ADDITIVE OPERATIONS BETWEEN CONNECTIVE K-THEORY AND CHOW THEORY

ALEXANDER S. MERKURJEV

ABSTRACT. We determine all additive operations, stable and unstable, between connective K-theory and Chow theory modulo a prime integer p. It is proved the module of all stable operations is free of rank p-1 over the reduced Steenrod algebra.

1. INTRODUCTION

Let F be a field of characteristic 0 and write \mathbf{Sm}_F for the category of smooth quasiprojective varieties over F. An oriented cohomology theory A^* over F is a functor from \mathbf{Sm}_F^{op} to the category of \mathbb{Z} -graded commutative rings equipped with a push-forward structure and satisfying certain axioms (see [8, Definition 2.1]), including the localisation axiom. We write

$$A^*(X) = \coprod_{n \in \mathbb{Z}} A^n(X)$$

for a variety X in \mathbf{Sm}_F and let $A^*(F)$ denote the *coefficient ring* $A^*(\operatorname{Spec} F)$.

Every oriented cohomology theory A^* admits a theory of Chern classes c_n^A of vector bundles.

The algebraic cobordism of Levine-Morel Ω^* is the universal oriented cohomology theory (see [4]). A *free theory* is an oriented cohomology theory obtained from Ω^* by change of coefficients (see [4, Remark 2.4.14] or [8, §4]).

Let A^* be an oriented cohomology theory. There is a (unique) associated formal group law

$$FGL_A(x, y) = x + y + \sum_{i,j \ge 1} a^A_{i,j} x^i y^j \in A^*(F)[[x, y]]$$

that computes the first Chern class of the tensor product of two line bundles L and L' (see, for example, [4, §1.1] or [8, §2.3]):

$$c_1^A(L \otimes L') = F_A(c_1^A(L), c_1^A(L')).$$

Example 1.1. (see [3]) The Chow theory CH^{*} takes a smooth variety X to the Chow ring CH^{*}(X) of classes of algebraic cycles on X. The coefficient ring CH^{*}(F) = \mathbb{Z} is concentrated in degree 0 and FGL_{CH}(x, y) = x + y is the additive group law.

Example 1.2. (see [1] and [2]) The connective K-theory takes a smooth variety X to the ring $CK^*(X)$ of X (see [1] and [2]). The group $CK^n(X)$ is defined as the image of the natural homomorphism $K_0(\mathcal{M}^n(X)) \to K_0(\mathcal{M}^{n-1}(X))$, where $\mathcal{M}^n(X)$ is the abelian category of coherent \mathcal{O}_X -modules whose support is of codimension at least n.

The author has been supported by the NSF grant DMS #1801530.

The coefficient ring $CK^*(F) = \mathbb{Z}[t]$ is the polynomial ring in the *Bott element* $t \in CK^{-1}(F)$ and $FGL_{CK}(x, y) = x + y - txy$ is a *multiplicative* group law.

The two theories CH^{*} and CK^{*} are related by an exact sequence

 $\operatorname{CK}^{n+1}(X) \xrightarrow{t} \operatorname{CK}^n(X) \xrightarrow{c} \operatorname{CH}^n(X) \to 0,$

where the first map is multiplication by t and c is the class map taking the class in $\operatorname{CK}^n(X)$ of an \mathcal{O}_X -module M from $\mathcal{M}^n(X)$ to its cycle class in $\operatorname{CH}^n(X)$. Thus, we have a canonical graded ring isomorphism

$$\operatorname{CH}^{*}(X) \xrightarrow{\sim} \operatorname{CK}^{*}(X)/t \operatorname{CK}^{*+1}(X).$$

The inclusion functor $\mathcal{M}^n(X) \hookrightarrow \mathcal{M}^0(X)$ yields a homomorphism $\operatorname{CK}^n(X) \to K_0(X)$. Its image is the subgroup $K_0(X)^{(n)} \subset K_0(X)$ generated by the classes of coherent \mathcal{O}_X modules with codimension of support at least n. This map is an isomorphism if $n \leq 0$, so we can identify $\operatorname{CK}^n(X)$ with $K_0(X)$ for all $n \leq 0$. Moreover,

$$\operatorname{CK}^*(X) \otimes_{\mathbb{Z}[t]} \mathbb{Z}[t, t^{-1}] = \operatorname{CK}^*(X)[t^{-1}] \simeq K_0(X) \otimes_{\mathbb{Z}} \mathbb{Z}[t, t^{-1}].$$

The natural homomorphism $\mathbb{Z}[t] = \operatorname{CK}^*(F) \to \operatorname{CK}^*(X)$ yields a morphism

 $\varphi: \operatorname{Spec} \operatorname{CK}^*(X) \to \operatorname{Spec} \mathbb{Z}[t] = \mathbb{A}^1_{\mathbb{Z}}.$

The fiber of φ over 0 is Spec CH^{*}(X) and the fiber of φ over the complement $\mathbb{G}_m = \mathbb{A}^1_{\mathbb{Z}} - \{0\}$ is Spec $K_0(X) \times \mathbb{G}_m$. Thus, we can view Spec CK^{*}(X) as a "deformation space" deforming $K_0(X)$ to CH^{*}(X).

All cohomology theories in Examples 1.1 and 1.2 are free theories.

Definition 1.3. Let A^* and B^* be two oriented cohomology theories and m, n integers. An *additive operation* $A^m \to B^n$ is a morphism between the functors A^m and B^n considered as contravariant functors from \mathbf{Sm}_F to the category of abelian groups (see [8, Definition 3.3]). All additive operations $A^m \to B^n$ form an abelian group $\mathbf{OP}^{m,n}(A^*, B^*)$.

Example 1.4. Multiplication by t yields an operation $CK^{n+1} \to CK^n$ that is an isomorphism if n < 0. The operation $c : CK^n \to CH^n$ is an example of a surjective additive operation.

Let p be a prime integer. The group of operations $\mathbf{OP}^{m,n}(\mathrm{CH}^*, \mathrm{CH}^* \otimes \mathbb{F}_p)$ was determined in [8, Theorem 6.6] (see Section 3). The \mathbb{F}_p -space $\mathbf{OP}^{m,n}(\mathrm{CH}^*, \mathrm{CH}^* \otimes \mathbb{F}_p)$ has a canonical basis $\{P^R\}$ of *Steenrod operations* indexed by all sequences $R = (r_0, r_1, \ldots)$ of non-negative integers, almost all zero, such that

$$||R|| := \sum_{i \ge 0} r_i p^i = n \quad and \quad |R| := \sum_{i \ge 0} r_i = m.$$

Note that the \mathbb{F}_p -space $\mathbf{OP}^{m,n}(\mathrm{CH}^*, \mathrm{CH}^* \otimes \mathbb{F}_p)$ is nonzero if and only if $n \ge m \ge s_p(n)$, where $s_p(n)$ is the sum of digits of n written in base p, and n-m is divisible by p-1.

The operations P^R cannot be defined integrally, they cannot be even lifted modulo p^2 .

In the present paper we determine the structure of the groups $\mathbf{OP}^{m,n}(\mathbf{CK}^*,\mathbf{CH}^*\otimes\mathbb{F}_p)$. The composition Q: $\mathbf{CK}^m \xrightarrow{c} \mathbf{CH}^m \xrightarrow{P} \mathbf{CH}^n$ for an operation P is an operation in

 $\mathbf{2}$

 $\mathbf{OP}^{m,n}(\mathrm{CK}^*, \mathrm{CH}^* \otimes \mathbb{F}_p)$. But P is nonzero for special values of (m, n) (see above). Nevertheless, we show that the group $\mathbf{OP}^{m,n}(\mathrm{CK}^*, \mathrm{CH}^* \otimes \mathbb{F}_p)$ is nontrivial for all positive integers $n \ge m$.

Precisely, let m' be the smallest integer such that $m' \ge m$, $m' \ge s_p(n)$ and n - m' is divisible by p - 1. There are two maps

(1.5)
$$\mathbf{OP}^{m,n}(\mathrm{CK}^*, \mathrm{CH}^* \otimes \mathbb{F}_p) \to \mathbf{OP}^{m',n}(\mathrm{CK}^*, \mathrm{CH}^* \otimes \mathbb{F}_p) \leftarrow \mathbf{OP}^{m',n}(\mathrm{CH}^*, \mathrm{CH}^* \otimes \mathbb{F}_p),$$

where the first map is given via multiplication by $t^{m'-m}$ and the second map is induced by $c : CK^* \to CH^*$. We prove (see Theorem 5.2 and Corollary 5.3) that both maps in (1.5) are isomorphisms.

In other words, for every operation $Q \in \mathbf{OP}^{m,n}(\mathbf{CK}^*, \mathbf{CH}^* \otimes \mathbb{F}_p)$ there is a unique operation $P \in \mathbf{OP}^{m',n}(\mathbf{CH}^*, \mathbf{CH}^* \otimes \mathbb{F}_p)$ (and for every P there is a unique operation Q) such that the diagram

is commutative.

In Section 5 we also explicitly construct an \mathbb{F}_p -basis for $\mathbf{OP}^{m,n}(\mathbf{CK}^*, \mathbf{CH}^* \otimes \mathbb{F}_p)$ that corresponds to the Steenrod basis in $\mathbf{OP}^{m',n}(\mathbf{CH}^*, \mathbf{CH}^* \otimes \mathbb{F}_p)$ under the isomorphisms (1.5).

In topology an operation is stable if it commutes with the suspension isomorphism. The algebraic version of stability was defined, for example, in [8, §3.1]. By Example 6.6, the algebra \mathcal{A} of stable operations $\mathrm{CH}^* \otimes \mathbb{F}_p \to \mathrm{CH}^* \otimes \mathbb{F}_p$ is the *reduced Steenrod algebra*, the factor algebra of the Steenrod algebra modulo the Bockstein operation (see [6]).

