ADDITIVE OPERATIONS BETWEEN CONNECTIVE K-THEORY
AND CHOW THEORY

ALEXANDER S. MERKURJEV

ABSTRACT. We determine all additive operations, stable and unstable, between connec-
tive K-theory and Chow theory modulo a prime integer p. It is proved the module of all
stable operations is free of rank p — 1 over the reduced Steenrod algebra.

1. INTRODUCTION

Let F' be a field of characteristic 0 and write Smp for the category of smooth quasi-
projective varieties over F. An oriented cohomology theory A* over F is a functor from
Sm? to the category of Z-graded commutative rings equipped with a push-forward struc-
ture and satisfying certain axioms (see [8, Definition 2.1]), including the localisation ax-
iom. We write

A"(X) = [T A"(X)
nezZ
for a variety X in Smp and let A*(F') denote the coefficient ring A*(Spec F').

Every oriented cohomology theory A* admits a theory of Chern classes c2 of vector
bundles.

The algebraic cobordism of Levine-Morel €2* is the universal oriented cohomology theory
(see [4]). A free theory is an oriented cohomology theory obtained from Q* by change of
coefficients (see [4, Remark 2.4.14] or [8, §4]).

Let A* be an oriented cohomology theory. There is a (unique) associated formal group
law

FGLA(z,y) =2 4+y+ >, afj:piyj e A*(F)|[x, y]]
ij>1
that computes the first Chern class of the tensor product of two line bundles L and L’
(see, for example, [4, §1.1] or [8, §2.3]):

¢ (L® L") = Falci (L), ¢ (L')).

Example 1.1. (see [3]) The Chow theory CH* takes a smooth variety X to the Chow
ring CH*(X) of classes of algebraic cycles on X. The coefficient ring CH*(F) = Z is
concentrated in degree 0 and FGLcy(z,y) = x + y is the additive group law.

Example 1.2. (see [1] and [2]) The connective K-theory takes a smooth variety X to
the ring CK*(X) of X (see [1] and [2]). The group CK"(X) is defined as the image of
the natural homomorphism Ko(M™(X)) = Ko(M" (X)), where M"(X) is the abelian
category of coherent Ox-modules whose support is of codimension at least n.

The author has been supported by the NSF grant DMS #1801530.
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The coefficient ring CK*(F) = Z[t] is the polynomial ring in the Bott element t €
CK Y(F) and FGLck(2,y) = © + y — txy is a multiplicative group law.

The two theories CH* and CK™ are related by an exact sequence
CK"™ ™ (X) 4 CK*(X) 5 CH"(X) — 0,

where the first map is multiplication by ¢ and ¢ is the class map taking the class in
CK"(X) of an Ox-module M from M™(X) to its cycle class in CH"(X). Thus, we have
a canonical graded ring isomorphism

CH*(X) = CK*(X)/t CK*(X).

The inclusion functor M"(X) < M°(X) yields a homomorphism CK"(X) — K(X).
Its image is the subgroup K(X)™ C Ky(X) generated by the classes of coherent Ox-
modules with codimension of support at least n. This map is an isomorphism if n < 0,
so we can identify CK"(X) with Ky(X) for all n < 0. Moreover,

CK*(X) @z Z[t,t7'] = CK*(X)[t '] ~ Ko(X) ®z Z[t, t7"].
The natural homomorphism Z[t] = CK*(F) — CK*(X) yields a morphism
¢ : Spec CK*(X) — Spec Z[t] = AL.

The fiber of ¢ over 0 is Spec CH*(X) and the fiber of ¢ over the complement G,, = AL —{0}
is Spec Ko(X) X G,;,. Thus, we can view Spec CK*(X) as a “deformation space” deforming
Ko(X) to CH"(X).

All cohomology theories in Examples 1.1 and 1.2 are free theories.

Definition 1.3. Let A* and B* be two oriented cohomology theories and m,n integers.
An additive operation A™ — B™ is a morphism between the functors A™ and B" con-
sidered as contravariant functors from Smp to the category of abelian groups (see [8,
Definition 3.3]). All additive operations A™ — B" form an abelian group OP™"(A*, B*).

Example 1.4. Multiplication by ¢ yields an operation CK™™ — CK" that is an isomor-
phism if n < 0. The operation ¢ : CK" — CH" is an example of a surjective additive
operation.

Let p be a prime integer. The group of operations OP™"(CH", CH" ®F,) was deter-
mined in [8, Theorem 6.6] (see Section 3). The F,-space OP™"(CH*,CH* ®F,) has a
canonical basis { P®} of Steenrod operations indexed by all sequences R = (rg,ry,...) of
non-negative integers, almost all zero, such that

IR|| ;=S rip =n and |R|:=Yr; =m.
20 i>0

Note that the F,-space OP™"(CH", CH* ®F,) is nonzero if and only if n > m > s,(n),
where s,(n) is the sum of digits of n written in base p, and n — m is divisible by p — 1.

The operations P¥ cannot be defined integrally, they cannot be even lifted modulo p?.

In the present paper we determine the structure of the groups OP™"(CK*, CH" ®F,).

The composition Q : CK™ 5 CH™ L CH" for an operation P is an operation in
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OP™"(CK*, CH* ®F,). But P is nonzero for special values of (m,n) (see above). Never-
theless, we show that the group OP™"(CK*, CH* ®F,) is nontrivial for all positive integers
n = m.

Precisely, let m’ be the smallest integer such that m’ > m, m’ > s,(n) and n —m/ is
divisible by p — 1. There are two maps

(1.5)  OP™"(CK*,CH* ®F,) — OP™"(CK*,CH* ®F,) +- OP™"(CH*, CH* ®F,),

where the first map is given via multiplication by " ~™ and the second map is induced
by ¢ : CK* — CH*. We prove (see Theorem 5.2 and Corollary 5.3) that both maps in
(1.5) are isomorphisms.

In other words, for every operation ) € OP™"(CK"*, CH* ®F,) there is a unique oper-
ation P € OP™"(CH*, CH* ®F,) (and for every P there is a unique operation Q) such
that the diagram

tm/—m

CK™ CK™

| lQ

CH™ -~ CH" ®F,

is commutative.

In Section 5 we also explicitly construct an F,-basis for OP™"(CK*, CH" ®F,) that
corresponds to the Steenrod basis in OP™"(CH*, CH* ®F,) under the isomorphisms (1.5).

