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0. Introduction

Andrei Suslin (1950 - 2018) was both friend and mentor to us. This article
discusses some of his many mathematical achievements, focusing on the role he
played in shaping aspects of algebra and algebraic geometry. We mention some of
the many important results Andrei proved in his career, proceeding more or less
chronologically beginning with “Serre’s Conjecture” proved by Andrei in 1976 (and
simultaneously by Daniel Quillen). As the reader will quickly ascertain, this article
does not do justice to the many mathematicians who contributed to algebraic K-
theory and related subjects in recent decades. In particular, work of Hyman Bass,
Alexander Beilinson, Spencer Bloch, Alexander Grothendieck, Daniel Quillen, Jean-
Pierre Serre, and Christophe Soulè strongly influenced Andrei’s mathematics and
the mathematical developments we discuss. Many important aspects of algebraic
K-theory (e.g., the study of manifolds using surgery and the study of operator
algebras) are not mentioned here; such topics are well addressed in various books
on algebraic K-theory such as that of Charles Weibel [84].

In discussing Andrei’s mathematics, we hope the reader will get some sense of the
sweep and evolution of algebraic K-theory in the past 50 years. Andrei was deeply
involved in both the formulation and the solution of many of the most important
questions in algebraic K-theory. His own evolution from a “pure algebraist” led to a
partnership with Vladimir Voevodsky in building the edifice of motivic cohomology.
The close relationship of arithmetic algebraic geometry to algebraic K-theory, seen
frequently in Andrei’s work, has contributed much to the development of algebraic
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K-theory which is situated at the interface of algebra, algebraic geometry, number
theory, homotopy theory, and K-theory.

Towards the end of his career Andrei made important contributions to the mod-
ular representation theory of finite group schemes. This represented somewhat of a
return by Andrei to more algebraic questions, though still reflecting his engagement
in K-theory and algebraic geometry.

Andrei was primarily a problem solver, a mathematician confident that clearly
formulated questions could be answered by “direct, imaginative attack.” Time and
again, Andrei introduced new techniques and structures in order to solve challeng-
ing problems. Although he did not incline to “theory building”, he has left us
considerable theory with which to continue his efforts. For many years, Andrei’s
clear, precise, careful approach to fundamental questions placed him as the “final
judge” of many current efforts at the interface of algebraic geometry and K-theory.

Andrei freely shared his ideas, gave brilliantly clear lectures, encouraged the work
of others. Many of us felt that while stepping to the edge of this new mathematics,
we needed Andrei’s guidance and confirmation of validity. His death is a great loss
to us personally as well as to our mathematical world.

1. Projective Modules

The early period of K-theory was led by Richard Swan and Hyman Bass, be-
ginning in the late 1950’s. Much of this early work was very algebraic, though
motivation from topology and function analysis played an important role. There
was experimentation of definitions of higher K-theory, questions of stability for
such groups as En(R) ⊂ GLn(R), and much discussion about projective modules.

We recall that if R is an associative, unital ring and M is a (left) R-module,
then a (finitely generated) projective R-module P is a summand of a free module
R⊕N ; in other words, there is some R-module Q and an isomorphism of R-modules
R⊕N ≃ P ⊕Q.

Andrei began his independent research as an undergraduate, solving special cases
of “Serre’s Problem” which asks whether every finite generated projective module
P over a polynomial ring F [x1, . . . , xn] over a field F is free [58], following Serre’s
earlier proof that any such projective module is stably free (see [3]). Andrei, working
in relative isolation, first verified (in the affirmative) cases known to experts and
then, while still an undergraduate, verified new cases. In 1976, Andrei and Daniel
Quillen independently and essentially simultaneously proved the following theorem,
at the time the most famous problem of commutative algebra.

Theorem 1.1. [57], [60] Let S be a finitely generated polynomial algebra over a field
F , so that S = F [x1, . . . , xd] for some d. Then every finitely generated projective
S-module P (i.e., any direct summand P of some free S-module M) is a free S-
module.

Andrei’s proof of Theorem 1.1 proceeds by induction on d. Thanks to the stable
freeness of projective S-modules proved earlier by Serre, it suffices to prove the
cancellation property for a finitely generated projective S-module: given an iso-
morphism P ⊕ S ≃ S⊕n for some n > 0, then P is isomorphic to S⊕n−1. Andrei
observes that this is equivalent to proving that the group GLn(S) acts transitively
on the set of unimodular rows Umn(S) of length n, where a row is unimodular if
its entries generate S as an S-module.
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The key step in Andrei’s proof is the following elementary algebraic fact designed
for his goal: Let R be a commutative ring and set f = (f1, f2) ∈ R[t]⊕2 (not
necessarily unimodular). Let c ∈ R ∩ (f1R[t] + f2R[t]). Then for any commutative
R-algebra A and a, a′ ∈ A such that a ≡ a′ modulo cA, we have that f(a) and f(a′)
are conjugate by an element of GL2(A). This is a remarkable piece of ingenuity!

As seen especially in Quillen’s proof, Serre’s problem can be usefully considered
as a question of “extendability”: under what conditions can one say that a projec-
tive module for R[x] arises by extension from a projective module for R? Quillen’s
proof relied on earlier work of Geoffrey Horrocks [33] and was somewhat more geo-
metric in nature than Andrei’s. Andrei preferred Quillen’s approach and this might
have led him into more geometric considerations of algebraic problems.

During the 1970’s, Andrei refined and extended the above theorem with many
other cancellation results (see, for example, [61]). These studies appeared to have
led Andrei to consider other aspects of algebraic groups, in particular related ques-
tions of algebraic K-theory. Other algebraic constructions occupied Andrei in this
period, including considerations of division algebras, which appeared repeatedly in
his work in the 1980’s. We mention one beautiful result of Andrei’s concerning
unimodular rows whose proof involved elaborate algebraic arguments.

Theorem 1.2. [62] Let m1,m2, . . . ,mn be positive integers. Given a unimodular
row (x1, x2, . . . , xn) over a commutative ring R, the unimodular row (xm1

1 , xm2
2 , . . . , xmn

n )
can always be completed to an invertible n×n matrix over R if and only if the prod-
uct m1m2 · · ·mn is divisible by (n− 1)!.

2. K2 of fields and the Brauer group

In this section, we discuss Andrei’s role in revealing how important Quillen’s
foundations for algebraic K-theory [55] proved to be in the study of the Galois
cohomology of fields. Andrei developed much of this mathematics in the 1980’s.
The remarkable Merkurjev-Suslin Theorem (Theorem 2.2) has had a tremendous
influence on the study of division algebras; it also paved the way for Vladimir Vo-
evodsky’s proof of Theorem 5.3, usually referred to as “the Bloch-Kato Conjecture.”

We begin with the definition of the Grothendieck group K0(R) of an associa-
tive, unital ring R. This group is the free abelian group generated by isomorphism
classes [P ] of finitely generated projective left R-modules P , which we denote by
Z{[P ]}, modulo the relations {[P1 ⊕ P2] = [P1] + [P2]}. This construction (ex-
tended to locally free, coherent sheaves on a scheme) was introduced by Alexander
Grothendieck in formulating his Riemann-Roch Theorem [9]. Grothendieck’s intro-
duction ofK0(R) was soon followed by work of Michael Atiyah and Fritz Hirzeburch
[1], who adapted Grothendieck’s construction to the context of algebraic topology.
Ever since, algebraic geometers have tried to establish fundamental properties for
algebraic K-theory analogous to those established by Atiyah and Hirzebruch for
topological K-theory.

