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Abstract. We prove the Massey Vanishing Conjecture for n = 4 and p = 2.

That is, we show that for all fields F , if a fourfold Massey product modulo 2
is defined over F , then it vanishes over F .

1. Introduction

Let (A, ∂) be a differential graded ring, that is, a cochain complex equipped
with a graded associative product satisfying the Leibniz rule with respect to the
differential ∂, and let H∗(A) be the cohomology ring of A. For all integers n ≥ 2
and all a1, . . . , an ∈ H1(A), one may define the n-fold Massey product 〈a1, . . . , an〉:
it is a certain subset of H2(A). For n = 2, the Massey product 〈a1, a2〉 is equal to
the singleton {a1a2}, but for n ≥ 3 the Massey product 〈a1, . . . , an〉 can be empty
or contain more than one element. One says that 〈a1, . . . , an〉 is defined if it is non-
empty, and that it vanishes if it contains 0. (See the introduction of [HW19] for
the precise definition of Massey product, which will not be needed in this paper.)
We have the following implications:

〈a1, . . . , an〉 vanishes⇒ 〈a1, . . . , an〉 is defined⇒ aiai+1 = 0 (i = 1, . . . , n− 1).

Massey [Mas58] introduced Massey products in Algebraic Topology; in this case
A is the singular cochain complex of a topological space. Massey proved that the
Borromean rings are not equivalent to three unlinked circles by showing that the
singular cochain complex of the complement of the Borromean rings in R3 admits
a non-trivial triple Massey product.

In this paper, we consider Massey products in Galois cohomology. Let p be a
prime number, Γ be a profinite group and A := C∗(Γ,Z/pZ) be the differential
graded Fp-algebra of mod p continuous cochains of Γ. We write H∗(Γ,Z/pZ) for
the cohomology algebra H∗(A). When Γ is the absolute Galois group of a field F ,
we will write H∗(F,Z/pZ) for H∗(Γ,Z/pZ).

Let n ≥ 2 be an integer, Un+1 ⊂ GLn+1(Fp) be the subgroup of upper unitri-
angular matrices, and Zn+1 ⊂ Un+1 be the subgroup generated by the matrix Z
having 1 in each diagonal entry and in the entry (1, n+ 1) and 0 elsewhere. Then
Zn+1 ' Z/pZ is the center of Un+1. We let Un+1 := Un+1/Zn+1; one may think
of Un+1 as the subgroup of upper unitriangular matrices with top-right corner
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removed. We obtain the following diagram of groups

1 Z/pZ Un+1 Un+1 1

(Z/pZ)n,

ι

ϕ
ϕ

where the row is a central short exact sequence, ι(1 + pZ) = Z, the surjective
homomorphism ϕ forgets the entries of all upper diagonals of an upper unitriangular
matrix except for the first one, and ϕ is induced by ϕ.

Let χ1, . . . , χn ∈ H1(Γ,Z/pZ) = Homcont(Γ,Z/pZ), and write χ for the group
homomorphism (χ1, . . . , χn) : Γ→ (Z/pZ)n. Dwyer [Dwy75] proved that the Massey
product 〈χ1, . . . , χn〉 ⊂ H2(Γ,Z/pZ)

– is defined if and only if χ lifts to Un+1, i.e., χ = ϕ ◦ χ′ for some homomor-
phism χ′ : Γ→ Un+1, and

– vanishes if and only if χ lifts to Un+1, i.e., χ = ϕ ◦ χ′′ for some homomor-
phism χ′′ : Γ→ Un+1.

(The reader not familiar with the general definition of Massey product may take
the above as the definitions of the phrases “the Massey product is defined” and
“the Massey product vanishes.”)

In contrast with the situation in Algebraic Topology, Hopkins–Wickelgren [HW15]
showed that, if F is a number field, all triple Massey products inH∗(F,Z/2Z) vanish
as soon as they are defined. This result was extended to all fields F by Mináč–Tân
[MT15b, MT16]. It motivated the following conjecture, known as the Massey Van-
ishing Conjecture, which first appeared in [MT17b] under an assumption on roots
of unity, then in general in [MT16].

Conjecture 1.1 (Mináč–Tân). For every field F , every prime p, every integer
n ≥ 3 and all χ1, . . . , χn ∈ H1(F,Z/pZ), if the Massey product 〈χ1, . . . , χn〉 ∈
H2(F,Z/pZ) is defined, then it vanishes.

When p is invertible in F and F contains a primitive p-th root of unity, by
Kummer Theory the characters χ1, . . . , χn correspond to scalars a1, . . . , an ∈ F×
uniquely determined up to p-th powers. One says that 〈a1, . . . , an〉 is defined (resp.
vanishes) when 〈χ1, . . . , χn〉 is defined (resp. vanishes). Conjecture 1.1 then pre-
dicts that 〈a1, . . . , an〉 vanishes as soon as it is defined.

Conjecture 1.1 is in the spirit of the profinite inverse Galois problem, i.e, of
the fundamental question: Which profinite groups are realizable as absolute Galois
groups of fields? Indeed, a historically fruitful approach to the profinite inverse
Galois problem has been to give constraints on the cohomology of absolute Galois
groups. The most spectacular example of this is the Norm-Residue Theorem (the
Bloch–Kato Conjecture), proved by Rost and Voevodsky.

The Norm-Residue Theorem implies, in particular, that H∗(F,Z/pZ) is a qua-
dratic algebra: it admits a presentation with generators in degree 1 and relations
in degree 2. This property is false in general for arbitrary profinite groups, and so
gives a way to prove that a profinite group does not arise as the absolute Galois
group of a field.

From this point of view, Conjecture 1.1 predicts a new way in which the coho-
mology of absolute Galois groups is simpler than that of arbitrary profinite groups.
Already the n = 3 case of Conjecture 1.1 yields remarkable restrictions on the
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profinite groups which can appear as absolute Galois groups; see for example the
work of Efrat [Efr14] and Mináč–Tân [MT17a].

