l l

(KX —2 HYK,U'®) —— HY(K,S®) — 0

~
—_
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with the exact rows. The homomorphism X takes (z1,...,z,) to >.r_, ((x:)x U
(z;)) by [MM, Lemma 3.6], whence the result. O

3. ESSENTIAL DIMENSION OF ALGEBRAIC TORI

Let S be an algebraic group over F. The essential dimension ed(S) (re-
spectively, essential p-dimension ed,(S)) of S is defined to be the essential
(p-)dimension of the functor taking a field extension K/F to the set of iso-
morphism classes S-torsors(K) of S-torsors over K. Note that the functor
S-torsors is isomorphic to the functor taking K to the set H'(K,S).

Let S be an algebraic torus over F' split by L with G = Gal(L/F). We
assume that G is a group of order p”, where p is a prime integer and r > 2. Let
X be the G-module of characters of S. Define the group X := X/(pX + I X),
where [ is the augmentation ideal in R = Z[G]. For any subgroup H C
G, consider the composition X# < X — X. For every k, let V, denote
the subgroup generated by images of the homomorphisms X — X over all
subgroups H with [G : H] < p*. We have the sequence of subgroups

0o=V,cVyc---CcV.=X.

A p-presentation of X is a G-homomorphism P — X with P a permutation
G-module and finite cokernel of order prime to p. A p-presentation with the
smallest rank(P) is called minimal. The essential p-dimension of algebraic tori
was determined in [@, Th. 1.4] in terms of a minimal p-presentation P — X:

(8) ed,(S) = rank(P) — dim(5).

We have the following explicit formula for the essential (p-)dimension of S
(cf. @, Th. 4.3]):

Theorem 3.1. Let S be a torus over a field F and p a prime integer different
from char(F). If the decomposition group G of S is a p-group, then
ed(S) = ed,(S) = _(rank V; — rank Vi_;)p* — dim(S).
k=0

Proof. The second equality was proven in [, Th. 4.3]. Let v : P — X be
a minimal p-presentation. By definition, the index [X : Im(v)] is prime to
p. Let T and U be algebraic groups of multiplicative type split by L with
the character G-modules Im(v) and X/ Im(v), respectively, hence we have an
exact sequence

1=-U—=5—=T—=1.
Let K/ F be a field extension. By assumption, the group U(K L) = Hom(X/Im(v), K L*)
has order prime to p. We have an exact sequence
H'(G,UKL)) - H'(G,S(KL)) - H'(G,T(KL)) - H*(G,U(KL)).

As the order of U(K L) is prime to p and G is a p-group, the groups H* (G, U(KL))
are trivial for ¢ > 1, hence the homomorphism S — T induces an isomorphism
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of functors S-torsors = T-torsors. It follows that ed(S) = ed(T"). The surjec-
tion P — Im(v) yields a generically free representation of 7" by [, Lemma
3.3]. Hence, by [B, Prop. 4.11] and (B), we have

ed,(S) <ed(S) = ed(T') < rank(P) — dim(7) = rank(P) — dim(S) = ed,(.5),
therefore, ed(S) = ed,(.5). O

Let F be a field, ® a subgroup of Ch,(F) of rank r > 2, L = F(®) and
G = Gal(L/F). In this section we compute the essential (p-)dimension of the
algebraic tori U? and S? defined by (@). For any subgroup H of G, we write
ng =Y .y Tin R=Z[G]|. Anelement x € R is decomposable if v = yz with
Y,z € R, and £(y),e(z) € pZ.

Lemma 3.2. Let H C G be a nontrivial subgroup and x € R such that
e(ngx) € p*Z. Then nyx is decomposable.

Proof. If |H| = p, then ¢(z) € pZ and hence nyx is decomposable. Otherwise
H = H' x H” for nontrivial subgroups H' and H”. As nyg = npy - ng», the
element ny and therefore, ngx is decomposable. OJ

Lemma 3.3. If x € R is decomposable, then x = e(x) modulo pI + I*.

Proof. Let y = e(y) + v and z = ¢(z) + v for some u,v € I. Then we have
yz —e(yz) = (e(y)v + e(2)u) + wv € pI + I O

Lemma 3.4. The group Vi is generated by
(1) the elements gz such that |H| > p™ % and e(nyx) € p°Z if r — k < s,
(2) the elements My such that |H| > p"=* if r — k > s.

Proof. The statement follows from the equality J? = RENJ =nyRNJ. O
Lemma 3.5. If k <r — s, then Vi, = 0.

Proof. By Lemma BA(2), V, is generated by ny with |[H| > p"*. As ny is
decomposable and [H| > p®, in view of Lemma B33, we have ny = e(ng) =
|H| =0 as |H| € pJ.

Lemma 3.6. If s >2 andr —s < k <r —1, then dim(V}) = 1.

