ADDITIVE OPERATIONS BETWEEN CONNECTIVE K-THEORY AND CHOW THEORY

ALEXANDER S. MERKURJEV

Abstract

We determine all additive operations, stable and unstable, between connective K-theory and Chow theory modulo a prime integer p. It is proved the module of all stable operations is free of rank $p-1$ over the reduced Steenrod algebra.

1. Introduction

Let F be a field of characteristic 0 and write $\mathbf{S m}_{F}$ for the category of smooth quasiprojective varieties over F. An oriented cohomology theory A^{*} over F is a functor from $\mathbf{S m}_{F}^{o p}$ to the category of \mathbb{Z}-graded commutative rings equipped with a push-forward structure and satisfying certain axioms (see [8, Definition 2.1]), including the localisation axiom. We write

$$
A^{*}(X)=\coprod_{n \in \mathbb{Z}} A^{n}(X)
$$

for a variety X in $\mathbf{S m}_{F}$ and let $A^{*}(F)$ denote the coefficient ring $A^{*}(\operatorname{Spec} F)$.
Every oriented cohomology theory A^{*} admits a theory of Chern classes c_{n}^{A} of vector bundles.

The algebraic cobordism of Levine-Morel Ω^{*} is the universal oriented cohomology theory (see [4]). A free theory is an oriented cohomology theory obtained from Ω^{*} by change of coefficients (see [4, Remark 2.4.14] or [8, §4]).

Let A^{*} be an oriented cohomology theory. There is a (unique) associated formal group law

$$
\operatorname{FGL}_{A}(x, y)=x+y+\sum_{i, j \geqslant 1} a_{i, j}^{A} x^{i} y^{j} \in A^{*}(F)[[x, y]]
$$

that computes the first Chern class of the tensor product of two line bundles L and L^{\prime} (see, for example, $[4, \S 1.1]$ or $[8, \S 2.3]$):

$$
c_{1}^{A}\left(L \otimes L^{\prime}\right)=F_{A}\left(c_{1}^{A}(L), c_{1}^{A}\left(L^{\prime}\right)\right)
$$

Example 1.1. (see [3]) The Chow theory CH^{*} takes a smooth variety X to the Chow ring $\mathrm{CH}^{*}(X)$ of classes of algebraic cycles on X. The coefficient ring $\mathrm{CH}^{*}(F)=\mathbb{Z}$ is concentrated in degree 0 and $\mathrm{FGL}_{\mathrm{CH}}(x, y)=x+y$ is the additive group law.

Example 1.2. (see [1] and [2]) The connective K-theory takes a smooth variety X to the ring $\mathrm{CK}^{*}(X)$ of X (see [1] and [2]). The group $\mathrm{CK}^{n}(X)$ is defined as the image of the natural homomorphism $K_{0}\left(\mathcal{M}^{n}(X)\right) \rightarrow K_{0}\left(\mathcal{M}^{n-1}(X)\right)$, where $\mathcal{M}^{n}(X)$ is the abelian category of coherent \mathcal{O}_{X}-modules whose support is of codimension at least n.

The author has been supported by the NSF grant DMS \#1801530.

The coefficient ring $\mathrm{CK}^{*}(F)=\mathbb{Z}[t]$ is the polynomial ring in the Bott element $t \in$ $\mathrm{CK}^{-1}(F)$ and $\mathrm{FGL}_{\mathrm{CK}}(x, y)=x+y-t x y$ is a multiplicative group law.

The two theories CH^{*} and CK^{*} are related by an exact sequence

$$
\mathrm{CK}^{n+1}(X) \xrightarrow{t} \mathrm{CK}^{n}(X) \xrightarrow{c} \mathrm{CH}^{n}(X) \rightarrow 0,
$$

where the first map is multiplication by t and c is the class map taking the class in $\mathrm{CK}^{n}(X)$ of an \mathcal{O}_{X}-module M from $\mathcal{M}^{n}(X)$ to its cycle class in $\mathrm{CH}^{n}(X)$. Thus, we have a canonical graded ring isomorphism

$$
\mathrm{CH}^{*}(X) \xrightarrow{\sim} \mathrm{CK}^{*}(X) / t \mathrm{CK}^{*+1}(X) .
$$

The inclusion functor $\mathcal{M}^{n}(X) \hookrightarrow \mathcal{M}^{0}(X)$ yields a homomorphism $\mathrm{CK}^{n}(X) \rightarrow K_{0}(X)$. Its image is the subgroup $K_{0}(X)^{(n)} \subset K_{0}(X)$ generated by the classes of coherent $\mathcal{O}_{X^{-}}$ modules with codimension of support at least n. This map is an isomorphism if $n \leqslant 0$, so we can identify $\mathrm{CK}^{n}(X)$ with $K_{0}(X)$ for all $n \leqslant 0$. Moreover,

$$
\mathrm{CK}^{*}(X) \otimes_{\mathbb{Z}[t]} \mathbb{Z}\left[t, t^{-1}\right]=\mathrm{CK}^{*}(X)\left[t^{-1}\right] \simeq K_{0}(X) \otimes_{\mathbb{Z}} \mathbb{Z}\left[t, t^{-1}\right] .
$$

The natural homomorphism $\mathbb{Z}[t]=\mathrm{CK}^{*}(F) \rightarrow \mathrm{CK}^{*}(X)$ yields a morphism

$$
\varphi: \operatorname{Spec} \operatorname{CK}^{*}(X) \rightarrow \operatorname{Spec} \mathbb{Z}[t]=\mathbb{A}_{\mathbb{Z}}^{1}
$$

The fiber of φ over 0 is $\operatorname{Spec} \mathrm{CH}^{*}(X)$ and the fiber of φ over the complement $\mathbb{G}_{m}=\mathbb{A}_{\mathbb{Z}}^{1}-\{0\}$ is Spec $K_{0}(X) \times \mathbb{G}_{m}$. Thus, we can view $\operatorname{Spec}^{\operatorname{CK}}(X)$ as a "deformation space" deforming $K_{0}(X)$ to $\mathrm{CH}^{*}(X)$.

All cohomology theories in Examples 1.1 and 1.2 are free theories.
Definition 1.3. Let A^{*} and B^{*} be two oriented cohomology theories and m, n integers. An additive operation $A^{m} \rightarrow B^{n}$ is a morphism between the functors A^{m} and B^{n} considered as contravariant functors from $\mathbf{S m}_{F}$ to the category of abelian groups (see [8, Definition 3.3]). All additive operations $A^{m} \rightarrow B^{n}$ form an abelian group $\mathbf{O P}^{m, n}\left(A^{*}, B^{*}\right)$.
Example 1.4. Multiplication by t yields an operation $\mathrm{CK}^{n+1} \rightarrow \mathrm{CK}^{n}$ that is an isomorphism if $n<0$. The operation $c: \mathrm{CK}^{n} \rightarrow \mathrm{CH}^{n}$ is an example of a surjective additive operation.

Let p be a prime integer. The group of operations $\mathbf{O P}^{m, n}\left(\mathrm{CH}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ was determined in [8, Theorem 6.6] (see Section 3). The \mathbb{F}_{p}-space $\mathbf{O P}^{m, n}\left(\mathrm{CH}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ has a canonical basis $\left\{P^{R}\right\}$ of Steenrod operations indexed by all sequences $R=\left(r_{0}, r_{1}, \ldots\right)$ of non-negative integers, almost all zero, such that

$$
\|R\|:=\sum_{i \geqslant 0} r_{i} p^{i}=n \quad \text { and } \quad|R|:=\sum_{i \geqslant 0} r_{i}=m .
$$

Note that the \mathbb{F}_{p}-space $\mathbf{O P}^{m, n}\left(\mathrm{CH}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ is nonzero if and only if $n \geqslant m \geqslant s_{p}(n)$, where $s_{p}(n)$ is the sum of digits of n written in base p, and $n-m$ is divisible by $p-1$.

The operations P^{R} cannot be defined integrally, they cannot be even lifted modulo p^{2}.
In the present paper we determine the structure of the groups $\mathbf{O P}^{m, n}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$. The composition $Q: \mathrm{CK}^{m} \xrightarrow{c} \mathrm{CH}^{m} \xrightarrow{P} \mathrm{CH}^{n}$ for an operation P is an operation in
$\mathbf{O P}^{m, n}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$. But P is nonzero for special values of (m, n) (see above). Nevertheless, we show that the group $\mathbf{O P}^{m, n}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ is nontrivial for all positive integers $n \geqslant m$.

Precisely, let m^{\prime} be the smallest integer such that $m^{\prime} \geqslant m, m^{\prime} \geqslant s_{p}(n)$ and $n-m^{\prime}$ is divisible by $p-1$. There are two maps

$$
\begin{equation*}
\mathbf{O P}^{m, n}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right) \rightarrow \mathbf{O P}^{m^{\prime}, n}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right) \leftarrow \mathrm{OP}^{m^{\prime}, n}\left(\mathrm{CH}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right) \tag{1.5}
\end{equation*}
$$

where the first map is given via multiplication by $t^{m^{\prime}-m}$ and the second map is induced by $c: \mathrm{CK}^{*} \rightarrow \mathrm{CH}^{*}$. We prove (see Theorem 5.2 and Corollary 5.3) that both maps in (1.5) are isomorphisms.

In other words, for every operation $Q \in \mathbf{O P}^{m, n}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ there is a unique operation $P \in \mathbf{O P}^{m^{\prime}, n}\left(\mathrm{CH}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ (and for every P there is a unique operation Q) such that the diagram

is commutative.
In Section 5 we also explicitly construct an \mathbb{F}_{p}-basis for $\mathbf{O P}^{m, n}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ that corresponds to the Steenrod basis in $\mathbf{O P}^{m^{\prime}, n}\left(\mathrm{CH}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ under the isomorphisms (1.5).

In topology an operation is stable if it commutes with the suspension isomorphism. The algebraic version of stability was defined, for example, in [8, §3.1]. By Example 6.6, the algebra \mathcal{A} of stable operations $\mathrm{CH}^{*} \otimes \mathbb{F}_{p} \rightarrow \mathrm{CH}^{*} \otimes \mathbb{F}_{p}$ is the reduced Steenrod algebra, the factor algebra of the Steenrod algebra modulo the Bockstein operation (see [6]).

In Section 6 we determine the group $\mathbf{O P}_{\mathrm{st}}^{*}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ of stable operations $\mathrm{CK}^{*} \rightarrow$ $\mathrm{CH}^{*} \otimes \mathbb{F}_{p}$. We prove that it is a free left \mathcal{A}-module of rank $p-1$ and give an explicit basis.

In Section 7 we determine the group of integral operations $\mathbf{O P}^{m, n}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*}\right)$. It appeared to be an infinite cyclic group with a canonical generator. We also determine the image of the natural map $\mathbf{O P}^{m, n}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*}\right) \rightarrow \mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n} \otimes \mathbb{F}_{p}\right)$, i.e., those operations in $\mathrm{OP}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n} \otimes \mathbb{F}_{p}\right)$ that can be lifted to an operation $\mathrm{CK}^{m} \rightarrow \mathrm{CH}^{n}$ over \mathbb{Z}. Recall that the Steenrod operations P^{R} cannot be lifted to integral operations (see Example 3.3).