In Section 6 we determine the group $\mathbf{OP}^*_{\mathrm{st}}(\mathrm{CK}^*, \mathrm{CH}^* \otimes \mathbb{F}_p)$ of stable operations $\mathrm{CK}^* \to \mathrm{CH}^* \otimes \mathbb{F}_p$. We prove that it is a free left \mathcal{A} -module of rank p-1 and give an explicit basis.

In Section 7 we determine the group of integral operations $\mathbf{OP}^{m,n}(\mathrm{CK}^*, \mathrm{CH}^*)$. It appeared to be an infinite cyclic group with a canonical generator. We also determine the image of the natural map $\mathbf{OP}^{m,n}(\mathrm{CK}^*, \mathrm{CH}^*) \to \mathbf{OP}(\mathrm{CK}^m, \mathrm{CH}^n \otimes \mathbb{F}_p)$, i.e., those operations in $\mathbf{OP}(\mathrm{CK}^m, \mathrm{CH}^n \otimes \mathbb{F}_p)$ that can be lifted to an operation $\mathrm{CK}^m \to \mathrm{CH}^n$ over \mathbb{Z} . Recall that the Steenrod operations P^R cannot be lifted to integral operations (see Example 3.3).

In order to make the exposition clearer we moved the proofs of some technical statements to Appendix.

ACKNOWLEDGEMENTS. I am grateful to Alexander Vishik for useful comments.

2. VISHIK'S THEOREM

We will be using the following fundamental theorem due to A. Vishik.

Theorem 2.1. [8, Theorem 6.2] Let A^* be a free cohomology theory and let B^* be any oriented cohomology theory over a field F of characteristic zero. Then there is an isomorphism between the group $\mathbf{OP}^{m,n}(A, B)$ of additive operations $G : A^m \to B^n$ and the

group consisting of the following data $\{g_s\}_{s \ge 0}$:

$$g_s \in \operatorname{Hom}(A^{m-s}(F), B^*(F)[[x_1, x_2, \dots, x_s]]_{(n)}),$$

where $B^*(F)[[x_1, x_2, ..., x_s]]_{(n)}$ denotes the subgroup of all homogeneous degree n power series, satisfying

- 1) $g_s(\alpha)$ is a symmetric power series for all s and $\alpha \in A^{m-s}(F)$,
- 2) $g_s(\alpha)$ is divisible by $x_1x_2\cdots x_s$ for all s and α ,
- 3) $g_s(\alpha)(y + z, x_2, \dots, x_s) = g_s(\alpha)(y, x_2, \dots, x_s) + g_s(\alpha)(z, x_2, \dots, x_s) + \sum_{i=1}^{n} g_s(\alpha)(z, x_2, \dots, x_s) + g_s(\alpha)(z, x_2, \dots, x_s) +$

$$\sum_{i,j\geq 1} g_{i+j+s-1}(\alpha \cdot a_{i,j}^A)(y^{\times i}, z^{\times j}, x_2, \dots, x_s),$$

where $a_{i,j}^A$ are the coefficients of the formal group law of A^* and the sum $y +_B z$ is taken with respect to the formal group law of B^* .

Note that $g_0: A^m(F) \to B^n(F)$ is the operation G on Spec F. The power series $g_s(\alpha)$ are determined by the rule

$$G(\alpha \cdot c_1^A(L_1) \cdot \ldots \cdot c_1^A(L_s)) = g_s(\alpha) (c_1^B(L_1), \ldots, c_1^B(L_s)),$$

where L_1, \ldots, L_s are line bundles over a smooth variety.

Consider the following cohomology theories: $A^* = CK^*$ and $B^* = CH^* \otimes S$, where S is a commutative ring (\mathbb{Z} or \mathbb{F}_p in the sequel). The formal group laws of CK^* and $CH^* \otimes S$ are the multiplicative group law x + y - txy and the additive group law x + y, respectively.

We have $CK^*(F) = \mathbb{Z}[t]$, where $t \in CK^{-1}(F)$ is the Bott element and $CH^*(F) \otimes S = S$. Let $G : CK^m \to CH^n \otimes S$ be an additive operation. Let us assume that m > 0. Note that

$$\operatorname{CK}^{m-s}(F) = \begin{cases} 0, & \text{if } s < m; \\ \mathbb{Z}t^{s-m}, & \text{if } s \ge m. \end{cases}$$

By Vishik's theorem, G is given by a collection of homogeneous polynomials

$$g_s := g_s(t^{s-m}) \in S[x_1, x_2, \dots, x_s] \text{ for all } s \ge m$$

of degree n such that

(1) g_s is a symmetric polynomial for all $s \ge m$,

(2) g_s is divisible by $x_1 x_2 \cdots x_s$ for all $s \ge m$,

(3) $g_{s+1} = -\partial(g_s)$ for $s \ge m$, where for a polynomial h in s variables we define its *derivative*

$$\partial(h)(y, z, x_2, \dots, x_s) := h(y + z, x_2, \dots, x_s) - h(y, x_2, \dots, x_s) - h(z, x_2, \dots, x_s)$$

in $S[y, z, x_2, ..., x_s]$.

All polynomials g_s with s > m are uniquely determined by g_m in view of (3).

Notation 2.2. Let S be a commutative ring and $n \ge m$ positive integers. We write $V_{m,n}(S)$ for the group of homogeneous symmetric polynomials f of degree n in $S[x_1, x_2, \ldots, x_m]$ that are divisible by $x_1x_2\cdots x_m$ and such that $\partial^i(f)$ are symmetric for all i > 0.

We have proved the following statement:

Proposition 2.3. Let *m* and *n* be positive integers.

(1) The map

 $\mathbf{OP}(\mathrm{CK}^m, \mathrm{CH}^n \otimes S) \to V_{m,n}(S)$

taking an operation $G = \{g_s\}_{s \ge 0}$ to the polynomial $(-1)^{m+n}g_m$ is an isomorphism. (2) The diagram

is commutative.

Example 2.4. Clearly, $V_{m,n}(S) = 0$ if n < m and $V_{m,m}(S) = S \cdot x_1 x_2 \cdots x_m$. Therefore, **OP**(CK^m, CHⁿ $\otimes S$) = 0 if n < m. The polynomial $x_1 x_2 \cdots x_m$ in $V_{m,m}(S)$ corresponds to the canonical operation CK^m $\stackrel{c}{\rightarrow}$ CH^m \rightarrow CH^m $\otimes S$.

3. Steenrod operations

Notation 3.1. Let S be a commutative ring and $n \ge m$ positive integers. We write $W_{m,n}(S)$ for the group of homogeneous symmetric polynomials f of degree n in $S[x_1, x_2, \ldots, x_m]$ that are divisible by $x_1x_2\cdots x_m$ and such that $\partial(f) = 0$.

Clearly, $W_{m,n}(S) \subset V_{m,n}(S)$.

Recall that the coefficient ring $CH^*(F) = \mathbb{Z}$ is concentrated in degree 0. By Theorem 2.1, an additive operation $G : CH^m \to CH^n \otimes S$ is given by a collection of polynomials $\{g_s\}_{s \ge 0}$, where $g_s = 0$ for $s \ne m$ and $g_m \in W_{m,n}(S)$. It follows that the assignment $G \mapsto (-1)^{m+n}g_m$ yields an isomorphism in the top row of the commutative diagram

Example 3.3. The group $W_{m,n}(\mathbb{Z})$ coincides with $\mathbb{Z} \cdot x_1 x_2 \cdots x_m$ if m = n and zero otherwise. Therefore, the only integral operations $CH^m \to CH^n$ are multiples of the identity when m = n.

Let p be a prime integer. We simply write $W_{m,n}$ for $W_{m,n}(\mathbb{F}_p)$.

Lemma 3.4. (see [8, Theorem 6.6]) Let f be a nonzero symmetric homogeneous polynomial of degree n in $\mathbb{F}_p[x_1, x_2, \ldots, x_m]$ that is divisible by $x_1x_2\cdots x_m$. Then $f \in W_{m,n}$ if and only if every variable x_i enters each monomial of f in degree a power of p.

Proof. Clearly, if every variable x_i enters each monomial of f in degree a power of p, we have $\partial(f) = 0$. Conversely, let $cx_1^{a_1} \cdots x_m^{a_m}$ be a nonzero monomial of f such that $\partial(f) = 0$. It suffices to show that all a_i are p-powers. Suppose a_i is not a p-power for some i. Since f is symmetric there is a monomial of f of the form $cx_1^{a_i} \cdots$. Since a_i is not a p-power, the derivative of this monomial is not zero. As the derivatives of distinct monomials don't have common monomials, we have $\partial(f) \neq 0$, a contradiction.

We can determine a basis of $W_{m,n}$ as follows.

Notation 3.5. Write \mathcal{R} for the set of all nonzero sequences $R = (r_0, r_1, r_2, ...)$ of nonnegative integers, almost all zero. Clearly, the component-wise sum of two sequences in \mathcal{R} also belongs to \mathcal{R} . Set

$$||R|| := \sum_{i \ge 0} r_i p^i$$
 and $|R| := \sum_{i \ge 0} r_i.$

Note that ||R|| - |R| is divisible by p - 1 and $||R|| \ge |R| \ge s_p(||R||)$, where $s_p(n)$ is the sum of digits of n written in base p (see Lemma 4.3 below).

Notation 3.6. For every $R \in \mathcal{R}$ denote by f^R the "smallest" symmetric homogenous polynomial in the variables x_1, \ldots, x_m with m = |R| containing the monomial

$$(x_1x_2\cdots x_{r_0})(x_{r_0+1}\cdots x_{r_0+r_1})^p(x_{r_0+r_1+1}\cdots x_{r_0+r_1+r_2})^{p^2}\cdots$$

of degree n = ||R||. The polynomial f^R is divisible by $x_1 x_2 \cdots x_m$.