O

Proof. By Lemma B3, V}, is generated by gz with H nontrivial and e(nyx) €
p°Z. As s > 2, the element ngx is decomposable by Lemma B2, In view of
Lemma B3, ngz = e(ngx), hence Vj, is generated by p?. O

Lemma 3.7. If s =1 and p is odd, then dim(V,_;) = 1.

Proof. We claim that V,._; is generated by p. By Lemma B=2(2), V,._; is gener-
ated by mg with |H| > p. If |H| > p?, then by Lemma B2, 1y is decomposable
and in view of Lemma B3, iy = e(ny) = 0.

Suppose |H| = p and let 0 € H be a generator. We have ny —p = (0 —1)m,
where m = S0 2(p — 1 —4)o", so e(m) = p(p — 1)/2. As p is odd, (m) € pZ.
Hence, m € pR + I, therefore, ngy — p € pI + I?> and iy = p in J. O
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Lemma 3.8. If s=1 and p =2, then V,_; = J.

Proof. By Lemma B4(2), V,_; is generated by iy with |H| > 2. Take non-
trivial elements 0 # 7 in G. Then 2 = (1+o07) —o(1+7)+ (1 +0) € V,_;.
Also, forany 0 € G, 0 —1 =140 —2 € V,_;. The group J is generated by
2 and 0 — 1 over all 0 € G. O

Proposition 3.9. We have

(r—1)2r1 ifp=2ands=1,

Ad(U?) = ed,(U®) =
€ ( ) © p( ) {(T_l)pr+pr—5 otherwise.

Proof. Note that V, = J, rank(J) = rank(V;) =7 + 1 and dim(U?®) = p".
Case 1: pis odd or p =2 and s > 2. By Lemmas B3, B@ and B, we have

r+1 iftk=r,
rankV, =< 1 ifr—s<k<r,
0 fo<k<r-s.

Since the decomposition group G of U? is a p-group, by Theorem B,
ed(U®) = ed,(U®) = rp" +p 5 —dim(U®) = rp"+p"*—p" = (r—1)p" +p .
Case 2: p=2 and s = 1. By Lemmas B33 and B3, we have

r+1 ifk=r—1lork=r,
rank V,, = .
0 Hfo<k<r-—2.

Again by Theorem B,
ed(U?) = edy(U®) = (r + 1)2" — dim(U?®) = (r — 1)2" % O
Remark 3.10. One can construct a surjective minimal p-presentation v :

P’ — J as follows.

Case 1: pisodd or p=2 and s > 2. Let H be a subgroup of G of order p*

and P’ := R" @ Z|G/H]. We define v by
V<:Ula s >$nay) = Z(O-Z - 1)372 +nuy.
i=1

The image of v contains I and ny. As ng = p® modulo I, we have p* € Im(v),
hence v is surjective. Note that e;; = (0; — 1)e; — (0; — 1)e; € Ker(v). As
oi€ei; # €;; for every j # i, the group G acts faithfully on Ker(v).

Case 2: p=2 and s = 1. Let H; be the subgroup of G generated by ¢; and
H = (0109). Set P' =1],_, Z|G/H;| ® Z|G/H]. We define v by

V<x17 <oy I, y) = Z(O-Z + 1):’51 + (UIUQ + ]-)y
i=1

The image of v contains 0;+ 1 and 2 = (0109+1) —01(02+ 1)+ (01 + 1), hence
v is surjective. Note that h;; := (0;+1)e; — (0;+1)e; € Ker(v). As o,hij # hij



ESSENTIAL DIMENSION OF CENTRAL SIMPLE ALGEBRAS 11

for distinct 7, 7 and k, the group G acts faithfully on Ker(v) if r > 3. In fact,
G acts trivially on Ker(v) if r = 2.

Corollary 3.11. We have

(r—1)2"t —r ifp=2ands=1,

d(S%) = ed,(S®) =
ed(S%) = ed,(57) {(r—l)pT+pT5—7’ otherwise.

Proof. By (B) and Proposition B9, there is a minimal p-presentation v : P — J
such that

(r+1)2! ifp=2ands=1,
rp” +p"~°  otherwise.

9) rank(P) = {

The exact sequence
0=->7Z"—-Q—J—0

in the bottom row of (B) yields an exact sequence
Homg (P, Q) — Homg (P, J) — Exty(P,Z").

As P and Z" are permutation G-modules, Extlc(P, Z") = 0, hence the homo-
morphism v factors through a morphism v/ : P — Q.

Recall that we write X = X/(pX + IX) for a G-module X. As Zr ~
(Z/pZ)" — @Q is zero map, the natural homomorphism @ — J is an iso-
morphism, hence v/ is a minimal p-presentation of ). Note that G is the
decomposition group of S% and dim(S?®) = p” +r. By Theorem B, ed(S%) =
ed,(S®) = rank(P) — dim(S?), hence the result follows by (8). O

4. DEGENERATION

In this section we relate the essential p-dimensions of Alg, ,s and of the
torus S? by means of the iterated degeneration (Proposition E1). The latter
is a method of comparison of the essential p-dimension of an object (a central
simple algebra in our case) over a complete discrete valued field and of its
specialization over the residue field.