Since its formulation, Conjecture 1.1 has motivated a large body of work by
many authors. It is known in a number of cases:

– when F is a number field, n = 3 and p = 2, by Hopkins–Wickelgren [HW15];
– when F is arbitrary, n = 3 and p = 2, by Mináč–Tân [MT15b, MT16];
– when F is arbitrary, n = 3 and p is odd, by Matzri [Mat14], followed by

Efrat–Matzri [EM17] and Mináč–Tân [MT16];
– when F is a number field, n = 4 and p = 2, by Guillot–Mináč–Topaz–

Wittenberg [GMT18];
– when F is a number field and n and p are arbitrary, by Harpaz–Wittenberg

[HW19].

There are also results for specific classes of fields; for example, rigid odd fields
[MT15a]. However, when F is an arbitrary field, very little is known beyond the
n = 3 case.

In this paper, we prove the case n = 4 and p = 2 of Conjecture 1.1, with no
assumptions on F .

Theorem 1.2. Conjecture 1.1 is true for n = 4 and p = 2. That is, for all fields F
and all χ1, χ2, χ3, χ4 ∈ H1(F,Z/2Z), if the mod 2 Massey product 〈χ1, χ2, χ3, χ4〉
is defined, then it vanishes.

The proof of Theorem 1.2 is different from those of Guillot–Mináč–Topaz–Witten-
berg and of Harpaz–Wittenberg in the number field case, as the tools used by them
(local-global principles, Brauer-Manin obstruction) are not available over an arbi-
trary field.

We sketch the proof of Theorem 1.2. If K is a field (or a product of fields)
of characteristic different from 2, and a, b ∈ K×, we denote by Br(K) the Brauer
group of K, and by (a, b) ∈ Br(K) the class of the quaternion algebra corresponding
to a and b. We also set Ka := K[xa]/(x2a − a) and Ka,b := (Ka)b.

(1) Since Conjecture 1.1 is known when char(F ) = p, for the proof of Theo-
rem 1.2 we may suppose that char(F ) 6= 2. Let a, b, c, d ∈ F× such that the
mod 2 Massey product 〈a, b, c, d〉 is defined: we must show that 〈a, b, c, d〉
vanishes.

(2) Guillot–Mináč–Topaz–Wittenberg showed that 〈a, b, c, d〉 vanishes if and
only if there exist α ∈ F×a and δ ∈ F×d such that NFa/F (α) = b in F×/F×2,

NFd/F (δ) = c in F×/F×2 and (α, δ) = 0 in Br(Fa,d); see [GMT18, Theo-
rem A] or Proposition 2.1(a) below. In the same spirit, we show in Propo-
sition 2.1(b) that 〈a, b, c, d〉 is defined if and only there exist α ∈ F×a and
δ ∈ F×d such that NFa/F (α) = b in F×/F×2, NFd/F (δ) = c in F×/F×2

and (α, δ) ∈ Br(Fa,d) comes from Br(F )[2]. This reduces Theorem 1.2 to a
problem about Brauer groups.

(3) Fix α and δ as in Proposition 2.1(b): our idea is to look for x, y ∈ F× such
that (αx, δy) = 0 in Br(Fa,d). Note that we are allowed to replace α by
αx and δ by δy: indeed, NFa/F (αx) = bx2 = b in F×/F×2 and similarly

NFd/F (δy) = c in F×/F×2. The key new insight to find x and y is Propo-

sition 3.1: There exist x ∈ F× and ν ∈ F×a such that (αx, δ) = (αx, ν) in
Br(Fa,d) and NFa/F (αx, ν) = 0 in Br(F ). While Proposition 3.1 is a purely
algebraic statement, its proof, which takes up the whole Section 3, is quite
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geometric: it consists of an intricate combination of residue computations
and specialization arguments. We explain the main ideas that led us to
the formulation and proof of this decisive result in Remark 3.8. At the end
of the proof of Proposition 3.1, it is crucial to specialize at a particular
F -point at which not all functions are necessarily defined; we recall how
this can be done in Section 2.3.

(4) Once x and ν as in (3) are found, a previous result of ours yields y ∈ F×
such that (αx, νy) = 0 in Br(Fa); see [MS22, Proposition 4.4] or Propo-
sition 2.8 below. The proof of Proposition 2.8, recalled in this paper for
completeness, uses quadratic form theory, in particular, the theory of Al-
bert forms attached to biquaternion algebras.

(5) The combination of (3) and (4) yields x, y ∈ F× such that (αx, δy) = 0 in
Br(Fa,d). By (2), the Massey product 〈a, b, c, d〉 vanishes, as desired.

We conclude this Introduction by discussing the relation between the present
article and our previous work [MS22]. In [MS22, Theorem 1.3], we had proved
Conjecture 1.1 when n = 4 and p = 2 under the assumption that χ1 = χ4. There-
fore Theorem 1.2 strengthens [MS22, Theorem 1.3]. However, Theorem 1.2 does
not allow us to recover [MS22, Theorems 1.4 and 1.6]: in particular, it does not
allow us to give a negative answer to Positselski’s question about non-formality
of the continuous cochains in the presence of all roots of unity. The proofs of
Theorem 1.2 and [MS22, Theorem 1.3] are independent, except for the use of one
common ingredient, namely the aforementioned Proposition 2.8.

As a corollary of Theorem 1.2 and [MS22, Corollary 3.9], we prove that a fourfold
Massey product modulo 2 vanishes over F if and only if it is vanishes over an odd-
degree field extension of F ; see Remark 4.1. It is not at all clear how to prove this
directly, and also whether a similar property should be true for n > 4.

Notation. Let F be a field (more generally, a product of finitely many fields)
of characteristic different from 2. We let F× be the group of invertible elements
in F , H∗(F,Z/2Z) be the Galois cohomology ring of F with Z/2Z coefficients,
that is, the étale cohomology ring of the constant sheaf Z/2Z on Spec(F ), and
Br(F ) := H2(F,Gm) be the Brauer group of F . The Kummer sequence

1→ µ2 → Gm
×2−−→ Gm → 1

induces isomorphisms H1(F,Z/2Z) ' F×/F×2 and H2(F,Z/2Z) ' Br(F )[2]. For
all a ∈ F×, we let (a) ∈ H1(F,Z/2Z) be the class represented by a, and for all
a1, . . . , an, we let (a1, . . . , an) := (a1) ∪ · · · ∪ (an) ∈ Hn(F,Z/2Z). By [GS17,
Proposition 4.7.1], for all a, b ∈ F× the image of (a, b) ∈ H2(F,Z/2Z) in Br(F )[2]
is the Brauer class of the quaternion algebra corresponding to a and b, and we
denote it by (a, b) ∈ Br(F ).