Clearly, all polynomials f^R in $\mathbb{F}_p[x_1, x_2, \ldots, x_m]$ with ||R|| = n and |R| = m belong to $W_{m,n}$ and by Lemma 3.4 they form a basis of the \mathbb{F}_p -space $W_{m,n}$. Note that by Lemma A.5, $W_{m,n} \neq 0$ if and only if n - m is divisible by p - 1 and $n \ge m \ge s_p(n)$.

Notation 3.7. Let $n \ge m$ be positive integers and let $R \in \mathcal{R}$ be such that ||R|| = n and |R| = m. Write P^R for the operation $\operatorname{CH}^m \to \operatorname{CH}^n \otimes \mathbb{F}_p$ corresponding to f^R under the isomorphism in (3.2). Thus, all operations P^R form a basis for the space $\operatorname{OP}(\operatorname{CH}^m, \operatorname{CH}^n \otimes \mathbb{F}_p)$. Note that the operation P^R shifts the codimension by $n - m = \sum_{i \ge 0} r_i(p^i - 1)$.

If $m \ge i > 0$ and R = (m - i, i, 0, 0, ...) then the corresponding operation $CH^m \to CH^{m+i(p-1)}$ (denoted P^i) is known as the *reduced power operation*. It is equal to the operation $x \mapsto x^p$ if m = i.

4. The spaces $V_{m,n}$

Let p be a prime integer.

Definition 4.1. We say that a sequence $R = (r_0, r_1, \ldots) \in \mathcal{R}$ is *small* if $r_i < p$ for all *i*. Clearly, *R* is small if and only if *R* is the sequence of *p*-adic digits of a positive integer *n*. We write R =: R(n) for such a sequence. Note that ||R|| = n and $|R(n)| = s_p(n)$.

Definition 4.2. For a sequence $R \in \mathcal{R}$ we define the *level* of R:

$$l(R) := \frac{|R| - s_p(||R||)}{p - 1}.$$

Lemma 4.3. Let $R \in \mathcal{R}$. Then

- (1) l(R) is a non-negative integer;
- (2) l(R) = 0 if and only if R is small.

Proof. Clearly, $s_p(||R||) \equiv ||R|| \equiv |R| \mod p - 1$, so l(R) is an integer. We have

$$|R| = \sum r_i \ge \sum s_p(r_i) = \sum s_p(r_i p^i) \ge s_p(\sum r_i p^i) = s_p(||R||),$$

hence $l(R) \ge 0$. All the inequalities are equalities if and only if $r_i < p$ for all i, i.e., when R is small.

 $\mathbf{6}$

Definition 4.4. Let *m* be a positive integer. An *m*-sequence is sequence $a = (a_1, a_2, \ldots, a_m)$ of positive integers. Write

type(a) :=
$$\sum_{j=1}^{m} R(a_j) \in \mathcal{R}$$

and call this sequence the *type* of *a*. In other words, if $a_j = \sum_{i \ge 0} x_{ij} \cdot p^i$ with $0 \le x_{ij} < p$, then type $(a) = (r_0, r_1, \ldots)$ where $r_i = \sum_{j=1}^m x_{ij}$.

We have

$$||\operatorname{type}(a)|| = \sum_{j=1}^{m} ||R(a_j)|| = \sum_{j=1}^{m} a_j =: ||a|| \text{ and } |\operatorname{type}(a)| = \sum_{j=1}^{m} |R(a_j)| = \sum_{j=1}^{m} s_p(a_j).$$

For an m-sequence a consider the (generalized) binomial coefficient

$$\langle a \rangle := \frac{||a||!}{a_1! \cdot a_2! \cdot \ldots \cdot a_m!} \in \mathbb{Z}.$$

Lemma 4.5. Let a be an m-sequence of type R. Then

(1) $|R| \ge m$ and |R| = m if and only if every a_j is a p-power. (2)

$$v_p \langle a \rangle = \frac{\sum_j s_p(a_j) - s_p(||a||)}{p - 1} = l(R),$$

where v_p is the p-adic valuation.

Proof. (1): We have

$$|R| = \sum_{j} s_p(a_j) \ge m$$

since $s_p(a_j) \ge 1$ for all j. The equality |R| = m holds if and only if $s_p(a_j) = 1$ for all j, i.e., every a_j is a p-power.

(2) Follows from the equality $v_p(n!) = \frac{n - s_p(n)}{p-1}$ for every positive integer n.

We set $x^a := x_1^{a_1} \cdots x_m^{a_m}$ for an *m*-sequence *a* and variables x_1, \ldots, x_m .

Since $\partial^{m-1}(x^n)$ is the sum of all monomials in $(x_1 + x_2 + \cdots + x_m)^n$ that are divisible by $x_1x_2\cdots x_m$, the Binomial Theorem yields the equality

(4.6)
$$\partial^{m-1}(x^n) = \sum \langle a \rangle \cdot x^a \quad \text{in} \quad \mathbb{Z}[x_1, x_2, \dots, x_m],$$

where the sum is taken over all *m*-sequences *a* such that ||a|| = n.

Lemma 4.7. For an *m*-sequence *a* every monomial of $\partial (\langle a \rangle \cdot x^a)$ in $\mathbb{Z}[x_1, x_2, \ldots, x_{m+1}]$ is of the form $\langle b \rangle \cdot x^b$ for an (m+1)-sequence *b* such that either $v_p \langle b \rangle > v_p \langle a \rangle$ or type(*b*) = type(*a*).

Proof. Every monomial of $\partial (\langle a \rangle \cdot x^a)$ is of the form $e \cdot x^b$ for an (m+1)-sequence b, where $b = (b_1, b_2, \ldots, b_{m+1})$ so that $a = (b_1 + b_2, b_3 \ldots, b_{m+1})$, and

$$e = \binom{b_1 + b_2}{b_1} \cdot \langle a \rangle = \langle b \rangle.$$

If $\binom{b_1+b_2}{b_1}$ is divisible by p, then $v_p\langle b \rangle > v_p\langle a \rangle$. Otherwise $s_p(b_1+b_2) = s_p(b_1) + s_p(b_2)$, hence $R(b_1+b_2) = R(b_1) + R(b_2)$ and therefore, type(b) = type(a).

Lemma 4.8. Suppose that a nonzero multiple of $x_1^{a_1}x_2^{a_2}\cdots x_k^{a_k}\cdots$ is a monomial of $\partial^{k-1}(f)$ for a polynomial $f \in \mathbb{F}_p[x_1, x_2, \ldots, x_m]$. Then $\langle a \rangle$ is not zero in \mathbb{F}_p , where $a = (a_1, a_2, \ldots, a_k)$.

Proof. The polynomial f must contain a nonzero multiple of a monomial $x_1^n \cdots$, where n = ||a||. Since the monomial $x_1^{a_1} x_2^{a_2} \cdots x_k^{a_k} \cdots$ appears in $\partial^{k-1}(x_1^n \cdots)$ with coefficient $\langle a \rangle$, we have $\langle a \rangle \neq 0$ in \mathbb{F}_p .

Corollary 4.9. Let $n \ge m \ge s_p(n)$. Then there is no polynomial $f \in \mathbb{F}_p[x_1, x_2, \ldots, x_m]$ such that $\partial^{p-1}(f)$ is a nonzero polynomial in $W_{m+p-1,n}$.

Proof. Suppose $\partial^{p-1}(f)$ is a nonzero polynomial in $W_{m+p-1,n}$, i.e., $\partial^{p-1}(f)$ is a nonzero linear combination of f^R for all sequences R with ||R|| = n and |R| = m + p - 1. Every two such f^R have no common monomials (up to a scalar multiple), and every such R is not small since $|R| > m \ge s_p(n) = s_p(||R||)$ (see Lemma 4.3). Choose any such R and an $i \ge 0$ with $r_i \ge p$. The polynomial f^R and hence $\partial^{p-1}(f)$ contains a monomial of the form $(x_1x_2\ldots x_p)^{p^i}\cdots$. This contradicts Lemma 4.8 since $\langle a \rangle$ is divisible by p for $a = (p^i, p^i, \ldots, p^i)$ (p times).

Notation 4.10. For a real number t write $\llbracket t \rrbracket$ for the smallest non-negative integer that is $\ge t$. For positive integers $n \ge m$ set

$$l_{m,n} = \left[\left[\frac{m - s_p(n)}{p - 1} \right] \right] \ge 0$$

Note that $l_{m,n} = 0$ if and only if $m \leq s_p(n)$ and for $m > s_p(n)$ we have $l_{m+1,n} = l_{m,n} + 1$ if and only if n - m is divisible by p - 1 and $l_{m+1,n} = l_{m,n}$ otherwise.

By Proposition A.1, $l_{m,n}$ is the minimum of $v_p \langle a \rangle$ over all *m*-sequences *a* such that ||a|| = n.

Proof. (1): In view of Lemma 4.5, $v_p \langle a \rangle = l(R)$ and the sequence R is small if and only if l(R) = 0.

(2): We have $v_p \langle a \rangle = l(R) = \frac{|R| - s_p(n)}{p-1} \ge \frac{m - s_p(n)}{p-1}$, hence $v_p \langle a \rangle \ge l_{m,n}$. The integer $v_p \langle a \rangle$ is equal to $l_{m,n} = \left[\frac{m - s_p(n)}{p-1} \right]$ if and only if $0 \le |R| - m .$

Definition 4.11. For all positive integers $n \ge m$ define the subset $\mathcal{R}_{m,n} \subset \mathcal{R}$ of sequences as follows.