In topology an operation is stable if it commutes with the suspension isomorphism.
The algebraic version of stability was defined, for example, in [8, §3.1]. By Example 6.6,
the algebra A of stable operations CH* ®F, — CH" ®F, is the reduced Steenrod algebra,
the factor algebra of the Steenrod algebra modulo the Bockstein operation (see [6]).

In Section 6 we determine the group OPZ (CK*, CH* ®F,) of stable operations CK* —
CH™ ®F,. We prove that it is a free left .A-module of rank p —1 and give an explicit basis.

In Section 7 we determine the group of integral operations OP™"(CK*, CH*). It ap-
peared to be an infinite cyclic group with a canonical generator. We also determine the
image of the natural map OP™"(CK"*, CH*) — OP(CK™, CH" ®F,), i.e., those operations
in OP(CK™, CH" ®F,) that can be lifted to an operation CK™ — CH" over Z. Recall
that the Steenrod operations P® cannot be lifted to integral operations (see Example
3.3).

In order to make the exposition clearer we moved the proofs of some technical state-
ments to Appendix.

ACKNOWLEDGEMENTS. I am grateful to Alexander Vishik for useful comments.

2. VISHIK’S THEOREM

We will be using the following fundamental theorem due to A. Vishik.

Theorem 2.1. [8, Theorem 6.2] Let A* be a free cohomology theory and let B* be any
oritented cohomology theory over a field F' of characteristic zero. Then there is an iso-
morphism between the group OP™"(A, B) of additive operations G : A™ — B™ and the
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group consisting of the following data {gs}s>o:
gs € Hom(A™*(F), B*(F)[[z1, 22, ..., %)),

where B*(F)[[x1,%a, ..., Ts]|m) denotes the subgroup of all homogeneous degree n power
series, satisfying

1) gs(a) is a symmetric power series for all s and o € A" 5(F),

2) gs(a) is divisible by x1x5--- x5 for all s and «,

3) gu(0)(y +5 2T, .1 22) = Gu(O) (U, T 1 20) + 9a(0) (2,0 )

Z gi-i-j-‘rs—l(& : afj)(yx’b7 ijv Zo, ... 7$s)7

ij>1
where af}j are the coefficients of the formal group law of A* and the sum y +p z is taken
with respect to the formal group law of B*. O

Note that go : A™(F) — B"(F') is the operation G on Spec F'.
The power series gs(«) are determined by the rule

G(a ’ 6114([’1) et C?(Ls)) = gs(a) (ClB<L1>7 SR 76{3([/3))7
where L, ..., Ls are line bundles over a smooth variety.

Consider the following cohomology theories: A* = CK* and B* = CH* ®S, where S is
a commutative ring (Z or F, in the sequel). The formal group laws of CK* and CH* ®S
are the multiplicative group law x+y —txy and the additive group law z +y, respectively.
We have CK*(F) = Z[t], where t € CK™'(F) is the Bott element and CH*(F)® S = S.
Let G : CK™ — CH" ®S be an additive operation. Let us assume that m > 0. Note that

e _J 0, if s <m;
CK™(F) = { Zts™m if s > m.
By Vishik’s theorem, (G is given by a collection of homogeneous polynomials

gs = gs(t°"™) € S|z, xe,...,xs] forall s=m
of degree n such that
(1) gs is a symmetric polynomial for all s > m,
(2) gs is divisible by xyxs - - -z for all s > m,
(3) gs+1 = —0(gs) for s = m, where for a polynomial h in s variables we define its
derivative
O(h)(y, z, 20, ..., xs) == h(y + 2,29, ..., 25) — h(y, a9, ..., x5) — h(z, 29, ..., Ty)
in Sly, z, g, ..., xs].
All polynomials gs with s > m are uniquely determined by g,, in view of (3).

Notation 2.2. Let S be a commutative ring and n > m positive integers. We write
Vinn(S) for the group of homogeneous symmetric polynomials f of degree nin S{z1, za, . . ., Ty
that are divisible by x5 - - - x,,, and such that 9°(f) are symmetric for all i > 0.

We have proved the following statement:

Proposition 2.3. Let m and n be positive integers.
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(1) The map
OP(CK™,CH" ®S) = V;un(95)

taking an operation G = {gs}s=0 to the polynomial (—1)™*"g,, is an isomorphism.
(2) The diagram

OP(CK™, CH" ®S) —>— Vi, u(S)

| o
OP(CK™, CH" ®S) —> Vs 1.0(S5)

18 commutative.

Example 2.4. Clearly, V,,, ,(S) =0 if n < m and V,,,,(S) = S - x122 - - - x,,,. Therefore,
OP(CK™,CH" ®5) = 0 if n < m. The polynomial z125 - - -, in V},, ,,(S) corresponds to

C

the canonical operation CK™ — CH™ — CH™ ®S.

3. STEENROD OPERATIONS

Notation 3.1. Let S be a commutative ring and n > m positive integers. We write
Wi (S) for the group of homogeneous symmetric polynomials f of degree n in S[xq, xo, . . ., Ty,
that are divisible by xyxs - - - z,,, and such that 9(f) = 0.

Clearly, Wi, n(S) C Viun(5).

Recall that the coefficient ring CH*(F') = Z is concentrated in degree 0. By Theorem
2.1, an additive operation G : CH™ — CH" ®S' is given by a collection of polynomials
{9s}s>0, where g = 0 for s # m and ¢, € Wy, n(S). It follows that the assignment
G — (—1)™""g,, yields an isomorphism in the top row of the commutative diagram

(3.2) OP(CH™, CH" ®S) —= W,,,..(S)

]

OP(CK™,CH" ®S) —== V5 u(S).

Example 3.3. The group W,,,(Z) coincides with Z - z129---x,, if m = n and zero
otherwise. Therefore, the only integral operations CH™ — CH" are multiples of the
identity when m = n.

Let p be a prime integer. We simply write W, ,, for W,, ,.(F,).

Lemma 3.4. (see [8, Theorem 6.6]) Let f be a nonzero symmetric homogeneous polyno-
mial of degree n in F,[z1,2s,...,2,,] that is divisible by 125 ---2,,. Then f € W,,, if
and only if every variable x; enters each monomial of f in degree a power of p.

