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Introduction 2.1

The equivariant K-theory was developed by R. Thomason in [21]. Let an algebraic
group G act on a variety X over a field F. We consider G-modules, i.e., OX-modules
over X that are equipped with an G-action compatible with one on X. As in the
non-equivariant case there are two categories: the abelian category M(G; X) of
coherent G-modules and the full subcategory P (G; X) consisting of locally free
OX-modules. The groups K ′

n(G; X) and Kn(G; X) are defined as the K-groups of
these two categories respectively.

In the second section we present definitions and formulate basic theorems in the
equivariant K-theory such as the localization theorem, projective bundle theorem,
strong homotopy invariance property and duality theorem for regular varieties.

In the following section we define an additive category C(G) of G-equivariant
K-correspondences that was introduced by I. Panin in [15]. This category is analo-
gous to the category of Chow correspondences presented in [9]. Many interesting
functors in the equivariant K-theory of algebraic varieties factor through C(G).
The category C(G) has more objects (for example, separable F-algebras are also the
objects of C(G)) and has much more morphisms than the category of G-varieties.
For instance, every projective homogeneous variety is isomorphic to a separable
algebra (Theorem 16).

In Sect. 2.4, we consider the equivariant K-theory of projective homogeneous
varieties developed by I. Panin in [15]. The following section is devoted to the
computation of the K-groups of toric models and toric varieties (see [12]).

In Sects. 2.6 and 2.7, we construct a spectral sequence

E2
p,q = TorR(G)

p

(
Z, K ′

q(G; X)
)

⇒ K ′
p+q(X) ,

where G is a split reductive group with the simply connected commutator subgroup
and X is a G-variety.

The rest of the paper addresses the following question. Let G be an algebraic
group. Under what condition on G the G-action on a G-variety X can be extended
to a linear action on every vector bundle E → X making it a G-vector bundle on
X? If X = G and E is a line bundle, then the existence of a G-structure on E implies
that E is trivial. Thus, if the answer is positive, the Picard group Pic(G) must be
trivial. It turns out that the triviality of Pic(G) implies positive solution at least
stably, on the level of coherent G-modules. We prove that for a factorial group G
the restriction homomorphism K ′

0(G; X) → K0(X) is surjective (Theorem 39). Our
exposition is different from the one presented in [11].

In the last section we consider some applications.
We use the word variety for a separated scheme of finite type over a field. If X is

a variety over a field F and L|F is a field extension, then we write XL for the variety
X ⊗F L over L. By Xsep we denote XFsep , where Fsep is a separable closure of F. If R
is a commutative F-algebra, we write X(R) for the set MorF(Spec R, X) of R-points
of X.

An algebraic group is a smooth affine group variety of finite type over a field.
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Basic Results in the Equivariant K-theory2.2

In this section we review the equivariant K-theory developed by R. Thomason
in [21].

Definitions2.2.1

Let G be an algebraic group over a field F. A variety X over F is called a G-variety
if an action morphism θ : G × X → X of the group G on X is given, which
satisfies the usual associative and unital identities for an action. In other words,
to give a structure of a G-variety on a variety X is to give, for every commutative
F-algebra R, a natural in R action of the group of R-points G(R) on the set X(R).

A G-module M over X is a quasi-coherent OX-module M together with an
isomorphism of OG×X-modules

ρ = ρM : θ∗(M)
∼→ p∗

2(M) ,

(where p2 : G × X → X is the projection), satisfying the cocycle condition

p∗
23(ρ) ◦ (idG × θ)∗(ρ) = (m × idX)∗(ρ) ,

where p23 : G × G × X → G × X is the projection and m : G × G → G is the
product morphism (see [14, Ch. 1, §3] or [21]).

A morphism α : M → N of G-modules is called a G-morphism if

ρN ◦ θ∗(α) = p∗
2(α) ◦ ρM .

Let M be a quasi-coherent OX-module. For a point x : Spec R → X of X over
a commutative F-algebra R, write M(x) for the R-module of global sections of
the sheaf x∗(M) over Spec R. Thus, M defines the functor sending R to the family
{M(x)} of R-modules indexed by the R-valued point x ∈ X(R). To give a G-module
structure on M is to give natural in R isomorphisms of R-modules

ρg,x : M(x) → M(gx)

for all g ∈ G(R) and x ∈ X(R) such that ρgg′,x = ρg,g′x ◦ ρg′,x.