- (1) If $m \leq s_p(n)$, then $\mathcal{R}_{m,n}$ is the singleton $\{R(n)\}$ consisting of the only small sequence R with ||R|| = n. Note that $|R| = s_p(n)$.
- (2) If $m > s_p(n)$, then $\mathcal{R}_{m,n}$ is the (finite) set of all sequences R such that ||R|| = n and $0 \leq |R| m . Note that <math>|R|$ is the only integer in the interval [m, m + p 1) that is congruent to n modulo p 1.

Equivalently, $R \in \mathcal{R}_{m,n}$ if and only if $l(R) = l_{m,n}$.

By Lemma A.5, the set $\mathcal{R}_{m,n}$ is not empty. Note that $\mathcal{R}_{m,n} = \mathcal{R}_{m',n}$, where m' is the smallest integer such that $m' \geq m$, $m' \geq s_p(n)$ and n - m' is divisible by p - 1. In particular, $\mathcal{R}_{m,n} = \mathcal{R}_{m+1,n}$ if either $m < s_p(n)$ or $m > s_p(n)$ and n - m is not divisible by p - 1.

Lemma 4.12. Let $n \ge m$ be positive integers and a an m-sequence with ||a|| = n. Let $R = \operatorname{type}(a).$

- (1) If $m \leq s_p(n)$, then $l_{m,n} = 0$. Moreover, $v_p \langle a \rangle = 0$ if and only if R is small, i.e., $R = R(n) \in \mathcal{R}_{m.n}.$
- (2) If $m > s_p(n)$, then $v_p\langle a \rangle \ge l_{m,n}$ and $v_p\langle a \rangle = l_{m,n}$ if and only if $0 \le |R| m ,$ i.e., $R \in \mathcal{R}_{m,n}$. In the latter case |R| - m is the remainder on dividing n - m by p - 1.

Notation 4.13. For a positive integer n, set

$$s_p^!(n) := \prod_{i \ge 0} c_i!,$$

where c_i are *p*-adic digits of *n*. Note that $s_p^!(n)$ is not divisible by *p*.

Definition 4.14. Let $n \ge m$ be positive integers and $R \in \mathcal{R}_{m,n}$. Define the following polynomial in $\mathbb{F}_p[x_1, x_2, \ldots, x_m]$:

$$q_{m,n}^R := \frac{1}{s_p^!(n)} \cdot \sum_{\text{type}(a)=R} (-p)^{-l_{m,n}} \langle a \rangle \cdot x^a \quad \text{modulo} \quad p,$$

where the sum is taken over all *m*-sequences *a* such that type(a) = R.

Clearly, $q_{m,n}^R$ is a symmetric polynomial.

Let $n \ge m$ be positive integers. Recall that $V_{m,n} := V_{m,n}(\mathbb{F}_p)$ is the vector space over \mathbb{F}_p of homogeneous symmetric polynomials f of degree n in m variables x_1, x_2, \ldots, x_m that are divisible by $x_1 x_2 \cdots x_m$ and such that $\partial^i(f)$ are symmetric for all i > 0, where

$$\partial: V_{*,n} \to V_{*+1,n}$$

is the derivation.

In the following theorem we determine structure of the \mathbb{F}_p -spaces $V_{m,n}$.

Theorem 4.15. Let $n \ge m$ be positive integers and p a prime integer.

- (1) If $m \leq s_p(n)$, then $V_{m,n}$ is a 1-dimensional vector space over \mathbb{F}_p spanned by $q_{m,n}^R$ for R = R(n);
- (2) If $m \ge s_p(n)$, then the polynomials $q_{m,n}^R$ for $R \in \mathcal{R}_{m,n}$ form a basis for $V_{m,n}$;
- (3) $V_{m,n} = W_{m,n}$ if $m \ge s_p(n)$ and n m is divisible by p 1;
- (4) The map $\partial: V_{m,n} \to V_{m+1,n}$ is an isomorphism if $m < s_p(n)$ or if $m > s_p(n)$ and n-m is not divisible by p-1;
- (5) The map $\partial: V_{m,n} \to V_{m+1,n}$ is zero if $m \ge s_p(n)$ and n-m is divisible by p-1;
- (6) If $R \in \mathcal{R}_{m,n}$ is such that |R| = m, then $q_{m,n}^R = f^R$; (7) The polynomial $\frac{1}{s_p^!(n)} \cdot (-p)^{-l_{m,n}} \cdot \partial^{m-1}(x^n)$ modulo p is equal to $\sum q_{m,n}^R \in \mathbb{F}_p[x_1, x_2, \dots, x_m]$, where the sum in taken over all sequences $R \in \mathcal{R}_{m,n}$;
- (8) If $R \in \mathcal{R}_{m,n}$, then

$$\partial(q_{m,n}^{R}) = \begin{cases} q_{m+1,n}^{R}, & \text{if } m < |R|; \\ 0, & \text{if } m = |R|. \end{cases}$$

Proof. (3): Let $g \in V_{m,n}$. In view of Notation 3.1, it suffices to show that $\partial(g) = 0$. Suppose $\partial(g) \neq 0$ and choose an i > 0 such that $\partial^i(g) \neq 0$ but $\partial^{i+1}(g) = 0$. Then $\partial^i(g)$ is a nonzero polynomial in $W_{m+i,n}$. It follows that n - m - i and hence i are divisible by p - 1, so $i \geq p - 1$. This contradicts Corollary 4.9 applied to $f = \partial^{i-p+1}(g)$.

(5) Follows from (3) since $W_{m,n} \subset \text{Ker}(\partial)$.

(6): By Lemma 4.5(1), if a is an m-sequence, R = type(a) and |R| = m, then every a_i is a p-power. It follows that $q_{m,n}^R$ is a multiple of f^R . The multiplicity is determined in Proposition A.3.

(7) Follows from the formula (4.6), Lemma 4.12 and Definition 4.14.

(8): If m < |R| then either $m < s_p(n)$ or $m > s_p(n)$ and n - m is not divisible by p-1. It follows that $l_{m,n} = l_{m+1,n}$ and $\mathcal{R}_{m,n} = \mathcal{R}_{m+1,n}$. By Lemma 4.7, the type of every monomial in $\partial(q_{m,n}^R)$ is equal to R. Therefore, the equality $\partial(q_{m,n}^R) = q_{m+1,n}^R$ follows from (7). If m = |R|, the statement follows from (6).

(2) and (4): Note first that it follows from (8) that all higher derivatives of $q_{m,n}^R$ are symmetric, hence $q_{m,n}^R \in V_{m,n}$.

The kernel of $\partial : V_{*,n} \to V_{*+1,n}$ is spanned by f^R that are polynomials in m variables with $m \ge s_p(n)$ and n - m divisible by p - 1. Hence the maps $\partial : V_{m,n} \to V_{m+1,n}$ are injective if $m > s_p(n)$ and n - m is not divisible by p - 1. To prove surjectivity in (4), let m' be the smallest integer such that m' > m and n - m' is divisible by p - 1. It suffices to show that the composition

$$V_{m,n} \xrightarrow{\partial} V_{m+1,n} \xrightarrow{\partial} \cdots \xrightarrow{\partial} V_{m',n}$$

is surjective. By (3), $V_{m',n} = W_{m',n}$ has basis $\{f^R\}$ with ||R|| = n and |R| = m'. In view of (6) and (8), the image of the polynomial $q^R_{m,n}$ from $V_{m,n}$ under the composition is equal to f^R . This proves surjectivity of the composition and (2).

(1): As in the proof of (2) we see that $q_{m,n}^R \in V_{m,n}$. The rest follows from (4), (6) and (8) since $V_{s_p(n),n} = W_{s_p(n),n}$ is a 1-dimensional vector space spanned by f^R with R = R(n). \Box

Remark 4.16. According to Theorem 4.15, one can construct a basis for $V_{m,n}$ as follows. Let m' be the smallest integer such that $m' \ge m$, $m' \ge s_p(n)$ and n - m' is divisible by p - 1. Then the polynomials $q_{m,n}^R$ for all sequences R with ||R|| = n and |R| = m' form a basis for $V_{m,n}$. By Lemma A.5, such sequences R exist, hence the space $V_{m,n}$ is nonzero for every positive integers $n \ge m$.

5. Operations $CK^* \to CH^* \otimes \mathbb{F}_p$

Let n and m be two integers and p a prime integer. In this Section we compute the group of additive operations

$$\mathbf{OP}^{m,n} := \mathbf{OP}(\mathrm{CK}^m, \mathrm{CH}^n \otimes \mathbb{F}_p).$$

Recall that $\mathbf{OP}^{m,n}$ is isomorphic to $V_{m,n}$ if m and n are positive in view of Proposition 2.3.

The functors CK^m are canonically isomorphic to K_0 for all $m \leq 0$, so $OP^{m,n} = OP^{0,n}$ if $m \leq 0$.

Let $A_n : K_0 \to \operatorname{CH}^n$ be the *n*-th *additive* Chern class. It is uniquely determined by the condition $A_n([L]) = c_1^{\operatorname{CH}}(L)^n$ for a line bundle L. We can also view A_n as an operation in $\operatorname{OP}^{0,n}$ between $\operatorname{CK}^0 = K_0$ and $\operatorname{CH}^n \otimes \mathbb{F}_p$.

According to [7, §2.2], $\mathbf{OP}^{m,n} = \mathbf{OP}^{0,n}$ is a cyclic group generated by A_n if $m \leq 0$.

Notation 5.1. Let $n \ge m$ be positive integers. For a sequence $R \in \mathcal{R}_{m,n}$, write $Q_{m,n}^R$ for the operation in $\mathbf{OP}^{m,n}$ corresponding to the polynomial $q_{m,n}^R$ by Proposition 2.3.

Theorem 5.2. Let $n \ge m$ be positive integers and p a prime integer.