Proof. Clearly, if every variable x; enters each monomial of f in degree a power of p,
we have J(f) = 0. Conversely, let cx{*--- x%" be a nonzero monomial of f such that
d(f) = 0. It suffices to show that all a; are p-powers. Suppose a; is not a p-power for
some 7. Since f is symmetric there is a monomial of f of the form cz{*---. Since a; is
not a p-power, the derivative of this monomial is not zero. As the derivatives of distinct
monomials don’t have common monomials, we have J(f) # 0, a contradiction. U
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We can determine a basis of W, ,, as follows.

Notation 3.5. Write R for the set of all nonzero sequences R = (rg,r1,79,...) of non-
negative integers, almost all zero. Clearly, the component-wise sum of two sequences in
R also belongs to R. Set
IR]| ;=Y rp" and |R|:=> ;.
i>0 i0
Note that ||R|| — |R| is divisible by p — 1 and ||R|| > |R| > s,(||R||), where s,(n) is the
sum of digits of n written in base p (see Lemma 4.3 below).

Notation 3.6. For every R € R denote by f¥ the “smallest” symmetric homogenous

polynomial in the variables x4, ..., z,, with m = |R| containing the monomial

2
(l‘1$2 Y ‘ITO)($T0+1 © Trgtry )p(xro+7”1+1 e xT0+T1+T2)p

of degree n = ||R||. The polynomial f7 is divisible by x1zg - - Ty,.

Clearly, all polynomials ff in F,[z1,2a,...,2,,] with ||R|| = n and |R| = m belong to
W and by Lemma 3.4 they form a basis of the F,-space W, ,,. Note that by Lemma
A5, Wy, # 0 if and only if n —m is divisible by p — 1 and n > m > s,(n).

Notation 3.7. Let n > m be positive integers and let R € R be such that ||R|| =
n and |R| = m. Write P® for the operation CH™ — CH" ®F, corresponding to f%
under the isomorphism in (3.2). Thus, all operations P form a basis for the space
OP(CH™,CH" ®F,). Note that the operation P shifts the codimension by n —m =

Zi>0 ri(p' —1).

Ifm>i>0and R= (m—1,4,0,0,...) then the corresponding operation CH™ —
CH™ P (denoted P?') is known as the reduced power operation. It is equal to the
operation x — zP if m = i.

4. THE SPACES V5,

Let p be a prime integer.

Definition 4.1. We say that a sequence R = (rg,71,...) € R is small if r; < p for all i.
Clearly, R is small if and only if R is the sequence of p-adic digits of a positive integer n.
We write R =: R(n) for such a sequence. Note that ||R|| = n and |R(n)| = s,(n).

Definition 4.2. For a sequence R € R we define the level of R:
_ Rl = s ([RI])
p—1

I(R) :

Lemma 4.3. Let R € R. Then
(1) I(R) is a non-negative integer;
(2) I(R) =0 if and only if R is small.

Proof. Clearly, s,(||R||) = ||R|| = |R| modulo p — 1, so [(R) is an integer. We have
Rl =30mi 2 3 sp(ri) = Xsp(rip') 2 5,(3mip') = s, (1| RID),

hence [(R) > 0. All the inequalities are equalities if and only if r; < p for all ¢, i.e., when
R is small. O
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Definition 4.4. Let m be a positive integer. An m-sequence is sequence a = (ay, as, . . ., Gy,)
of positive integers. Write
type(a) = 3 R(a;) € R
j=1
and call this sequence the type of a. In other words, if a; = Zi>0 x5 p' with 0 < @5 < p,
then type(a) = (ro,71,...) where r; = 7" | x;;.

We have
Itype(a)l] = 2 1B (el = 2 a5 = llaf] - and[type(a)l = 2 [R(a;)] = 2 splay).
J= J= J= J=
For an m-sequence a consider the (generalized) binomial coefficient
[la]]
= e’z
S B B

Lemma 4.5. Let a be an m-sequence of type R. Then
(1) |R| = m and |R| = m if and only if every a; is a p-power.
(2)
> spla;) = sp(|lal])

vpla) = b1 =I(R),

where v, 1s the p-adic valuation.

Proof. (1): We have
B = ¥ s,(a) > m
J
since s,(a;) > 1 for all j. The equality |R| = m holds if and only if s,(a;) = 1 for all j,
Le., every a; is a p-power.

n—=sp

(2) Follows from the equality v,(n!) = p—fn) for every positive integer n. O

We set % := "' - - - z% for an m-sequence a and variables xq, ..., z,.

Since 0™~ !(z™) is the sum of all monomials in (z1 + x5 + - - - + 2,,)" that are divisible
by zixs - - - x,,, the Binomial Theorem yields the equality

(4.6) O Ha™) =Y (a) - 2% in Zlwy, @0, .., T,
where the sum is taken over all m-sequences a such that ||a|| = n.
Lemma 4.7. For an m-sequence a every monomial 0f8(<a) -:v“) inZ[xy, o, ..., Tmy1] @S

of the form (b) - ¥ for an (m + 1)-sequence b such that either v,(b) > v,(a) or type(b) =
type(a).

Proof. Every monomial of 9({a) - 2) is of the form e-z® for an (m + 1)-sequence b, where
b= (bl, bg, ce ,bm+1) so that a = (bl + bg, bg c. ,berl), and

e= (bb“’) {a) = (b).

If (b1;b2> is divisible by p, then v,(b) > v,(a). Otherwise s,(by + ba) = s,(b1) + sp(b2),

1

hence R(b; + be) = R(b1) + R(b2) and therefore, type(b) = type(a). d
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Lemma 4.8. Suppose that a nonzero multiple of x{'x3*---x*--- is a monomial of

OF=(f) for a polynomial f € Flx1,xa,...,2m). Then {(a) is not zero in F,, where
a = (al,ag,...,ak).

Proof. The polynomial f must contain a nonzero multiple of a monomial z7 ---, where
n = ||a||. Since the monomial z{*x3?---z}* --- appears in (27 ---) with coefficient

(a), we have (a) # 0 in F,. O

Corollary 4.9. Let n > m > s,(n). Then there is no polynomial f € F,[x1, 2o, ..., 2]
such that O~ (f) is a nonzero polynomial in Wy, ip—1n.