Various important questions in algebraic number theory and the structure of
algebraic groups have formulations in terms of “low degree algebraic K-theory”.
As mentioned above, Grothendieck launched the subject with his definition of K0;
Bass [3] extensively considered K1 of a ring, in some sense viewing K1(R) as units
R× of R modulo “algebraic homotopies”. In his remarkable book [46], John Milnor
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defined K2(R) and proved certain exact sequences giving us the sense that a general
theory with good properties lurked amonst these groups.

There is a natural product map R× ⊗ R× → K2(R) for a commutative ring
R which can be viewed as the “universal symbol”, one of the many connections
between algebraic number theory and algebraic geometry. Hideya Matsumoto gave
a presentation of K2(F ) as a quotient of F× ⊗ F× [39] which led Milnor to define
the Milnor K-theory of a field: KM

∗ (F ) is defined to be the tensor algebra T ∗(F×)
modulo the relations {a⊗ (1− a) : 0, 1 ̸= a ∈ F},

(1) KM
∗ (F ) := T ∗(F×)/{a⊗ (1− a) : 0, 1 ̸= a ∈ F}.

The class of the tensor a1 ⊗ · · · ⊗ an in KM
n (F ) is denoted by {a1, . . . , an}.

These developments encouraged various mathematicians to formulate Ki(R) for
all i ≥ 0. Quillen gave a definition ofK∗(R) in terms of the Quillen plus construction
applied to GL∞(R) [54]. Perhaps to the despair of algebraists, Quillen’s K-groups
were defined as the homotopy groups of a topological space; homotopy groups are
notoriously difficult to compute. Quillen followed his plus construction definition
with a more general, more widely applicable definition using what we now call
“Quillen’s Q-construction” [55]. Very quickly, Andrei recognized the power and
potential of the theoretical tools and many new results which Quillen introduced.

Galois cohomology groups provide a powerful tool in the study of fields, especially
in class field theory, which can be viewed as an early forerunner of algebraic K-
theory. Let ΓF be the absolute Galois group of a field F , i.e., ΓF = Gal(Fsep/F ),
where Fsep is a separable closure of F . Then ΓF acts on the multiplicative group
F×
sep of nonzero elements of Fsep, typically denoted Gm. Thus the cohomology

groups

Hd(F,Gm) := Hd(ΓF , F
×
sep)

are defined for every d ≥ 0, and are viewed (following Grothendieck) as the étale
cohomology of SpecF with coefficients in the associated sheaf (also denoted Gm),
Hd(F,Gm) ≃ Hd

et(SpecF,Gm).

Theorem 2.1. Let F be a field.

• H0(F,Gm) = F×.
• H1(F,Gm) = 0, Hilbert’s Theorem 90.
• H2(F,Gm) = Br(F ), the Brauer group of F .

The vanishing of H1(F,Gm) is “essentially equivalent” to the exactness of the
sequence

K1(L)
1−σ−−−→ K1(L)

NormL/F−−−−−−→ K1(F )

for a cyclic field extension L/F with σ denoting a generator of Gal(L/F ) (frequently
referred to as “Hilbert’s Theorem 90”). This is an early appearance of norm maps
in algebraic K-theory.

The only finite groups isomorphic to ΓF for some field F are the trivial group
and Z/2. Further restrictions on ΓF are implicit in some of the results we proceed
to discuss. Let M be a Galois module over F (i.e., M is a discrete ΓF -module with
a continuous action) and consider the graded cohomology ring

H∗(F,M⊗∗) :=
⊕
i≥0

Hi(F,M⊗i).
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If m is an integer prime to char(F ) andM = µm is the ΓF -module of m-th roots
of unity in Fsep, then the cohomology ring H∗(F, µ⊗∗

m ) is related to the Milnor ring
KM

∗ (F ) of F via the norm residue homomorphism defined as follows. The Kummer
exact sequence of Galois modules

1 → µm → F×
sep

m−→ F×
sep → 1

yields a connecting homomorphism l : F× = H0(F, F×
sep) → H1(F, µm). The cup-

product in Galois cohomology yields a homomorphism (F×)⊗n → Hn(F, µ⊗n
m ) for

every n ≥ 0 sending the tensor a1 ⊗ · · · ⊗ an to l(a1) ∪ · · · ∪ l(an). One shows that
this determines the norm residue homomorphism (so named, presumably, because
of the Hilbert symbol taking values in the Brauer group)

(2) hn : KM
n (F )/mKM

n (F ) → Hn(F, µ⊗n
m ).

If F contains a primitive m-th root of unity, we have µm = Z/mZ, so that in this
case H∗(F, µ⊗∗

m ) = H∗(F,Z/m).

Theorem 2.1 suggests that one investigates Br(F ) := H2(F,Gm). Miraculously,
Br(F ) is naturally isomorphic to the group of Brauer equivalence classes of sim-
ple F -algebras with center F with the group operation given by the tensor prod-
uct over F . Thus the Brauer group can be studied by means of the theory of
non-commutative associative algebras and the study of the algebraic geometry of
Severi-Brauer varieties. (The Severi-Brauer variety of a central simple algebra A of
dimension n2 is the variety of right ideals in A of dimension n. It is a twisted form
of the projective space Pn−1.) Conversely, simple algebras can be studied with the
help of Galois cohomology.

Let F be a field. A central simple F -algebra (c.s.a.) is an (associative) finite
dimensional F -algebra with center F and no nontrivial (two-sided) ideals. By
Weddenburn’s theorem, every c.s.a. A over F is isomorphic to the matrix algebra
Mr(D) over a unique (up to isomorphism) central division F -algebra D (called the
underlying division algebra of A). Two c.s.a. A and B over F are Brauer equivalent
if Ms(A) ≃Mt(B) for some s and t, or, which is the same, the underlying division
algebra of A and B are isomorphic. The tensor product over F endows the set Br(F )
of equivalence classes of all c.s.a. over F a group structure called the Brauer group
of F . The Brauer group Br(F ) is an abelian torsion group. Weddenburn’s theorem
establishes a bijection between Br(F ) and the set of isomorphism classes of central
finite dimensional division F -algebras. Moreover, two c.s.a. over F are isomorphic
if and only if the classes of A and B in Br(F ) are equal and dim(A) = dim(B).

The first computations one typically encounters include Br(Fq) = 0 for any
finite field Fq and Br(R) ≃ Z/2, generated by class of the classical quaternion
algebra. Work of Adrian Albert, Richard Brauer, Helmut Hasse and Emmy Noether
determine Br(F ) for any number field F , showing that every c.s.a. over F is cyclic,
namely constructed as follows.