Example 1 . Let X be a G-variety. A G-vector bundle on X is a vector bundle
E → X together with a linear G-action G × E → E compatible with

the one on X. The sheaf of sections P of a G-vector bundle E has a natural structure
of a G-module. Conversely, a G-module structure on the sheaf P of sections of
a vector bundle E → X yields structure of a G-vector bundle on E. Indeed, for
a commutative F-algebra R and a point x ∈ X(R), the fiber of the map E(R) → X(R)
over x is canonically isomorphic to P(x).
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We write M(G; X) for the abelian category of coherent G-modules over a G-
variety X and G-morphisms. We set for every n ≥ 0:

K ′
n(G; X) = Kn

(
M(G; X)

)
.

A flat morphism f : X → Y of varieties over F induces an exact functor

M(G; Y) → M(G; X), M 
→ f ∗(M)

and therefore defines the pull-back homomorphism

f ∗ : K ′
n(G; Y) → K ′

n(G; X) .

A G-projective morphism f : X → Y is a morphism that factors equivariantly as
a closed embedding into the projective bundle variety P(E), where E is a G-vector
bundle on Y . Such a morphism f yields the push-forward homomorphisms [21,
1.5]

f∗ : K ′
n(G; X) → K ′

n(G; Y) .

If G is the trivial group, then M(G; X) = M(X) is the category of coherent
OX-modules over X and therefore, K ′

n(G; X) = K ′
n(X).

Consider the full subcategory P (G; X) of M(G; X) consisting of locally free OX-
modules. This category is naturally equivalent to the category of vector G-vector
bundles on X (Example 1). The category P (G; X) has a natural structure of an
exact category. We set

Kn(G; X) = Kn

(
P (G; X)

)
.

The functor Kn(G; ∗) is contravariant with respect to arbitrary G-morphisms of
G-varieties. If G is a trivial group, we have Kn(G; X) = Kn(X).

The tensor product of G-modules induces a ring structure on K0(G; X) and
a module structure on Kn(G; X) and K ′

n(G; X) over K0(G; X).
The inclusion of categories P (G; X) ↪→ M(G; X) induces an homomorphism

Kn(G; X) → K ′
n(G; X) .

Example 2 . Let µ : G → GL(V) be a finite dimensional representation of an
algebraic group G over a field F. One can view the G-module V as

a G-vector bundle on Spec F. Clearly, we obtain an equivalence of the abelian
category Rep(G) of finite dimensional representations of G and the categories
P (G; Spec F) = M(G; Spec F). Hence there are natural isomorphisms

R(G)
∼→ K0(G; Spec F)

∼→ K ′
0(G; Spec F) ,

where R(G) = K0

(
Rep(G)

)
is the representation ring of G. For every G-variety X

over F, the pull-back map

R(G) � K0(G; Spec F) → K0(G; X)
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with respect to the structure morphism X → Spec F is a ring homomorphism,
making K0(G; X) (and similarly K ′

0(G; X)) a module over R(G). Note that as a group,
R(G) is free abelian with basis given by the classes of all irreducible representations
of G over F.

Let π : H → G be an homomorphism of algebraic groups over F and let X be a
G-variety over F. The composition

H × X
π×idX→ G × X

θ→ X

makes X an H-variety. Given a G-module M with the G-module structure defined by
an isomorphism ρ, we can introduce an H-module structure on M via (π×idX)∗(ρ).
Thus, we obtain exact functors

Resπ : M(G; X) → M(H; X) , Resπ : P (G; X) → P (H; X)

inducing the restriction homomorphisms

resπ : K ′
n(G; X) → K ′

n(H; X) , resπ : Kn(G; X) → Kn(H; X) .

If H is a subgroup of G, we write resG|H for the restriction homomorphism resπ,
where π : H ↪→ G is the inclusion.

Torsors2.2.2

Let G and H be algebraic groups over F and let f : X → Y be a G×H-morphism of
G × H-varieties. Assume that f is a G-torsor (in particular, G acts trivially on Y).
Let M be a coherent H-module over Y . Then f ∗(M) has a structure of a coherent
G×H-module over X given by p∗(ρM), where p is the composition of the projection
G × H × X → H × X and the morphism idH × f : H × X → H × Y .

Thus, there are exact functors

f 0 :M(H; Y) → M(G × H; X) , M 
→ p∗(M) ,

f 0 :P (H; Y) → P (G × H; X) , P 
→ p∗(P) .