Proof. Suppose 9P~*(f) is a nonzero polynomial in W, 4,1, i.e., 9P*(f) is a nonzero
linear combination of f% for all sequences R with ||R|| = n and |R| = m + p — 1. Every
two such ff have no common monomials (up to a scalar multiple), and every such R
is not small since |R| > m > s,(n) = s,(||R||) (see Lemma 4.3). Choose any such R
and an ¢ > 0 with r; > p. The polynomial f# and hence 9?~!(f) contains a monomial

(3

of the form (x1z5...1x,)" ---. This contradicts Lemma 4.8 since (a) is divisible by p for
a=(p,p,...,p") (p times). O
Notation 4.10. For a real number ¢ write [[¢]| for the smallest non-negative integer that
is > t. For positive integers n > m set
m — sp(n
L = ”—P()
p—1

Note that l,,, = 0 if and only if m < s,(n) and for m > s,(n) we have ly,41, = Ly + 1
if and only if n —m is divisible by p — 1 and ;41 = l,» otherwise.

=0

By Proposition A.1, I, is the minimum of v,(a) over all m-sequences a such that
lal| = n.

Proof. (1): In view of Lemma 4.5, v,(a) = I(R) and the sequence R is small if and only
if I(R) = 0.

(2): We have v,(a) = l(R) = ‘R|;f’i(") > m;i”l(”), hence v,(a) > ly,,,. The integer v,(a)

is equal to I, , = H%”l(n)ﬂ if and only if 0 < |R| —m <p—1. O

Definition 4.11. For all positive integers n > m define the subset R,,,, C R of sequences
as follows.

(1) If m < s,(n), then R,,, is the singleton {R(n)} consisting of the only small
sequence R with ||R|| = n. Note that |R| = s,(n).

(2) If m > s,(n), then R, is the (finite) set of all sequences R such that ||R|| = n and
0 < |R|—m < p—1. Note that |R] is the only integer in the interval [m,m+p—1)
that is congruent to n modulo p — 1.

Equivalently, R € R,,,, if and only if I(R) = l,;, .

By Lemma A.5, the set R,,, is not empty. Note that R,,,, = Ry, where m’ is the
smallest integer such that m’ > m, m’ > sp(n) and n — m' is divisible by p — 1. In
particular, R, , = Ryt1,n if either m < s,(n) or m > s,(n) and n — m is not divisible

by p — 1.
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Lemma 4.12. Let n > m be positive integers and a an m-sequence with ||a|| = n. Let
R = type(a).
(1) If m < sp(n), then by, = 0. Moreover, v,(a) = 0 if and only if R is small, i.e.,
R=R(n) € Run-
(2) If m > sp(n), then vy(a) = by, and vy(a) = by, if and only if 0 < |R|—m < p—1,
i.e., R € Ry, n. In the latter case |R| —m is the remainder on dividing n —m by
p—1.

Notation 4.13. For a positive integer n, set

where ¢; are p-adic digits of n. Note that s,(n) is not divisible by p.

Definition 4.14. Let n > m be positive integers and R € R,, . Define the following
polynomial in F,[zq, o, ...,z

1
R D (—p)_lm’"(CL}-x“ modulo p,

G -
S;!D (TL) type(a)=R

where the sum is taken over all m-sequences a such that type(a) = R.

Clearly, qﬁm is a symmetric polynomial.

Let n > m be positive integers. Recall that V;, , := V;,,.»(F,) is the vector space over F,
of homogeneous symmetric polynomials f of degree n in m variables z1, xo, ..., z,, that
are divisible by x1xs - - - 7, and such that 9°(f) are symmetric for all i > 0, where

a : Vk,n — VH—I,n

is the derivation.
In the following theorem we determine structure of the F,-spaces V,, ,,.

Theorem 4.15. Let n > m be positive integers and p a prime integer.

(1) If m < sp(n), then Vi, is a 1-dimensional vector space over F, spanned by qff ,,
for R = R(n);

(2) If m > s,(n), then the polynomials qﬁm for R € R, ,, form a basis for V,, ,;

(3) Vinn = Wi if m = sp(n) and n —m is divisible by p — 1;

(4) The map O : Vipy = Ving1n s an isomorphism if m < s,(n) or if m > s,(n) and
n —m s not divisible by p — 1;

(5) The map O : Vi — Ving1n @5 zero if m = sp(n) and n —m is divisible by p — 1;

(6) If R € Ry is such that |R| = m, then ¢} , = f";

(7) The polynomial %m)~(—p)_lm7"~8m_1(a:”) modulo p is equal to Y ¢l € Bylx1, 22, ..., 2],
where the sum in taken over all sequences R € Ry, pn;

(8) If R € Ry, then

R .
R _ Qm+1,n7 me < |R|)
M mn) = { 0, if m=|R|.
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Proof. (3): Let g € V,,,,. In view of Notation 3.1, it suffices to show that d(g) = 0.
Suppose d(g) # 0 and choose an i > 0 such that 9'(g) # 0 but 9'(g) = 0. Then 9'(g)
is a nonzero polynomial in W, ,,. It follows that n —m — 4 and hence ¢ are divisible by
p—1,s04 > p— 1. This contradicts Corollary 4.9 applied to f = 9" PT1(g).

(5) Follows from (3) since W, ,, C Ker(9).

(6): By Lemma 4.5(1), if a is an m-sequence, R = type(a) and |R| = m, then every q;
is a p-power. It follows that qﬁm is a multiple of f%. The multiplicity is determined in
Proposition A.3.

(7) Follows from the formula (4.6), Lemma 4.12 and Definition 4.14.

(8): If m < |R| then either m < s,(n) or m > s,(n) and n — m is not divisible by
p— 1. It follows that {,, ,, = 41, and Ry, = Roy1,n- By Lemma 4.7, the type of every
monomial in d(gy ,,) is equal to R. Therefore, the equality d(qf,,) = ¢}, , follows from
(7). If m = |R|, the statement follows from (6).

(2) and (4): Note first that it follows from (8) that all higher derivatives of ¢}t  are
symmetric, hence qﬁ,n € Viun-

The kernel of 0 : V,,, — Viy1, is spanned by f# that are polynomials in m variables
with m > s,(n) and n — m divisible by p — 1. Hence the maps 0 : V,,,,, = Vju41., are
injective if m > s,(n) and n —m is not divisible by p — 1. To prove surjectivity in (4), let
m’ be the smallest integer such that m’ > m and n — m’ is divisible by p — 1. It suffices
to show that the composition

1o} 0 1o}
Vm,n — Vm+1,n — = Vm’,n

is surjective. By (3), Vi, = Wi, has basis { f} with ||R|| = n and |R| = m’. In view
of (6) and (8), the image of the polynomial ¢7 , from V;,, under the composition is equal
to ff. This proves surjectivity of the composition and (2).