In order to make the exposition clearer we moved the proofs of some technical statements to Appendix.

Acknowledgements. I am grateful to Alexander Vishik for useful comments.

2. Vishik's Theorem

We will be using the following fundamental theorem due to A. Vishik.
Theorem 2.1. [8, Theorem 6.2] Let A^{*} be a free cohomology theory and let B^{*} be any oriented cohomology theory over a field F of characteristic zero. Then there is an isomorphism between the group $\mathbf{O P}^{m, n}(A, B)$ of additive operations $G: A^{m} \rightarrow B^{n}$ and the
group consisting of the following data $\left\{g_{s}\right\}_{s \geqslant 0}$:

$$
g_{s} \in \operatorname{Hom}\left(A^{m-s}(F), B^{*}(F)\left[\left[x_{1}, x_{2}, \ldots, x_{s}\right]\right]_{(n)}\right),
$$

where $B^{*}(F)\left[\left[x_{1}, x_{2}, \ldots, x_{s}\right]\right]_{(n)}$ denotes the subgroup of all homogeneous degree n power series, satisfying

1) $g_{s}(\alpha)$ is a symmetric power series for all s and $\alpha \in A^{m-s}(F)$,
2) $g_{s}(\alpha)$ is divisible by $x_{1} x_{2} \cdots x_{s}$ for all s and α,
3) $g_{s}(\alpha)\left(y+_{B} z, x_{2}, \ldots, x_{s}\right)=g_{s}(\alpha)\left(y, x_{2}, \ldots, x_{s}\right)+g_{s}(\alpha)\left(z, x_{2}, \ldots, x_{s}\right)+$

$$
\sum_{i, j \geqslant 1} g_{i+j+s-1}\left(\alpha \cdot a_{i, j}^{A}\right)\left(y^{\times i}, z^{\times j}, x_{2}, \ldots, x_{s}\right),
$$

where $a_{i, j}^{A}$ are the coefficients of the formal group law of A^{*} and the sum $y+{ }_{B} z$ is taken with respect to the formal group law of B^{*}.

Note that $g_{0}: A^{m}(F) \rightarrow B^{n}(F)$ is the operation G on $\operatorname{Spec} F$.
The power series $g_{s}(\alpha)$ are determined by the rule

$$
G\left(\alpha \cdot c_{1}^{A}\left(L_{1}\right) \cdot \ldots \cdot c_{1}^{A}\left(L_{s}\right)\right)=g_{s}(\alpha)\left(c_{1}^{B}\left(L_{1}\right), \ldots, c_{1}^{B}\left(L_{s}\right)\right)
$$

where L_{1}, \ldots, L_{s} are line bundles over a smooth variety.
Consider the following cohomology theories: $A^{*}=\mathrm{CK}^{*}$ and $B^{*}=\mathrm{CH}^{*} \otimes S$, where S is a commutative ring (\mathbb{Z} or \mathbb{F}_{p} in the sequel). The formal group laws of CK^{*} and $\mathrm{CH}^{*} \otimes S$ are the multiplicative group law $x+y-t x y$ and the additive group law $x+y$, respectively.

We have $\mathrm{CK}^{*}(F)=\mathbb{Z}[t]$, where $t \in \mathrm{CK}^{-1}(F)$ is the Bott element and $\mathrm{CH}^{*}(F) \otimes S=S$. Let $G: \mathrm{CK}^{m} \rightarrow \mathrm{CH}^{n} \otimes S$ be an additive operation. Let us assume that $m>0$. Note that

$$
\mathrm{CK}^{m-s}(F)= \begin{cases}0, & \text { if } s<m \\ \mathbb{Z} t^{s-m}, & \text { if } s \geqslant m\end{cases}
$$

By Vishik's theorem, G is given by a collection of homogeneous polynomials

$$
g_{s}:=g_{s}\left(t^{s-m}\right) \in S\left[x_{1}, x_{2}, \ldots, x_{s}\right] \quad \text { for all } \quad s \geqslant m
$$

of degree n such that
(1) g_{s} is a symmetric polynomial for all $s \geqslant m$,
(2) g_{s} is divisible by $x_{1} x_{2} \cdots x_{s}$ for all $s \geqslant m$,
(3) $g_{s+1}=-\partial\left(g_{s}\right)$ for $s \geqslant m$, where for a polynomial h in s variables we define its derivative

$$
\partial(h)\left(y, z, x_{2}, \ldots, x_{s}\right):=h\left(y+z, x_{2}, \ldots, x_{s}\right)-h\left(y, x_{2}, \ldots, x_{s}\right)-h\left(z, x_{2}, \ldots, x_{s}\right)
$$

in $S\left[y, z, x_{2}, \ldots, x_{s}\right]$.
All polynomials g_{s} with $s>m$ are uniquely determined by g_{m} in view of (3).
Notation 2.2. Let S be a commutative ring and $n \geqslant m$ positive integers. We write $V_{m, n}(S)$ for the group of homogeneous symmetric polynomials f of degree n in $S\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ that are divisible by $x_{1} x_{2} \cdots x_{m}$ and such that $\partial^{i}(f)$ are symmetric for all $i>0$.

We have proved the following statement:
Proposition 2.3. Let m and n be positive integers.
(1) The map
$\mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n} \otimes S\right) \rightarrow V_{m, n}(S)$
taking an operation $G=\left\{g_{s}\right\}_{s \geqslant 0}$ to the polynomial $(-1)^{m+n} g_{m}$ is an isomorphism.
(2) The diagram

is commutative.
Example 2.4. Clearly, $V_{m, n}(S)=0$ if $n<m$ and $V_{m, m}(S)=S \cdot x_{1} x_{2} \cdots x_{m}$. Therefore, $\mathrm{OP}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n} \otimes S\right)=0$ if $n<m$. The polynomial $x_{1} x_{2} \cdots x_{m}$ in $V_{m, m}(S)$ corresponds to the canonical operation $\mathrm{CK}^{m} \xrightarrow{c} \mathrm{CH}^{m} \rightarrow \mathrm{CH}^{m} \otimes S$.

3. Steenrod operations

Notation 3.1. Let S be a commutative ring and $n \geqslant m$ positive integers. We write $W_{m, n}(S)$ for the group of homogeneous symmetric polynomials f of degree n in $S\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ that are divisible by $x_{1} x_{2} \cdots x_{m}$ and such that $\partial(f)=0$.

Clearly, $W_{m, n}(S) \subset V_{m, n}(S)$.
Recall that the coefficient ring $\mathrm{CH}^{*}(F)=\mathbb{Z}$ is concentrated in degree 0 . By Theorem 2.1, an additive operation $G: \mathrm{CH}^{m} \rightarrow \mathrm{CH}^{n} \otimes S$ is given by a collection of polynomials $\left\{g_{s}\right\}_{s \geqslant 0}$, where $g_{s}=0$ for $s \neq m$ and $g_{m} \in W_{m, n}(S)$. It follows that the assignment $G \mapsto(-1)^{m+n} g_{m}$ yields an isomorphism in the top row of the commutative diagram

Example 3.3. The group $W_{m, n}(\mathbb{Z})$ coincides with $\mathbb{Z} \cdot x_{1} x_{2} \cdots x_{m}$ if $m=n$ and zero otherwise. Therefore, the only integral operations $\mathrm{CH}^{m} \rightarrow \mathrm{CH}^{n}$ are multiples of the identity when $m=n$.

Let p be a prime integer. We simply write $W_{m, n}$ for $W_{m, n}\left(\mathbb{F}_{p}\right)$.
Lemma 3.4. (see [8, Theorem 6.6]) Let f be a nonzero symmetric homogeneous polynomial of degree n in $\mathbb{F}_{p}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ that is divisible by $x_{1} x_{2} \cdots x_{m}$. Then $f \in W_{m, n}$ if and only if every variable x_{i} enters each monomial of f in degree a power of p.

Proof. Clearly, if every variable x_{i} enters each monomial of f in degree a power of p, we have $\partial(f)=0$. Conversely, let $c x_{1}^{a_{1}} \cdots x_{m}^{a_{m}}$ be a nonzero monomial of f such that $\partial(f)=0$. It suffices to show that all a_{i} are p-powers. Suppose a_{i} is not a p-power for some i. Since f is symmetric there is a monomial of f of the form $c x_{1}^{a_{i}} \cdots$. Since a_{i} is not a p-power, the derivative of this monomial is not zero. As the derivatives of distinct monomials don't have common monomials, we have $\partial(f) \neq 0$, a contradiction.

We can determine a basis of $W_{m, n}$ as follows.
Notation 3.5. Write \mathcal{R} for the set of all nonzero sequences $R=\left(r_{0}, r_{1}, r_{2}, \ldots\right)$ of nonnegative integers, almost all zero. Clearly, the component-wise sum of two sequences in \mathcal{R} also belongs to \mathcal{R}. Set

$$
\|R\|:=\sum_{i \geqslant 0} r_{i} p^{i} \quad \text { and } \quad|R|:=\sum_{i \geqslant 0} r_{i} .
$$

Note that $||R||-|R|$ is divisible by $p-1$ and $\|R\| \geqslant|R| \geqslant s_{p}(\|R\|)$, where $s_{p}(n)$ is the sum of digits of n written in base p (see Lemma 4.3 below).
Notation 3.6. For every $R \in \mathcal{R}$ denote by f^{R} the "smallest" symmetric homogenous polynomial in the variables x_{1}, \ldots, x_{m} with $m=|R|$ containing the monomial

$$
\left(x_{1} x_{2} \cdots x_{r_{0}}\right)\left(x_{r_{0}+1} \cdots x_{r_{0}+r_{1}}\right)^{p}\left(x_{r_{0}+r_{1}+1} \cdots x_{r_{0}+r_{1}+r_{2}}\right)^{p^{2}} \cdots
$$

of degree $n=\|R\|$. The polynomial f^{R} is divisible by $x_{1} x_{2} \cdots x_{m}$.
Clearly, all polynomials f^{R} in $\mathbb{F}_{p}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ with $\|R\|=n$ and $|R|=m$ belong to $W_{m, n}$ and by Lemma 3.4 they form a basis of the \mathbb{F}_{p}-space $W_{m, n}$. Note that by Lemma A. $5, W_{m, n} \neq 0$ if and only if $n-m$ is divisible by $p-1$ and $n \geqslant m \geqslant s_{p}(n)$.