4.1. A simple degeneration. Let F' be a field, p a prime integer different
from char(F) and & C Ch,(F) a finite subgroup. For integers k& > 0, s > 1
and a field extension K/F, let

(10) Bi. (K) ={aeBr(K){p} | ind(axe)<p" exp(a) <p'}.

We say that two elements o and o' in By (K) are equivalent if o — o' €
Br(K(@)/K)deC. Write E,;Iis(K) for the set of equivalence classes in By (K).
To simplify notation, we shall write « for the equivalence class of an element
a € B (K) in By (K). We view By, and By, as functors from Fields/F' to
Sets.
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In particular, if & = 0, then Bf (K ) and g&(K) are bijective to Br,: (K (®)/K)
and Brys (K (®)/K)ina, respectively. Hence, by (@) and Lemma P73,

(11) By, ~U®-torsors and By, ~ S*- torsors.
Moreover, if & = 0, then
(12) B = BE ~ Alg .

Let ®" C ® be a subgroup of index p and n € ®\ &', hence & = (¥, 7). Let
E/F be a field extension such that ng ¢ @’ in Ch(F). Choose an element
a € By (E), ie., a € Br(E){p} such that ind(ap)) < p* and exp(a) < p°.

Let E’ be a field extension of F' that is complete with respect to a discrete
valuation v' over I’ with residue field F and set

(13) o :==a+ (MU (z)) € Br(E'),

for some € E'™ such that ¢'(x) is prime to p. As ng@) # 0, it follows from
(I0) that

ind(O/E’(dV)> =P iﬂd(aE(@) <p' and exp(a’) = lcm(exp(a),p) <p’,
hence o € By, (E').

In the case the condition exp(a) < p® in (ID) is dropped, the following
proposition was proved in [, Prop. 5.2]:

Proposition 4.1. Suppose that for any finite field extension N/E of degree
prime to p and any character p € Ch(N) of order p* such that pp € ®n \ Py,
we have ind(ozN(@’p)) > p*. Then

=5/

B B
edp," " (a') > edp™* (o) + 1.

Proof. The proof of [, Prop. 5.2] still works with the following modification.
Let M/E'" be a finite field extension of degree prime to p, My C M a

subfield over F and af € BE,, (M) such that (aj)y = o, in ggm and

.y
tr. degp(My) = edf’““’s(a’). We extend the discrete valuation v" on E’ to a
(unique) discrete valuation v on M and let N be its residue field. Let ng be
the residue field of the restriction of v on M. It was shown in the proof of [IT,
Prop. 5.2] that there exist o € Br(No){p} with ind(ap)ny@) < p¥, a prime
element 7y in My, and 7y € Ch,(Ny) such that

(14) (046)]\7[0 = Qg + (7o U (o)) in Br(]\/f\o)
and
(15) ay — (OZQ)N < Bl"(N(CI))/N)deC.

By (I@), we have

exp(ag) = exp(Qp) < lcm(exp(a{))ﬁo,p) < lem(exp(ap), p) < p°,
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hence ag € By (Np). Therefore, the class of ay in g,is(N) is defined over Ny
by (I3). It follows that

o/

R
edfkﬂ’s(o/) = tr.degp(My) > tr.degp(No) +1 > edsk!s(a) +1 -

4.2. A technical lemma. In this subsection we prove Lemma B= that will
allow us to apply Proposition B

Until the end of this subsection we assume that the base field F' contains a
primitive p-th root of unity.

Let x1, X2, ---, X, with r > 2 be linearly independent characters in Ch,(F)
and ® = (x1, X2, .-, Xr). Let E/F be a field extension such that rank(®g) = r
and let a € Br(E){p} be an element that is split by £(®) and exp(«a) < p°.

Let £y = E, Ei,...,E,. be field extensions of F' such that for any £ =
1,2,...,r, the field E, is complete with respect to a discrete valuation vy
over F and Ej_; is its residue field. For any k = 1,2,...,r, choose elements
xy, € B such that vg(xy) is prime to p and define the elements oy, € Br(Ey){p}
inductively by g := a and

—

ay = a1+ ((xw)g,_, U (2x)).

Let &, be the subgroup of ® generated by xxi1,...,xr. Thus, &, = &,
®, = 0 and rank(®;) = r — k. Note that the character (xx)g, ,(@,) is not
trivial. It follows from (@) that

ind(ak)Ek((Dk) =p- ind(Oék’_l)Ek—l((bk—l)

for any k =1,...,r. As indap@e) = 1, we have ind(ay) g, (@,) = p* for all k =
0,1,...,7. Moreover, as exp(«a) < p®, we have exp(ay) = lem(exp(ay_1),p) <
p°. Therefore, oy, € B,f’;(Ek)

The followings lemma assures that under a certain restriction on the element
«, the conditions of Proposition BT are satisfied for the fields Ej, the groups
of characters ®; and the elements ay. This lemma is similar to [0, Lemma

5.4].