- (1) If $m \leq s_p(n)$, then $\mathbf{OP}^{m,n}$ is a 1-dimensional vector space over \mathbb{F}_p spanned by $Q_{m,n}^R$ for R = R(n);
- (2) If $m \ge s_p(n)$, then the operations $Q_{m,n}^R$ for $R \in \mathcal{R}_{m,n}$ form a basis for $\mathbf{OP}^{m,n}$;
- (3) For a sequence R with ||R|| = n and |R| = m the operation $Q_{m,n}^R$ coincides with the composition

$$\operatorname{CK}^m \xrightarrow{c} \operatorname{CH}^m \xrightarrow{P^R} \operatorname{CH}^n \otimes \mathbb{F}_p.$$

The canonical map $\mathbf{OP}(\mathrm{CH}^m, \mathrm{CH}^n \otimes \mathbb{F}_p) \xrightarrow{c} \mathbf{OP}^{m,n}$ is an isomorphism.

(4) If $R \in \mathcal{R}_{m,n}$, then

$$[\operatorname{CK}^{m+1} \xrightarrow{t} \operatorname{CK}^m \xrightarrow{Q^R_{m,n}} \operatorname{CH}^n \otimes \mathbb{F}_p] = \begin{cases} Q^R_{m+1,n}, & \text{if } m < |R|;\\ 0, & \text{if } m = |R|. \end{cases}$$

(5) If R is small with ||R|| = n and $m \leq s_p(n)$, then the composition

$$\operatorname{CK}^m \xrightarrow{t^m} K_0 \xrightarrow{A_n} \operatorname{CH}^n \to \operatorname{CH}^n \otimes \mathbb{F}_p$$

coincides with $s_p^!(n) \cdot Q_{m,n}^R$.

Proof. The statements (1)-(4) follow from Theorem 4.15.

(5): It follows from (4) that it suffices to consider the case m = 1. Let L be a line bundle over a smooth base X. Then the composition

$$\operatorname{CK}^{1}(X) \xrightarrow{t} K_{0}(X) \xrightarrow{A_{n}} \operatorname{CH}^{n}(X) \otimes \mathbb{F}_{p}$$

takes $c_1^{\text{CK}}(L)$ to $A_n(1-L^{\vee}) = -c_1^{\text{CH}}(L^{\vee})^n = (-1)^{n+1}c_1^{\text{CH}}(L)^n$, i.e., the composition is given by the polynomial $(-1)^{n+1}x^n$ in view of Proposition 2.3. Recall that the operation $Q_{1,n}^R$ is given by the polynomial $\frac{1}{s_n^l(n)}(-1)^{n+1}x^n$.

Corollary 5.3. Let n be a positive integer.

(1) The natural maps

$$\mathbb{F}_p \cdot A_n = \mathbf{OP}^{0,n} \to \mathbf{OP}^{1,n} \to \mathbf{OP}^{2,n} \to \dots \to \mathbf{OP}^{s_p(n),n} = \mathbb{F}_p \cdot Q^R_{s_p(n),n}$$

where R = R(n), are isomorphisms of 1-dimension vector spaces. The image of A_n in $\mathbf{OP}^{s_p(n),n}$ is equal to $s_p^!(n) \cdot Q_{s_p(n),n}^R = s_p^!(n) \cdot (P^R \circ c).$

(2) If m is an integer such that $n \ge m > s_p(n)$ and $m \equiv n \mod p - 1$, then the natural maps

 $\mathbf{OP}^{m-p+2,n} \to \mathbf{OP}^{m-p+3,n} \to \cdots \to \mathbf{OP}^{m,n}$

are isomorphisms. The set $\{P^R \circ c\}_{R \in \mathcal{R}_{m,n}}$ is a basis for $\mathbf{OP}^{m,n}$.

(3) Let $n \ge m$ be positive integers and let m' be the smallest integer such that $m' \ge m$, $m' \ge s_p(n)$ and n - m' is divisible by p - 1. Then the maps

$$\mathbf{OP}^{m,n} \xrightarrow{t^{m'-m}} \mathbf{OP}^{m',n} \xleftarrow{c} \mathbf{OP}^{m',n} (\mathrm{CH}^*, \mathrm{CH}^* \otimes \mathbb{F}_p),$$

are isomorphisms. The operation $Q_{m,n}^R$ corresponds to the Steenrod operation $P_{m',n}^R$ under these isomorphisms.

It follows from the corollary that the groups $\mathbf{OP}^{m,n}$ are nonzero for all positive integers $n \ge m$.

Remark 5.4. By Theorem 5.2, we have a commutative diagram

where R = R(n) and $m = |R| = s_p(n)$. As $s_p^!(n)$ is invertible modulo p, it follows that the Steenrod operation $Q^R = P^R \circ c$ factors through $K_0^{(m/m+1)}$.

6. Stable operations $CK^* \to CH^* \otimes \mathbb{F}_p$

For any polynomial $f \in \mathbb{F}_p[x_1, x_2, \dots, x_m]$ divisible by $x_1 x_2 \cdots x_m$ define

$$\varphi(f) := (x_m^{-1} \cdot f)|_{x_m = 0} \in \mathbb{F}_p[x_1, x_2, \dots, x_{m-1}].$$

Example 6.1. Let $R = (r_0, r_1, \ldots) \in \mathcal{R}$. We have

$$\varphi(f^R) = \begin{cases} 0, & \text{if } r_0 = 0; \\ f^{R-1}, & \text{if } r_0 > 0. \end{cases}$$

where $1 := (1, 0, 0, \ldots)$.

Note that if $m \ge 2$, then φ and ∂ commute: $\varphi \circ \partial = \partial \circ \varphi$. It follows that φ yields a homomorphism

$$\varphi: V_{m,n} \to V_{m-1,n-1}$$

Proposition 6.2. Let $n \ge m > 1$ be integers, $R \in \mathcal{R}_{m,n}$. Then

$$\varphi(q_{m,n}^R) = \begin{cases} 0, & \text{if } r_0 = 0; \\ q_{m-1,n-1}^{R-1}, & \text{if } r_0 > 0. \end{cases}$$

Proof. Let $r_0 = 0$ and let a be an m-sequence with type(a) = R. We have $a_i \neq 1$ for all i, hence $\varphi(x^a) = 0$ and therefore, $\varphi(q_{m,n}^R) = 0$.

Now assume that $r_0 > 0$. Note that $R - 1 \in \mathcal{R}_{m-1,n-1}$. Let m' be the smallest integer such that $m' \ge m$, $m' \ge s_p(n)$ and m' - n is divisible by p - 1. By Theorem 4.15 and Example 6.1,

$$\partial^{i}(\varphi(q_{m,n}^{R})) = \varphi(\partial^{i}(q_{m,n}^{R})) = \varphi(f^{R}) = f^{R-1} = q_{m'-1,n-1}^{R-1} = \partial^{i}(q_{m-1,n-1}^{R-1}),$$

where i = m' - m. By Theorem 4.15 again, $\partial^i : V_{m,n} \to V_{m',n}$ is an isomorphism, hence $\varphi(q_{m,n}^R) = q_{m-1,n-1}^{R-1}$.

Definition 6.3. A stable operation $A^* \to B^{*+d}$ of (relative) degree d is a collection of operations $G^{(i)} : A^i \to B^{i+d}$ for $i \ge 0$ such that $G^{(i)} = \Sigma^{-1}(G^{(i+1)})$, where Σ^{-1} is the desuspension map (see [8, §3.1]). Write $\mathbf{OP}^d_{\mathrm{st}}(A^*, B^*)$ for the group of all stable operation $A^* \to B^{*+d}$ of degree d. In other words,

$$\mathbf{OP}_{\mathrm{st}}^d(A^*, B^*) = \lim_i \mathbf{OP}(A^i, B^{i+d}),$$

where the limit is taken with respect to Σ^{-1} as transition maps.

If $A^* = B^*$ the composition of stable operations makes $\mathbf{OP}^*_{\mathrm{st}}(A^*) := \mathbf{OP}^*_{\mathrm{st}}(A^*, A^*)$ a graded ring.

Proposition 6.4. Let $G: A^m \to B^n$ be an additive operation given by $\{g_s\}_{s\geq 0}$ in view of Theorem 2.1. Let $\{(\Sigma^{-1}g)_s\}_{s\geq 0}$ be the data for $\Sigma^{-1}G$. Then

$$(\Sigma^{-1}g)_s(\alpha) = \varphi(g_{s+1}(\alpha))$$
 in $B^*(F)[[x_1, x_2, \dots, x_s]]_{(n)}$

for every $s \ge 0$ and $\alpha \in A^{m-s}(F)$.