If E is an étale F -algebra, we write NE/F : E× → F× for the norm homomor-
phism and NE/F : Br(E) → Br(F ) for the corestriction homomorphism. For all
A ∈ Br(F ), we write AE ∈ Br(E) for the base change of A to E.

For all a1, . . . , an ∈ F×, we write Fa1,...,an for the étale F -algebra

F [x1, . . . , xn]/(x21 − a1, . . . , x2n − an),

and we set
√
ai := xi for all i = 1, . . . , n.
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If F is a field, an F -variety is a separated integral F -scheme of finite type. If X
is an F -variety, we denote by F (X) its function field and, if P ∈ X, we denote by
OX,P the local ring of X at P and by F (P ) the residue field of X at P .

2. Preliminaries

In this section, we let F be a field of characteristic different from 2 and ΓF be
the absolute Galois group of F .

2.1. Fourfold Massey products.

Proposition 2.1. Let a, b, c, d ∈ F×.

(a) The Massey product 〈a, b, c, d〉 vanishes if and only if there exist α ∈ F×a ,
δ ∈ F×d such that NFa/F (α) = b in F×/F×2, NFd/F (δ) = c in F×/F×2

and (α, δ) = 0 in Br(Fa,d).
(b) The Massey product 〈a, b, c, d〉 is defined if and only if there exist α ∈ F×a ,

δ ∈ F×d such that NFa/F (α) = b in F×/F×2, NFd/F (δ) = c in F×/F×2

and (α, δ) ∈ Br(Fa,d) belongs to the image of Br(F )[2]→ Br(Fa,d)[2].

Proof. (a) This is a reformulation of [GMT18, Theorem A]. For a direct proof, see
[MS22, Corollary 3.12].

(b) Let U5 ⊂ GL5(F2) be the subgroup of upper unitriangular matrices. The
center of U5 is isomorphic to Z/2Z and is generated by the matrix


1 0 0 0 1

1 0 0 0
1 0 0

1 0
1

 .

Let P be the normal subgroup of U5 given by

P :=


1 0 0 ∗ ∗

1 0 ∗ ∗
1 0 0

1 0
1

 .

Note that P is the kernel of the surjective homomorphism U5 → U3 × U3 which
forgets the 2× 2 upper-right square of a unitriangular matrix. The center of U5 is
contained in P . If we write U5 and P for the quotient of U5 and P by the center
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of U5, respectively, we obtain a commutative diagram

(2.1)

1 1

Z/2Z Z/2Z

1 P U5 U3 × U3 1

1 P U5 U3 × U3 1

1 1

where the rows and columns are short exact sequences. The rows endow P and P
with the structure of (U3×U3)-modules, and the quotient map P → P is (U3×U3)-
equivariant. We have a surjection U3 × U3 → (Z/2Z)4, and the composition U5 →
U3 × U3 → (Z/2Z)4 is the homomorphism ϕ of the Introduction.

Let G be a finite group. We refer the reader to [KMRT98, Definitions (18.15)]
for the definition of a Galois G-algebra. By [KMRT98, Example (28.15)], we have
a bijection

(2.2) H1(F,G)
∼−→ {Isomorphism classes of Galois G-algebras over F}

which is functorial in the finite group G and the field F .
Let α ∈ F×a , δ ∈ F×d be such that NFa/F (α) = b in F×/F×2, NFd/F (δ) =

c in F×/F×2. We may endow the étale algebras (Fa,b)α and (Fc,d)δ with the
structures of Galois U3-algebras as in [MS22, §3.1]. We let h, h′ : ΓF → U3 be the
group homomorphisms corresponding to the Galois U3-algebras (Fa,b)α and (Fc,d)δ
via (2.2), respectively. Write χa, χb, χc, χd : ΓF → Z/2Z for the homomorphism
corresponding via Kummer Theory to a, b, c, d, respectively. The composition of
(h, h′) : ΓF → U3 × U3 with the homomorphism U3 × U3 → (Z/2/Z)4 is equal to
(χa, χb, χc, χd). Moreover, every lift of (χa, χb, χc, χd) to U3×U3 arises in this way,
for a suitable choice of α ∈ F×a and δ ∈ F×d .

Lemma 2.2. The homomorphism (h, h′) : ΓF → U3 × U3 lifts to U5 if and only if
(α, δ) belongs to the image of Br(F )[2]→ Br(Fa,d)[2].

Proof. We showed in [MS22, Proof of Proposition 3.11] that

P = IndFFa,d(Z/2Z),

where we view P as a ΓF -module via (h, h′) : ΓF → U3×U3, and that the class of the
pullback of the middle row of (2.1) along (h, h′) in H2(F, P ) = H2(Fa,d,Z/2Z) =
Br(Fa,d)[2] is equal to (α, δ).

The left vertical sequence in (2.1) induces a commutative diagram

(2.3)

H2(F,Z/2Z) H2(F, P ) H2(F, P )

Br(F )[2] Br(Fa,d)[2] H2(F, P ),

o o
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where the rows are exact, the homomorphism Br(F )[2]→ Br(Fa,d)[2] is the pullback

map and the homomorphism Br(Fa,d)[2] → H2(F, P ) is defined by the commuta-
tivity of the square on the right.