Notation 3.7. Let $n \geqslant m$ be positive integers and let $R \in \mathcal{R}$ be such that $\|R\|=$ n and $|R|=m$. Write P^{R} for the operation $\mathrm{CH}^{m} \rightarrow \mathrm{CH}^{n} \otimes \mathbb{F}_{p}$ corresponding to f^{R} under the isomorphism in (3.2). Thus, all operations P^{R} form a basis for the space $\mathbf{O P}\left(\mathrm{CH}^{m}, \mathrm{CH}^{n} \otimes \mathbb{F}_{p}\right)$. Note that the operation P^{R} shifts the codimension by $n-m=$ $\sum_{i \geqslant 0} r_{i}\left(p^{i}-1\right)$.

If $m \geqslant i>0$ and $R=(m-i, i, 0,0, \ldots)$ then the corresponding operation $\mathrm{CH}^{m} \rightarrow$ $\mathrm{CH}^{m+i(p-1)}$ (denoted P^{i}) is known as the reduced power operation. It is equal to the operation $x \mapsto x^{p}$ if $m=i$.

4. The spaces $V_{m, n}$

Let p be a prime integer.
Definition 4.1. We say that a sequence $R=\left(r_{0}, r_{1}, \ldots\right) \in \mathcal{R}$ is small if $r_{i}<p$ for all i. Clearly, R is small if and only if R is the sequence of p-adic digits of a positive integer n. We write $R=: R(n)$ for such a sequence. Note that $\|R\|=n$ and $|R(n)|=s_{p}(n)$.
Definition 4.2. For a sequence $R \in \mathcal{R}$ we define the level of R :

$$
l(R):=\frac{|R|-s_{p}(| | R| |)}{p-1}
$$

Lemma 4.3. Let $R \in \mathcal{R}$. Then
(1) $l(R)$ is a non-negative integer;
(2) $l(R)=0$ if and only if R is small.

Proof. Clearly, $s_{p}(\|R\|) \equiv\|R\| \equiv|R|$ modulo $p-1$, so $l(R)$ is an integer. We have

$$
|R|=\sum r_{i} \geqslant \sum s_{p}\left(r_{i}\right)=\sum s_{p}\left(r_{i} p^{i}\right) \geqslant s_{p}\left(\sum r_{i} p^{i}\right)=s_{p}(\|R\|)
$$

hence $l(R) \geqslant 0$. All the inequalities are equalities if and only if $r_{i}<p$ for all i, i.e., when R is small.

Definition 4.4. Let m be a positive integer. An m-sequence is sequence $a=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ of positive integers. Write

$$
\operatorname{type}(a):=\sum_{j=1}^{m} R\left(a_{j}\right) \in \mathcal{R}
$$

and call this sequence the type of a. In other words, if $a_{j}=\sum_{i \geqslant 0} x_{i j} \cdot p^{i}$ with $0 \leqslant x_{i j}<p$, then type $(a)=\left(r_{0}, r_{1}, \ldots\right)$ where $r_{i}=\sum_{j=1}^{m} x_{i j}$.

We have

$$
\|\operatorname{type}(a)\|=\sum_{j=1}^{m}\left\|R\left(a_{j}\right)\right\|=\sum_{j=1}^{m} a_{j}=:\|a\| \quad \text { and } \quad|\operatorname{type}(a)|=\sum_{j=1}^{m}\left|R\left(a_{j}\right)\right|=\sum_{j=1}^{m} s_{p}\left(a_{j}\right) .
$$

For an m-sequence a consider the (generalized) binomial coefficient

$$
\langle a\rangle:=\frac{\|a\|!}{a_{1}!\cdot a_{2}!\cdot \ldots \cdot a_{m}!} \in \mathbb{Z}
$$

Lemma 4.5. Let a be an m-sequence of type R. Then
(1) $|R| \geqslant m$ and $|R|=m$ if and only if every a_{j} is a p-power.

$$
\begin{equation*}
v_{p}\langle a\rangle=\frac{\sum_{j} s_{p}\left(a_{j}\right)-s_{p}(\|a\|)}{p-1}=l(R) \tag{2}
\end{equation*}
$$

where v_{p} is the p-adic valuation.
Proof. (1): We have

$$
|R|=\sum_{j} s_{p}\left(a_{j}\right) \geqslant m
$$

since $s_{p}\left(a_{j}\right) \geqslant 1$ for all j. The equality $|R|=m$ holds if and only if $s_{p}\left(a_{j}\right)=1$ for all j, i.e., every a_{j} is a p-power.
(2) Follows from the equality $v_{p}(n!)=\frac{n-s_{p}(n)}{p-1}$ for every positive integer n.

We set $x^{a}:=x_{1}^{a_{1}} \cdots x_{m}^{a_{m}}$ for an m-sequence a and variables x_{1}, \ldots, x_{m}.
Since $\partial^{m-1}\left(x^{n}\right)$ is the sum of all monomials in $\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}$ that are divisible by $x_{1} x_{2} \cdots x_{m}$, the Binomial Theorem yields the equality

$$
\begin{equation*}
\partial^{m-1}\left(x^{n}\right)=\sum\langle a\rangle \cdot x^{a} \quad \text { in } \quad \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{m}\right], \tag{4.6}
\end{equation*}
$$

where the sum is taken over all m-sequences a such that $\|a\|=n$.
Lemma 4.7. For an m-sequence a every monomial of $\partial\left(\langle a\rangle \cdot x^{a}\right)$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{m+1}\right]$ is of the form $\langle b\rangle \cdot x^{b}$ for an $(m+1)$-sequence b such that either $v_{p}\langle b\rangle>v_{p}\langle a\rangle$ or type $(b)=$ type (a).
Proof. Every monomial of $\partial\left(\langle a\rangle \cdot x^{a}\right)$ is of the form $e \cdot x^{b}$ for an $(m+1)$-sequence b, where $b=\left(b_{1}, b_{2}, \ldots, b_{m+1}\right)$ so that $a=\left(b_{1}+b_{2}, b_{3} \ldots, b_{m+1}\right)$, and

$$
e=\binom{b_{1}+b_{2}}{b_{1}} \cdot\langle a\rangle=\langle b\rangle
$$

If $\binom{b_{1}+b_{2}}{b_{1}}$ is divisible by p, then $v_{p}\langle b\rangle>v_{p}\langle a\rangle$. Otherwise $s_{p}\left(b_{1}+b_{2}\right)=s_{p}\left(b_{1}\right)+s_{p}\left(b_{2}\right)$, hence $R\left(b_{1}+b_{2}\right)=R\left(b_{1}\right)+R\left(b_{2}\right)$ and therefore, type $(b)=\operatorname{type}(a)$.

Lemma 4.8. Suppose that a nonzero multiple of $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{k}^{a_{k}} \cdots$ is a monomial of $\partial^{k-1}(f)$ for a polynomial $f \in \mathbb{F}_{p}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$. Then $\langle a\rangle$ is not zero in \mathbb{F}_{p}, where $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$.

Proof. The polynomial f must contain a nonzero multiple of a monomial $x_{1}^{n} \cdots$, where $n=\|a\|$. Since the monomial $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{k}^{a_{k}} \cdots$ appears in $\partial^{k-1}\left(x_{1}^{n} \cdots\right)$ with coefficient $\langle a\rangle$, we have $\langle a\rangle \neq 0$ in \mathbb{F}_{p}.

Corollary 4.9. Let $n \geqslant m \geqslant s_{p}(n)$. Then there is no polynomial $f \in \mathbb{F}_{p}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ such that $\partial^{p-1}(f)$ is a nonzero polynomial in $W_{m+p-1, n}$.
Proof. Suppose $\partial^{p-1}(f)$ is a nonzero polynomial in $W_{m+p-1, n}$, i.e., $\partial^{p-1}(f)$ is a nonzero linear combination of f^{R} for all sequences R with $\|R\|=n$ and $|R|=m+p-1$. Every two such f^{R} have no common monomials (up to a scalar multiple), and every such R is not small since $|R|>m \geqslant s_{p}(n)=s_{p}(\|R\|)$ (see Lemma 4.3). Choose any such R and an $i \geqslant 0$ with $r_{i} \geqslant p$. The polynomial f^{R} and hence $\partial^{p-1}(f)$ contains a monomial of the form $\left(x_{1} x_{2} \ldots x_{p}\right)^{p^{i}} \ldots$. This contradicts Lemma 4.8 since $\langle a\rangle$ is divisible by p for $a=\left(p^{i}, p^{i}, \ldots, p^{i}\right)(p$ times $)$.

Notation 4.10. For a real number t write $\llbracket t \rrbracket$ for the smallest non-negative integer that is $\geqslant t$. For positive integers $n \geqslant m$ set

$$
l_{m, n}=\llbracket \frac{m-s_{p}(n)}{p-1} \rrbracket \geqslant 0
$$

Note that $l_{m, n}=0$ if and only if $m \leqslant s_{p}(n)$ and for $m>s_{p}(n)$ we have $l_{m+1, n}=l_{m, n}+1$ if and only if $n-m$ is divisible by $p-1$ and $l_{m+1, n}=l_{m, n}$ otherwise.

By Proposition A.1, $l_{m, n}$ is the minimum of $v_{p}\langle a\rangle$ over all m-sequences a such that $\|a\|=n$.

Proof. (1): In view of Lemma 4.5, $v_{p}\langle a\rangle=l(R)$ and the sequence R is small if and only if $l(R)=0$.
(2): We have $v_{p}\langle a\rangle=l(R)=\frac{|R|-s_{p}(n)}{p-1} \geqslant \frac{m-s_{p}(n)}{p-1}$, hence $v_{p}\langle a\rangle \geqslant l_{m, n}$. The integer $v_{p}\langle a\rangle$ is equal to $l_{m, n}=\llbracket \frac{m-s_{p}(n)}{p-1} \rrbracket$ if and only if $0 \leqslant|R|-m<p-1$.

Definition 4.11. For all positive integers $n \geqslant m$ define the subset $\mathcal{R}_{m, n} \subset \mathcal{R}$ of sequences as follows.
(1) If $m \leqslant s_{p}(n)$, then $\mathcal{R}_{m, n}$ is the singleton $\{R(n)\}$ consisting of the only small sequence R with $\|R\|=n$. Note that $|R|=s_{p}(n)$.
(2) If $m>s_{p}(n)$, then $\mathcal{R}_{m, n}$ is the (finite) set of all sequences R such that $\|R\|=n$ and $0 \leqslant|R|-m<p-1$. Note that $|R|$ is the only integer in the interval $[m, m+p-1)$ that is congruent to n modulo $p-1$.

Equivalently, $R \in \mathcal{R}_{m, n}$ if and only if $l(R)=l_{m, n}$.
By Lemma A.5, the set $\mathcal{R}_{m, n}$ is not empty. Note that $\mathcal{R}_{m, n}=\mathcal{R}_{m^{\prime}, n}$, where m^{\prime} is the smallest integer such that $m^{\prime} \geq m, m^{\prime} \geqslant s_{p}(n)$ and $n-m^{\prime}$ is divisible by $p-1$. In particular, $\mathcal{R}_{m, n}=\mathcal{R}_{m+1, n}$ if either $m<s_{p}(n)$ or $m>s_{p}(n)$ and $n-m$ is not divisible by $p-1$.