(1): As in the proof of (2) we see that ¢ | € V,,,. The rest follows from (4), (6) and (8)
since Vi, (n)n = Wi, (n)m is a 1-dimensional vector space spanned by f Rwith R = R(n). O

Remark 4.16. According to Theorem 4.15, one can construct a basis for V,, ,, as follows.
Let m/ be the smallest integer such that m’ > m, m’ > s,(n) and n — m/ is divisible by
p— 1. Then the polynomials ¢} for all sequences R with ||R|| = n and |R| = m’ form a
basis for V,,,,. By Lemma A.5, such sequences R exist, hence the space V/, , is nonzero
for every positive integers n > m.

5. OPERATIONS CK* — CH* ®F,

Let n and m be two integers and p a prime integer. In this Section we compute the
group of additive operations

OP™" := OP(CK™, CH" ®F,).

Recall that OP™" is isomorphic to V,,, if m and n are positive in view of Proposition
2.3.

The functors CK™ are canonically isomorphic to K, for all m < 0, so OP™" = OP%"
if m <0.
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Let A, : Ko — CH" be the n-th additive Chern class. It is uniquely determined by the
condition A, ([L]) = ¢{™(L)" for a line bundle L.

We can also view A, as an operation in OP%" between CK" = K, and CH" ®F,.
According to [7, §2.2], OP™" = OP"" is a cyclic group generated by A, if m < 0.

Notation 5.1. Let n > m be positive integers. For a sequence R € R,, 5, write wa for

the operation in OP™" corresponding to the polynomial qﬁ,n by Proposition 2.3.

Theorem 5.2. Let n > m be positive integers and p a prime integer.
(1) If m < sp(n), then OP™" is a 1-dimensional vector space over F, spanned by QF .
for R = R(n);
(2) If m > s,(n), then the operations fow for R € Ry, ,, form a basis for OP™";
(3) For a sequence R with ||R|| = n and |R| = m the operation QF

mn cotncides with
the composition

CK™ S CH™ 25 CH" ®F,.
The canonical map OP(CH™, CH" ®F,) 5 OP™" is an isomorphism.
(4) If R € Ry, then
m+1 ¢ m Qﬁv” n . Qﬁﬂ—l,na me < |R|;

[CK™™ — CK™ —= CH ®Fp]_{ 0 ifm— |R|
(5) If R is small with ||R|| =n and m < s,(n), then the composition
CK™ & K, 2% CH" — CH” @F,
.OR

m,n°

coincides with s, (n)

Proof. The statements (1)-(4) follow from Theorem 4.15.
(5): It follows from (4) that it suffices to consider the case m = 1. Let L be a line
bundle over a smooth base X. Then the composition

CK'(X) & Ko(X) 2% CHY(X) @ F,

takes ¢¥¥(L) to A, (1 — LY) = —cSH(LV)* = (=1)"HcSH(L)") ie., the composition is

given by the polynomial (—1)""!z" in view of Proposition 2.3. Recall that the operation
R is given by the polynomial %(—1)”*%”. O
) Sp n

Corollary 5.3. Let n be a positive integer.
(1) The natural maps

R - A, = OP"" - OP"" — OP*" — ... » OP*"" = F,. QF | .

where R = R(n), are isomorphisms of 1-dimension vector spaces. The image of
A, in OP*™" s equal to sh(n) - Qi(n)’n =s(n)- (Pfoc).
(2) If m is an integer such that n > m > s,(n) and m = n modulo p — 1, then the

natural maps
op™—Ptan , QP™ P 5 ... 5 OP™"

are isomorphisms. The set {PEoc 1s a basis for OP™".
)4 RERm
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(3) Let n = m be positive integers and let m' be the smallest integer such that m’ > m,
m' = s,(n) and n —m' is divisible by p — 1. Then the maps

opmn T P £ O™ (CH®, CH* @F,),

are 1somorphisms. The operation Qm,n corresponds to the Steenrod operation P,ff,vn
under these isomorphisms. O

It follows from the corollary that the groups OP™"™ are nonzero for all positive integers
n=m.

Remark 5.4. By Theorem 5.2, we have a commutative diagram
CK™*! CK™ CH™

T e

K" K™ 2 CH" @F,

where R = R(n) and m = |R| = s,(n). As s,(n) is invertible modulo p, it follows that
the Steenrod operation Q% = P o ¢ factors through K (m/m-+1),

6. STABLE OPERATIONS CK* — CH" ®F,
For any polynomial f € F,[xy, %o, ..., x,,] divisible by xy25 - - - z,,, define
p(f) = (5" Plen=o € Blz1,za,. . 2]
Example 6.1. Let R = (rg,71,...) € R. We have

o [0 ifrg =0;
S0(“—{]“%--]1, if g > 0.
where 1 := (1,0,0,...).

Note that if m > 2, then ¢ and 0 commute: p o d = do p. It follows that ¢ yields a
homomorphism
@ Vm,n — Vm—l,n—l-

Proposition 6.2. Let n > m > 1 be integers, R € Ry, . Then

0, if ro =0;
R\ _ 0o=70,
@(qm,n) { QTIEL ]%n 1, ifro>0.

Proof. Let 1o = 0 and let a be an m-sequence with type(a) = R. We have a; # 1 for all
i, hence p(2*) = 0 and therefore, ¢(gf ) = 0.

Now assume that 79 > 0. Note that R — 1 € R,,_1,,—1. Let m’ be the smallest integer
such that m" > m, m’ > s,(n) and m’ — n is divisible by p — 1. By Theorem 4.15 and

Example 6.1,
a%@(%ﬁ,n)) = @(a%qg;,n)) = gp(fR> = fRi]l = QTIELT}l,n 1= 8l(qm 1,n— 1)
where i = m/ — m. By Theorem 4.15 again, 0° : Vi — Vi 1s an isomorphism, hence
R \_ ,R-1
QO(Qm’n) n— 1,n—1" O
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Definition 6.3. A stable opemtion A* — B*t? of (relative) degree d is a collection of
operations G : A* — B for i > 0 such that G = R71(G*Y), where X7 is the
desuspension map (see [8, §3.1]). Write OP? (A*, B*) for the group of all stable operation
A* — B**+4 of degree d. In other words,

OP (A, B') = lim OP(A', B),
where the limit is taken with respect to X~! as transition maps.

If A* = B* the composition of stable operations makes OP (A*) := OPJ (A*, A*) a
graded ring.