The homomorphism (h, h′) : ΓF → U3 × U3 lifts to a homomorphism ΓF → U5

if and only if the pullback of the middle row of (2.1) along (h, h′) splits, that is, if
and only if the corresponding element in H2(F, P ) is trivial. By (2.3), this happens
if and only if the map Br(Fa,d)[2]→ H2(F, P ) sends (α, δ) to 0, that is, if and only
if (α, δ) belongs to the image of Br(F )[2]→ Br(Fa,d)[2]. �

We may now complete the proof of (b). Suppose first that the Massey product
〈a, b, c, d〉 is defined. By Dwyer’s Theorem [Dwy75] (see also [MS22, Theorem
2.4]), the homomorphism (χa, χb, χc, χd) : ΓF → (Z/2Z)4 lifts to a homomorphism
ΓF → U5 and hence, in particular, to a homomorphism (h, h′) : ΓF → U3×U3. The
Galois U3-algebras corresponding to h and h′ are of the form (Fa,b)α and (Fc,d)δ for
some α ∈ F×a and δ ∈ F×d such that NFa/F (α) = b in F×/F×2 and NFd/F (δ) = c in

F×/F×2, respectively. By construction (h, h′) lifts to U5, hence Lemma 2.2 implies
that (α, δ) ∈ Br(Fa,d)[2] comes from Br(F )[2].

Conversely, suppose that (α, δ) belongs to the image of Br(F )[2]→ Br(Fa,d)[2].
Let h, h′ : ΓF → U3 be the homomorphisms corresponding to (Fa,b)α and (Fc,d)δ,

respectively. By Lemma 2.2, the homomorphism (h, h′) lifts to U5. On the other
hand, (h, h′) : ΓF → U3 × U3 is a lift of (χa, χb, χc, χd) : ΓF → (Z/2Z)4. This
shows that (χa, χb, χc, χd) lifts to U5. By Dwyer’s Theorem, the Massey product
〈a, b, c, d〉 is defined. �

2.2. Quaternion algebras. Recall that we suppose char(F ) 6= 2. We begin with
some standard properties of quaternion algebras.

Lemma 2.3. Let a, b ∈ F×. The following are equivalent:
(i) (a, b) = 0 in Br(F );
(ii) b ∈ NFa/F (F×a );

(iii) a ∈ NFb/F (F×b ).

Proof. See [GS17, Propositions 1.1.7]. �

Lemma 2.4. Let a ∈ F× and A ∈ Br(F ). Then AFa = 0 in Br(Fa) if and only if
there exists u ∈ F× such that A = (a, u) in Br(F ).

Proof. See [Ser79, Chapter XIV, Proposition 2]. �

Lemma 2.5. Let a, b, u, v ∈ F×. Then (a, u) = (b, v) in Br(F ) if and only if
there exist na ∈ NFa/F (F×a ), nb ∈ NFb/F (F×b ) and nab ∈ NFab/F (F×ab) such that
u = nanab and v = nbnab.

Proof. See [MS22, Lemma A.2]. �

Lemma 2.6. Let ρ ∈ F×a and µ ∈ F×b be such that NFa/F (ρ) = NFb/F (µ). Set
d := TrFa/F (ρ) + TrFb/F (µ). Suppose that d 6= 0. Then (µ, a) = (d, a) in Br(Fb).

Proof. See [MS22, Lemma A.4(3)]. �

Proposition 2.7. Let a, d ∈ F×, π, ν ∈ F×a , ρ ∈ F×d . Suppose that (π, ρ) = (π, ν)
in Br(Fa,d) and that the corestrictions of (π, ρ) to Fd and Fad are trivial. Then
NFa/F (π, ν) = (d, na) in Br(F ) for some na ∈ NFa/F (F×a ).
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Proof. We have

(NFa/F (π, ν))Fd = NFa,d/Fd(π, ν) = NFa,d/Fd(π, ρ) = 0 in Br(Fd),

and similarly (NFa/F (π, ν))Fad = 0 in Br(Fad). Thus by Lemma 2.4 there exist

f1, f2 ∈ F× such that

NFa/F (π, ν) = (d, f1) = (ad, f2) in Br(F ).

By Lemma 2.5 we have f1 = nand, where na ∈ NFa/F (F×a ) and nd ∈ NFd/F (F×d ).

Since (d, f1) = (d, f1n
−1
d ), we may replace f1 by f1n

−1
d and hence assume that

f1 = na ∈ NFa/F (F×a ), as desired. �

The following proposition has already been used in the proof of [MS22, Theorem
1.3].

Proposition 2.8. Let a ∈ F× and π, µ ∈ F×a be such that NFa/F (π, µ) = 0 in

Br(F ). Then there exists y ∈ F× such that (π, µy) = 0 in Br(Fa).

Proof. See [MS22, Proposition 4.4]. For completeness, we recall the proof. We use
the theory of Albert forms attached to biquaternion algebras; see [KMRT98, §16
A].

Let s : Fa → F be a nonzero linear map such that s(1) = 0, let Q be the
quaternion algebra (π, µ) and let Q0 ⊂ Q be the subspace of pure quaternions. Let
q : Q0 → Fa be the quadratic form given by squaring: we have q = 〈π, µ,−πµ〉.
Let s∗(q) be the transfer of q; see [Lam05, Chapter VII, §1]. Then it follows from
[KMRT98, Propositions (16.23) and (16.27)] that s∗(q) is similar to an Albert form
over F of the biquaternion F -algebra given by the corestriction NFa/F (π, µ); see
the proof of [KMRT98, Corollary (16.28)]. Thus, by Albert’s theorem [KMRT98,
Theorem 16.5], the fact that NFa/F (π, µ) is split implies that s∗(q) is hyperbolic.

Since s∗(q) is 6-dimensional and 4 > 6/2, the 4-dimensional subform s∗ 〈µ,−πµ〉
of s∗(q) is isotropic. We deduce that the form 〈µ,−πµ〉 over Fa represents an
element of F . If the form 〈µ,−πµ〉 is isotropic, then π ∈ F×2a , hence (π, µ) = 0
in Br(Fa) and we may take y = 1. Otherwise 〈µ,−πµ〉 over Fa represents an
element y ∈ F×, then µy is represented by 〈1,−π〉. By Lemma 2.3, this implies
that (π, µy) = 0 in Br(Fa) and completes the proof. �

2.3. Specialization. Recall from [Ros96, Remarks 1.11 and 2.5] that the Galois
cohomology functor H∗(−,Z/2Z) from the category of field extensions of F is a
cycle module, that is, it satisfies the axioms of [Ros96, Definitions 1.1 and 2.1].