Lemma 4.12. Let $n \geqslant m$ be positive integers and a an m-sequence with $\|a\|=n$. Let $R=\operatorname{type}(a)$.
(1) If $m \leqslant s_{p}(n)$, then $l_{m, n}=0$. Moreover, $v_{p}\langle a\rangle=0$ if and only if R is small, i.e., $R=R(n) \in \mathcal{R}_{m, n}$.
(2) If $m>s_{p}(n)$, then $v_{p}\langle a\rangle \geqslant l_{m, n}$ and $v_{p}\langle a\rangle=l_{m, n}$ if and only if $0 \leqslant|R|-m<p-1$, i.e., $R \in \mathcal{R}_{m, n}$. In the latter case $|R|-m$ is the remainder on dividing $n-m$ by $p-1$.

Notation 4.13. For a positive integer n, set

$$
s_{p}^{!}(n):=\prod_{i \geqslant 0} c_{i}!
$$

where c_{i} are p-adic digits of n. Note that $s_{p}^{!}(n)$ is not divisible by p.
Definition 4.14. Let $n \geqslant m$ be positive integers and $R \in \mathcal{R}_{m, n}$. Define the following polynomial in $\mathbb{F}_{p}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$:

$$
q_{m, n}^{R}:=\frac{1}{s_{p}^{!}(n)} \cdot \sum_{\operatorname{type}(a)=R}(-p)^{-l_{m, n}}\langle a\rangle \cdot x^{a} \quad \text { modulo } \quad p
$$

where the sum is taken over all m-sequences a such that type $(a)=R$.
Clearly, $q_{m, n}^{R}$ is a symmetric polynomial.
Let $n \geqslant m$ be positive integers. Recall that $V_{m, n}:=V_{m, n}\left(\mathbb{F}_{p}\right)$ is the vector space over \mathbb{F}_{p} of homogeneous symmetric polynomials f of degree n in m variables $x_{1}, x_{2}, \ldots, x_{m}$ that are divisible by $x_{1} x_{2} \cdots x_{m}$ and such that $\partial^{i}(f)$ are symmetric for all $i>0$, where

$$
\partial: V_{*, n} \rightarrow V_{*+1, n}
$$

is the derivation.
In the following theorem we determine structure of the \mathbb{F}_{p}-spaces $V_{m, n}$.
Theorem 4.15. Let $n \geqslant m$ be positive integers and p a prime integer.
(1) If $m \leqslant s_{p}(n)$, then $V_{m, n}$ is a 1-dimensional vector space over \mathbb{F}_{p} spanned by $q_{m, n}^{R}$ for $R=R(n)$;
(2) If $m \geqslant s_{p}(n)$, then the polynomials $q_{m, n}^{R}$ for $R \in \mathcal{R}_{m, n}$ form a basis for $V_{m, n}$;
(3) $V_{m, n}=W_{m, n}$ if $m \geqslant s_{p}(n)$ and $n-m$ is divisible by $p-1$;
(4) The map $\partial: V_{m, n} \rightarrow V_{m+1, n}$ is an isomorphism if $m<s_{p}(n)$ or if $m>s_{p}(n)$ and $n-m$ is not divisible by $p-1$;
(5) The map $\partial: V_{m, n} \rightarrow V_{m+1, n}$ is zero if $m \geqslant s_{p}(n)$ and $n-m$ is divisible by $p-1$;
(6) If $R \in \mathcal{R}_{m, n}$ is such that $|R|=m$, then $q_{m, n}^{R}=f^{R}$;
(7) The polynomial $\frac{1}{s_{p}^{1}(n)} \cdot(-p)^{-l_{m, n}} \cdot \partial^{m-1}\left(x^{n}\right)$ modulo p is equal to $\sum q_{m, n}^{R} \in \mathbb{F}_{p}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$, where the sum in taken over all sequences $R \in \mathcal{R}_{m, n}$;
(8) If $R \in \mathcal{R}_{m, n}$, then

$$
\partial\left(q_{m, n}^{R}\right)= \begin{cases}q_{m+1, n}^{R}, & \text { if } m<|R| \\ 0, & \text { if } m=|R|\end{cases}
$$

Proof. (3): Let $g \in V_{m, n}$. In view of Notation 3.1, it suffices to show that $\partial(g)=0$. Suppose $\partial(g) \neq 0$ and choose an $i>0$ such that $\partial^{i}(g) \neq 0$ but $\partial^{i+1}(g)=0$. Then $\partial^{i}(g)$ is a nonzero polynomial in $W_{m+i, n}$. It follows that $n-m-i$ and hence i are divisible by $p-1$, so $i \geqslant p-1$. This contradicts Corollary 4.9 applied to $f=\partial^{i-p+1}(g)$.
(5) Follows from (3) since $W_{m, n} \subset \operatorname{Ker}(\partial)$.
(6): By Lemma 4.5(1), if a is an m-sequence, $R=\operatorname{type}(a)$ and $|R|=m$, then every a_{i} is a p-power. It follows that $q_{m, n}^{R}$ is a multiple of f^{R}. The multiplicity is determined in Proposition A.3.
(7) Follows from the formula (4.6), Lemma 4.12 and Definition 4.14.
(8): If $m<|R|$ then either $m<s_{p}(n)$ or $m>s_{p}(n)$ and $n-m$ is not divisible by $p-1$. It follows that $l_{m, n}=l_{m+1, n}$ and $\mathcal{R}_{m, n}=\mathcal{R}_{m+1, n}$. By Lemma 4.7, the type of every monomial in $\partial\left(q_{m, n}^{R}\right)$ is equal to R. Therefore, the equality $\partial\left(q_{m, n}^{R}\right)=q_{m+1, n}^{R}$ follows from (7). If $m=|R|$, the statement follows from (6).
(2) and (4): Note first that it follows from (8) that all higher derivatives of $q_{m, n}^{R}$ are symmetric, hence $q_{m, n}^{R} \in V_{m, n}$.

The kernel of $\partial: V_{*, n} \rightarrow V_{*+1, n}$ is spanned by f^{R} that are polynomials in m variables with $m \geqslant s_{p}(n)$ and $n-m$ divisible by $p-1$. Hence the maps $\partial: V_{m, n} \rightarrow V_{m+1, n}$ are injective if $m>s_{p}(n)$ and $n-m$ is not divisible by $p-1$. To prove surjectivity in (4), let m^{\prime} be the smallest integer such that $m^{\prime}>m$ and $n-m^{\prime}$ is divisible by $p-1$. It suffices to show that the composition

$$
V_{m, n} \xrightarrow{\partial} V_{m+1, n} \xrightarrow{\partial} \cdots \xrightarrow{\partial} V_{m^{\prime}, n}
$$

is surjective. By (3), $V_{m^{\prime}, n}=W_{m^{\prime}, n}$ has basis $\left\{f^{R}\right\}$ with $\|R\|=n$ and $|R|=m^{\prime}$. In view of (6) and (8), the image of the polynomial $q_{m, n}^{R}$ from $V_{m, n}$ under the composition is equal to f^{R}. This proves surjectivity of the composition and (2).
(1): As in the proof of (2) we see that $q_{m, n}^{R} \in V_{m, n}$. The rest follows from (4), (6) and (8) since $V_{s_{p}(n), n}=W_{s_{p}(n), n}$ is a 1-dimensional vector space spanned by f^{R} with $R=R(n)$.
Remark 4.16. According to Theorem 4.15, one can construct a basis for $V_{m, n}$ as follows. Let m^{\prime} be the smallest integer such that $m^{\prime} \geqslant m, m^{\prime} \geqslant s_{p}(n)$ and $n-m^{\prime}$ is divisible by $p-1$. Then the polynomials $q_{m, n}^{R}$ for all sequences R with $\|R\|=n$ and $|R|=m^{\prime}$ form a basis for $V_{m, n}$. By Lemma A.5, such sequences R exist, hence the space $V_{m, n}$ is nonzero for every positive integers $n \geqslant m$.

5. Operations $\mathrm{CK}^{*} \rightarrow \mathrm{CH}^{*} \otimes \mathbb{F}_{p}$

Let n and m be two integers and p a prime integer. In this Section we compute the group of additive operations

$$
\mathbf{O P}^{m, n}:=\mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n} \otimes \mathbb{F}_{p}\right)
$$

Recall that $\mathbf{O P}{ }^{m, n}$ is isomorphic to $V_{m, n}$ if m and n are positive in view of Proposition 2.3.

The functors CK^{m} are canonically isomorphic to K_{0} for all $m \leqslant 0$, so $\mathbf{O} P^{m, n}=\mathbf{O P}^{0, n}$ if $m \leqslant 0$.

Let $A_{n}: K_{0} \rightarrow \mathrm{CH}^{n}$ be the n-th additive Chern class. It is uniquely determined by the condition $A_{n}([L])=c_{1}^{\mathrm{CH}}(L)^{n}$ for a line bundle L.

We can also view A_{n} as an operation in $\mathbf{O P}^{0, n}$ between $\mathrm{CK}^{0}=K_{0}$ and $\mathrm{CH}^{n} \otimes \mathbb{F}_{p}$. According to $[7, \S 2.2], \mathbf{O P}^{m, n}=\mathbf{O} \mathbf{P}^{0, n}$ is a cyclic group generated by A_{n} if $m \leqslant 0$.

Notation 5.1. Let $n \geqslant m$ be positive integers. For a sequence $R \in \mathcal{R}_{m, n}$, write $Q_{m, n}^{R}$ for the operation in $\mathbf{O P}^{m, n}$ corresponding to the polynomial $q_{m, n}^{R}$ by Proposition 2.3.