Lemma 4.2. Suppose that for any subgroup ¥ C ® with [® : U] = p* and
any field extension L/E(V) of degree prime to p, the element ay is not p*-
cyclic . Then for every k = 0,1,...,r — 1, and any finite field extension
N/Ey, of degree prime to p and any character p € Ch(N) of order p* such that
pp € ((I)k)N \ <(I)k+1)N7 we have

(16) ind(&k)N(q)lH_l’p) 2 pk

Proof. Let k, N and p satisfy the conditions of the lemma. We construct a new
sequence of fields Ey, E1, ..., E, such that each Ej; is a finite extension of Ej
of degree prime to p as follows. We set Ej, = N. The fields Ej with 7 < k are
constructed by descending induction on j. If we have constructed Ej as a finite
extension of E; of degree prime to p, then we extend the valuation v; to Ej
and let Ej_l to be its residue field. The fields Em with m > k are constructed
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by ascending induction on m. If we have constructed E,, as a finite extension
of E,, of degree prime to p, then let Em+1 be an extension of E,, | of degree
[E,, : E,,] with residue field E,,. Replacing E; by E; and a; by (o) £, We may
assume that N = E}.

We proceed by induction on r. The case » = 1 is obvious.

(r —1) = r: First suppose that & < r — 1. Consider the fields F’' =
F(x.), E' = E(x,), E! = E;(x,), the sequence of characters x; = (x;)r, and
the sequence of elements o := (a;)p € Br(E]) for i = 0,1,...,7 — 1. Let
O = (X1, X, -, Xo_q) € Ch(F"), let @, be the subgroup of ®" generated by
Xit1s- - Xp—q and p' = ppy.

We check the conditions of the lemma for the new datum. Let ¥’ be a
subgroup of ® of index p?. Then the pre-image ¥ of ¥ under the map
Ch(F) — Ch(F") is a subgroup of ® of index p* and E'(¥') = E(¥). Let
L'JE'(V') be a field extension of degree prime to p. By assumption, the ele-
ment o, = ay is not p*-cyclic. We also have pp’ = prE|, € (<I>k) B = (<I>§€) By -
Suppose that pp’ € (¢2+1)E}/€, i.e., ppe; = pp' = np, for some n € (Prt1) -
It follows that pp — n € Ker(Ch(E;) — Ch(E})) = ((x+)r,) and therefore,
pp € <(I)k+1)Ek’ a contradiction, hence pp’ € (@;)Ek \ ((I);chl)E,;'
By the induction hypothesis, the inequality (8) holds for o, i.e,

: / k
lnd(ak)El/c((I);c+17pl) Z p .

As
(@) By @), o) = (%) B(@ri1.0)s
the inequality (@) holds for ay. Therefore, it remains to show the inequality
(I3) in the case k = r — 1. Note that is this case pp is a nonzero multiple of
(xr)E,_, and Py = P, = 0.
Case 1: The character p is unramified with respect to v,_q, i.e., p = u for
a character u € Ch(E,_y) of order p*. Note that pu is a nonzero multiple of

(XT)ET72'

By (),
(17) nd(—2) B, (1.0 = Md(r1) i, (o) /P

Consider the fields F' = F(x,-1), E' = E(xy-1), E! = Ei(xy-1), the new
sequence of characters x| = (x1)rs .- X0 o = (Xr—2)F, Xooy = (Xr)Fr, the

group of characters ® = (x|, x5,..-,x,_1) and the elements o € Br(E!)
for i = 0,1,...,7 — 1 defined by o] = (a;)p for i < r —2 and o, =
Op_o + ()?T U (xr_l)) over E!_,, and the character u. The new datum satisfy
the conditions of the lemma. By the induction hypothesis, the inequality (I3)
holds for o/._,, i.e,
ind (0 _5)E;_,(n) = P
As
(@ 2) B 4 = (W—2) B (1)

the inequality (IB) holds for «,._; in view of the equality (IC2).
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Case 2: The character p is ramified. Assume that inequality (I3) does not
hold for «a,_1, i.e., we have

ind(a,—1)E,_,(p) < p 2

By [, Lemma 2.3(2)], there exists a unit u € E,._; such that E, 5(x,) =
E, 5(a'/?) and
(s = (1 U @),

By descending induction on j = 0,1,...,r — 2 we show that there exist an
element u; in £ and a subgroup ¥; C @ of rank r — j — 2 such that

<X17 sy Xy Xr—1, X’r‘> N \IJ] = 07 EJ(XT) = E](u]l/p) and
(18) ind (; — (X1 U () . 0, S P,

where ©; := (¥;, x,). Weset ¥,_5 =0 and u,_o = .