For all integers n ≥ 1, all regular local F -algebras R of dimension n and
all ordered systems of parameters π := (π1, . . . , πn) in R, letting K and K0 :=
R/(π1, . . . , πn) be the fraction field and residue field of R, respectively, we have a
specialization map

sπ : H∗(K,Z/2Z)→ H∗(K0,Z/2Z),

which is a graded ring homomorphism defined as follows.
Suppose first that n = 1, that is, R is a discrete valuation ring and π = (π1).

Then we set sπ := ∂π1
((−π1) ∪ (−)), where ∂π1

: H∗+1(K,Z/2Z)→ H∗(K0,Z/2Z)
is the residue map at π1; see [Ros96, Definition 1.1, below D4].

Suppose now that n ≥ 2 and that the specialization map has been defined for all
regular local F -algebras of dimension < n and all ordered systems of parameters
on such algebras. For i = 2, . . . , n let πi ∈ R/(π1) be the reduction of πi modulo
π1 and set π := (π2, . . . , πn): it is an ordered system of parameters in the regular
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local ring R/(π1). Then sπ is defined by sπ := sπ ◦ s(π1), where π1 is viewed as an
element of the localization R(π1).

The ring homomorphism sπ depends on the choice of the ordered set π. Using
the isomorphism H2(F,Z/2Z) ' Br(F )[2] coming from Kummer Theory, we obtain
a specialization map

sπ : Br(K)[2]→ Br(K0)[2].

Let X be an F -variety and P ∈ X be a regular F -point. For all ordered systems
of parameters π = (π1, . . . , πn) in the regular local ring R = OX,P the previous
discussion yields specialization maps

sP,π : H∗(F (X),Z/2Z)→ H∗(F,Z/2Z), sP,π : Br(F (X))[2]→ Br(F )[2].

If f ∈ O×X,P (that is, f is regular and nonzero at P ) then it follows from the

definition that sP,π(f) = (f(P )). In particular, if f ∈ F× is constant then sP,π(f) =
(f).

Lemma 2.9. Let n ≥ 1 be an integer, X be an n-dimensional F -variety, P ∈ X
be a regular F -point, and π := (π1, . . . , πn) be an ordered system of parameters in
OX,P . Let F ′ be a finite separable field extension of F , let X ′ := X ×F F ′, let
P ′ be the only F ′-point of X ′ lying over P , and consider the system of parameters
π′ := (π1 ⊗ 1, . . . , πn ⊗ 1) in the regular local ring OX′,P ′ = OX,P ⊗F F ′. Then the
following squares commute:

H∗(F (X),Z/2Z) H∗(F,Z/2Z)

H∗(F ′(X ′),Z/2Z) H∗(F ′,Z/2Z)

(−)F ′(X′)

sP,π

(−)F ′

sP ′,π′

H∗(F ′(X ′),Z/2Z) H∗(F ′,Z/2Z)

H∗(F (X),Z/2Z) H∗(F,Z/2Z).

NF ′(X′)/F (X)

sP ′,π′

NF ′/F

sP,π

Lemma 2.9 admits an obvious generalization to the case when F ′ is an étale
F -algebra.

Proof. We prove the result by induction on n ≥ 1. When n = 1, the inclu-
sion OX,P ⊂ OX′,P ′ is an unramified extension of discrete valuation rings. Since
H∗(−,Z/2Z) is a cycle module, the commutativity of the left square then follows
from [Ros96, Definition 1.1, R3a], and that of the right square from [Ros96, Defi-
nition 1.1, R2c and R3b].

Suppose now that n ≥ 2. Let Q ∈ X be the point corresponding to the prime
ideal (π1) ⊂ OX,P and Y ⊂ X be the closure of Q. Similarly, let Q′ ∈ X ′ be the
point corresponding to the prime ideal (π1⊗1) ⊂ OX′,P ′ and Y ′ ⊂ X ′ be the closure
of Q′. For i = 2, . . . , n let πi ∈ OY,P be the reduction of πi modulo π1, and consider
the systems of parameters π := (π2, . . . , πn) in OY,P and π′ := (π2 ⊗ 1, . . . , πn ⊗ 1)
in OY ′,P ′ = OY,P ×F F ′. We obtain the following commutative diagram:

(2.4)

H∗(F ′(X ′),Z/2Z) H∗(F ′(Y ′),Z/2Z) H∗(F ′,Z/2Z)

H∗(F (X),Z/2Z) H∗(F (Y ),Z/2Z) H∗(F,Z/2Z).

s(π′
1)

NF ′(X′)/F (X) NF ′(Y ′)/F (Y )

sP ′,π′

NF ′/F

s(π1) sP,π

Indeed, since dim(Y ) = n− 1, the right square in (2.4) commutes by the inductive
assumption. Moreover, OX,Q is a discrete valuation ring and OX′,Q′ = OX,Q⊗F F ′,
hence the extension OX,Q ⊂ OX′,Q′ is an unramified extension of discrete valuation
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rings. The commutativity of the left square in (2.4) thus follows from [Ros96, Defi-
nition 1.1, R2c and R3b]. By definition, the composition of the top (resp. bottom)
horizontal arrows in (2.4) is equal to s(P ′,π′) (resp. s(P,π)), therefore the second
square in the statement of Lemma 2.9 commutes. The proof of the commutativ-
ity of the first square in the statement of Lemma 2.9 is entirely analogous, using
[Ros96, Definition 1.1, R3a] instead of [Ros96, Definition 1.1, R2c and R3b]. �

3. The key proposition

The purpose of this section is the proof of the following proposition.

Proposition 3.1. Let F be a field of characteristic different from 2. Let a, c, d ∈
F×, let α ∈ F×a , and let δ ∈ F×d be such that and NFd/F (δ) = c. Suppose that c
is not a square in F and that (α, δ) ∈ Br(Fa,d) is in the image of the pullback map
Br(F )[2]→ Br(Fa,d)[2]. Then there exist x ∈ F× and ν ∈ F×a such that:

(1) (αx, δ) = (αx, ν) in Br(Fa,d), and
(2) NFa/F (αx, ν) = 0 in Br(F ).