Let L/F be a cyclic field extension of degree m and σ a generator of the Galois
group and b ∈ F×. We introduce an F -algebra structure on the m-dimensional
vector space C(L/F, σ, b) over L with basis 1, u, u2, . . . , um−1 by um = b and
(xui)(yuj) = xσi(y)ui+j with x, y ∈ L. Then C(L/F, σ, b) is a c.s.a. over F of
dimension m2. An F -algebra isomorphic to C(L/F, σ, b) for some L/F , σ and b
is called a cyclic algebra. If F contains a primitive m-th root of unity ξ, then
L = F (α) where α = a1/m and σ(α) = ξα for some a ∈ F×. We write C(a, b)ξ for
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the algebra C(L/F, σ, b). This algebra is generated over F by two elements v and
u subject to the relations vm = a, um = b and vu = ξuv.

Possibly the most well-known and most influential work of Andrei’s concerns this
norm residue homomorphism. First, Merkurjev proved that h2 is an isomorphism
if m = 2, answering a long-standing question of Adrian Albert. This work was
much influenced by Andrei and it utilized Andrei’s paper [63].

Here is the famous Merkurjev-Suslin theorem.

Theorem 2.2. [42] Let F be a field, m an integer prime to char(F ) and ξ ∈ F a
primitive m-th root of unity. Then the norm residue homomorphism

(3) h2 = hF,2 : KM
2 (F )/mKM

2 (F ) → H2(F, µm), {a, b} 7→ C(a, b)ξ.

is an isomorphism, where H2(F, µm) = Br(F )[m] ⊂ Br(F ) consists of all
elements of whose exponent divides m. In particular, the subgroup Br(F )[m] of the
Brauer group is generated by the classes of cyclic algebras C(a, b)ξ for a, b ∈ F×.

We remark that tensor product of two cyclic algebras is not necessarily cyclic.
There are c.s.a. that are not tensor products of cyclic algebras (see [76]).

The idea of the proof of Theorem 2.2 is as follows. Injectivity of h2 is proved by
induction on the number of symbols in the presentation of an element in K2 as a
sum of symbols, using the passage to the function field of a Severi-Brauer variety
splitting a cyclic algebra C(a, b)ξ and hence the symbol {a, b} modulo m. To prove
surjectivity of h2, it suffices to construct a field extension F ′/F such that

(1) K2(F
′) = mK2(F

′) and Br(F ′)[m] = 0, so hF ′,m is an isomorphism trivially.
(2) The natural homomorphism Coker(hF,m) → Coker(hF ′,m) is injective.

In fact, we may assume that m is prime and ξ ∈ F . The property (1) implies
that every symbol u = {a, b} with a, b ∈ F× is contained in mK2(F

′). There
is a “generic” way to make u divisible by m over a field extension: as in the
proof of injectivity, one passes to the function field F (X) of the Severi-Brauer
variety X of the algebra C(a, b)ξ. The dimension of X equals m − 1; since m is
assumed to be prime, (m− 1)! is relatively prime to m which is useful in applying
the Riemann-Roch theorem. Quillen’s computation of higher K-theory of X, the
Brown-Gersten spectral sequence [10], and Grothendieck’s Riemann-Roch theorem
yield the surjectivity of Coker(hF,m) → Coker(hF (X),m).

Iterating this passage to the function fields of Severi-Brauer varieties for var-
ious cyclic algebras, we find a field extension F ′/F satisfying (2) and such that
K2(F

′)/mK2(F
′) = 0. Finally, one shows that Br(F ′) = 0 and hence (1).

Theorem 2.2 quickly led to various new algebro-geometric results, typically
guided by Andrei. One such development was the following theorem of Andrei’s
(occurring as Theorem 24.8 in the somewhat difficult to access paper [67]). This
theorem partially answered a question of Serre who asked whether H1(F,G) = 0
for every simply connected semi-simple algebraic group G over a field F of coho-
mological dimension ≤ 2. In other words, such G have no non-trivial principal
homogeneous spaces over F . This is known informally as Serre’s Conjecture II.

Theorem 2.3. [67] Let F be a field of cohomological dimension ≤ 2. Then the
reduced norm homomorphism Nrd : A× → F× is surjective for every central
simple algebra A over F of degree n.

This implies that Serre’s Conjecture II is valid for simply connected groups of
inner type An−1.
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Andrei proved this theorem by first reducing to the case when n is a prime
number and A is a central simple algebra of degree n. Using calculations of certain
K cohomology and étale cohomology groups of the Severi-Brauer variety of A,
Andrei proved that an element a ∈ F× is in the image of the reduced norm map if
and only if l(a) ∪ [A] = 0 in H3(F, µ⊗2

n ), where [A] is the class of the algebra A in
the subgroup H2(F, µn) = Br(F )[n] of the Brauer group of F .

Some years later, Theorem 2.3 was much improved by Eva Bayer-Fluckiger and
Raman Parimala in [4]. A recent survey of work on Serre’s Conjecture II by Phillipe
Gille is given in [29].

Another outcome of [67] was progress on the Grothendieck-Serre conjecture that
H1

et(R,G) → H1
et(K,GK) is injective for any flat reductive group scheme G over a

regular local ring R with field of fractions K. In [51], Andrei and Ivan Panin proved
a special case of this conjecture (for G = SL1,D with D an Azumaya algebra over
R). This was the starting point of the recent proof of the Grothendieck-Serre
Conjecture by Roman Fedorov and Panin in [18].

3. Milnor K-theory versus algebraic K-theory

By Matsumoto’s Theorem, Milnor K-theory KM
∗ (F ) of a field F agrees in degree

2 with K2(F ). However, beginning in degree 3, KM
i (F ) can be quite different from

Ki(F ); for example, K3(Fq) is non-zero for a finite field Fq, whereas K
M
3 (Fq) = 0.

Much of Andrei’s work in the 1980’s following the Merkurjev-Suslin Theorem (which
concerns K2(F )) was dedicated to exploring the relationship between KM

∗ (F ) and
K∗(F ). In this section, we review some of Andrei’s results obtained during this
period.

We define the indecomposable group K3(F )nd as the cokernel of KM
3 (F ) →

K3(F ). Usin g the definition of KM
∗ (F ) as an explicit quotient of the tensor algebra

T ∗(F×), on can show that groups K2(F ) and K3(F )nd may contain large, uniquely
divisible subgroups that cannot be detected by torsion and co-torsion. On the other
hand, the following theorem of Merkurjev and Suslin determines the torsion and
co-torsion of K2(F ), extending Theorem 2.2.

Theorem 3.1. ([44], see also [37]) Let m be an integer prime to char(F ). Then
there is an exact sequence

0 → H0(F, µ⊗2
m ) → K3(F )nd

m−→ K3(F )nd → H1(F, µ⊗2
m )

→ K2(F )
m−→ K2(F ) → H2(F, µ⊗2

m ) → 0.

If p = char(F ) > 0, then the group K3(F )nd is uniquely p-divisible.

Theorem 3.1 implies that the group K3(F )nd is never trivial! The theorem is
proved using the analogue of Hilbert’s Theorem 90 for relative K2-groups of ex-
tensions of semilocal principal ideal domains. We remark that the motivic spectral
sequence of Theorem 5.1 (constructed considerably later than the appearance of
Theorem 3.1) yields an isomorphism K3(F )nd ≃ H1

M (F,Z(2)).
One application of Theorem 3.1 is the computation that K3(Q)nd is a cyclic

group of order n, where n is the largest integer such that i2 − 1 is divisible by
n for all i prime to n. This integer n equals 24. One can deduce from this that
K3(Q) = Z/48Z, a well-known result of Ronnie Lee and Robert Szczarba [35].