J = (j —1): The field Ej(ujl»/p) = E;(x,) is unramified over E;, hence
v;(u;) is divisible by p. Modifying u; by a p*>-th power, we may assume that
uj = vzy” for a unit v € Ej, z; € Ej* and an integer m. Then

1/ ~
(aj - (XT—I U (uj p)))E].(@j) - 6 + (77 U (xj))Ej(@j)ﬂ
where n = y;—mx,—1 and § = (04]-,1—(X,,,lu(u;ﬁ)))Ejil(@j), where u;_ = 0.
As n is not contained in ©;, the character ng;_,(e;) is not trivial. Set U, ; =
(W;,n). It follows from (M) and the induction hypothesis that

ind(ﬁEj,1(9j71)) - lnd(Oé] - (XT—I U (u]l/p)))E](@)/p < pj_l‘

J
Applying the inequality (IR) in the case j = 0, we have

= ind(ar—1)p, () <P 2

OE©y) = (Xr—l U (wl/p))E(@O)
for an element w € E* such that E(w'/?) = E(,). Hence
. 2
O ) (wl/?) = (aE(eo))E(eo)(wl/pz) =0 in Br(E(Tg)(w'?")).

Since apew,) is split by a cyclic extension E(Wo)(w'/?*)/E(¥y) of degree p?,
E(wy) 18 pP-cyclic. As [® : W] = p?, this contradicts the assumption. Hence,
the inequality (I@) holds for a,_;. O

5. NON-CYCLICITY OF THE GENERIC ELEMENT

The aim of this section is the technical Lemma B2 that will allow us to
apply later Lemma B and Proposition B

In this section we assume that the base field F' contains a primitive p*-th
root of unity. The choice of a primitive p?-th root of unity ¢ allows us to define
the symbol (a,b),2 as in Section ETI. As —1 is a p>th power in F'*, we have
(a,—1),2 = 0, hence (a,a),2 = 0 for all a € F*. We shall write (a,b), for
pla,b) = (a7 ).
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Lemma 5.1. Let E be a field extension of F' that is complete with respect to
a discrete valuation v with residue field K and a € Br(K). Set f = a+ (a,x),
for a unit a € E and x € E* such that a ¢ K*P and v(x) is prime to p. If 5
is p*-cyclic, then o = (a, z),2 in Br(K) for some z € K*.

Proof. Suppose that 8 = (ur’, wr?),2 and write z = t7* for a prime element
7, integers 4, j, k = v(z) and units u,w, ¢ in E. Then we have

a+ (aP,wrk),e = B = (ur', vr),2 = (u,v) 2 + (W [0, 7).
Applying the residue map 9,, we get a”* = @ /' in K*/K*?" and
a = (u,0)y2 — (a,w?),e.

Suppose that i/j is a p-integer (the other case is similar). As k is not
divisible by p and @ is not a p-th power in K*, j is not divisible by p?. It
follows that @ € (@, ) in K*/K*?" and then @ € a"v° K*?* for some r and s.
Hence a = (a, 0" /wP),2. O

Corollary 5.2. Let z,y be independent variables over F' and a,b € F*. If
(a,b), # 0 in Br(F), then for any field extension M/F(x,y) of degree prime
to p, the element (a,x), + (b,y), in Br(M) is not p*-cyclic.

Proof. Let M/F(x,y) be a field extension of degree prime to p and 5 = (a, x),+
(b,y), over M. As the degree of M/F(x,y) is prime to p, by [8, Lemma 6.1],
there exists a field extension E of the fields F'((y))(z)) and M over F' such that
the degree of E/F((y))((x)) is finite and prime to p. The discrete valuation v,
on the complete field F((y))(z)) extends uniquely to a discrete valuation v of
E. The ramification index of E/F((y))(x)) is prime to p, hence v(x) is prime
to p. The residue field K of v is an extension of F((y)) of degree prime to p.

Let v’ be the valuation on K extending the discrete valuation v, on F((y)).
The ramification index e’ of K/F((y)) is prime to p. The residue field N of v/
is a finite extension of I’ of degree prime to p.

Let a = (b,y), over K, so Bp = & + (a,z),. Suppose that 3 is p*-cyclic
over M. Then Bg is also p*-cyclic. By Lemma B, applied to S over E, we
have o = (a, 2),2 for some z € K*, hence (I*,y),2 = (a, 2),2. Taking the cup
product with (a), € K*/K*?* we get

(@)p2 U (O, y)p2 = (a),2 U (a, 2),2 = (a,a),2 U (2),2 = 0.