Proof. The proof will require several intermediate steps. To begin with, let u1, u2 ∈
F be such that δ = u1 + u2

√
d. We have

(3.1) u21 − du22 = NFd/F (δ) = c.

Let A ∈ Br(F )[2] be such that AFa,d = (α, δ) in Br(Fa,d). Then

(α, c) = NFa,d/Fa(α, δ) = 2AFa = 0 in Br(Fa).

It follows from Lemma 2.3 that there exist α1, α2 ∈ Fa such that

(3.2) α = α2
1 − cα2

2.

Lemma 3.2. In order to prove Proposition 3.1, we may assume that α1 and α2

are linearly independent over F .

Proof. Suppose that α1 and α2 are linearly dependent over F , so that there exists
t ∈ F such that either α1 = tα2 or α2 = tα1. By (3.2), in the first case α =
(t2 − c)α2

2, and in the second case α = (1 − ct2)α2
1. Thus, there exist i ∈ {1, 2}

and u ∈ F× such that α = uα2
i . Note that u ∈ F× and αi ∈ F×a because

α ∈ F×a . Letting x = u and ν = 1, we have (αx, δ) = (u2, δ) = 0 in Br(Fa,d)
and (αx, ν) = (ux, ν) = 0 in Br(Fa), hence (1) and (2) of Proposition 3.1 are
satisfied. �

In view of Lemma 3.2, from now on we assume that α1 and α2 are linearly
independent over F .

Lemma 3.3. The elements α1+u1α2 and u1α1+cα2 in Fa are linearly independent
over F .

Proof. Since α1 and α2 are linearly independent over F , it is enough to show that
the matrix [

1 u1
u1 c

]
is invertible, i.e., that c 6= u21. This is true because c is not a square in F . �
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Consider the field K := F (x1, x2), where x1 and x2 are algebraically independent
over F . Set

f := x21 − cx22 ∈ K×

and

h1 := α1x1 + cα2x2 ∈ K×a , h2 = α1x2 + α2x1 ∈ K×a .
The fact that h1, h2 ∈ K×a follows from the linear independence of α1 and α2 over
F . We have

(3.3) αf = (α2
1− cα2

2)(x21− cx22) = (α1x1 + cα2x2)2− c(α1x2 +α2x1)2 = h21− ch22,
hence

(3.4) c =

(
h1
h2

)2

− αf
(

1

h2

)2

= N(Ka)αf/Ka(ρ),

where

ρ :=
h1
h2

+

√
αf

h2
∈ (Ka)×αf .

We have ρ ∈ (Ka)×αf because c ∈ F×. Define

h := h1 + u1h2 ∈ K×a .
The fact that h ∈ K×a follows from Lemma 3.3. Finally, set

g := TrKa,d/Ka(δ) + Tr(Ka)αf/Ka(ρ) = 2u1 + 2
h1
h2

=
2h

h2
∈ K×a .

Lemma 3.4. (a) We have (αf, δ) = (αf, g) in Br(Ka,d).
(b) There exists h′ ∈ K×a such that

NKa/K(αf, g) = (d,NKa/K(h′)) in Br(K).

Proof. (a) Since NFd/F (δ) = c, we have NKa,d/Ka(δ) = c. On the other hand,
by (3.4) we know that N(Ka)αf/Ka(ρ) = c. The conclusion now follows from

Lemma 2.6, applied to the base field Ka and the elements ρ ∈ (Ka)×αf and δ ∈ K×a,d.
(b) By (a) and Proposition 2.7, it is enough to show that the corestrictions of

(αf, δ) ∈ Br(Ka,d) to Kd and Kad are zero. We have (αf, δ) = (α, δ) + (f, δ) in
Br(Ka,d), and so it suffices to show that the corestrictions of (α, δ) and (f, δ) from
Ka,d to Kd and Kad are trivial.

Recall that (α, δ) = AFa,d in Br(Fa,d) for some A ∈ Br(F )[2]. Thus

NFa,d/Fd(α, δ) = NFa,d/Fd(AFa,d) = 2AFd = 0 in Br(Fd).

Similarly, NFa,d/Fd(α, δ) = 0 in Br(Fad). Since corestrictions commute with base
change, it follows that the corestrictions of (α, δ) ∈ Br(Ka,d) to Kd and Kad are
zero.

Since δ ∈ F×d , we have NKa,d/Kd(f, δ) = (f, δ2) = 0 in Br(Kd). Moreover, by

definition f ∈ NKc/K(K×c ), hence by Lemma 2.3 we have NKa,d/Kad(f, δ) = (f, c) =
0 in Br(Kad). This shows that the corestrictions of (f, δ) ∈ Br(Ka,d) to Kd and
Kad are zero and completes the proof. �

We view K as the function field of the affine plane A2
F , with coordinates x1 and

x2. We consider the following divisors of A2
Fa

:

(i) the divisor D1 ⊂ A2
Fa

given by f = 0. We have D1 = D′1 ×F Fa, where

D′1 ⊂ A2
F is given by f = 0;
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(ii) the divisor D2 ⊂ A2
Fa

given by h2 = 0;

(iii) the divisor D3 ⊂ A2
Fa

given by h = 0.

The divisors D2 and D3 are irreducible. Since c is not a square in F , the divisor
D′1 is irreducible. If c is not a square in Fa, the divisor D1 is also irreducible. If
c = c21 for some c1 ∈ F×a , then D1 = D+

1 ∪D
−
1 , where D+

1 is given by the equation
x1 = c1x2 and D−1 is given by the equation x1 = −c1x2.

For i = 1, 2, 3, we denote by Fa(Di) the product of the residue fields of the
generic points of Di. We also write F (D′1) for the residue field of D′1. The étale
F (D′1)-algebra Fa(D1) has degree 2, and is split if and only if c is a square in Fa.