Theorem 5.2. Let $n \geqslant m$ be positive integers and p a prime integer.
(1) If $m \leqslant s_{p}(n)$, then $\mathbf{O} \mathbf{P}^{m, n}$ is a 1 -dimensional vector space over \mathbb{F}_{p} spanned by $Q_{m, n}^{R}$ for $R=R(n)$;
(2) If $m \geqslant s_{p}(n)$, then the operations $Q_{m, n}^{R}$ for $R \in \mathcal{R}_{m, n}$ form a basis for $\mathbf{O P}^{m, n}$;
(3) For a sequence R with $\|R\|=n$ and $|R|=m$ the operation $Q_{m, n}^{R}$ coincides with the composition

$$
\mathrm{CK}^{m} \xrightarrow{c} \mathrm{CH}^{m} \xrightarrow{P^{R}} \mathrm{CH}^{n} \otimes \mathbb{F}_{p} .
$$

The canonical map $\mathbf{O P}\left(\mathrm{CH}^{m}, \mathrm{CH}^{n} \otimes \mathbb{F}_{p}\right) \xrightarrow{c} \mathbf{O P}^{m, n}$ is an isomorphism.
(4) If $R \in \mathcal{R}_{m, n}$, then

$$
\left[\mathrm{CK}^{m+1} \xrightarrow{t} \mathrm{CK}^{m} \xrightarrow{Q_{m, n}^{R}} \mathrm{CH}^{n} \otimes \mathbb{F}_{p}\right]= \begin{cases}Q_{m+1, n}^{R}, & \text { if } m<|R| ; \\ 0, & \text { if } m=|R| .\end{cases}
$$

(5) If R is small with $\|R\|=n$ and $m \leqslant s_{p}(n)$, then the composition

$$
\mathrm{CK}^{m} \xrightarrow{t^{m}} K_{0} \xrightarrow{A_{n}} \mathrm{CH}^{n} \rightarrow \mathrm{CH}^{n} \otimes \mathbb{F}_{p}
$$

coincides with $s_{p}^{!}(n) \cdot Q_{m, n}^{R}$.
Proof. The statements (1)-(4) follow from Theorem 4.15.
(5): It follows from (4) that it suffices to consider the case $m=1$. Let L be a line bundle over a smooth base X. Then the composition

$$
\mathrm{CK}^{1}(X) \xrightarrow{t} K_{0}(X) \xrightarrow{A_{n}} \mathrm{CH}^{n}(X) \otimes \mathbb{F}_{p}
$$

takes $c_{1}^{\mathrm{CK}}(L)$ to $A_{n}\left(1-L^{\vee}\right)=-c_{1}^{\mathrm{CH}}\left(L^{\vee}\right)^{n}=(-1)^{n+1} c_{1}^{\mathrm{CH}}(L)^{n}$, i.e., the composition is given by the polynomial $(-1)^{n+1} x^{n}$ in view of Proposition 2.3. Recall that the operation $Q_{1, n}^{R}$ is given by the polynomial $\frac{1}{s_{p}^{1}(n)}(-1)^{n+1} x^{n}$.

Corollary 5.3. Let n be a positive integer.
(1) The natural maps

$$
\mathbb{F}_{p} \cdot A_{n}=\mathbf{O P}^{0, n} \rightarrow \mathbf{O P}^{1, n} \rightarrow \mathbf{O P}^{2, n} \rightarrow \cdots \rightarrow \mathbf{O P}^{s_{p}(n), n}=\mathbb{F}_{p} \cdot Q_{s_{p}(n), n}^{R}
$$

where $R=R(n)$, are isomorphisms of 1-dimension vector spaces. The image of A_{n} in $\mathbf{O P}^{s_{p}(n), n}$ is equal to $s_{p}^{!}(n) \cdot Q_{s_{p}(n), n}^{R}=s_{p}^{!}(n) \cdot\left(P^{R} \circ c\right)$.
(2) If m is an integer such that $n \geqslant m>s_{p}(n)$ and $m \equiv n$ modulo $p-1$, then the natural maps

$$
\mathbf{O P}^{m-p+2, n} \rightarrow \mathbf{O P}^{m-p+3, n} \rightarrow \cdots \rightarrow \mathbf{O P}^{m, n}
$$

are isomorphisms. The set $\left\{P^{R} \circ c\right\}_{R \in \mathcal{R}_{m, n}}$ is a basis for $\mathbf{O P}^{m, n}$.
(3) Let $n \geqslant m$ be positive integers and let m^{\prime} be the smallest integer such that $m^{\prime} \geqslant m$, $m^{\prime} \geqslant s_{p}(n)$ and $n-m^{\prime}$ is divisible by $p-1$. Then the maps

$$
\mathbf{O P}^{m, n} \xrightarrow{t^{m^{\prime}-m}} \mathbf{O P}^{m^{\prime}, n} \leftarrow \mathbf{O P}^{m^{\prime}, n}\left(\mathrm{CH}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right),
$$

are isomorphisms. The operation $Q_{m, n}^{R}$ corresponds to the Steenrod operation $P_{m^{\prime}, n}^{R}$ under these isomorphisms.

It follows from the corollary that the groups $\mathbf{O} \mathbf{P}^{m, n}$ are nonzero for all positive integers $n \geqslant m$.

Remark 5.4. By Theorem 5.2, we have a commutative diagram

where $R=R(n)$ and $m=|R|=s_{p}(n)$. As $s_{p}^{!}(n)$ is invertible modulo p, it follows that the Steenrod operation $Q^{R}=P^{R} \circ c$ factors through $K_{0}^{(m / m+1)}$.

6. Stable operations $\mathrm{CK}^{*} \rightarrow \mathrm{CH}^{*} \otimes \mathbb{F}_{p}$

For any polynomial $f \in \mathbb{F}_{p}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ divisible by $x_{1} x_{2} \cdots x_{m}$ define

$$
\varphi(f):=\left.\left(x_{m}^{-1} \cdot f\right)\right|_{x_{m}=0} \in \mathbb{F}_{p}\left[x_{1}, x_{2}, \ldots, x_{m-1}\right] .
$$

Example 6.1. Let $R=\left(r_{0}, r_{1}, \ldots\right) \in \mathcal{R}$. We have

$$
\varphi\left(f^{R}\right)= \begin{cases}0, & \text { if } r_{0}=0 \\ f^{R-\mathbb{1}}, & \text { if } r_{0}>0\end{cases}
$$

where $\mathbb{1}:=(1,0,0, \ldots)$.
Note that if $m \geqslant 2$, then φ and ∂ commute: $\varphi \circ \partial=\partial \circ \varphi$. It follows that φ yields a homomorphism

$$
\varphi: V_{m, n} \rightarrow V_{m-1, n-1}
$$

Proposition 6.2. Let $n \geqslant m>1$ be integers, $R \in \mathcal{R}_{m, n}$. Then

$$
\varphi\left(q_{m, n}^{R}\right)= \begin{cases}0, & \text { if } r_{0}=0 \\ q_{m-1, n-1}^{R-\mathbb{1}}, & \text { if } r_{0}>0\end{cases}
$$

Proof. Let $r_{0}=0$ and let a be an m-sequence with type $(a)=R$. We have $a_{i} \neq 1$ for all i, hence $\varphi\left(x^{a}\right)=0$ and therefore, $\varphi\left(q_{m, n}^{R}\right)=0$.

Now assume that $r_{0}>0$. Note that $R-\mathbb{1} \in \mathcal{R}_{m-1, n-1}$. Let m^{\prime} be the smallest integer such that $m^{\prime} \geqslant m, m^{\prime} \geqslant s_{p}(n)$ and $m^{\prime}-n$ is divisible by $p-1$. By Theorem 4.15 and Example 6.1,

$$
\partial^{i}\left(\varphi\left(q_{m, n}^{R}\right)\right)=\varphi\left(\partial^{i}\left(q_{m, n}^{R}\right)\right)=\varphi\left(f^{R}\right)=f^{R-\mathbb{1}}=q_{m^{\prime}-1, n-1}^{R-\mathbb{1}}=\partial^{i}\left(q_{m-1, n-1}^{R-\mathbb{1}}\right),
$$

where $i=m^{\prime}-m$. By Theorem 4.15 again, $\partial^{i}: V_{m, n} \rightarrow V_{m^{\prime}, n}$ is an isomorphism, hence $\varphi\left(q_{m, n}^{R}\right)=q_{m-1, n-1}^{R-\mathbb{1}}$.

Definition 6.3. A stable operation $A^{*} \rightarrow B^{*+d}$ of (relative) degree d is a collection of operations $G^{(i)}: A^{i} \rightarrow B^{i+d}$ for $i \geqslant 0$ such that $G^{(i)}=\Sigma^{-1}\left(G^{(i+1)}\right)$, where Σ^{-1} is the desuspension map (see $[8, \S 3.1])$. Write $\mathbf{O P}_{\mathrm{st}}^{d}\left(A^{*}, B^{*}\right)$ for the group of all stable operation $A^{*} \rightarrow B^{*+d}$ of degree d. In other words,

$$
\mathbf{O P}_{\mathrm{st}}^{d}\left(A^{*}, B^{*}\right)=\lim _{i} \mathbf{O P}\left(A^{i}, B^{i+d}\right),
$$

where the limit is taken with respect to Σ^{-1} as transition maps.
If $A^{*}=B^{*}$ the composition of stable operations makes $\mathbf{O P}_{\mathrm{st}}^{*}\left(A^{*}\right):=\mathbf{O P}_{\mathrm{st}}^{*}\left(A^{*}, A^{*}\right)$ a graded ring.
Proposition 6.4. Let $G: A^{m} \rightarrow B^{n}$ be an additive operation given by $\left\{g_{s}\right\}_{s \geqslant 0}$ in view of Theorem 2.1. Let $\left\{\left(\Sigma^{-1} g\right)_{s}\right\}_{s \geqslant 0}$ be the data for $\Sigma^{-1} G$. Then

$$
\left(\Sigma^{-1} g\right)_{s}(\alpha)=\varphi\left(g_{s+1}(\alpha)\right) \quad \text { in } \quad B^{*}(F)\left[\left[x_{1}, x_{2}, \ldots, x_{s}\right]_{(n)}\right.
$$

for every $s \geqslant 0$ and $\alpha \in A^{m-s}(F)$.
Proof. Note that if R is a commutative ring and $\varepsilon \in R$ satisfies $\varepsilon^{2}=0$, then for every polynomial $f \in R\left[x_{1}, x_{2}, \ldots, x_{m+1}\right]$ divisible by $x_{1} x_{2} \cdots x_{m+1}$ we have

$$
f\left(x_{1}, \ldots, x_{m}, \varepsilon\right)=\varphi(f)\left(x_{1}, \ldots, x_{m}\right) \varepsilon \in R\left[x_{1}, x_{2}, \ldots, x_{m}\right]
$$

We apply this to $\varepsilon=c_{1}^{B}\left(L_{c a n}\right) \in B^{1}\left(\mathbb{P}_{F}^{1}\right)$. Let $\alpha \in A^{m-s}(F)$ for some $s \geqslant 0$ and let $L_{i} \rightarrow X$ for $i=1, \ldots s$ be line bundles over a smooth base X. It follows from the definition of Σ^{-1} (see $[8, \S 3.1])$ that the following equalities hold in $B^{s}\left(X \times \mathbb{P}_{F}^{1}\right)$:

$$
\begin{aligned}
\left(\Sigma^{-1} g\right)_{s}(\alpha)\left(c_{1}^{A}\left(L_{1}\right), \ldots, c_{1}^{A}\left(L_{s}\right)\right) \varepsilon & =\left(\Sigma^{-1} G\right)\left(\alpha c_{1}^{A}\left(L_{1}\right) \cdots c_{1}^{A}\left(L_{s}\right)\right) \varepsilon \\
& =G\left(\alpha c_{1}^{A}\left(L_{1}\right) \cdots c_{1}^{A}\left(L_{s}\right) c_{1}^{A}\left(L_{c a n}\right)\right) \\
& =g_{s+1}(\alpha)\left(c_{1}^{B}\left(L_{1}\right), \ldots, c_{1}^{B}\left(L_{s}\right), \varepsilon\right) \\
& =\varphi\left(g_{s+1}(\alpha)\right)\left(c_{1}^{B}\left(L_{1}\right), \ldots, c_{1}^{B}\left(L_{s}\right)\right) \varepsilon .
\end{aligned}
$$

Notation 6.5. Let \mathcal{S} be the set of sequences $\left(s_{1}, s_{2}, \ldots\right)$ of nonnegative integers, almost all zero. Write $\alpha: \mathcal{R} \rightarrow \mathcal{S}$ for the (forgetful) map taking $R=\left(r_{0}, r_{1}, r_{2}, \ldots\right)$ to $\alpha(R):=$ $\left(r_{1}, r_{2}, \ldots\right)$. We also write

$$
\|S\|:=\sum_{i \geqslant 1} s_{i}\left(p^{i}-1\right) .
$$

Example 6.6. (see [8, Theorem 6.6]) For every $S \in \mathcal{S}$ let P^{S} be the stable operation of degree $\|S\|$ given by the sequence f^{R} over all $R \in \mathcal{R}$ such that $\alpha(R)=S$ (see Example 6.1). It follows from Lemma 3.4 and Example 6.1 that the stable operations P^{S} for all $S \in \mathcal{S}$ form a basis of the space $\mathcal{A}:=\mathbf{O P}_{\mathrm{st}}^{*}\left(\mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$. In fact, \mathcal{A} is the reduced Steenrod algebra, the factor algebra of the Steenrod algebra modulo the Bockstein operation (see [6]).