Proposition 6.4. Let G : A™ — B" be an additive operation given by {gs}sso in view of
Theorem 2.1. Let {(X71g)s}s=0 be the data for Y~'G. Then

(X7'9)s(a) = ¢(gsr1(@)) in B(F)[[z1, 22, .. 2]l
for every s >0 and o € A™*(F).
Proof. Note that if R is a commutative ring and ¢ € R satisfies €2 = 0, then for every
polynomial f € Rlxy,z,. .., Zmymeq] divisible by x5 - - - 2,11 we have

flz1, .o xm, ) = o(f)(x1,. .., xm)e € R[x1, X9, . .., Ty

We apply this to e = ¢P(Leen) € BY(PL). Let a € A™*(F) for some s > 0 and let L; — X
for i = 1,...s be line bundles over a smooth base X. It follows from the definition of X!
(see [8, §3.1]) that the following equalities hold in BS(X x PL):

(571 g)s(@) (e’ (L), -, e (Ls))e = (RT'G) aci' (L) - 1 (Ls) e

= G(ac (L1) -+ ¢ (Ls)ei (Lean))

= gsr1(@)(cf (Ln), .. ¢ (Ls),€)

= @(gs1(a))(cr (Ll) - er (Ls))e. O

Notation 6.5. Let S be the set of sequences (s, S, ...) of nonnegative integers, almost
all zero. Write o : R — S for the (forgetful) map taking R = (rg,r1,79,...) to a(R) :=

(r1,7r2,...). We also write '
151]:= > si(p" = 1).
i>1

Example 6.6. (see [8, Theorem 6.6]) For every S € S let P be the stable operation of
degree ||S|| given by the sequence f# over all R € R such that a(R) = S (see Example
6.1). It follows from Lemma 3.4 and Example 6.1 that the stable operations P* for all
S € S form a basis of the space A := OP% (CH* ®F,). In fact, A is the reduced Steenrod

algebra, the factor algebra of the Steenrod algebra modulo the Bockstein operation (see
[6]).

For j > p—2 we have j -1 € Rj_,42;. It follows from Propositions 6.2 and 6.4 that
the sequence of operations

Q] o2 : CK/ 7% — CH ®F,
yields a stable operation L : CK* — CH*"?"? ®F, of degree p — 2.
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The collections of canonical operations CK' = CH' — CH'®F, and CK' 4 CcKi!
yield stable operations I : CK* — CH* — CH*®F, and J : CK* — CK*™! of degree 0
and —1, respectively.

Note that the group OP} (CK*, CH* ®F,) has the structure of a left module over the
reduced Steenrod algebra A (see Example 6.6).

For any positive integers n > m, every R = (rg,71,...) € Rytins: satisfies rg > 0 for
sufficiently large ¢. It follows that the map Ru4inti — Rmtitintit1 taking R to R+ 1
is a bijection for ¢ >> 0. By Propositions 6.2 and 6.4 together with Theorem 5.2(2), the
map

2—1 . OPm+i+1,n+i+1 N OPm+z’,n+i
is an isomorphism for ¢ >> 0. Therefore, the natural map
OP " (CK*, CH* ®F,) — OP™*""+

is an isomorphism for ¢ >> 0. In other words, stable operations of relative degree d = n—m
can be viewed as unstable operations in OP"" for large n and m.

Theorem 6.7. Let p be a prime integer.

(1) The identities Lo JP=2 =1 and Lo JP~' =0 hold in OP} (CK*,CH* ®F,).
(2) Stable operations Lo J* fori=0,1,...,p—2 form a basis of the free left A-module
OP; (CK", CH" ®F,).

Proof. (1): In view of Theorem 4.15, 3p_2(q§j1p+2’j) = qi']]-l = 2122 - - - x; for every j > p—2.
By Example 2.4, the latter polynomial corresponds to the canonical operation CK? <
CH’ — CH’ ®F,. It follows that Lo JP~2 = I. Since 8((15-.;1) =0, we have Lo JF~1 = 0.

(2): Let d be a non-negative integer and s is the remainder on dividing d by p — 1.
Consider the composition

(6.8) AT — OP%(CK*, CH* ®F,) — OP% #(CK*, CH* ®F,),

where the first map is the composition with Lo JJP~27% : CK* — CH*"* ®F, and the second
map is the composition with J°. The second map in (6.8) is an isomorphism by Corollary
5.3.

The composition in (6.8) is given by the composition with Lo JP~2750 J¥ = Lo JF72 =]
and hence is an isomorphism by Theorem 5.2(3). It follows that the first map in (6.8) is
an isomorphism, whence the result. 0

7. INTEGRAL OPERATIONS CK* — CH*

Notation 7.1. For a pair of integers n > m set

m—sp(n)

Cmn = HPW p=1 ﬂ?
p

where p runs over all prime integers and if n > m + 1 set

Cm+1,n
Qo= 2 € 7.
Cm,n
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The integer d,,,, is the product of all primes p such that m > s,(n) and n — m is
divisible by p — 1.

According to Proposition A.1

ged(a) = ¢,

where the ged is taken over all m-sequences a such that ||a|| = n.

Consider the polynomials

1
Immn = ~Z<a>-x“EZ[:cl,xg,...,:cm],

Cmn

where the sum is taken over all m-sequences a such that ||a|| = n. The coefficients of g, ,,
are relatively prime.

Proposition 7.2. The polynomial g, is a generator of the infinite cyclic group Vi, »(Z).

Proof. Let f € V,,,(Z). By [5, Proposition 2.8|, there is an h € Q[z]| such that f =
9™ 1(h). Clearly, h is a multiple of the monomial z™. By the formula (4.6),

amfl(xn) = Cmn " Imn-
Therefore, f is an integral multiple of g, . U

Corollary 7.3. The image of the generator ¢, , under the map 0 : Vyn(Z) = Vipr1.n(Z)
is equal to dy,p - Gmt1m-

Proof. We have
a(gm,n) = C;;n SOM(2") = C’;z}n “Crmtin Gmtin = Qmn - Gmtin U
Let p be a prime integer. Reducing modulo p we get a homomorphism
Vion(Z) = Viun(B) = Vi

In view of Theorem 4.15(7) it follows from the definition of the polynomials gy, , and g ,,
that the image of the generator g, , is equal to a nonzero multiple of the sum Zqin
over all R € R,,,. Therefore, > qﬁyn lifts to a polynomial in V,, ,(Z). In particular, by
Theorem 4.15(6), for every positive integers n > m such that m > s,(n) and n —m is
divisible by p—1, the sum Y f# over all R with ||R|| = n and |R| = m lifts to an integral
polynomial in V},, ,(Z). We have proved the following theorem.