Lemma 3.5. (a) The Brauer class

B := (αf, g) + (d, h) ∈ Br(Ka)

is unramified away from D1, and the residue of B at D1 is equal to 2u1 + 2x1

x2
∈

Fa(D1)×/Fa(D1)×2.
(b) There exists C in the image of Br(F )→ Br(K) such that

NKa/K(αf, g) = (d,NKa/K(h)) + C in Br(K).

Proof. (a) We will prove (a) by computing the residues of (αf, g) and (d, h) at all
divisors of A2

Fa
. It is clear that (d, h) is unramified away from D3, and that its

residue at D3 is equal to d.

(i) The rational function x1

x2
on A2

F is regular and non-vanishing at the generic

point of D′1. We also denote by x1

x2
∈ F (D′1)× the reduction of x1

x2
. Since

f = 0 in F (D′1), we have (x1

x2
)2 = c in F (D′1). Moreover, the residue of

(αf, g) at D1 is equal to

2u1 + 2
α1

x1

x2
+ cα2

α1 + α2
x1

x2

= 2u1 + 2
x1
x2
.

(ii) It follows from (3.3) that αf = h21 is a square in Fa(D2), and hence (αf, g)
is unramified at D2. Since (d, h) is also unramified at D1, we conclude that
B is unramified at D2.

(iii) In Fa(D3) we have h = 0, hence u1h2 = −h1. It now follows from (3.1)
and (3.3) that

αf = h21 − ch22 = u21h
2
2 − ch22 = (u21 − c)h22 = du22h

2
2,

that is, αf = d in Fa(D3)×/Fa(D3)×2. Thus, the residue of (αf, g) at D3

is equal to d. The residue of (d, h) at D3 is also equal to d, therefore B is
unramified at D3.

(iv) If D ⊂ A2
Fa

is a prime divisor different from the Di (and also D+ and D−

if c is a square in Fa) and D′ ⊂ A2
F is the image of D, then (αf, g) is

unramified at D, hence NKa/K(αf, g) is unramified at D′.

This proves (a).
(b) By the compatibility of the residue maps with corestrictions, NKa/K(B)

is unramified away from D′1. Moreover, since D1 = D′1 ×F Fa, the residue of
NKa/K(αf, g) at D′1 is equal to NFa(D1)/F (D′

1)
(2u1 + 2x1

x2
) = (2u1 + 2x1

x2
)2, where

we have used the fact that x1

x2
∈ F (D′1). Therefore the residue of NKa/K(B) at

D′1 is trivial, that is, NKa/K(αf, g) is unramified at D′1. The class NKa/K(d, h) =
(d,NKa/K(h)) is also unramified at D′1, hence NKa/K(B) is also unramified at
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D′1. This shows that the Brauer class NKa/K(B) ∈ Br(K) is unramified on A2
F .

Therefore, by homotopy invariance of Br(−)[2] [Ros96, Proposition 2.2], NKa/K(B)
comes from Br(F ), as desired. �

The combination of Lemma 3.4(b) and Lemma 3.5(b) yields the following result.

Lemma 3.6. There exists η ∈ F×a such that

NKa/K(αf, g) = (d,NKa/K(hη)) in Br(K).

Proof. Let P be an F -point of A2
F and π = (π1, π2) be a system of parameters.

(If P = (P1, P2), we may take π1 = x1 − P1 and π2 = x2 − P2.) We specialize
the identities of Lemma 3.5(b) and Lemma 3.4(b) at P . From Lemma 2.9 and
the fact that the specialization map is a ring homomorphism we deduce that C =
(d,NKa/K(η)) for some η ∈ F×a , and hence NKa/K(αf, g) = (d,NKa/K(hη)) in
Br(K), as desired. �

The proof of Proposition 3.1 will follow from Lemma 3.4(a) and Lemma 3.6 by a
specialization argument. The point at which specialization will occur is determined
by the following lemma (with ξ = η).

Lemma 3.7. For every ξ ∈ Fa, there exists a unique F -point Pξ ∈ A2
F such that,

letting P ′ξ be the base change of Pξ to Fa, we have h(P ′ξ) = ξ.

Proof. Let P := (P1, P2) ∈ A2
F be an F -point, and let P ′ be the base change of P

to Fa. The equation h(P ′) = ξ reads

u1(α1P2 + α2P1) + (α1P1 + cα2P2) = ξ in Fa,

or equivalently

(3.5) (α1 + u1α2)P1 + (u1α1 + cα2)P2 = ξ in Fa.

We know from Lemma 3.3 that α1 +u1α2 and u1α1 + cα2 are linearly independent
over F , hence (3.5) has a unique solution (P1, P2) ∈ F × F . �

We are now in a position to prove Proposition 3.1. By Lemma 3.7, there exists
an F -point P ∈ A2

F such that h(P ′) = η, where P ′ is the base change of P to Fa.
Let π = (π1, π2) be an ordered system of parameters of the local ring at P . (As
in the proof of Lemma 3.6, if P = (P1, P2), then we may take π1 = x1 − P1 and
π2 = x2 − P2.) Let π′ = (π′1, π

′
2) be the system of parameters obtained by base

change of π to Fa. We also let x ∈ F× and ν ∈ F×a be such that (x) = sP,π(f) and
(ν) = sP ′,π′(g). We obtain the following string of equalities in Br(F ):

NFa/F (αx, ν) = sP ′,π′(NKa/K(αf, g))

= sP ′,π′(d,NKa/K(hη))

= (d,NFa/F (h(P ′)η))

= (d,NFa/F (η)2)

= 0.

Here the first and third equalities follow from Lemma 2.9, the second equality
follows from Lemma 3.6 and the fourth equality from the fact that h(P ′) = η. On
the other hand, Lemma 2.9 and Lemma 3.4(a) yield

(αx, δ) = (αx, ν) in Br(Fa,d).

This completes the proof. �
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Remark 3.8. In the proof of Proposition 3.1, we chose f to be a norm from K×c ,
hence x, being obtained by specialization from f , belongs to NFc/F (F×c ). Since
this choice is quite surprising and at the same time crucial for our argument, we
explain the reasoning that led us to it.