Proof. Note that if R is a commutative ring and $\varepsilon \in R$ satisfies $\varepsilon^2 = 0$, then for every polynomial $f \in R[x_1, x_2, \ldots, x_{m+1}]$ divisible by $x_1 x_2 \cdots x_{m+1}$ we have

$$f(x_1,\ldots,x_m,\varepsilon) = \varphi(f)(x_1,\ldots,x_m)\varepsilon \in R[x_1,x_2,\ldots,x_m].$$

We apply this to $\varepsilon = c_1^B(L_{can}) \in B^1(\mathbb{P}_F^1)$. Let $\alpha \in A^{m-s}(F)$ for some $s \ge 0$ and let $L_i \to X$ for $i = 1, \ldots s$ be line bundles over a smooth base X. It follows from the definition of Σ^{-1} (see [8, §3.1]) that the following equalities hold in $B^s(X \times \mathbb{P}_F^1)$:

$$(\Sigma^{-1}g)_s(\alpha)(c_1^A(L_1),\ldots,c_1^A(L_s))\varepsilon = (\Sigma^{-1}G)(\alpha c_1^A(L_1)\cdots c_1^A(L_s))\varepsilon$$
$$= G(\alpha c_1^A(L_1)\cdots c_1^A(L_s)c_1^A(L_{can}))$$
$$= g_{s+1}(\alpha)(c_1^B(L_1),\ldots,c_1^B(L_s),\varepsilon)$$
$$= \varphi(g_{s+1}(\alpha))(c_1^B(L_1),\ldots,c_1^B(L_s))\varepsilon.$$

Notation 6.5. Let S be the set of sequences (s_1, s_2, \ldots) of nonnegative integers, almost all zero. Write $\alpha : \mathcal{R} \to S$ for the (forgetful) map taking $R = (r_0, r_1, r_2, \ldots)$ to $\alpha(R) := (r_1, r_2, \ldots)$. We also write

$$||S|| := \sum_{i \ge 1} s_i (p^i - 1).$$

Example 6.6. (see [8, Theorem 6.6]) For every $S \in S$ let P^S be the stable operation of degree ||S|| given by the sequence f^R over all $R \in \mathcal{R}$ such that $\alpha(R) = S$ (see Example 6.1). It follows from Lemma 3.4 and Example 6.1 that the stable operations P^S for all $S \in S$ form a basis of the space $\mathcal{A} := \mathbf{OP}^*_{st}(\mathrm{CH}^* \otimes \mathbb{F}_p)$. In fact, \mathcal{A} is the *reduced Steenrod algebra*, the factor algebra of the Steenrod algebra modulo the Bockstein operation (see [6]).

For $j \ge p-2$ we have $j \cdot 1 \in \mathcal{R}_{j-p+2,j}$. It follows from Propositions 6.2 and 6.4 that the sequence of operations

$$Q_{j-p+2,j}^{j\cdot\mathbb{1}}: \mathrm{CK}^{j-p+2} \to \mathrm{CH}^{j} \otimes \mathbb{F}_{p}$$

yields a stable operation $L: \mathrm{CK}^* \to \mathrm{CH}^{*+p-2} \otimes \mathbb{F}_p$ of degree p-2.

The collections of canonical operations $CK^i \xrightarrow{c} CH^i \to CH^i \otimes \mathbb{F}_p$ and $CK^i \xrightarrow{t} CK^{i-1}$ yield stable operations $I : CK^* \to CH^* \to CH^* \otimes \mathbb{F}_p$ and $J : CK^* \to CK^{*-1}$ of degree 0 and -1, respectively.

Note that the group $\mathbf{OP}_{\mathrm{st}}^*(\mathrm{CK}^*, \mathrm{CH}^* \otimes \mathbb{F}_p)$ has the structure of a left module over the reduced Steenrod algebra \mathcal{A} (see Example 6.6).

For any positive integers $n \ge m$, every $R = (r_0, r_1, \ldots) \in \mathcal{R}_{m+i,n+i}$ satisfies $r_0 > 0$ for sufficiently large *i*. It follows that the map $\mathcal{R}_{m+i,n+i} \to \mathcal{R}_{m+i+1,n+i+1}$ taking *R* to R + 1is a bijection for $i \gg 0$. By Propositions 6.2 and 6.4 together with Theorem 5.2(2), the map

$$\Sigma^{-1}: \mathbf{OP}^{m+i+1, n+i+1} \to \mathbf{OP}^{m+i, n+i}$$

is an isomorphism for $i \gg 0$. Therefore, the natural map

$$\mathbf{OP}_{\mathrm{st}}^{n-m}(\mathrm{CK}^*,\mathrm{CH}^*\otimes\mathbb{F}_p)\to\mathbf{OP}^{m+i,n+i}$$

is an isomorphism for $i \gg 0$. In other words, stable operations of relative degree d = n-m can be viewed as unstable operations in $\mathbf{OP}^{m,n}$ for large n and m.

Theorem 6.7. Let p be a prime integer.

- (1) The identities $L \circ J^{p-2} = I$ and $L \circ J^{p-1} = 0$ hold in $\mathbf{OP}^*_{st}(CK^*, CH^* \otimes \mathbb{F}_p)$.
- (2) Stable operations $L \circ J^i$ for i = 0, 1, ..., p-2 form a basis of the free left \mathcal{A} -module $\mathbf{OP}^*_{\mathrm{st}}(\mathrm{CK}^*, \mathrm{CH}^* \otimes \mathbb{F}_p).$

Proof. (1): In view of Theorem 4.15, $\partial^{p-2}(q_{j-p+2,j}^{j\cdot\mathbb{1}}) = q_{j,j}^{j\cdot\mathbb{1}} = x_1x_2\cdots x_j$ for every j > p-2. By Example 2.4, the latter polynomial corresponds to the canonical operation $\operatorname{CK}^j \xrightarrow{c} \operatorname{CH}^j \to \operatorname{CH}^j \otimes \mathbb{F}_p$. It follows that $L \circ J^{p-2} = I$. Since $\partial(q_{j,j}^{j\cdot\mathbb{1}}) = 0$, we have $L \circ J^{p-1} = 0$.

(2): Let d be a non-negative integer and s is the remainder on dividing d by p-1. Consider the composition

(6.8)
$$\mathcal{A}^{d-s} \to \mathbf{OP}^d_{\mathrm{st}}(\mathrm{CK}^*, \mathrm{CH}^* \otimes \mathbb{F}_p) \to \mathbf{OP}^{d-s}_{\mathrm{st}}(\mathrm{CK}^*, \mathrm{CH}^* \otimes \mathbb{F}_p)$$

where the first map is the composition with $L \circ J^{p-2-s} : CK^* \to CH^{*+s} \otimes \mathbb{F}_p$ and the second map is the composition with J^s . The second map in (6.8) is an isomorphism by Corollary 5.3.

The composition in (6.8) is given by the composition with $L \circ J^{p-2-s} \circ J^s = L \circ J^{p-2} = I$ and hence is an isomorphism by Theorem 5.2(3). It follows that the first map in (6.8) is an isomorphism, whence the result.

7. Integral operations $CK^* \to CH^*$

Notation 7.1. For a pair of integers $n \ge m$ set

$$c_{m,n} := \prod_{p} p^{\left\lceil \frac{m-s_p(n)}{p-1} \right\rceil},$$

where p runs over all prime integers and if $n \ge m+1$ set

$$d_{m,n} := \frac{c_{m+1,n}}{c_{m,n}} \in \mathbb{Z}.$$

The integer $d_{m,n}$ is the product of all primes p such that $m \ge s_p(n)$ and n - m is divisible by p - 1.

According to Proposition A.1

$$\gcd\langle a\rangle = c_{m,n},$$

where the gcd is taken over all *m*-sequences *a* such that ||a|| = n.

Consider the polynomials

$$g_{m,n} = \frac{1}{c_{m,n}} \cdot \sum \langle a \rangle \cdot x^a \in \mathbb{Z}[x_1, x_2, \dots, x_m],$$

where the sum is taken over all *m*-sequences *a* such that ||a|| = n. The coefficients of $g_{m,n}$ are relatively prime.

Proposition 7.2. The polynomial $g_{m,n}$ is a generator of the infinite cyclic group $V_{m,n}(\mathbb{Z})$. Proof. Let $f \in V_{m,n}(\mathbb{Z})$. By [5, Proposition 2.8], there is an $h \in \mathbb{Q}[x]$ such that f =

$$\partial^{m-1}(h)$$
. Clearly, h is a multiple of the monomial x^n . By the formula (4.6),

$$\partial^{m-1}(x^n) = c_{m,n} \cdot g_{m,n}.$$

Therefore, f is an integral multiple of $g_{m,n}$.

Corollary 7.3. The image of the generator $g_{m,n}$ under the map $\partial : V_{m,n}(\mathbb{Z}) \to V_{m+1,n}(\mathbb{Z})$ is equal to $d_{m,n} \cdot g_{m+1,n}$.

Proof. We have

$$\partial(g_{m,n}) = c_{m,n}^{-1} \cdot \partial^m(x^n) = c_{m,n}^{-1} \cdot c_{m+1,n} \cdot g_{m+1,n} = d_{m,n} \cdot g_{m+1,n} \qquad \Box$$

Let p be a prime integer. Reducing modulo p we get a homomorphism

$$V_{m,n}(\mathbb{Z}) \to V_{m,n}(\mathbb{F}_p) = V_{m,n}.$$

In view of Theorem 4.15(7) it follows from the definition of the polynomials $g_{m,n}$ and $q_{m,n}^R$ that the image of the generator $g_{m,n}$ is equal to a nonzero multiple of the sum $\sum q_{m,n}^R$ over all $R \in \mathcal{R}_{m,n}$. Therefore, $\sum q_{m,n}^R$ lifts to a polynomial in $V_{m,n}(\mathbb{Z})$. In particular, by Theorem 4.15(6), for every positive integers $n \ge m$ such that $m \ge s_p(n)$ and n-m is divisible by p-1, the sum $\sum f^R$ over all R with ||R|| = n and |R| = m lifts to an integral polynomial in $V_{m,n}(\mathbb{Z})$. We have proved the following theorem.

Theorem 7.4. Let $n \ge m$ be positive integers and p a prime.