8 ERIC M. FRIEDLANDER

Let F be a field of characteristic not 2 and W (F ) the Witt ring of F . By
definition, W (F ) is the factor ring of the Grothendieck ring of the category of non-
degenerate quadratic forms over F by the ideal of hyperbolic forms. Write I(F ) for
the fundamental ideal in W (F ) consisting of the classes of even dimensional forms.
For any n the nth power I(F )n of the fundamental ideal is generated by the classes
of Pfister forms

⟨⟨a1, a2, . . . , an⟩⟩ = ⟨1,−a1⟩ ⊗ ⟨1,−a2⟩ ⊗ · · · ⊗ ⟨1,−an⟩

with a1, a2, . . . , an ∈ F×.
The MilnorK-theory of F is related to the Witt ring of F by the homomorphisms

sn : KM
n (F )/2KM

n (F ) → I(F )n/I(F )n+1

taking a symbol {a1, a2, . . . , an} to the class of the Pfister form ⟨⟨a1, a2, . . . , an⟩⟩.
Milnor conjectured in [47] that sn is always an isomorphism. Another application
of Theorem 3.1 is the verification of this conjecture of Milnor for n = 3, proved by
showing that Andrei’s map K3(F ) → KM

3 (F ) (see Theorem 3.4) is trivial modulo
2.

Theorem 3.2. [43] (see also [2]) Let F be a field whose characteristic is not 2.
Then Milnor’s map

s3 : KM
3 (F )/2KM

3 (F ) → I(F )3/I(F )4

is an isomorphism.

Here is the impressive theorem of Dimitri Orlov, Alexander Vishik, and Vladimir
Voevodsky [50] proving the validity of Milnor’s Conjecture for all n.

Theorem 3.3. [50] Let F be a field of characteristic not equal to 2, let W (F )
denote the Witt ring of equivalence classes of non-degenerate symmetric quadratic
forms over F , and let I(F ) ⊂W (F ) denote the ideal of even forms. Then Milnor’s
mapping (F ∗)n to I(F )n/I(F )n+1 sending (a1, . . . , an) to ⟨⟨a1, . . . , an⟩⟩ induces an
isomorphism from the Milnor K-theory of F to the associated graded ring (with
respect to I(F )) of the Witt ring of F ,

s∗ : KM
∗ (F )/2

∼→ gr(W (F )).

Theorem 3.3 is a fairly direct consequence of Voevodsky’s proof of the mod-2
Bloch-Kato Conjecture (see Theorem 5.3) established by Voevodsky in [81], [82].

The relationship between the Milnor K-theory KM
∗ (F ) and the algebraic K-

theory K∗(F ) of F is of great interest. The next theorem of Andrei’s gives con-
siderable information about this relationship, showing it is closely related to the
homological stability for GLn.

Theorem 3.4. [62], [66] If F is an infinite field, then

Hn(GLn(F ))
∼→ Hn(GL∞(F )),

Hn(GLn(F ))/im{Hn(GLn−1(F ))} ≃ KM
n (F ).

Moreover, the natural composition

KM
n (F ) → Kn(F ) → Hn(GL∞(F )) ≃ Hn(GLn(F )) → KM

n (F )

is multiplication by (n− 1)!.
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This is a somewhat remarkable result, for Milnor K-theory is defined by gener-
ators and relations, whereas K∗(F ) is defined as homotopy groups of some infinite
dimensional space and thus seemingly very inaccessible to computations.

One consequence of the preceding theorems is another result of Andrei’s.

Corollary 3.5. The image of K3(F ) → KM
3 (F ) coincides with the kernel of

KM
3 (F ) → I(F )3/I(F )4, and hence coincides with 2KM

3 (F ) by the bijectivity of
s3.

Using the previous theorem, Andrei together with Yuri Nesterenko proved the
following theorem relating Milnor K-theory to motivic cohomology. As discussed
in Section 4, motivic cohomology was first formulated by Bloch as “higher Chow
groups” in [8], and then reformulated and developed into a powerful theory by
Suslin and Voevodsky. Shortly after the following theorem appeared, a new proof
was given by Burt Totaro [79].

Theorem 3.6. [49] Let F be a field and let Hp
M (F,Z(q)) denote Bloch’s higher

Chow group CHq(F, 2q − p) of F . Then

Hn
M (F,Z(n)) ≃ KM

n (F ).

This too is a somewhat surprising theorem, for Milnor K-theory has an explicit,
naive description whereas motivic cohomology involves sophisticated constructions.

4. K-theory and cohomology theories

In this section, we discuss two further important theorems of Andrei’s from the
1980’s: Theorem 4.1 computes the torsion and cotorsion of the algebraic K-theory
in all degrees of an algebraically closed field, and Theorem 4.2 provides an alter-
nate approach to producing “étale homology.” These theorems are of considerable
interest in their own right; in addition, they introduced important insights for the
formulation of Suslin-Voevodsky motivic cohomology; namely, Suslin rigidity and
the consideration of (Suslin) complexes.

Beilinson, Bloch, Lichtenbaum, and Soulé all contributed to a grand vision of
the role of algebraic K-theory in arithmetic algebraic geometry. Algebraic K-
theory should be some sort of universal cohomology theory with “realizations”
in familiar cohomology theories, it should carry much arithmetic information, it
should be determined by étale cohomology in high degrees, and it should have
properties analogous to those of topological K-theory. These have been codified as
the “Beilinson conjectures” [5].

In the early 1970’s, Quillen and Lichtenbaum proposed a close relationship
between algebraic K-theory and étale cohomology. Of particular interest was
K∗(F ) for a field F . Quillen formulated algebraic K-theory so that K2i(Fq) =
0, K2i−1(Fq) = Z/qi − 1 for any i > 0 and any prime power q = pd; this deter-
mines the algebraic K-theory of the algebraic closure of a finite field which has
close similarities to the topological K-theory of a point.

Since an algebraically closed field F appears as a “point” in the étale topol-
ogy, the Quillen-Lichtenbaum Conjecture for F predicts a similar computation for
K∗(F,Z/n). Andrei proved this as stated below. (When he announced this theo-
rem and gave its proof at a meeting in Paris, his mathematical audience vigorously
applauded.)
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Theorem 4.1. [64], [65] Let F be an algebraically closed field and let n be a positive
integer invertible in F . Then

K2i(F,Z/n) = Z/n, K2i+1(F,Z/n) = 0, i ≥ 0.