For $j \geqslant p-2$ we have $j \cdot \mathbb{1} \in \mathcal{R}_{j-p+2, j}$. It follows from Propositions 6.2 and 6.4 that the sequence of operations

$$
Q_{j-p+2, j}^{j \cdot \mathbb{1}}: \mathrm{CK}^{j-p+2} \rightarrow \mathrm{CH}^{j} \otimes \mathbb{F}_{p}
$$

yields a stable operation $L: \mathrm{CK}^{*} \rightarrow \mathrm{CH}^{*+p-2} \otimes \mathbb{F}_{p}$ of degree $p-2$.

The collections of canonical operations $\mathrm{CK}^{i} \xrightarrow{c} \mathrm{CH}^{i} \rightarrow \mathrm{CH}^{i} \otimes \mathbb{F}_{p}$ and $\mathrm{CK}^{i} \xrightarrow{t} \mathrm{CK}^{i-1}$ yield stable operations $I: \mathrm{CK}^{*} \rightarrow \mathrm{CH}^{*} \rightarrow \mathrm{CH}^{*} \otimes \mathbb{F}_{p}$ and $J: \mathrm{CK}^{*} \rightarrow \mathrm{CK}^{*-1}$ of degree 0 and -1 , respectively.

Note that the group $\mathbf{O P}_{\mathrm{st}}^{*}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$ has the structure of a left module over the reduced Steenrod algebra \mathcal{A} (see Example 6.6).

For any positive integers $n \geqslant m$, every $R=\left(r_{0}, r_{1}, \ldots\right) \in \mathcal{R}_{m+i, n+i}$ satisfies $r_{0}>0$ for sufficiently large i. It follows that the map $\mathcal{R}_{m+i, n+i} \rightarrow \mathcal{R}_{m+i+1, n+i+1}$ taking R to $R+\mathbb{1}$ is a bijection for $i \gg 0$. By Propositions 6.2 and 6.4 together with Theorem 5.2(2), the map

$$
\Sigma^{-1}: \mathbf{O P}^{m+i+1, n+i+1} \rightarrow \mathbf{O P}^{m+i, n+i}
$$

is an isomorphism for $i \gg 0$. Therefore, the natural map

$$
\mathbf{O P}_{\mathrm{st}}^{n-m}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right) \rightarrow \mathbf{O P}^{m+i, n+i}
$$

is an isomorphism for $i \gg 0$. In other words, stable operations of relative degree $d=n-m$ can be viewed as unstable operations in $\mathbf{O P}^{m, n}$ for large n and m.

Theorem 6.7. Let p be a prime integer.
(1) The identities $L \circ J^{p-2}=I$ and $L \circ J^{p-1}=0$ hold in $\mathrm{OP}_{\mathrm{st}}^{*}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$.
(2) Stable operations $L \circ J^{i}$ for $i=0,1, \ldots, p-2$ form a basis of the free left \mathcal{A}-module $\mathbf{O P}_{\mathrm{st}}^{*}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right)$.
Proof. (1): In view of Theorem 4.15, $\partial^{p-2}\left(q_{j-p+2, j}^{j \cdot \mathbb{1}}\right)=q_{j, j}^{j \cdot \mathbb{1}}=x_{1} x_{2} \cdots x_{j}$ for every $j>p-2$. By Example 2.4, the latter polynomial corresponds to the canonical operation $\mathrm{CK}^{j} \xrightarrow{c}$ $\mathrm{CH}^{j} \rightarrow \mathrm{CH}^{j} \otimes \mathbb{F}_{p}$. It follows that $L \circ J^{p-2}=I$. Since $\partial\left(q_{j, j}^{j \cdot \mathbb{1}}\right)=0$, we have $L \circ J^{p-1}=0$.
(2): Let d be a non-negative integer and s is the remainder on dividing d by $p-1$. Consider the composition

$$
\begin{equation*}
\mathcal{A}^{d-s} \rightarrow \mathbf{O P}_{\mathrm{st}}^{d}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right) \rightarrow \mathbf{O P}_{\mathrm{st}}^{d-s}\left(\mathrm{CK}^{*}, \mathrm{CH}^{*} \otimes \mathbb{F}_{p}\right), \tag{6.8}
\end{equation*}
$$

where the first map is the composition with $L \circ J^{p-2-s}: \mathrm{CK}^{*} \rightarrow \mathrm{CH}^{*+s} \otimes \mathbb{F}_{p}$ and the second map is the composition with J^{s}. The second map in (6.8) is an isomorphism by Corollary 5.3.

The composition in (6.8) is given by the composition with $L \circ J^{p-2-s} \circ J^{s}=L \circ J^{p-2}=I$ and hence is an isomorphism by Theorem 5.2(3). It follows that the first map in (6.8) is an isomorphism, whence the result.

7. Integral operations $\mathrm{CK}^{*} \rightarrow \mathrm{CH}^{*}$

Notation 7.1. For a pair of integers $n \geqslant m$ set

$$
c_{m, n}:=\prod_{p} p^{\pi \frac{m-s_{p}(n)}{p-1} \pi},
$$

where p runs over all prime integers and if $n \geqslant m+1$ set

$$
d_{m, n}:=\frac{c_{m+1, n}}{c_{m, n}} \in \mathbb{Z} .
$$

The integer $d_{m, n}$ is the product of all primes p such that $m \geqslant s_{p}(n)$ and $n-m$ is divisible by $p-1$.

According to Proposition A. 1

$$
\operatorname{gcd}\langle a\rangle=c_{m, n}
$$

where the gcd is taken over all m-sequences a such that $\|a\|=n$.
Consider the polynomials

$$
g_{m, n}=\frac{1}{c_{m, n}} \cdot \sum\langle a\rangle \cdot x^{a} \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{m}\right],
$$

where the sum is taken over all m-sequences a such that $\|a\|=n$. The coefficients of $g_{m, n}$ are relatively prime.
Proposition 7.2. The polynomial $g_{m, n}$ is a generator of the infinite cyclic group $V_{m, n}(\mathbb{Z})$.
Proof. Let $f \in V_{m, n}(\mathbb{Z})$. By [5, Proposition 2.8], there is an $h \in \mathbb{Q}[x]$ such that $f=$ $\partial^{m-1}(h)$. Clearly, h is a multiple of the monomial x^{n}. By the formula (4.6),

$$
\partial^{m-1}\left(x^{n}\right)=c_{m, n} \cdot g_{m, n} .
$$

Therefore, f is an integral multiple of $g_{m, n}$.
Corollary 7.3. The image of the generator $g_{m, n}$ under the map $\partial: V_{m, n}(\mathbb{Z}) \rightarrow V_{m+1, n}(\mathbb{Z})$ is equal to $d_{m, n} \cdot g_{m+1, n}$.

Proof. We have

$$
\partial\left(g_{m, n}\right)=c_{m, n}^{-1} \cdot \partial^{m}\left(x^{n}\right)=c_{m, n}^{-1} \cdot c_{m+1, n} \cdot g_{m+1, n}=d_{m, n} \cdot g_{m+1, n}
$$

Let p be a prime integer. Reducing modulo p we get a homomorphism

$$
V_{m, n}(\mathbb{Z}) \rightarrow V_{m, n}\left(\mathbb{F}_{p}\right)=V_{m, n}
$$

In view of Theorem 4.15(7) it follows from the definition of the polynomials $g_{m, n}$ and $q_{m, n}^{R}$ that the image of the generator $g_{m, n}$ is equal to a nonzero multiple of the sum $\sum q_{m, n}^{R}$ over all $R \in \mathcal{R}_{m, n}$. Therefore, $\sum q_{m, n}^{R}$ lifts to a polynomial in $V_{m, n}(\mathbb{Z})$. In particular, by Theorem 4.15(6), for every positive integers $n \geqslant m$ such that $m \geqslant s_{p}(n)$ and $n-m$ is divisible by $p-1$, the sum $\sum f^{R}$ over all R with $\|R\|=n$ and $|R|=m$ lifts to an integral polynomial in $V_{m, n}(\mathbb{Z})$. We have proved the following theorem.

Theorem 7.4. Let $n \geqslant m$ be positive integers and p a prime.
(1) The group $\mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n}\right)$ is infinite cyclic with a canonical generator $G_{m, n}$. The image of $G_{m, n}$ under the map $\mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n}\right) \rightarrow \mathbf{O P}\left(\mathrm{CK}^{m+1}, \mathrm{CH}^{n}\right)$ is equal to $d_{m, n} \cdot G_{m+1, n}$.
(2) An operation $Q \in \mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n} \otimes \mathbb{F}_{p}\right)$ lifts to an operation in $\mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n}\right)$ if and only if Q is a multiple of $\sum_{R \in \mathcal{R}_{m, n}} Q_{m, n}^{R}$.
(3) If $m \geqslant s_{p}(n)$ and $n-m$ is divisible by $p-1$, an operation $P \in \mathbf{O P}\left(\mathrm{CH}^{m}, \mathrm{CH}^{n} \otimes \mathbb{F}_{p}\right)$ lifts to an operation in $\mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n}\right)$ if and only if P is a multiple of $\sum_{R \in \mathcal{R}_{m, n}} P_{m, n}^{R}$.
It follows from Theorem 7.4 that the operation $Q_{m, n}^{R}$ in $\mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n} \otimes \mathbb{F}_{p}\right)$ lifts to an integral operation in $\mathbf{O P}\left(\mathrm{CK}^{m}, \mathrm{CH}^{n}\right)$ if and only if $\mathcal{R}_{m, n}$ is a singleton.