Theorem 7.4. Let n > m be positive integers and p a prime.
(1) The group OP(CK™, CH") is infinite cyclic with a canonical generator G, ,,. The
image of G, under the map OP(CK™, CH") — OP(CK™*! CH") is equal to
dinn * Gmiin-
(2) An opem;rion Q € OP(CK™, CH" ®F,) lifts to an operation in OP(CK™, CH") if
and only if Q is a multiple of Y por Q1 .
(3) If m > sp(n) and n—m is divisible by p—1, an operation P € OP(CH™, CH" ®F,)
lifts to an operation in OP(CK™, CH") if and only if P is a multiple OfZReRm,n PR

m,n"*

It follows from Theorem 7.4 that the operation Qf. , in OP(CK™, CH" ®F,) lifts to an
integral operation in OP(CK™, CH") if and only if R,,,, is a singleton.
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Definition 7.5. Let R = (r¢,71,...) € R. We say that R is quasi-small if at least one of
the following holds:
(1) R is small;
(2) r; =0 for all i > 2 and r; < p;
(3) 1o < p and there is an s > 1 such that r, = p, roy3 < p and r; = 0 for all
1=1,...,s—1landi>s+2.

Theorem 7.6. The operation fom : CK™ — CH"®F,, where R € R, lifts to an

integral operation CK™ — CH" if and only if R is quasi-small. In particular, the reduced
power operation P* : CH™™ — CH™" ®F, with m > 0 lifts to an integral operation
CK™"" — CH™ ™ if and only if i < p.

Proof. The first statement follows from Theorem 7.4 and Proposition A.6. We have P! =
P® with R = (m,4,0,0....) and R is quasi-small if and only if i < p. O

We show that the reduced power operation Q! for large i cannot be even lifted modulo

P

Proposition 7.7. The reduced power operation Q' = P'oc: CK™ — CH™""? @F, with
m = 0 cannot be lifted to an operation modulo p* if i > p+ 1.

Proof. The polynomial corresponding to P? is f%, where R = (m,i,0,0,...). Note that
ff is defined over Z. Suppose there is an integer polynomial g in m + 4 variables such
that the polynomials 0%(f¥ + pg) are symmetric modulo p? for all £ > 0. Consider the
monomial h = 2{zoxs - - - T2l o - - ah . of the polynomial f#. We have

-1
0" (h) =pl- 212+ Ty g .‘rfn-l—i—‘rp—l'

By Lemma 4.8, a nonzero multiple of 2129 - - - Ty p2h, i1 -+ 2,454, 1 1S DOt @ monomial

of 9"~'(g) modulo p. Since p! = —p modulo p*, —p-21T2 -+ Triph, pi1 = Thyyigpy 1S &

monomial of the polynomial 7~1(ff + pg) modulo p?. As the polynomial 9P~ (£ + pg)

is symmetric, it also contains the monomial

D,.p p
—p- 171$2 e xi—lxi e Im+i+p—1~

Note that this monomial is not in 9P~ (f%), therefore zlah---2¥ (z; - Tymyivp1 is a

monomial of 37~!(g) modulo p. But this contradicts Lemma 4.8 since i — 1 > p. O

A. APPENDIX

For a real number a write [[a]| for the smallest non-negative integer that is not smaller
than a.

Proposition A.1. Let n > m be positive integers. Then

m — sp(n)
oo

where the minimum is taken over all m-sequences a such that ||al| = n.

minw,(a) = ||
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Proof. Choose a prime integer p. In view of Lemma 4.5, for an m-sequence a such that
[la|| = n we have

> splai) — sp(n) s M- sp(n)

’Up<a> = p— 1 = p— 1 )
hence
m — s,(n)
vpla) = Wﬁﬂ'
We will find an m-sequence a such that ||a|| = n and
m — s,(n)
(A2 wpla) = 222y,

Write n = Zfi(ln ) pti as the sum of sp(n) powers of p.
1

Case 1: m < sp(n). Set a; =p' for i =1,...,m—1 and a,, is defined by the condition
ar+ as + -+ + a, = n. We have Y"1 s,(a;) = s,(n), hence the equality (A.2) holds by
Lemma 4.5(2).

Case 2: m > s,(n). Set a; = p' for i = 1,...,s,(n), so the condition a; + as + - -+ +
as,(ny = 1 holds. But the number of a;’s is smaller than m. Choose one of the a;’s that
is equal to p*® for s > 1. Then replace a; with p numbers that are all equal to p*~!. The
integer ||a|| does not change but the number of a;’s increases by p—1. Continue doing this
we stop when the first time the number m’ of a;’s becomes at least m, say m’ = m + j,
where 0 < j < p— 1. Note that m' = s,(n) + (p — 1)b, where b = H%”fn)ﬂ

Since m > s,(n) there is ¢ such that the equality a; = p' holds for at least p values
of i. Now choose j + 1 numbers among the a;’s that are equal to p' and replace all
of them by one integer (j + 1)p*. The number of a;’s is equal to m now. We have
> ispla;)) = (m—1)+ (j+ 1) = m’ and hence again by Lemma 4.5(2),

= (Sis(00) = sln) ' = sylm) om0
p—1 p—1 p—1

Proposition A.3. Let a be an m-sequence such that all a; are powers of p and set
n = |lal|. Then

T 1. O

7m+3p(n)
(—=p) 71 -{a) =coler! ¢! modulo p,

where ¢; are p-adic digits of n.
Proof. For a positive integer n set

O(n) :==p "™ .n4pZ e F.
The function 6 is multiplicative.