Andrei’s proof of this theorem proceeded as follows, extending the known compu-
tation of K∗(−,Z/n) for the algebraic closure of Fp to any algebraically closed field
F of characteristic p. Consider a smooth, connected curve over the algebraically
closed field F with field of fractions E = F (C). Andrei constructs a specialization
map K∗(E,Z/n) → K∗(F,Z/n) using a local parameter at a F -rational point of the
curve C. Suslin’s rigidity theorem, which requires properties of the transfer map for
algebraic K-theory and the divisibility of Pic0(C), tells us that this specialization
map is independent of the point c ∈ C. This leads quickly to the statement that if
X = SpecA is a smooth, connected variety over F and x, x′ are F -rational points
of X, then the two induced maps K∗(A,Z/n) → K∗(F,Z/n) are equal. Andrei’s

proof that K∗(F,Z/n)
∼→ K∗(L,Z/n) is completed using a “trick” to base change

from F to L and comparing maps induced by A→ F → L and A ⊂ frac(A) ⊂ L.
Subsequently, Andrei verified in [65] the conjecture for algebraically closed fields

of characteristic 0 using an argument of Ofer Gabber.
As Suslin first observed, and various other mathematicians have employed, this

technique of Suslin rigidity applies to various other cohomology theories and K-
theories, applies with the base field F replaced by a smooth scheme over F , and
even applies with smoothness dropped if K∗(−,Z/n) is replaced by K ′

∗(−,Z/n).
This proof typifies both Andrei’s originality and his considerable algebraic prowess,
motivated by geometric insight.

In 1987, Andrei introduced the Suslin complex Sus∗(X) associated to a variety
X over a field F :

Sus∗(X) = n 7→ Hom(∆n, (

∞⨿
d=0

Sd(X))+).

Here, Sd(X) is the d-fold symmetric product of X, the quotient of X×d by the
symmetric group Σd; ∆n := Spec k[t0, . . . , tn]/(

∑n
i=0 ti = 1) is the algebraic n-

simplex over k; Hom(−,−) in this formula designates morphisms of varieties over F .
Motivation for this definition comes from the Dold-Thom theorem [14] in algebraic
topology which asserts that the homotopy groups of the simplicial abelian group
Sing(

⨿∞
d=0 S

d(T ))+) can be naturally identified with the integral homology of a
CW complex T . One might not expect this definition to be useful because many
varieties X admit few maps from affine spaces; Andrei’s insight was that symmetric
powers of a variety X do admit many maps from the affine space ∆d ≃ Ad.

Using this definition Suslin and Voevodsky proved the following remarkable the-
orem. In some sense, they achieved a primary goal of Grothendieck for étale coho-
mology using Andrei’s “naive” Suslin complex. They also prove a similar statement
for varieties over an algebraic closed field of characteristic p > 0 provided that p does
not divide n. Their proof uses Suslin rigidity and various Grothendieck topologies
introduced by Voevodsky.

Theorem 4.2. [74] If X is a quasi-projective variety over C, then the natural map

πi(Sus∗(X),Z/n) → Hi(X(C)an,Z/n), i ≥ 0

is an isomorphism.
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For the understanding of the algebraic K-theory of a scheme X which is “not
equivalent to a point” in the étale topology, one must incorporate more information
aboutX. This was made clear by Grothendieck at the inception ofK-theory. A fun-
damental theorem of Grothendieck [9] (a consequence of Grothendieck’s Riemann-
Roch Theorem) asserts that the Chern character

(4) ch∗ : K0(X)⊗Q → CH∗(X)⊗Q

is a ring isomorphism for any smooth, connected algebraic variety X over a field F ,
where CHi(X) denotes the Chow group of rational equivalence classes of algebraic
cycles on X of codimension i. These Chow groups are not simply étale cohomology
groups.

A difficult theorem of Robert Thomason [78] established a convergent spectral
sequence whose E2-page involved the étale cohomology of a smooth variety with
Z/n-coefficients and which converged to K∗(X,Z/n)[1/β], the localization of alge-

braic K-theory obtained by inverting the “Bott element” β ∈ K2(X,Z/n). Étale
K-theory, formulated by Dwyer and Friedlander [16], provided the abutment for a
spectral sequence whose E2-term was étale cohomology. Nevertheless, it became
clear that one required a more elaborate cohomology theory than étale cohomology
to “approximate” algebraic K-theory. Beilinson’s Conjectures encompassed the ex-
istence of a well-behaved cohomology theory involving complexes of sheaves which
could serve as a suitable refinement of étale cohomology and which would relate to
algebraic K-theory through a “motivic spectral sequence.”

In [8], Bloch formulated bigraded “higher Chow groups” which are related to
K∗(X). For each n ≥ 0, Bloch introduced CHi(X,n), defined in terms of the n-th
homology group of the complex of codimension i cycles on X × ∆∗. Rationally,
CHi(X,n) is the i-th weighted piece of Kn(X); more generally, Bloch anticipated a
spectral sequence relating his higher Chow groups to algebraic K-groups. Bloch’s
higher Chow groups proved to be a major step towards realizing Beilinson’s vision.

Since groups of equivalence classes of algebraic cycles are so closely related to
algebraicK-groups, we briefly outline Grothendieck’s proof (see (4)) that the Chern
character ch∗ of (4) the isomorphism.

For a scheme X, write K∗(X) for the K-groups of the category of vector bundles
over X. This is a graded ring cohomology theory, contravariant in X. If X is
Noetherian, we define K ′

∗(X) as the K-groups of the abelian category M(X) of co-
herent OX -modules. The assignment X 7→ K ′

∗(X) is a homology theory, covariant
with respect to proper morphisms. For any i ≥ 0, let M(X)(i) be the full subcate-
gory of M(X) consisting of all OX -modules with codimension of support at least i.
The images K ′

∗(X)(i) of the natural homomorphisms K∗(M(X)(i)) → K ′
∗(X) form

a topological filtration on K ′
∗(X).

Assume now that X is a regular scheme. Then the natural homomorphism
K∗(X) → K ′

∗(X) is an isomorphism. Thus, K∗(X) is a graded ring together with
the topological filtration by the ideals K∗(X)(i) := K ′

∗(X)(i) with the subsequent
factor groups K∗(X)(i/i+1). There is a well defined surjective graded ring homo-
morphism

φ∗ : CH∗(X) → K0(X)(∗/∗+1)

taking a class [Z] of a codimension i closed subvariety Z ⊂ X to [OZ ] inK0(X)(i/i+1),
the class of the structure sheaf of Z.



12 ERIC M. FRIEDLANDER

In order to construct homomorphisms in the opposite direction, Grothendieck
constructed Chern classes:

ci : K0(X) → CHi(X), i ≥ 0.

These are maps (not necessarily homomorphisms), functorial in X. The class c0
sends all of K0(X) to 1 ∈ CH0(X). The map c1 takes the class of a vector bundle
E over X to det(E) ∈ Pic(X) = CH1(X). These properties together with the
Whitney sum formula cn(a + b) =

∑
i+j=n ci(a)cj(b) and the splitting principle

uniquely determine the Chern classes. For every i > 0, the restriction of ci to
K∗(X)(i) is a group homomorphism trivial on K∗(X)(i+1). Hence, ci yields a group
homomorphism

ψi : K0(X)(i/i+1) → CHi(X).

Grothendieck’s Riemann-Roch Theorem implies that both compositions φi ◦ψi and
ψi ◦ φi are multiplication by (−1)i−1(i − 1)!. For certain classes of varieties (for
example for Severi-Brauer varieties of dimension l − 1, l prime, used in the proof
of Theorem 2.2) φ∗ is an isomorphism, so that computations of the topological
filtrations on the Grothendieck group K0(X) are particularly useful for the study
of the Chow ring CH∗(X).