Applying the residue map 0,,, we find that €'(a,b), = €(a,b”),2 = 0 over N,
hence (a,b), = 0 in Br(V). Taking the corestriction map Br(N) — Br(F), we
see that (a,b), = 0 in Br(F'), a contradiction. O

Lemma 5.3. For any integer r > 2, there exist a field extension F'/F and a
subgroup ® C Chy,(F") of rank r such that for any subgroup ¥ C @ of index
p?, there is an element 3 € Brp(F’(CI))/F’) with the property that any field
extension M/F'(V) of degree prime to p, the element By is not p*-cyclic.
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Proof. Let ay,as,...,a,, x,y be independent variables over F' and set F’ :=
F(ay,a9,...,a,,2,y). For every i = 1,...,7, let x; € Ch,(F') be a char-
acter such that F'(x;) = F’(ai/p) and set ® = (x1,X2,.-.,Xr). Let ¥
be a subgroup of ® of index p?. Choose a basis 71,7, ...,n, for ® such
that ¥ = (n1,7m2,...,m-—2) and the elements by, by, ..., b, in F’ such that
F(n) = FO'") for all i = 1,...,r and F(by,bs,...,b,) = F(ay,a, ..., a,).
Clearly, by, by, . . ., b, are algebraically independent over F and F'(V) = L(z,y),
where L := F(b\/", ..., b% b._1,b,) with the generators algebraically indepen-
dent over F.

Let 8 = (by—1,2)p+ (br, y)p in Br, (F/(®)/F") and M/F'(¥) a field extension
of degree prime to p. As 0, ((br_l, br)p) = b,_;, where v is the discrete valuation
on L associated with b,, is nontrivial, we have (b,_1,b,), # 0 in Br(L). The
result follows from Corollary B2. U]

Let F'/F be the field extension and & C Ch,(F") the subgroup of rank r as
in Lemma BZ3. Consider the algebraic tori P, S®, T®, U?® and V® over F'
defined in Section Z4. The morphism v : P® — V?® in the diagram (@) is a
U?®-torsor. Denote by ¢ the image of the class of v under the composition

He}t(v(bv UCD) - H;t(V¢7 U/CD) — Hé?t(véa Gm)7

induced by the diagram (H). We write d,4., for the image of J under the
homomorphism

H;(V®,G,,) = H*(F(V®),G,,) = Br(F'(V?))

induced by the generic point morphism Spec (F ! (V‘I’)) — V®. It follows from
(B) that J,e, € Brys (F/(V®)).

Lemma 5.4. Let K = F'(V®) and ¥ C ® a subgroup with [® : U] = p?>. Then
for any field extension M /K (V) of degree prime to p, the element (dgen)nr is
not p?-cyclic.

Proof. Suppose that there exist a subgroup ¥ C ® with [® : U] = p? and
a field M/K(¥) of degree prime to p such that (dgen)nr = x U (a) for some
X € H*(M,Z) = Ch(M) with p*x = 0 and a € H(M,G,,) = M*. Choose
an integral scheme X over F” such that F’(X) = M together with a dominant
F’-morphism
FiX = V) = (Ve

of degree prime to p that induces the embedding of the function field K ()
into M. Let h: X — V® be the composition of f with the natural morphism
g:V®(¥) — V% Replacing X by a nonempty open set, we may assume that
h*(8) = xoU (ag) for some xo € H%(X,Z) with p*xo = 0 and ag € H%(X, G,,).

By [B, Lemma 6.2], there is a nonempty open set W’ C V*®(¥) such that
for every o’ € W' there exists a point x € X with f(z) = 2’ and the degree
[F'(x) : F'(2')] prime to p. Let Z = V®(W)\ W’'. As g is finite, g(Z) # V?,
hence the open set W :=V?\ ¢g(Z) is not empty. We have g='(W) C W".
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Consider the element 8 € Br,(F'(®)/F’) constructed in Lemma B3. Let
v € HY(F',U®) be the corresponding class of U®-torsors over F’ under the
isomorphism H'(F',U®) =~ Br, (F'(®)/F’) by (@). As v is a generic U®-
torsor, there exists an F’-morphism v : Spec I’ — V® such that v*(y) =
and Im(v) C W (see Section E33). From the commutativity of the diagram

*

HL(V® U®) —— HYF',U?)

l !

H2(V®, G,) —2— H*(F',G,)

we find that v*(d) = S.

Let v/ : Spec F'(¥) — V*(¥) be the morphism vp(y). Note that Im(v') C
g W) cw'.

By the definition of W', there is a point x € X such that the degree of the
field extension F”(x) over the residue field of (the only) point in Im(v’) is prime
to p. By [B, Lemma 6.1], there exist a field extension M/F’(¥) of degree prime
to p and a morphism w : Spec(M) — X such that the diagram

Spec(M) —— Spec(F'(¥)) —— Spec(F”)