- (1) The group $\mathbf{OP}(\mathrm{CK}^m, \mathrm{CH}^n)$ is infinite cyclic with a canonical generator $G_{m,n}$. The image of $G_{m,n}$ under the map $\mathbf{OP}(\mathrm{CK}^m, \mathrm{CH}^n) \to \mathbf{OP}(\mathrm{CK}^{m+1}, \mathrm{CH}^n)$ is equal to $d_{m,n} \cdot G_{m+1,n}$.
- (2) An operation $Q \in \mathbf{OP}(\mathrm{CK}^m, \mathrm{CH}^n \otimes \mathbb{F}_p)$ lifts to an operation in $\mathbf{OP}(\mathrm{CK}^m, \mathrm{CH}^n)$ if and only if Q is a multiple of $\sum_{R \in \mathcal{R}_{m,n}} Q_{m,n}^R$.
- (3) If $m \ge s_p(n)$ and n-m is divisible by p-1, an operation $P \in \mathbf{OP}(\mathrm{CH}^m, \mathrm{CH}^n \otimes \mathbb{F}_p)$ lifts to an operation in $\mathbf{OP}(\mathrm{CK}^m, \mathrm{CH}^n)$ if and only if P is a multiple of $\sum_{R \in \mathcal{R}_{m,n}} P_{m,n}^R$

It follows from Theorem 7.4 that the operation $Q_{m,n}^R$ in $OP(CK^m, CH^n \otimes \mathbb{F}_p)$ lifts to an integral operation in $OP(CK^m, CH^n)$ if and only if $\mathcal{R}_{m,n}$ is a singleton.

Definition 7.5. Let $R = (r_0, r_1, \ldots) \in \mathcal{R}$. We say that R is *quasi-small* if at least one of the following holds:

- (1) R is small;
- (2) $r_i = 0$ for all $i \ge 2$ and $r_1 \le p$;
- (3) $r_0 < p$ and there is an $s \ge 1$ such that $r_s = p$, $r_{s+1} < p$ and $r_i = 0$ for all $i = 1, \ldots, s-1$ and $i \ge s+2$.

Theorem 7.6. The operation $Q_{m,n}^R : \operatorname{CK}^m \to \operatorname{CH}^n \otimes \mathbb{F}_p$, where $R \in \mathcal{R}_{m,n}$ lifts to an integral operation $\operatorname{CK}^m \to \operatorname{CH}^n$ if and only if R is quasi-small. In particular, the reduced power operation $P^i : \operatorname{CH}^{m+i} \to \operatorname{CH}^{m+ip} \otimes \mathbb{F}_p$ with $m \ge 0$ lifts to an integral operation $\operatorname{CK}^{m+i} \to \operatorname{CH}^{m+ip} \otimes \mathbb{F}_p$.

Proof. The first statement follows from Theorem 7.4 and Proposition A.6. We have $P^i = P^R$ with R = (m, i, 0, 0, ...) and R is quasi-small if and only if $i \leq p$.

We show that the reduced power operation Q^i for large *i* cannot be even lifted modulo p^2 .

Proposition 7.7. The reduced power operation $Q^i = P^i \circ c : \operatorname{CK}^{m+i} \to \operatorname{CH}^{m+ip} \otimes \mathbb{F}_p$ with $m \ge 0$ cannot be lifted to an operation modulo p^2 if $i \ge p+1$.

Proof. The polynomial corresponding to P^i is f^R , where R = (m, i, 0, 0, ...). Note that f^R is defined over \mathbb{Z} . Suppose there is an integer polynomial g in m + i variables such that the polynomials $\partial^k (f^R + pg)$ are symmetric modulo p^2 for all $k \ge 0$. Consider the monomial $h = x_1^p x_2 x_3 \cdots x_{m+1} x_{m+2}^p \cdots x_{m+i}^p$ of the polynomial f^R . We have

$$\partial^{p-1}(h) = p! \cdot x_1 x_2 \cdots x_{m+p} x_{m+p+1}^p \cdots x_{m+i+p-1}^p$$

By Lemma 4.8, a nonzero multiple of $x_1x_2\cdots x_{m+p}x_{m+p+1}^p\cdots x_{m+i+p-1}^p$ is not a monomial of $\partial^{p-1}(g)$ modulo p. Since $p! \equiv -p$ modulo p^2 , $-p \cdot x_1x_2\cdots x_{m+p}x_{m+p+1}^p\cdots x_{m+i+p-1}^p$ is a monomial of the polynomial $\partial^{p-1}(f^R + pg)$ modulo p^2 . As the polynomial $\partial^{p-1}(f^R + pg)$ is symmetric, it also contains the monomial

$$-p \cdot x_1^p x_2^p \cdots x_{i-1}^p x_i \cdots x_{m+i+p-1}.$$

Note that this monomial is not in $\partial^{p-1}(f^R)$, therefore $x_1^p x_2^p \cdots x_{i-1}^p x_i \cdots x_{m+i+p-1}$ is a monomial of $\partial^{p-1}(g)$ modulo p. But this contradicts Lemma 4.8 since $i-1 \ge p$. \Box

A. Appendix

For a real number a write [a] for the smallest non-negative integer that is not smaller than a.

Proposition A.1. Let $n \ge m$ be positive integers. Then

$$\min v_p \langle a \rangle = \left\| \frac{m - s_p(n)}{p - 1} \right\|_{2}$$

where the minimum is taken over all m-sequences a such that ||a|| = n.

Proof. Choose a prime integer p. In view of Lemma 4.5, for an m-sequence a such that ||a|| = n we have

$$v_p \langle a \rangle = \frac{\sum_i s_p(a_i) - s_p(n)}{p - 1} \ge \frac{m - s_p(n)}{p - 1}$$

hence

$$v_p \langle a \rangle \ge \prod \frac{m - s_p(n)}{p - 1} \prod.$$

We will find an *m*-sequence *a* such that ||a|| = n and

(A.2)
$$v_p \langle a \rangle = \left[\frac{m - s_p(n)}{p - 1} \right].$$

Write $n = \sum_{i=1}^{s_p(n)} p^{t_i}$ as the sum of $s_p(n)$ powers of p.

Case 1: $m \leq s_p(n)$. Set $a_i = p^{t_i}$ for $i = 1, \ldots, m-1$ and a_m is defined by the condition $a_1 + a_2 + \cdots + a_m = n$. We have $\sum_{i=1}^m s_p(a_i) = s_p(n)$, hence the equality (A.2) holds by Lemma 4.5(2).

Case 2: $m > s_p(n)$. Set $a_i = p^{t_i}$ for $i = 1, ..., s_p(n)$, so the condition $a_1 + a_2 + \cdots + a_{s_p(n)} = n$ holds. But the number of a_i 's is smaller than m. Choose one of the a_i 's that is equal to p^s for $s \ge 1$. Then replace a_i with p numbers that are all equal to p^{s-1} . The integer ||a|| does not change but the number of a_i 's increases by p-1. Continue doing this we stop when the first time the number m' of a_i 's becomes at least m, say m' = m + j, where $0 \le j < p-1$. Note that $m' = s_p(n) + (p-1)b$, where $b = \left[\left\lceil \frac{m-s_p(n)}{p-1} \right\rceil \right]$.

Since $m > s_p(n)$ there is t such that the equality $a_i = p^t$ holds for at least p values of i. Now choose j + 1 numbers among the a_i 's that are equal to p^t and replace all of them by one integer $(j + 1)p^t$. The number of a_i 's is equal to m now. We have $\sum_i s_p(a_i) = (m - 1) + (j + 1) = m'$ and hence again by Lemma 4.5(2),

$$v_p \langle a \rangle = \frac{(\sum_i s_p(a_i)) - s_p(n)}{p - 1} = \frac{m' - s_p(n)}{p - 1} = b = \left[\left[\frac{m - s_p(n)}{p - 1} \right] \right].$$

Proposition A.3. Let a be an m-sequence such that all a_i are powers of p and set n = ||a||. Then

$$(-p)^{\frac{-m+s_p(n)}{p-1}} \cdot \langle a \rangle \equiv c_0! c_1! \cdots c_r! \quad modulo \quad p,$$

where c_i are p-adic digits of n.

Proof. For a positive integer n set

$$\theta(n) := p^{-v_p(n)} \cdot n + p\mathbb{Z} \in \mathbb{F}_p^{\times}.$$

The function θ is multiplicative.

Lemma A.4. The function θ satisfies the following properties:

(1) $\theta((kp)!) = (-1)^k \theta(k!)$ for every $k \ge 0$. (2) $\theta(n!) = (-1)^{\frac{n-s_p(n)}{p-1}} \cdot c_0! c_1! \cdots c_r!$ modulo p, where c_i are p-adic digits of n.

Proof. (1): For any $i \ge 0$ let

$$a_i := (1+ip)(2+ip)\cdots(p-1+ip).$$

We have $(kp)! = a_0 a_1 \cdots a_{k-1} \cdot p^k \cdot k!$ and $\theta(a_i) = -1$ by Wilson Theorem, whence the result.

(2): We prove the statement by induction on the number r of p-adic digits of n. The statement is clear if r = 1. Write n in the form $n = c_0 + kp$, where

$$k = c_1 + c_2 p + \dots + c_r p^{r-1}.$$

Let $t = (1 + kp)(2 + kp) \cdots (c_0 + kp)$, so $t \equiv c_0!$ modulo p. We have $n! = t \cdot (kp)!$ and by the first statement of the lemma,

$$\theta(n!) = \theta(t) \cdot \theta((kp)!) \equiv c_0! \cdot (-1)^k \cdot \theta(k!).$$

By induction, $\theta(k!) \equiv (-1)^{\frac{k-s_p(k)}{p-1}} \cdot c_1!c_2! \cdots c_r!$. It remains to notice that

$$\frac{k - s_p(k)}{p - 1} + k = \frac{kp - s_p(kp)}{p - 1} = \frac{n - s_p(n)}{p - 1}.$$

It follows from Lemma A.4(2) that $\theta((p^k)!) = (-1)^{\frac{p^k-1}{p-1}}$. Since every a_i is a *p*-power, we have

$$\theta(a_1!a_2!\cdots a_m!) = (-1)^{\sum_{i=1}^m \frac{a_i-1}{p-1}} = (-1)^{\frac{n-m}{p-1}}.$$

By Lemma A.4, the residue of $p^{\frac{m+3p(n)}{p-1}} \cdot \langle a \rangle$ modulo p is equal to

$$\theta(\langle a \rangle) = \theta(n!)/\theta(a_1!a_2!\cdots a_m!) = (-1)^{\frac{n-s_p(n)}{p-1}} \cdot c_0!c_1!\cdots c_r!/(-1)^{\frac{n-m}{p-1}} = (-1)^{\frac{m-s_p(n)}{p-1}} \cdot c_0!c_1!\cdots c_r!$$

Lemma A.5. Let n and m be two positive integers such that $n \ge m \ge s_p(n)$ and n - m is divisible by p - 1. Then there is an R such that ||R|| = n and |R| = m.