Chern classes with values in the Chow groups are a special case of more gen-
eral constructions of Chern classes with values in an arbitrary oriented generalized
cohomology theory. The Chern classes can also be extended to higher K-groups
K∗(X) with values in certain groups of étale cohomology (see [59] and [30]) or
motivic cohomology (see [31] and [52]).

5. Motivic cohomology and K-theories

In the 1990’s, Andrei enabled many of the foundational results for “Suslin-
Voevodsky motivic cohomology”, whose origins can be traced to the Suslin’s com-
plex Sus∗(X) and Suslin rigidity discussed in the previous section. As shown
by Andrei in Theorem 5.4 below, Bloch’s higher Chow groups CH∗(X, ∗) (further
studied by Levine; see [38]) often agree with Suslin-Voevodsky motivic cohomol-
ogy H∗

M (X,Z). In contrast with Bloch’s higher Chow groups, Suslin-Voevodsky
motivic cohomology is more amenable to arguments using functoriality and local
behavior; moreover, H∗

M (X,Z) fits into the general framework of A1-homotopy
theory of Fabien Morel and Voevodsky [48], enabling Voevodsky to prove many
of the conjectures (now theorems) we have discussed: Milnor’s Conjecture, the
Quillen-Lichtenbaum Conjecture, the Beilinson-Lichtenbaum Conjectures, and the
Bloch-Kato Conjecture.

In this section we discuss numerous foundational results for motivic cohomology
proved by Andrei. We also return to the norm residue homomorphism, briefly
discussing Voevodsky’s dramatic results.

Voevodsky introduced important innovations into the study of algebraic varieties,
continuing the historical development of the subject following work of Grothendieck.
The first was to enlarge the set of morphisms from X to Y to include finite cor-
respondences from X to Y . Another innovation was to focus on presheaves ϕ on
the category of smooth varieties and finite correspondences which are homotopy
invariant: the projection X ×A1 → X induces an isomorphism ϕ(X)

∼→ ϕ(X ×A1)
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for any smooth variety X. Yet another innovation was Voevodsky’s introduction of
new Grothendieck topologies, especially the Nisnevich topology.

The graph of a morphism X → Y of varieties over F can be viewed as a cor-
respondence (a cycle on X × Y ) that projects isomorphically onto X. A finite
correspondence from some smooth, connected X to Y is a cycle α on X × Y such
that every prime component of α is finite and surjective over X. For example, if Y
is also irreducible, then a finite, surjective morphism from Y to X can be viewed
as a finite correspondence from X to Y . We have the category Cor(F ) of finite
correspondences: the objects are smooth varieties over F and morphisms from X
to Y are finite correspondences from X to Y . A presheaf of abelian groups with
transfers is a contravariant functor A from Cor(F ) to abelian groups. Thus, if A is
a presheaf with transfers, then a finite, surjective morphism Y → X with Y irre-
ducible is equipped with a transfer (norm) homomorphism A(Y ) → A(X). The role
of Suslin rigidity arises in establishing the homotopy invariance of cohomological
complexes associated to presheaves with transfers.

There are motivic complexes of étale sheaves with transfers Z(q) for q ≥ 0. In
fact, Z(0) and Z(1) are quasi-isomorphic to the sheaves Z and Gm placed in degree
0 and 1 respectively. One defines the motivic and étale motivic cohomology groups
of a smooth variety X with coefficients in an abelian group A by

Hp
M (X,A(q)) := Hp

Zar(X,A⊗ Z(q)), Hp
et(X,A(q)) := Hp

et(X,A⊗ Z(q)).
The formulation of motivic cohomology by Suslin and Voevodsky led to much

progress on conjectures made a decade earlier by Beilinson, Bloch, Lichtenbaum,
and Soulé. For example, the following theorem provides the analogue for algebraic
K-theory of the Atiyah-Hirzeburch spectral sequence for topological K-theory. Al-
though many mathematicians contributed to the proof of this result, Andrei did
most of the “heavy lifting.”

Theorem 5.1. [70], [27] Let X be a smooth quasi-projective variety over a field.
Then there is a strongly convergent spectral sequence

(5) Ep,q
2 = Hp−q

M (X,Z(−q)) ⇒ K−p−q(X).

One sees more clearly the interplay between Milnor K-theory and algebraic K-
theory with the help of motivic cohomology (and the above spectral sequence;
see Theorem 3.6). We start with the observation that H1

M (F,Z(1)) = Gm(F ) =
F×. The product in motivic cohomology yields a homomorphism (F×)⊗p →
Hp

M (F,Z(p)). The image of a tensor a1 ⊗ · · · ⊗ ap is trivial if ai + aj = 1 for
some i ̸= j. Hence we get a homomorphism KM

p (F ) → Hp
M (F,Z(p)) which is an

isomorphism by Theorem 3.6. The norm maps for Milnor K-groups correspond to
the norm maps in motivic cohomology created by the structure of presheaves with
transfers.

There is a natural homomorphism

Hp
M (X,Z(q)) → Hp

et(X,Z(q)).
The integral Beilinson-Lichtenbaum Conjecture asserts that this is an isomorphism
when p ≤ q and a monomorphism when p = q + 1. Replacing Z(q) by Z/ℓ(q) for
some prime ℓ, we obtain the mod-ℓ Beilinson-Lichtenbaum Conjecture which has
an equivalent formulation (used in the statement of Theorem 5.2) asserting that for
every prime ℓ the natural homomorphism

Hp
M (X,Z/ℓ(q)) → Hp

et(X,µ
⊗q
ℓ )
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is an isomorphism if p ≤ q and a monomorphism if p = q+1. The mod-ℓ Beilinson-
Lichtenbaum Conjecture is now a theorem proved by Voevodsky (see Theorems 5.2
and 5.3).

The mod-ℓ Bloch-Kato Conjecture asserts that the norm residue homomorphsm

hn : KM
n (F )/ℓ → Hn(F, µ⊗n

ℓ )

is an isomorphism for all n, provided ℓ is invertible in the field F . We state an
important theorem of Suslin and Voevodsky which closely links this conjecture
to the Beilinson-Lichtenbaum Conjecture. The paper [75] proving this result is a
carefully written, well organized presentation not only of the proof of this result
but also presents details of other key results of Voevodsky.

Theorem 5.2. [75] Let F be a field and ℓ a prime invertible in F . Then the
following assertions are equivalent for any smooth, quasi-projective variety X over
F :

1.) The mod-l Bloch-Kato Conjecture for F in weight n which asserts that the
norm residue homomorphsm

hn : KM
n (F )/ℓ → Hn(F, µ⊗n

ℓ )

is an isomorphism;
2.) The mod-l Beilinson-Lichtenbaum Conjecture in weights q ≤ n which asserts

that

Hp
M (X,Z/ℓ(q)) ≃ Hp

et(X,µ
⊗q
ℓ ), p ≤ q; Hq+1

M (X,Z/ℓ(q)) ↪→ Hq+1
et (X,µ⊗q

ℓ ).