X s ovew L ype
is commutative. It follows that

Bur = v"(0)ar = wh*(8) = w*(xo0 U (ao)) = w*(x0) Uw(ao),

i.e., By is p*-cyclic. This contradicts Lemma B23. O

6. A LOWER BOUND FOR ed,(Alg,: )

Let n > 1 be an integer, m a divisor of n and p a prime integer. Let p”
(respectively, p®) be the largest power of p dividing n (respectively, m). If
A € Alg, ,.(K) for some field extension K/F, then there is a finite field ex-
tension F/K of degree prime to p such that ind(Ag) is a p-power. Hence
ind(Ag) divides p" and exp(Ag) divides p® as it divides m and ind(Ag), i.e.,
Ap € Alg, ,(E). Tt follows that the embedding functor Alg,. . — Alg, .,
is p-surjective and hence ed,(Alg,,,) < ed,(Alg, ) by [B, Sec. 1.3]. Con-
versely, if A € Alg,,,(K), then the p-primary component A, of A satisfies
A, € Alg,r ,s(K), hence the morphism of functors Alg,, ,,, — Alg, s, taking A
to A, is surjective and therefore, ed,(Alg,, ) > ed,(Alg,- ,s). We proved that

edp(Alg,.,) = edy(Alg,r ).
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Theorem 6.1. Let F' be a field and p a prime integer different from char(F).
Then, for any integers r and s with 1 < s <,

ed (Alg, ) > 4D ifp=2ands=1,
P prps) = (r—1)p" +p"% otherwise.

Proof. By [B, Prop.1.5], we can replace the base field by any field extension.
Hence we may assume that F contains a primitive p3-th root of unity. More-
over, we can replace F' by the field F’ in Lemma BE3. Let V?® be the alge-
braic torus constructed in Section B4. Set £ = F(V?) and let a := e, €
Br,:(E(®)/E) be the element defined in Section B. Let Ej be the fields and
ap € B,f’;(Ek) the elements constructed in Section B2, so that Fy = E and
ag = . By Lemma B4, oy, is not p*-cyclic for any subgroup ¥ C & with
[@ : U] = p? and any field extension M/E(¥) of degree prime to p, hence a
satisfies the condition of Lemma B=. Tt follows that we can apply Proposition
0. By the iterated application of this proposition, we have

Algyr s Bor Byt
(19) edy " (ar) = ed,"" (o) > edp” " (p_1) +12> ...
B2 B2 B2
>edp(ay) + (r—1) > edp™ () +r = edp™* () + 7.
Consider the commutative diagram with exact rows:

1 — U — P 5V — 1

l l H

1—>S‘I’—>P‘I’><GZ,LL>V‘D—>1,
where P® — P® x G takes x to (z,1) and S® — P?® x G/ is the product of
S? — P® and S* —» G,.

The element « considered in B7,(E) corresponds to the generic fiber of the
U®-torsor 4 under the bijection Bf (E) ~ U®- torsors(E) in (). Hence, by
the diagram, the class of « in Egj s(E) corresponds to the generic fiber 7;.,, of
the S®-torsor 7/ under the bijection By ,(E) ~ S®- torsors(E). As P x Gy, is
a quasi-split torus, 7/ is a generic S®-torsor by Proposition EZIl, hence

5o
(20) edSO,s (a) _ edﬁq)' torsorS(,yl ) _ edp(S(b)

gen

by [8, Th. 2.9]. The essential p-dimension of S® was calculated in Corollary
B10. From (M),(E0) and this corollary, we have

Algyr s (r—1)2r1 if p=2and s=1,
ed, (A/gp',ps) > edy, " (a) > edy,(S)+r = {(7’ —1)p" +p"*  otherwise

This concludes the proof. U
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7. AN UPPER BOUND FOR ed,(Alg, )

Lemma 7.1. Let F' be a field and p a prime. Then, for any integers r and s
with 1 < s <,

ody(Alg, o) < edy(Alg,) +p* — 1.

Proof. Let A € Alg,- ,«(K) C Alg,-(K) for a field extension K/F. There exist
a field extension K'/K of degree prime to p, a subfield Ky C K’ over F' and
B € Alg,(Ko) such that tr.degg(Ko) < ed,(Alg, ) and A®x K' ~ B®g, K'.

By [@, Lemma 5.6], ind(B%"") divides p"~*. Choose a central simple algebra
C of degree p"~* over Kj in the Brauer class of B®" in Br(Kj) and consider the
Severi-Brauer variety X := SB(C) of C. Since exp(A) divides p°, the algebra
C' is split over K’ hence X (K’) # (). This implies that there exists z € X
such that Ko(z) C K’ and X (Ko(z)) # 0. Therefore, Cr, ) is split, hence
exp (B (x)) divides p*, i.e., Bry@) € Alg,r o (Ko(z)). Since dim(X) = p™*—1,
we have

odp®7 7" (A) < tr. degp(Ko()) = tr. degp(Kp) + tr. deg e, (Ko(x)) <
ed,(Alg,) +dim(z) < ed,(Alg,.) + (p"*—1). O
By [, Th.1.1],
ed,(Alg,.) < 2p" 7 —p" + 1,
if r > 2, therefore, by Lemma [, we have the following upper bound for
edy,(Alg,r s ):

Theorem 7.2. Let F be a field and p a prime integer. Then, for any integers
r>2ands withl <s<r,

edp(A/gprva) <P,

8. ESSENTIAL DIMENSION OF Alg/r, Algc AND ALGg.

Let G be an elementary abelian group of order p” and K/F a field extension.
Consider the subset Algg(K) of Alg,r ps(K) consisting of all classes that have
a splitting Galois K-algebra E with Gal(E/K) ~ G.