Definition 7.5. Let $R=\left(r_{0}, r_{1}, \ldots\right) \in \mathcal{R}$. We say that R is quasi-small if at least one of the following holds:
(1) R is small;
(2) $r_{i}=0$ for all $i \geqslant 2$ and $r_{1} \leqslant p$;
(3) $r_{0}<p$ and there is an $s \geqslant 1$ such that $r_{s}=p, r_{s+1}<p$ and $r_{i}=0$ for all $i=1, \ldots, s-1$ and $i \geqslant s+2$.

Theorem 7.6. The operation $Q_{m, n}^{R}: \mathrm{CK}^{m} \rightarrow \mathrm{CH}^{n} \otimes \mathbb{F}_{p}$, where $R \in \mathcal{R}_{m, n}$ lifts to an integral operation $\mathrm{CK}^{m} \rightarrow \mathrm{CH}^{n}$ if and only if R is quasi-small. In particular, the reduced power operation $P^{i}: \mathrm{CH}^{m+i} \rightarrow \mathrm{CH}^{m+i p} \otimes \mathbb{F}_{p}$ with $m \geqslant 0$ lifts to an integral operation $\mathrm{CK}^{m+i} \rightarrow \mathrm{CH}^{m+i p}$ if and only if $i \leqslant p$.

Proof. The first statement follows from Theorem 7.4 and Proposition A.6. We have $P^{i}=$ P^{R} with $R=(m, i, 0,0 \ldots)$ and R is quasi-small if and only if $i \leqslant p$.

We show that the reduced power operation Q^{i} for large i cannot be even lifted modulo p^{2}.

Proposition 7.7. The reduced power operation $Q^{i}=P^{i} \circ c: \mathrm{CK}^{m+i} \rightarrow \mathrm{CH}^{m+i p} \otimes \mathbb{F}_{p}$ with $m \geqslant 0$ cannot be lifted to an operation modulo p^{2} if $i \geqslant p+1$.

Proof. The polynomial corresponding to P^{i} is f^{R}, where $R=(m, i, 0,0, \ldots)$. Note that f^{R} is defined over \mathbb{Z}. Suppose there is an integer polynomial g in $m+i$ variables such that the polynomials $\partial^{k}\left(f^{R}+p g\right)$ are symmetric modulo p^{2} for all $k \geqslant 0$. Consider the monomial $h=x_{1}^{p} x_{2} x_{3} \cdots x_{m+1} x_{m+2}^{p} \cdots x_{m+i}^{p}$ of the polynomial f^{R}. We have

$$
\partial^{p-1}(h)=p!\cdot x_{1} x_{2} \cdots x_{m+p} x_{m+p+1}^{p} \cdots x_{m+i+p-1}^{p}
$$

By Lemma 4.8, a nonzero multiple of $x_{1} x_{2} \cdots x_{m+p} x_{m+p+1}^{p} \cdots x_{m+i+p-1}^{p}$ is not a monomial of $\partial^{p-1}(g)$ modulo p. Since $p!\equiv-p$ modulo $p^{2},-p \cdot x_{1} x_{2} \cdots x_{m+p} x_{m+p+1}^{p} \cdots x_{m+i+p-1}^{p}$ is a monomial of the polynomial $\partial^{p-1}\left(f^{R}+p g\right)$ modulo p^{2}. As the polynomial $\partial^{p-1}\left(f^{R}+p g\right)$ is symmetric, it also contains the monomial

$$
-p \cdot x_{1}^{p} x_{2}^{p} \cdots x_{i-1}^{p} x_{i} \cdots x_{m+i+p-1} .
$$

Note that this monomial is not in $\partial^{p-1}\left(f^{R}\right)$, therefore $x_{1}^{p} x_{2}^{p} \cdots x_{i-1}^{p} x_{i} \cdots x_{m+i+p-1}$ is a monomial of $\partial^{p-1}(g)$ modulo p. But this contradicts Lemma 4.8 since $i-1 \geqslant p$.

A. Appendix

For a real number a write $\llbracket a \rrbracket$ for the smallest non-negative integer that is not smaller than a.

Proposition A.1. Let $n \geqslant m$ be positive integers. Then

$$
\min v_{p}\langle a\rangle=\llbracket \frac{m-s_{p}(n)}{p-1} \Pi,
$$

where the minimum is taken over all m-sequences a such that $\|a\|=n$.

Proof. Choose a prime integer p. In view of Lemma 4.5, for an m-sequence a such that $\|a\|=n$ we have

$$
v_{p}\langle a\rangle=\frac{\sum_{i} s_{p}\left(a_{i}\right)-s_{p}(n)}{p-1} \geqslant \frac{m-s_{p}(n)}{p-1}
$$

hence

$$
v_{p}\langle a\rangle \geqslant \llbracket \frac{m-s_{p}(n)}{p-1} \rrbracket .
$$

We will find an m-sequence a such that $\|a\|=n$ and

$$
\begin{equation*}
v_{p}\langle a\rangle=\llbracket \frac{m-s_{p}(n)}{p-1} \rrbracket . \tag{A.2}
\end{equation*}
$$

Write $n=\sum_{i=1}^{s_{p}(n)} p^{t_{i}}$ as the sum of $s_{p}(n)$ powers of p.
Case 1: $m \leqslant s_{p}(n)$. Set $a_{i}=p^{t_{i}}$ for $i=1, \ldots, m-1$ and a_{m} is defined by the condition $a_{1}+a_{2}+\cdots+a_{m}=n$. We have $\sum_{i=1}^{m} s_{p}\left(a_{i}\right)=s_{p}(n)$, hence the equality (A.2) holds by Lemma 4.5(2).

Case 2: $m>s_{p}(n)$. Set $a_{i}=p^{t_{i}}$ for $i=1, \ldots, s_{p}(n)$, so the condition $a_{1}+a_{2}+\cdots+$ $a_{s_{p}(n)}=n$ holds. But the number of a_{i} 's is smaller than m. Choose one of the a_{i} 's that is equal to p^{s} for $s \geqslant 1$. Then replace a_{i} with p numbers that are all equal to p^{s-1}. The integer $\|a\|$ does not change but the number of a_{i} 's increases by $p-1$. Continue doing this we stop when the first time the number m^{\prime} of a_{i} 's becomes at least m, say $m^{\prime}=m+j$, where $0 \leqslant j<p-1$. Note that $m^{\prime}=s_{p}(n)+(p-1) b$, where $b=\llbracket \frac{m-s_{p}(n)}{p-1} \rrbracket$.

Since $m>s_{p}(n)$ there is t such that the equality $a_{i}=p^{t}$ holds for at least p values of i. Now choose $j+1$ numbers among the a_{i} 's that are equal to p^{t} and replace all of them by one integer $(j+1) p^{t}$. The number of a_{i} 's is equal to m now. We have $\sum_{i} s_{p}\left(a_{i}\right)=(m-1)+(j+1)=m^{\prime}$ and hence again by Lemma 4.5(2),

$$
v_{p}\langle a\rangle=\frac{\left(\sum_{i} s_{p}\left(a_{i}\right)\right)-s_{p}(n)}{p-1}=\frac{m^{\prime}-s_{p}(n)}{p-1}=b=\llbracket \frac{m-s_{p}(n)}{p-1} \rrbracket .
$$

Proposition A.3. Let a be an m-sequence such that all a_{i} are powers of p and set $n=\|a\|$. Then

$$
(-p)^{\frac{-m+s_{p}(n)}{p-1}} \cdot\langle a\rangle \equiv c_{0}!c_{1}!\cdots c_{r}!\quad \text { modulo } \quad p,
$$

where c_{i} are p-adic digits of n.
Proof. For a positive integer n set

$$
\theta(n):=p^{-v_{p}(n)} \cdot n+p \mathbb{Z} \in \mathbb{F}_{p}^{\times} .
$$

The function θ is multiplicative.
Lemma A.4. The function θ satisfies the following properties:
(1) $\theta((k p)!)=(-1)^{k} \theta(k!)$ for every $k \geqslant 0$.
(2) $\theta(n!)=(-1)^{\frac{n-s_{p}(n)}{p-1}} \cdot c_{0}!c_{1}!\cdots c_{r}$! modulo p, where c_{i} are p-adic digits of n.

Proof. (1): For any $i \geqslant 0$ let

$$
a_{i}:=(1+i p)(2+i p) \cdots(p-1+i p) .
$$

We have $(k p)!=a_{0} a_{1} \cdots a_{k-1} \cdot p^{k} \cdot k!$ and $\theta\left(a_{i}\right)=-1$ by Wilson Theorem, whence the result.
(2): We prove the statement by induction on the number r of p-adic digits of n. The statement is clear if $r=1$. Write n in the form $n=c_{0}+k p$, where

$$
k=c_{1}+c_{2} p+\cdots+c_{r} p^{r-1} .
$$

Let $t=(1+k p)(2+k p) \cdots\left(c_{0}+k p\right)$, so $t \equiv c_{0}$! modulo p. We have $n!=t \cdot(k p)$! and by the first statement of the lemma,

$$
\theta(n!)=\theta(t) \cdot \theta((k p)!) \equiv c_{0}!\cdot(-1)^{k} \cdot \theta(k!) .
$$

By induction, $\theta(k!) \equiv(-1)^{\frac{k-s_{p}(k)}{p-1}} \cdot c_{1}!c_{2}!\cdots c_{r}!$. It remains to notice that

$$
\frac{k-s_{p}(k)}{p-1}+k=\frac{k p-s_{p}(k p)}{p-1}=\frac{n-s_{p}(n)}{p-1} .
$$

It follows from Lemma A.4(2) that $\theta\left(\left(p^{k}\right)!\right)=(-1)^{\frac{p^{k}-1}{p-1}}$. Since every a_{i} is a p-power, we have

$$
\theta\left(a_{1}!a_{2}!\cdots a_{m}!\right)=(-1)^{\sum_{i=1}^{m} \frac{a_{i}-1}{p-1}}=(-1)^{\frac{n-m}{p-1}} .
$$

By Lemma A.4, the residue of $p^{\frac{-m+s_{p}(n)}{p-1}} \cdot\langle a\rangle$ modulo p is equal to
$\theta(\langle a\rangle)=\theta(n!) / \theta\left(a_{1}!a_{2}!\cdots a_{m}!\right)=(-1)^{\frac{n-s_{p}(n)}{p-1}} \cdot c_{0}!c_{1}!\cdots c_{r}!/(-1)^{\frac{n-m}{p-1}}=(-1)^{\frac{m-s_{p}(n)}{p-1}} \cdot c_{0}!c_{1}!\cdots c_{r}!$

Lemma A.5. Let n and m be two positive integers such that $n \geqslant m \geqslant s_{p}(n)$ and $n-m$ is divisible by $p-1$. Then there is an R such that $\|R\|=n$ and $|R|=m$.