We remark that the mod-ℓ Bloch-Kato Conjecture is essentially the diagonal por-
tion of the mod-ℓ Beilinson-Lichtenbaum Conjecture, yet the inductive argument for
the mod-ℓ Bloch-Kato Conjecture requires the verification of earlier non-diagonal
cases of the mod-ℓ Beilinson-Lichtenbaum Conjecture. The Beilinson-Lichtenbaum
Conjecture admits a precise formulation in terms of truncations of complexes; with
this formulation, the conjecture is a statement that a certain map of complexes is
a quasi-isomorphism.

With considerable input from Andrei, Markus Rost, Charles Weibel and others,
Voevodsky proved the following spectacular result, the mod-ℓ Bloch-Kato Con-
jecture. Theorem 5.3 partially realizes the vision of Beilinson, closely related to
conjectures of Bloch, Lichtenbaum, and Soulé, a vision which has served as a tem-
plate for much of the work on motivic cohomology. A detailed exposition of the
proof of this theorem is given in the book [32] by Christian Haesemeyer and Weibel.

Theorem 5.3. [83] Let F be a field and ℓ a prime invertible in F . For all n ≥ 0,

KM
n (F )/ℓ ≃ Hn(F, µ⊗n

ℓ ).

Consequently, for any smooth variety over F ,

Hp
M (X,Z/ℓ(q)) ≃ Hp

et(X,µ
⊗q
ℓ ), p ≤ q; Hq+1

M (X,Z/ℓ(q)) ↪→ Hq+1
et (X,µ⊗q

ℓ ).

Voevodsky proves Theorem 5.3 with an argument which proceeds by induction on
n. A significant component of Voevodsky’s proof of Theorem 5.3 is the existence
and properties of suitable splitting varieties for symbols in Milnor K-groups of
F . This is foreshadowed by the role of the Severi-Brauer variety for a symbol
α = {a1, a2} ∈ KM

2 (F ) appearing in the proof of Theorem 2.2.
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The existence of norm varieties (generic splitting varieties of dimension ℓn−1 −
1) for an arbitrary symbol α = {a1, a2, . . . , an} ∈ KM

n (F ) modulo ℓ was proved
by Markus Rost. In a series of clear, detailed lectures (notes of which by Seva
Joukhovitski served as the basis for [73]), Andrei established the basic properties
of these norm varieties needed for Voevodsky’s proof. The proofs Andrei gives
follow Rost’s unpublished results, notably Rost’s Degree Formula and Rost’s Chain
Lemma.

Let X be a norm variety of an n-symbol α modulo ℓ. Consider the simplicial
scheme X with Xn = Xn+1 whose face maps are given by various projections.
The motive of X is independent of the choice of the norm variety of α modulo ℓ.
Voevodsky proved triviality of the motivic cohomology group Hn+1

M (X ,Z(n)); he
then used this vanishing to deduce the validity of the Bloch-Kato Conjecture.

Somewhat surprisingly, the triviality of Hn+1(X ,Z(n)) (together with the tools
used in Voevodsky’s proof) yields a computation of the motivic cohomology groups
Hi

M (X ,Z(j)) for all i and j (see [45] and [85]).
The following theorem of Andrei’s makes explicit the close relationship of Bloch’s

higher Chow groups and Suslin-Voevodsky motivic cohomology.

Theorem 5.4. [68] Let X be an equidimensional quasiprojective scheme over an
algebraically closed field F of characteristic zero. Assume that i ≥ d := dimX.
Then

(6) CHi(X,n;Z/ℓ) = H2(d−i)+n
c (X,Z/ℓ(d− i))#;

in other words, the mod-ℓ bigraded higher Chow groups of Bloch equal the mod-ℓ
Suslin-Voevodsky bigraded motivic cohomology groups with compact supports.

Andrei’s last published paper extended results of Suslin-Voevodsky motivic co-
homology for smooth varieties over a perfect field F of characteristic p > 0 by
showing how to avoid the assumption that F is perfect. Andrei proves that one can
simply base change to the separable closure F∞ of F and apply the existing theory
for varieties over F∞. Step by step, Andrei verifies that the theory developed by
Suslin and Voevodsky applies without the assumption that F be perfect provided
that one considers presheaves with transfers of Z[1/p]-modules. His primary goal
is to prove that every homotopy sheaf with transfers of Z[1/p]-modules is strictly
homotopy invariant, a key result for the Suslin-Voevodsky theory.

We state Andrei’s final theorem in his final paper, giving the flavor of the mathe-
matics involved. For those who wish precision, we mention thatDM−

p (F ) appearing
in the statement of Theorem 5.5 is the full subcategory of the derived category of
bounded above complexes of Nisnevich sheaves with transfers of Z[1/p]-modules
consisting of those complexes whose cohomology sheaves are homotopy invariant.

.

Theorem 5.5. [69] Let E/F be an arbitrary field extension and consider an ar-
bitrary A• ∈ DM−

p (F ). For any smooth scheme X over F , there is a natural
isomorphism

Hom(Mp(X), A•)E ≃ Hom(Mp(XE , A
•
E),

where the left hand side is the base changed to E of the internal Hom of DM−
p (F )

and the right hand side is the internal Hom of DM−
p (E).

It is interesting to observe that during the development of Suslin-Voevodsky
motivic cohomology there was a parallel development of “semi-topological theories”
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initiated by H. Blaine Lawson in [34] and continued in various papers by numerous
authors. We point out the formulation of morphic cohomology by Friedlander and
Lawson in [21] and the work of Friedlander and Mark Walker in [28]. In a paper by
Friedlander, Haesemeyer, and Walker [20], an interesting conjecture by Andrei was
stated and investigated with the aim of relating morphic cohomology and singular
cohomology of complex algebraic varieties in the spirit of the Bloch-Lichtenbaum
conjecture. This conjecture is related to many classical conjectures. One result
concerning such relationships is given by Beilinson [7].

6. Modular Representation Theory

This mathematical subject is one that attracted Andrei’s attention late in his
career, but its appeal to him is natural. Andrei gave qualitative information about
the (Hochschild) cohomology of finite group schemes over a field k of characteris-
tic p > 0, extending known results for finite groups, and investigated the actions
of these finite group schemes on finite dimensional vector spaces over k (in other
words, modular representations). On the one hand, Andrei answered general struc-
tural questions by developing new tools and by extending known techniques in a
highly non-trivial manner. On the other hand, Andrei’s algebraic insights provided
computations and examples previously inaccessible.

Andrei’s most cited paper, joint with Friedlander, proves the following theorem.
This is a generalization of a classical theorem of Leonard Evens [17] and Boris
Venkov [80].

Theorem 6.1. [26] Let G be a finite group scheme over a field k. Then H∗(G, k)
is a finitely generated algebra over k.

Moreover, if M is a G-module finite dimensional over k, then H∗(G,M) is a
finitely generated module over H∗(G, k).

This is a first suggestion that one can find a common context for finite groups,
restricted enveloping algebras of finite dimensional restricted Lie algebras, and other
finite group schemes. The outline of proof for this theorem has been used in other
contexts (for example, in the recent paper by Friedlander and Cris Negron [22]).
At its heart, it requires a proof of the existence of certain cohomology classes which
can serve as generators. The existence proof of Theorem [26] explicitly constructs
these classes (in high degree) using extensions in the category of strict polynomial
functors (which are not actually functors).