Let L/F be a Galois field extension with Gal(L/F) ~ G. Consider the
subset Alg,/r(K) of Alge(K) consisting of all classes split by the field extension
KL/K. We have the subfunctors of Algyr s

Alg,)r C Algg C Algy .

We write ALGg(K) for the set of pairs (A, E), where A € Algg(K) and F is
a Galois G-algebra splitting A. We have an obvious surjective morphism of
functors ALGg — Algg.

Theorem 8.1. Let F' be a field, p a prime integer different from char(F), G
an elementary abelian group of order p" with r > 2, and L/F a Galois field
extension with Gal(L/F) ~ G. Let an integer s satisfy 1 < s < r. Suppose
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thatr > 3 if p=2 and s = 1. Let F be one of the three functors: Alg,/r, Alges
or ALGg. Then

ed (F) —ed(F) = { " T VFTp=2ands=1,
8 a N (r—1)p" +p"~° otherwise.

Proof. Let @ be a subgroup of Ch,(F) of rank r such that L = F'(®). By (@),
we have Alg /p ~ U ®_ torsors. It follows from Proposition B that

(r—1)2r1 if p=2and s =1,

ed,(Algr/r) = ed(AlgL/r) = dps = {(r —1)p" +p"* otherwise

Let o, € Br(E,) be as in the proof of Theorem BEl. By construction, «. is split
by E.(®), hence o, € Algg(E,). Note that edf(ﬁ) < edz,{(ﬁ) for any subfunctor
H of a functor B and any 5 € H(K). Hence, by the proof of Theorem B, we
have

od,(Alge) > ed€ () > edy & (a,) > dy, .

Let J be the G-module defined in the Section B4 and T' := Spec F[J] the
split torus with the character group J. Consider the minimal surjective p-
presentation v : P’ — J as in Remark BI0. As explained in Section I3, a
choice of a G-invariant basis of P yields a linear 7" x G-space V with dim(V') =
rank(P’). By Remark B0, G acts faithfully on Ker(v). It follows from I,
Lemma 3.3] that the action of 7'x G on V' is generically free in this case, hence,
by [B, Prop. 4.11],

ed(T x G) < dim(V) — dim(7 »x G)
nk(P’) — rank(J)
= rank(Ker )

Let v € H'(F,G) and let L be the corresponding Galois G-algebra over F.
Since G is an abelian group, we have G = G,. The G-action on R p(Gn 1)
restricts to the trivial action on the subgroup pips. As T, = Rp/p(Go,1)/ thps
the connecting map

HY(F,T,) — H*(F, 1) = Brys(F)
is injective, hence the group G, (F) = G acts trivially on H'(F,T,). By (),
H(F,TxG) = [[ Bru.(E/F),
Gal(E/F)=G
where the disjoint union is taken over all isomorphism classes of Galois G-

algebras E/F. Hence we have a surjective morphism of functors 7'x G- torsors —
ALGg. As ALGg surjects on Algg, we have

ed,(Alge) < (ed (ALGg) or ed(A/gG)) <ed(ALGg) <ed(T % G) < d,,s. O
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Remark 8.2. Suppose that p =r = 2 and s = 1 and F' is a field of charac-
teristic different from 2. By [[H, Th.1] or [, Sec.2.4], there exists a nontrivial
cohomological invariant of degree 4 for Algg over F (i), where ¢ is a primitive
4-th root of unity. Hence, eds(Algs) > eda(Alge)p:) = 4 by [I3, Lemma 6.9].
Moreover, by the structure theorem on central simple algebras split by a bi-
quadratic field extension B0, Cor.2.8], every (A, E) € ALGg(K) is of the form
E = K(a'/?,b"/?) and [A] = (a,7)s + (b,y)s for some a,b,z,y € K*. Hence
ed(ALGg) < 4. As ALGg surjects on Algg, we have

4 < edy(Algs) < (ed2(ALGg) or ed(Algs)) < ed(ALGg) < 4,
hence the essential (2)-dimension of Algg and ALGg is equal to 4.
Corollary 8.3. Let F' be a field of characteristic # 2. Then
eda(Algg o) = ed(Alggy) = 8.

Proof. As any central simple algebra of degree 8 and exponent 2 has a tri-
quadratic splitting field by [[], we have Algg, = Algs for the elementary
abelian group G of order 8, hence the statement follows from Theorem E.
Note that the inequality edy(Algg,) > 8 is also proven in Theorem ET and the
opposite inequality ed(Algg,) < 8 was shown in [B, Th.2.12]. d
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