Proof. We prove the statement by induction on m. If $m = s_p(n)$, then R = R(n) is the sequence of p-adic digits of n.

 $(m \Rightarrow m + p - 1)$: Let R be so that ||R|| = n and |R| = m. Write $R = (r_0, r_1, r_2, ...)$. As m < n, there is i > 0 such that $r_i > 0$. Then for

$$R' = (r_0, \dots, r_{i-2}, r_{i-1} + p, r_i - 1, r_{i+1}, \dots),$$

we have ||R'|| = n and |R'| = m + p - 1.

Proposition A.6. Let $R \in \mathcal{R}_{m,n}$. Then $\mathcal{R}_{m,n} = \{R\}$ is the singleton if and only if R is quasi-small (see Definition 7.5).

Proof. Replacing m by the smallest integer m' such that $m' \ge m$, $m' \ge s_p(n)$ and n - m' is divisible by p - 1 we may assume that |R| = m for every $R \in \mathcal{R}_{m,n}$.

Let $\mathcal{R}_{m,n}$ be a singleton. We will show that R is quasi-small. If $r_k > p$ for some $k \ge 1$ consider R' with

$$r'_{i} = \begin{cases} r_{i} + p, & \text{if } i = k - 1; \\ r_{i} - p - 1, & \text{if } i = k; \\ r_{i} + 1, & \text{if } i = k + 1; \\ r_{i}, & \text{otherwise.} \end{cases}$$

Then $R' \neq R$ and ||R'|| = n, |R'| = m. Thus, $r_i \leq p$ for all $i \geq 1$.

If R is not small then there is $s \ge 0$ with $r_s \ge p$ (and hence $r_s = p$ if $s \ge 1$). If s = 0we claim that $r_i = 0$ if $i \ge 2$. Let $r_k \ge 1$ for some $k \ge 2$. If k = 2 consider R' with

$$r'_{i} = \begin{cases} r_{i} - p, & \text{if } i = 0; \\ r_{i} + p + 1, & \text{if } i = 1; \\ r_{i} - 1, & \text{if } i = 2; \\ r_{i}, & \text{otherwise.} \end{cases}$$

Then $R' \neq R$ and ||R'|| = n, |R'| = m. If $k \ge 3$ consider R' with

$$r'_{i} = \begin{cases} r_{i} - p, & \text{if } i = 0; \\ r_{i} + 1, & \text{if } i = 1; \\ r_{i} + p, & \text{if } i = k - 1; \\ r_{i} - 1, & \text{if } i = k; \\ r_{i}, & \text{otherwise.} \end{cases}$$

Then $R' \neq R$ and ||R'|| = n, |R'| = m. We proved the claim, so R is quasi-small.

Now consider the case $r_0 < p$ and $r_s = p$ for $s \ge 1$. We claim that $r_{s+1} < p$ and $r_i = 0$ for all $i = 1, \ldots, s - 1$ and $i \ge s + 2$, i.e., R is quasi-small. Suppose $r_k \ge 1$ for some $k = 1, \ldots, s - 1$. Consider R' with

$$r'_{i} = \begin{cases} r_{i} + p, & \text{if } i = k - 1; \\ r_{i} - 1, & \text{if } i = k; \\ r_{i} - p, & \text{if } i = s; \\ r_{i} + 1, & \text{if } i = s + 1; \\ r_{i}, & \text{otherwise.} \end{cases}$$

Then $R' \neq R$ and ||R'|| = n, |R'| = m, a contradiction. Note that this argument (with k = s and s replaced by s + 1) also shows that $r_{s+1} < p$.

Suppose $r_k \ge 1$ for some $k \ge s+2$. If k = s+2, consider R' with

$$r'_{i} = \begin{cases} r_{i} - p, & \text{if } i = s; \\ r_{i} + p + 1, & \text{if } i = s + 1; \\ r_{i} - 1, & \text{if } i = k = s + 2; \\ r_{i}, & \text{otherwise.} \end{cases}$$

Then $R' \neq R$ and ||R'|| = n, |R'| = m, a contradiction. If k > s + 2, consider R' with

$$r'_{i} = \begin{cases} r_{i} - p, & \text{if } i = s; \\ r_{i} + 1, & \text{if } i = s + 1; \\ r_{i} + p, & \text{if } i = k - 1; \\ r_{i} - 1, & \text{if } i = k; \\ r_{i}, & \text{otherwise.} \end{cases}$$

Then $R' \neq R$ and ||R'|| = n, |R'| = m, a contradiction. The claim is proved.

Now assume that R is quasi-small and $R' \in \mathcal{R}_{m,n}$. We will show that R' = R.

If R is small, then since l(R') = l(R) = 0, the sequence R' is also small. It readily follows that R' = R.

Write $R' = (r'_0, r'_1, \dots, r'_{s'}, 0, 0, \dots)$ with $r'_{s'} \neq 0$. We have:

$$\sum_{i \ge 0} r_i = |R| = |R'| = \sum_{i \ge 0} r'_i \quad \sum_{i \ge 0} r_i p^i = ||R|| = ||R'|| = \sum_{i \ge 0} r'_i p^i.$$

It follows that

$$\sum_{i \ge 1} r_i q_i = \sum_{i \ge 1} r'_i q_i,$$

where $q_i = \frac{p^{i-1}}{p-1} = 1 + p + \dots + p^{i-1}$.

Suppose $r_i = 0$ if $i \ge 2$ and $r_1 \le p$. Then $\sum_{i\ge 1} r_i q_i = r_1 \le p$. Since $q_i > p$ if $i \ge 2$, we have $r'_i = 0$ if $i \ge 2$. It follows that R' = R.

Finally suppose that there is $s \ge 1$ such that $r_s = p$ and $r_0 < p$, $r_{s+1} < p$ and $r_i = 0$ for i = 1, ..., s - 1 and $i \ge s + 2$. We have

$$\sum_{i \ge 1} r'_i q_i = \sum_{i \ge 1} r_i q_i = pq_s + r_{s+1}q_{s+1} \leqslant pq_s + (p-1)q_{s+1} < q_{s+2}.$$

It follows that $r'_i = 0$ if $i \ge s + 2$.

We claim that $r_{s+1} \ge r'_{s+1}$. Indeed,

$$(r_{s+1}+1)q_{s+1} > pq_s + r_{s+1}q_{s+1} = \sum_{i=1}^{s+1} r'_i q_i \ge r'_{s+1}q_{s+1},$$

therefore, $r_{s+1} + 1 > r'_{s+1}$ whence the claim.

We claim that $r_0 > r'_0$ if $R \neq R'$. Indeed in this case either $r'_i > 0$ for some $i = 1, \ldots, s-1$ or $r'_{s+1} \neq r_{s+1}$ (and hence $r_{s+1} > r'_{s+1}$), and therefore,

$$(r_{s+1} - r'_{s+1})(q_{s+1} - q_s) + \sum_{i=1}^{s} r'_i(q_s - q_i) > 0.$$

Equivalently,

(A.7)
$$r_{s+1}(q_{s+1} - q_s) + \left(\sum_{i=1}^{s+1} r'_i\right)q_s - \sum_{i=1}^{s+1} r'_i q_i > 0.$$

Recall that

$$\sum_{i=1}^{s+1} r'_i q_i = \sum_{i=1}^{s+1} r_i q_i = r_s q_s + r_{s+1} q_{s+1}$$

and

$$\sum_{i=0}^{s+1} r'_i = |R'| = |R| = \sum_{i=0}^{s+1} r_i = r_0 + r_s + r_{s+1}.$$

It follows that the left hand side of the inequality (A.7) is equal to $r_0q_s - r'_0q_s$, hence $r_0 > r'_0$. The claim is proved.

Since r_0 is congruent to r'_0 modulo p and $r'_0 \ge 0$, we deduce that $r_0 \ge p$, a contradiction.

References

- CAI, S. Algebraic connective K-theory and the niveau filtration. J. Pure Appl. Algebra 212, 7 (2008), 1695–1715.
- [2] DAI, S., AND LEVINE, M. Connective algebraic K-theory. J. K-Theory 13, 1 (2014), 9–56.
- [3] FULTON, W. Intersection theory. Springer-Verlag, Berlin, 1984.
- [4] LEVINE, M., AND MOREL, F. Algebraic cobordism. Springer Monographs in Mathematics. Springer, Berlin, 2007.
- [5] MERKURJEV, A., AND VISHIK, A. Operations in connective k-theory. preprint, https://www.math.ucla.edu/merkurev/papers/connective24.pdf.
- [6] MILNOR, J. The Steenrod algebra and its dual. Ann. of Math. (2) 67 (1958), 150-171.
- [7] SECHIN, P. Chern classes from algebraic Morava K-theories to Chow groups. Int. Math. Res. Not. IMRN, 15 (2018), 4675–4721.
- [8] VISHIK, A. Stable and unstable operations in algebraic cobordism. Ann. Sci. Éc. Norm. Supér. (4) 52, 3 (2019), 561–630.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA, USA *Email address:* merkurev@math.ucla.edu, *web page:* www.math.ucla.edu/~merkurev