These strict polynomial functors have led to numerous explicit calculations of
Ext groups by Andrei and others (e.g., [19]). Furthermore, Antoine Touzé and
Wilberd van der Kallen in [77] used this technology to prove that the subalgebra of
G-invariants of H∗(G,A) is finitely generated, where G is a reductive group over a
field and A is a finitely generated G-algebra; this extends the classical result that
the algebra of G-invariantsH0(G,A) of A is finitely generated. As another example,
Christopher Drupeiski in [15] extended the arguments of the above theorem in order
to prove its generalization to finite supergroup schemes.

Theorem 6.1 is the foundational result enabling a theory of supports for represen-
tations of finite group schemes, providing a geometric interpretation of cohomologi-
cal invariants for such representations. Among the most geometric and informative
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results in this theory of supports are those proved in two papers by Suslin, Fried-
lander, and Christopher Bendel [71], [72] concerning infinitesimal groups schemes.
The following theorem states central results of these two papers.

We remind the reader that an infinitesimal group scheme H over k is an affine
group scheme represented by a finitely dimensional, local k-algebra k[G] (so that
k[G] is equipped with the structure of a Hopf algebra over k). An important
example of an infinitesimal group schemes is the r-th Frobenius kernel of the ad-
ditive group Ga for some r > 0, usually denoted Ga(r). The coordinate algebra

k[Ga(r)] equals k[T ]/t
pr

with dual algebra kGa(r) := (k[Ga(r)])
# isomorphic to

k[u0, . . . , ur−1]/(u
pr

i ).

Theorem 6.2. [71], [72] Let G be a connected affine group scheme over a field
k of positive characteristic and let r be a positive integer. Then the morphisms
Ga(r) → G of group schemes over k (i.e., the height r, 1-parameter subgroups of
G) are the k-points of an affine scheme Vr(G).

There is a natural map of finitely generated commutative k-algebras

ψ : k[Vr(G)] → H∗(G(r), k)

which induces a homeomorphism on prime ideal spectra.

Theorem 6.2 is reminiscent of Quillen’s description of the spectrum of the coho-
mology of a finite group in [53]; in the special case r = 1, this recovers a theorem
of Friedlander and Brian Parshall [23] and eliminates the condition on the prime p
required in that earlier paper.

Andrei’s computational power is clearly evident in [71], [72] which provide a
qualitative description of the cohomology of infinitesimal group schemes. The ar-
guments required to prove the various results of Theorem 6.2 involve questions
already considered for G a finite group (detection of cohomology classes modulo
nilpotents, characteristic classes) but formulated now in the more general context
of group schemes. Computations with characteristic classes become elaborate, but
fortunately one does not always need these computations in closed form. One can
see the origins of the theory produced in the foundational work of Jon Carlson for
“rank varieties” for elementary abelian groups [11] and of Friedlander and Parshall
[23] for restricted Lie algebras.

Considering the example of G = GLN gives a flavor of the information provided
by Theorem 6.2. The scheme Vr(GLN ) is the scheme of r-tuples (B0, . . . , Br−1)
of pair-wise commuting, p-nilpotent N ×N matrices. Consequently, k[Vr(GLN ] is
generated by elements {Xi,j(ℓ) : 1 ≤ i, j ≤ N, 0 < r} with explicit relations given
by the conditions that the Bi’s are p-nilpotent and pair-wise commuting.

The two papers [71], [72] also provided a “geometric” interpretation of (co-
homological) support varieties of finite dimensional modules for an infinitesimal
group scheme G. Namely, the support of M is given as the closed subscheme
of 1-parameter subgroups ψ : G(r) → G such that ψ∗(M) has an explicit non-
projectivity property. One surprising aspect of these results is that no condition is
placed on p, the residue characteristic of the ground field k.

These papers led to the formulation of π-points of finite group schemes by Fried-
lander and Julia Pevtsova [24] which further extended certain aspects of the repre-
sentation theory of finite groups to all arbitrary finite group schemes.
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In the next theorem, Andrei (together with Friedlander and Pevtsova) introduced
refined invariants of G-modules, new even for finite groups. These invariants involve
Jordan types, the decomposition of a p-nilpotent operator into blocks of sizes ≤ p.

Theorem 6.3. [25] Let G be a finite group scheme, let M be a finite dimensional
G-module, and let x ∈ ProjH∗(G, k) correspond to a minimal homogeneous prime
ideal of H∗(G, k). Then this data naturally determines a natural partition of m :=
dim(M),

m =

p∑
i=1

ai · i, ai ≥ 0.

This partition arises from the Jordan type of any representative of the p-nilpotent
action of G on M at the generic point x ∈ ProjH∗(G, k).

The proof of this theorem is subtle, further evidence of Andrei’s ingenious in-
sights. Among other consequences, this theorem led to the interesting class of “mod-
ules of constant Jordan type” introduced by Carlson, Friedlander, and Pevtsova in
[12]. The essential step of the proof is the following observation of Andrei’s concern-
ing Jordan types of commuting nilpotent elements α, β ∈ GLN (F ) for an infinite
field F and a positive integer N : the Jordan type of α is greater or equal to the
Jordan type of α + tβ for all t ∈ β if and only if the kernel of α is contained in∑

µ∈F∗ Ker(α+ µβ).

We mention one further paper on modular representation theory that Andrei
wrote with Carlson and Friedlander [13]. The title of the paper, “Modules for Z/p×
Z/p”, is probably surprising to those unfamiliar with the complexities of modular
representations. For p > 2, the category of finite dimensional representations on k-
vector spaces (with char(k) = p) for the finite group Z/p×Z/p is wild, which implies
that this category contains as a full subcategory the category of representations
of every finite dimensional k-algebra. The paper [13] investigated various special
classes of Z/p× Z/p-modules, providing a wealth of details.

Acknowledgement. We gratefully thank the referee for a very careful reading of
this paper.
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[39] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann.
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Sci. 90 (1999), 45 - 143.

[49] Yu. Nesterenko and A. Suslin, Homology of the general linear group over a local ring, and

Milnor’s K-theory, Izv. Akad. Nauk. 53 (1989), 121 - 146.
[50] D. Orlov, A. Vishik, V. Voevodsky, An exact sequence for KM

∗ /2 with applications to qua-
dratic forms, Annals of Math 165 (2007), 1 - 13.

[51] I. Panin and A. Suslin, On a conjecture of Grothendieck concerning Azumaya algebras, St.

Petersburg Math. J. 9 (1998), 851 - 858,
[52] O. Pushin, Higher Chern classes and Steenrod operations in motivic cohomology, K-Theory

31 (2004), no. 4, 307 - 321.
[53] D. Quillen, The spectrum of an equivariant cohomology ring. I. II, Ann. of Math. 94 (1971),

549 - 572, 573 - 602.
[54] D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field,

Ann. of Math. 96 (1972), 552 - 586.
[55] D. Quillen, Higher algebraic K-theory. I, Lecture Notes in Math 341 (1973) , 85 - 147.

[56] D. Quillen, Higher algebraic K-theory, Proc. of ICM in Vancouver vol 1 (1974), 171 - 176.
[57] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167 - 171.
[58] J.-P. Serre, Faiscieux algébriques cohérents, Annals of Math. 61 (1955), 9197 - 278.
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