Proof. We prove the statement by induction on m. If $m=s_{p}(n)$, then $R=R(n)$ is the sequence of p-adic digits of n.
$(m \Rightarrow m+p-1)$: Let R be so that $\|R\|=n$ and $|R|=m$. Write $R=\left(r_{0}, r_{1}, r_{2}, \ldots\right)$. As $m<n$, there is $i>0$ such that $r_{i}>0$. Then for

$$
R^{\prime}=\left(r_{0}, \ldots, r_{i-2}, r_{i-1}+p, r_{i}-1, r_{i+1}, \ldots\right),
$$

we have $\left\|R^{\prime}\right\|=n$ and $\left|R^{\prime}\right|=m+p-1$.
Proposition A.6. Let $R \in \mathcal{R}_{m, n}$. Then $\mathcal{R}_{m, n}=\{R\}$ is the singleton if and only if R is quasi-small (see Definition 7.5).

Proof. Replacing m by the smallest integer m^{\prime} such that $m^{\prime} \geqslant m, m^{\prime} \geqslant s_{p}(n)$ and $n-m^{\prime}$ is divisible by $p-1$ we may assume that $|R|=m$ for every $R \in \mathcal{R}_{m, n}$.

Let $\mathcal{R}_{m, n}$ be a singleton. We will show that R is quasi-small. If $r_{k}>p$ for some $k \geqslant 1$ consider R^{\prime} with

$$
r_{i}^{\prime}= \begin{cases}r_{i}+p, & \text { if } i=k-1 \\ r_{i}-p-1, & \text { if } i=k \\ r_{i}+1, & \text { if } i=k+1 \\ r_{i}, & \text { otherwise }\end{cases}
$$

Then $R^{\prime} \neq R$ and $\left\|R^{\prime}\right\|=n,\left|R^{\prime}\right|=m$. Thus, $r_{i} \leqslant p$ for all $i \geqslant 1$.
If R is not small then there is $s \geqslant 0$ with $r_{s} \geqslant p$ (and hence $r_{s}=p$ if $s \geqslant 1$). If $s=0$ we claim that $r_{i}=0$ if $i \geqslant 2$. Let $r_{k} \geqslant 1$ for some $k \geqslant 2$. If $k=2$ consider R^{\prime} with

$$
r_{i}^{\prime}= \begin{cases}r_{i}-p, & \text { if } i=0 \\ r_{i}+p+1, & \text { if } i=1 \\ r_{i}-1, & \text { if } i=2 \\ r_{i}, & \text { otherwise }\end{cases}
$$

Then $R^{\prime} \neq R$ and $\left\|R^{\prime}\right\|=n,\left|R^{\prime}\right|=m$. If $k \geqslant 3$ consider R^{\prime} with

$$
r_{i}^{\prime}= \begin{cases}r_{i}-p, & \text { if } i=0 \\ r_{i}+1, & \text { if } i=1 \\ r_{i}+p, & \text { if } i=k-1 \\ r_{i}-1, & \text { if } i=k \\ r_{i}, & \text { otherwise }\end{cases}
$$

Then $R^{\prime} \neq R$ and $\left\|R^{\prime}\right\|=n,\left|R^{\prime}\right|=m$. We proved the claim, so R is quasi-small.
Now consider the case $r_{0}<p$ and $r_{s}=p$ for $s \geqslant 1$. We claim that $r_{s+1}<p$ and $r_{i}=0$ for all $i=1, \ldots, s-1$ and $i \geqslant s+2$, i.e., R is quasi-small. Suppose $r_{k} \geqslant 1$ for some $k=1, \ldots, s-1$. Consider R^{\prime} with

$$
r_{i}^{\prime}= \begin{cases}r_{i}+p, & \text { if } i=k-1 \\ r_{i}-1, & \text { if } i=k \\ r_{i}-p, & \text { if } i=s \\ r_{i}+1, & \text { if } i=s+1 \\ r_{i}, & \text { otherwise }\end{cases}
$$

Then $R^{\prime} \neq R$ and $\left\|R^{\prime}\right\|=n,\left|R^{\prime}\right|=m$, a contradiction. Note that this argument (with $k=s$ and s replaced by $s+1$) also shows that $r_{s+1}<p$.

Suppose $r_{k} \geqslant 1$ for some $k \geqslant s+2$. If $k=s+2$, consider R^{\prime} with

$$
r_{i}^{\prime}= \begin{cases}r_{i}-p, & \text { if } i=s \\ r_{i}+p+1, & \text { if } i=s+1 \\ r_{i}-1, & \text { if } i=k=s+2 \\ r_{i}, & \text { otherwise }\end{cases}
$$

Then $R^{\prime} \neq R$ and $\left\|R^{\prime}\right\|=n,\left|R^{\prime}\right|=m$, a contradiction. If $k>s+2$, consider R^{\prime} with

$$
r_{i}^{\prime}= \begin{cases}r_{i}-p, & \text { if } i=s \\ r_{i}+1, & \text { if } i=s+1 \\ r_{i}+p, & \text { if } i=k-1 \\ r_{i}-1, & \text { if } i=k \\ r_{i}, & \text { otherwise }\end{cases}
$$

Then $R^{\prime} \neq R$ and $\left\|R^{\prime}\right\|=n,\left|R^{\prime}\right|=m$, a contradiction. The claim is proved.
Now assume that R is quasi-small and $R^{\prime} \in \mathcal{R}_{m, n}$. We will show that $R^{\prime}=R$.
If R is small, then since $l\left(R^{\prime}\right)=l(R)=0$, the sequence R^{\prime} is also small. It readily follows that $R^{\prime}=R$.

Write $R^{\prime}=\left(r_{0}^{\prime}, r_{1}^{\prime}, \ldots, r_{s^{\prime}}^{\prime}, 0,0, \ldots\right)$ with $r_{s^{\prime}}^{\prime} \neq 0$. We have:

$$
\sum_{i \geqslant 0} r_{i}=|R|=\left|R^{\prime}\right|=\sum_{i \geqslant 0} r_{i}^{\prime} \quad \sum_{i \geqslant 0} r_{i} p^{i}=\|R\|=\left\|R^{\prime}\right\|=\sum_{i \geqslant 0} r_{i}^{\prime} p^{i} .
$$

It follows that

$$
\sum_{i \geqslant 1} r_{i} q_{i}=\sum_{i \geqslant 1} r_{i}^{\prime} q_{i},
$$

where $q_{i}=\frac{p^{i}-1}{p-1}=1+p+\cdots+p^{i-1}$.
Suppose $r_{i}=0$ if $i \geqslant 2$ and $r_{1} \leqslant p$. Then $\sum_{i \geqslant 1} r_{i} q_{i}=r_{1} \leqslant p$. Since $q_{i}>p$ if $i \geqslant 2$, we have $r_{i}^{\prime}=0$ if $i \geqslant 2$. It follows that $R^{\prime}=R$.

Finally suppose that there is $s \geqslant 1$ such that $r_{s}=p$ and $r_{0}<p, r_{s+1}<p$ and $r_{i}=0$ for $i=1, \ldots, s-1$ and $i \geqslant s+2$. We have

$$
\sum_{i \geqslant 1} r_{i}^{\prime} q_{i}=\sum_{i \geqslant 1} r_{i} q_{i}=p q_{s}+r_{s+1} q_{s+1} \leqslant p q_{s}+(p-1) q_{s+1}<q_{s+2} .
$$

It follows that $r_{i}^{\prime}=0$ if $i \geqslant s+2$.
We claim that $r_{s+1} \geqslant r_{s+1}^{\prime}$. Indeed,

$$
\left(r_{s+1}+1\right) q_{s+1}>p q_{s}+r_{s+1} q_{s+1}=\sum_{i=1}^{s+1} r_{i}^{\prime} q_{i} \geqslant r_{s+1}^{\prime} q_{s+1}
$$

therefore, $r_{s+1}+1>r_{s+1}^{\prime}$ whence the claim.
We claim that $r_{0}>r_{0}^{\prime}$ if $R \neq R^{\prime}$. Indeed in this case either $r_{i}^{\prime}>0$ for some $i=1, \ldots, s-1$ or $r_{s+1}^{\prime} \neq r_{s+1}$ (and hence $r_{s+1}>r_{s+1}^{\prime}$), and therefore,

$$
\left(r_{s+1}-r_{s+1}^{\prime}\right)\left(q_{s+1}-q_{s}\right)+\sum_{i=1}^{s} r_{i}^{\prime}\left(q_{s}-q_{i}\right)>0
$$

Equivalently,

$$
\begin{equation*}
r_{s+1}\left(q_{s+1}-q_{s}\right)+\left(\sum_{i=1}^{s+1} r_{i}^{\prime}\right) q_{s}-\sum_{i=1}^{s+1} r_{i}^{\prime} q_{i}>0 . \tag{A.7}
\end{equation*}
$$

Recall that

$$
\sum_{i=1}^{s+1} r_{i}^{\prime} q_{i}=\sum_{i=1}^{s+1} r_{i} q_{i}=r_{s} q_{s}+r_{s+1} q_{s+1}
$$

and

$$
\sum_{i=0}^{s+1} r_{i}^{\prime}=\left|R^{\prime}\right|=|R|=\sum_{i=0}^{s+1} r_{i}=r_{0}+r_{s}+r_{s+1} .
$$

It follows that the left hand side of the inequality (A.7) is equal to $r_{0} q_{s}-r_{0}^{\prime} q_{s}$, hence $r_{0}>r_{0}^{\prime}$. The claim is proved.

Since r_{0} is congruent to r_{0}^{\prime} modulo p and $r_{0}^{\prime} \geqslant 0$, we deduce that $r_{0} \geqslant p$, a contradiction.

References

[1] Cai, S. Algebraic connective K-theory and the niveau filtration. J. Pure Appl. Algebra 212, 7 (2008), 1695-1715.
[2] Dai, S., and Levine, M. Connective algebraic K-theory. J. K-Theory 13, 1 (2014), 9-56.
[3] Fulton, W. Intersection theory. Springer-Verlag, Berlin, 1984.
[4] Levine, M., and Morel, F. Algebraic cobordism. Springer Monographs in Mathematics. Springer, Berlin, 2007.
[5] Merkurjev, A., And Vishik, A. Operations in connective k-theory. preprint, https://www.math.ucla.edu/merkurev/papers/connective24.pdf.
[6] Milnor, J. The Steenrod algebra and its dual. Ann. of Math. (2) 67 (1958), 150-171.
[7] Sechin, P. Chern classes from algebraic Morava K-theories to Chow groups. Int. Math. Res. Not. IMRN, 15 (2018), 4675-4721.
[8] Vishik, A. Stable and unstable operations in algebraic cobordism. Ann. Sci. Éc. Norm. Supér. (4) 52, 3 (2019), 561-630.

Department of Mathematics, University of California, Los Angeles, CA, USA
Email address: merkurev@math.ucla.edu, web page: www.math.ucla.edu/~merkurev