We first recall our general strategy, based on Proposition 2.1: we start with
(α, δ) ∈ Br(Fa,d) which belongs to the image of Br(F )[2] → Br(Fa,d)[2], and we
want to find x, y ∈ F× so that (αx, δy) = 0 in Br(Fa,d).

If no restrictions on x, y are made, it will often happen that (αx, δy) ∈ Br(Fa,d)
no longer comes from Br(F )[2]. Indeed, if (αx, δy) ∈ Br(Fa,d) comes from Br(F )[2],
then its corestrictions to Fa, Fd and Fad are trivial (the converse is also true). It
turns out that the latter condition is equivalent to the existence of na ∈ NFa/F (F×a ),

nb ∈ NFb/F (F×b ), nc ∈ NFc/F (F×c ), nd ∈ NFd/F (F×d ), nac ∈ NFac/F (F×ac) and

nbd ∈ NFbd/F (F×bd) such that

(3.6) x = ncnac, y = nbnbd, nacnbd = nand.

If the solutions to (3.6) could be rationally parametrized, one could then plug the
parametrization into (αx, δy) and hope to find x and y this way. The condition
nacnbd = nand, however, determines a non-rational variety. Our hope then becomes
to at least parametrize a suitable subset of the solutions of (3.6): this subset should
be large enough as to contain our objective x and y, but also small enough as to
allow a simple parametrization.

In [MS22, Theorem 1.3], where we solved the case when ad is a square, we avoided
this problem by choosing x = 1, y = nb (so that NFa/F (α, δy) = NFa/F (α, y) =
(b, y) = 0) and na = nc = nd = nac = nbd = 1.

In the general case, after several tries, we chose x = nc, y = nb and na = nd =
nac = nbd = 1. Therefore x is of the form x21− cx22, and we need to find a condition
for the triviality of (αx, δy) in Br(Fa,d). It is pure luck that this condition is a
system of linear equations and that this system can be solved.

4. Proof of Theorem 1.2

Proof of Theorem 1.2. If char(F ) = 2 then by [Koc02, Theorem 9.1] the maximal
pro-2-quotient of the absolute Galois group of F is free, hence by [MT17b, Remark
4.1] all mod 2 Massey products over F are defined and vanish. We may thus
assume that char(F ) 6= 2, so that by Kummer Theory the characters χ1, χ2, χ3, χ4

correspond to scalars a, b, c, d ∈ F×, uniquely determined up to nonzero squares.
Let a, b, c, d ∈ F×, and suppose that the Massey product 〈a, b, c, d〉 is defined.

Suppose first that c is a square in F , and let δ = 1. Then NFd/F (δ) = 1 = c in

F×/F×2. Moreover, since 〈a, b, c, d〉 is defined we know that (a, b) = 0 in Br(F ),
hence by Lemma 2.3 there exists α ∈ F×a such that NFa/F (α) = b. We have
(α, δ) = 0 in Br(Fa,d), and so by Proposition 2.1(a) the Massey product 〈a, b, c, d〉
vanishes.

Suppose now that c is not a square in F . By Proposition 2.1(b) we know that
there exist α ∈ F×a and δ ∈ F×d such thatNFa/F (α) = b in F×/F×2 andNFd/F (δ) =

c in F×/F×2 and such that (α, δ) belongs to the image of Br(F )[2]→ Br(Fa,d)[2].
Let v ∈ F× be such that NFd/F (δ) = cv2. The Massey product 〈a, b, c, d〉 is defined

(resp. vanishes) if and only if
〈
a, b, cv2, d

〉
is defined (resp. vanishes), hence we may

replace c by cv2 and thus assume that NFd/F (δ) = c. Since c is not a square in F ,
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the assumptions of Proposition 3.1 are now satisfied, hence there exist x ∈ F× and
ν ∈ F×a such that

(1) (αx, δ) = (αx, ν) in Br(Fa,d) and
(2) NFa/F (αx, ν) = 0 in Br(F ).

By Proposition 2.8, (2) implies the existence of y ∈ F× such that (αx, νy) = 0
in Br(Fa). Therefore by (1) we have (αx, δ) = (αx, ν) = (αx, y) in Br(Fa,d), and
hence (αx, δy) = 0 in Br(Fa,d). By Proposition 2.1, this means that the Massey
product 〈a, b, c, d〉 vanishes, as desired. �

Remark 4.1. (1) Let F be a field of characteristic different from 2 and a, b, c, d ∈ F×.
In [MS22, Corollary 3.9], we proved that the mod 2 Massey product 〈a, b, c, d〉 is
defined over F if and only if it is defined over some odd-degree field extension of
F . Combining this with Theorem 1.2, we deduce that 〈a, b, c, d〉 vanishes over F if
and only if it vanishes over some odd-degree field extension of F .

(2) Recall that a splitting variety for 〈a, b, c, d〉 is an F -variety X such that for
all field extensions K/F , 〈a, b, c, d〉 vanishes over K if and only if X(K) is not
empty. Let α ∈ F×a and δ ∈ F×d be such that NFa/F (α) = b and NFd/F (δ) = c.

Consider the F -variety G2
m × RFa,d/F (A2

Fa,d
), where RFa,d/F (−) denotes the Weil

restriction functor, G2
m has coordinates (s, t) and RFa,d/F (A2

Fa,d
) has coordinates

(u, v). Let X ⊂ G2
m × RFa,d/F (A2

Fa,d
) be the subvariety defined by the equation

sαu2 + tδv2 = 1: according to [GMT18, Below Theorem A.1], it is 6-dimensional,
smooth and geometrically rational. It is known that X is a splitting variety for
〈a, b, c, d〉; see [GMT18, Theorem 5.6 and A.1]. It follows from (1) that if X has a
zero-cycle of odd degree, then X has an F -point. We do not know how to prove
this property directly, without recourse to Theorem 1.2. (One should note that the
equation sαu2 + tδv2 = 1 is really a system of four equations over F .)
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[MT15a] Ján Mináč and Nguyen Duy Tân. The kernel unipotent conjecture and the vanishing

of Massey products for odd rigid fields. Adv. Math., 273:242–270, 2015. 3
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