Lemma A.4. The function 6 satisfies the following properties:
(1) O((kp)!) = (=1)*0(K!) for every k > 0.

n—sp(n

(2) (n!) = (=1) 71 -cley! - - - ¢! modulo p, where ¢; are p-adic digits of n.
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Proof. (1): For any i > 0 let

a; == (1+1ip)(2+ip)---(p— 1 +ip).
We have (kp)! = apa; -+ -ag_1 - p* - k! and 6(a;) = —1 by Wilson Theorem, whence the
result.
(2): We prove the statement by induction on the number 7 of p-adic digits of n. The
statement is clear if r = 1. Write n in the form n = ¢q + kp, where

k=ci4+cop+--+ep

Let t = (1 + kp)(2+ kp) - - (co + kp), so t = ¢y! modulo p. We have n! =t - (kp)! and by
the first statement of the lemma,

O(n!) = 0(t) - 0((kp)") = co! - (—1)% - (k).

k—sp(k)
By induction, O(k!) = (—=1) 71 - ¢ley!- - - ¢l It remains to notice that
ko splh) ko= sp) _n—sy(n) .
p—1 p—1 p—1

o

It follows from Lemma A.4(2) that 6((p*)!) = (—1)7_11. Since every a; is a p-power, we
have

B(arlas) - ap!) = (—1)2mimt 5= = (—1)5F
—m+sp(n)
By Lemma A.4, the residue of p~ »=1 - (a) modulo p is equal to
n—sp(n) nom m—sp(n)
0({a)) = 0(n!)/0(arlas! - - ap!) = (1) 71 coley! - el /(=1) 71 = (=1)" 71 -pleg! - ¢!
]

Lemma A.5. Let n and m be two positive integers such that n > m > Sp(n) and n —m
is diwvisible by p — 1. Then there is an R such that ||R|| = n and |R| = m.

Proof. We prove the statement by induction on m. If m = s,(n), then R = R(n) is the
sequence of p-adic digits of n.

(m = m+p—1): Let R be so that ||R|| =n and |R| = m. Write R = (r¢,71,72,...).
As m < n, there is i > 0 such that r; > 0. Then for

R/ = (T’Q, N, P | +p7 Ty — 1, Tit1, - .),
we have ||R/||=n and |R'|=m+p— 1. O
Proposition A.6. Let R € R,,,. Then R,,,, = {R} is the singleton if and only if R is
quasi-small (see Definition 7.5).

Proof. Replacing m by the smallest integer m' such that m' > m, m’ > s,(n) and n —m/

is divisible by p — 1 we may assume that |R| = m for every R € R, .
Let R, be a singleton. We will show that R is quasi-small. If 7, > p for some k > 1
consider R’ with

ri + p, ifi=4k—1;
oo ri—p—1, ifi=Fk;
O R I ifi=Fk+1,

T4, otherwise.
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Then R’ # R and ||R'|| = n, |R'| = m. Thus, r; < p for all i > 1.
If R is not small then there is s > 0 with ry > p (and hence ry =pif s > 1). If s =0
we claim that r;, =0if ¢ > 2. Let r, > 1 for some k > 2. If kK = 2 consider R’ with

i —p, if i =0;

oo ri+p+1, ifi=1;

Y -1, if i = 2;
ri, otherwise.

Then R' # R and ||R'|| =n, |R|=m. If k >

T, —D,
r; + 1,

Ti - i +p7
r; — ]_,
Ty

3 consider R’ with

if i =0;

if i = 1;
ifi=~k—1;
if i = k;
otherwise.

Then R' # R and ||R'|| = n, |R'| = m. We proved the claim, so R is quasi-small.
Now consider the case 1o < p and ry = p for s > 1. We claim that rs,; < p and r; =0
forallt=1,...,s —1and ¢ > s+ 2, i.e., R is quasi-small. Suppose r, > 1 for some

k=1,...,s— 1. Consider R’ with

T +p>
i — 1,

3 i —D,
T + 1,
Ti,

ifi=FkFk—1;
if i = k;

if i = s;
ifi=s5+1;
otherwise.

Then R' # R and ||R'|| = n, |R'| = m, a contradiction. Note that this argument (with
k = s and s replaced by s + 1) also shows that ry.; < p.
Suppose 1, > 1 for some k> s+ 2. If kK = s+ 2, consider R’ with

i — D,
/ rz+p+1a
r. =
! T 17

T,

if i = s;
ifi=s5+1;
ifi=k=s+2;
otherwise.

Then R’ # R and ||R'|| = n, |R| = m, a contradiction. If £ > s+ 2, consider R’ with

ri — D,
T + 17

T, = i+ D,
r; — 1,
T,

if i = s;
ifi=s541;
ifi=4kF—1;
if i = k;
otherwise.

Then R’ # R and ||R'|| = n, |R'| = m, a contradiction. The claim is proved.

Now assume that R is quasi-small and R’ € R,,,. We will show that R' = R.
If R is small, then since I(R') = I(R) = 0, the sequence R’ is also small. It readily

follows that R’ = R.
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Write R = (r(, 71, ...,7%,0,0,...) with 7., # 0. We have:

=R = R = X0 S’ = IIRI = IRl = £ i

120 120
It follows that

doTidi = ) T
i>1 i>1
where ¢; = ’% =1+p+---+p~L
Suppose r; = 0 if i > 2 and r;y < p. Then ), rig; = 1 < p. Since ¢; > p if i > 2, we
have r; = 0 if i > 2. It follows that R’ = R.

Finally suppose that there is s > 1 such that r; = p and rg < p, 7511 < p and r; =0
fort=1,...,s—1and i > s+ 2. We have

DT = YTl = Pls + Tor1dst1 < Phs + (P — 1)qss1 < gora
i>1 i>1
It follows that 7} =0 if i > s+ 2.
We claim that 7,1 > 7., ;. Indeed,

s+1
(Tst1 + D) gss1 > PGs + Tor1Gsi1 = D TiG = Toq1Gst1,
i=1

therefore, 7,41 +1 > 7., whence the claim.
We claim that o > r{ if R # R'. Indeed in this case either r; > 0 for somei¢ =1,...,s—1
or 1., # ret1 (and hence royq > 1., ), and therefore,

S

(Tsp1 — T/s+1)(%+1 —qs) + Tg(qé’ —q) > 0.

i=1
Equivalently,
s+1 , s+1 ,
(A7) Tsr1(@sr1 — qs) + (D2 ri)gs — > 1igi > 0.
i=1 i=1

Recall that
s+1 , s+1
Z T4 = Z TiQi = Tsqs + Ts11qs+1
i=1 i=1

and

s+1 , , s+1
Yori=|R|=|R|=> ri=ro+rs+re1.
i=0 i=0

It follows that the left hand side of the inequality (A.7) is equal to roqs — 7(¢s, hence
ro > 1. The claim is proved.

Since ry is congruent to r(, modulo p and r{, > 0, we deduce that 7y > p, a contradiction.
[
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