3 Proposition 3 (Cf. [21, Prop. 6.2]) The functors f 0 are equivalences of categories.
In particular, the homomorphisms

K ′
n(H; Y) → K ′

n(G × H; X) ,

Kn(H; Y) → Kn(G × H; X) ,

induced by f 0, are isomorphisms.
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Proof Under the isomorphisms

G × X →̃X ×Y X , (g, x) 
→ (gx, x) ,

G × G × X →̃X ×Y X ×Y X , (g, g′, x) 
→ (gg′x, g′x, x)

the action morphism θ is identified with the first projection p1 : X ×Y X → X
and the morphisms m × id, id × θ are identified with the projections p13, p12 :
X ×Y X ×Y X → X ×Y X. Hence, the isomorphism ρ giving a G-module structure
on aOX-module M can be identified with the descent data, i.e. with an isomorphism

ϕ : p∗
1(M)

∼→ p∗
2(M)

of OX×Y X-modules satisfying the usual cocycle condition

p∗
23(ϕ) ◦ p∗

12(ϕ) = p∗
13(ϕ) .

More generally, a G × H-module structure on M is the descent data commuting
with an H-module structure on M. The statement follows now from the theory of
faithfully flat descent [13, Prop.2.22].

Example 4 . Let f : X → Y be a G-torsor and let ρ : G → GL(V) be a finite
dimensional representation. The group G acts linearly on the affine

spaceA(V) of V , so that the product X ×A(V) is a G-vector bundle on X. We write
Eρ for the vector bundle on Y such that f ∗(Eρ) � X×A(V), i.e., Eρ = G\(X×A(V)

)
.

The assignment ρ 
→ Eρ gives rise to a group homomorphism

r : R(G) → K0(Y) .

Note that the homomorphism r coincides with the composition

R(G)
∼→ K0(G; Spec F)

p∗
→ K0(G; X)

∼→ K0(Y) ,

where p : X → Spec F is the structure morphism.

Let G be an algebraic group over F and let H be a subgroup of G.

5Corollary 5 For every G-variety X, there are natural isomorphisms

Kn

(
G; X × (G|H)

) � Kn(H; X) , K ′
n

(
G; X × (G|H)

) � K ′
n(H; X) .

Proof Consider X × G as a G × H-variety with the action morphism given by the
rule (g, h) · (x, g′) = (hx, gg′h−1). The statement follows from Proposition 3 applied
to the G-torsor p2 : X × G → X and to the H-torsor X × G → X × (G|H) given by
(x, g) 
→ (gx, gH).
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Let ρ : H → GL(V) be a finite dimensional representation. Consider G as an
H-torsor over G|H with respect to the H-action given by h ∗ g = gh−1. The vector
bundle Eρ = H\(G ×A(V)

)
constructed in Example 4 has a natural structure of a

G-vector bundle. Corollary5 with X = Spec F implies:

6 Corollary 6 The assignment ρ 
→ Eρ gives rise to an isomorphism
R(H)

∼→ K0(G; G|H).

7 Corollary 7 There is a natural isomorphism Kn(G|H)
∼→ Kn(H; G).

Proof Apply Proposition 3 to the H-torsor G → G|H.

Basic Results in Equivariant K-theory2.2.3

We formulate basic statements in the equivariant algebraic K-theory developed by
R. Thomason in [21]. In all of them G is an algebraic group over a field F and X is
a G-variety.

Let Z ⊂ X be a closed G-subvariety and let U = X \ Z. Since every coherent
G-module over U extends to a coherent G-module over X [21, Cor. 2.4], the
categoryM(G; U) is equivalent to the factor category ofM(G; X) by the subcategory
M′ of coherent G-modules supported on Z. By Quillen’s devissage theorem [17,
§5, Th. 4], the inclusion of categories M(G; Z) ⊂ M′ induces an isomorphism
K ′

n(G; Z)
∼→ K ′

n(M′). The localization in algebraic K-theory [17, §5, Th. 5] yields
connecting homomorphisms

K ′
n+1(G; U)

δ→ K ′
n(M′) � K ′

n(G; Z)

and the following:

8 Theorem 8 [21, Th. 2.7] (Localization) The sequence

… → K ′
n+1(G; U)

δ→ K ′
n(G; Z)

i∗→ K ′
n(G; X)

j∗→ K ′
n(G; U)

δ→ … ,

where i : Z → X and j : U → X are the embeddings, is exact.

9 Corollary 9 Let X be a G-variety. Then the natural closed G-embedding f : Xred →
X induces the isomorphism f∗ : Kn(G; Xred) → Kn(G; X).

Let X be a G-variety and let E be a G-vector bundle of rank r + 1 on X. The
projective bundle variety P(E) has natural structure of a G-variety so that the
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natural morphism p : P(E) → X is G-equivariant. We write L for the G-module
of sections of the tautological line bundle on P(E).

A modification of the Quillen’s proof [17, §8] of the standard projective bundle
theorem yields:

10Theorem 10 [21, Th. 3.1] (Projective bundle theorem) The correspondence

(a0, a1, … , ar) 
→
r∑

i=0

[
L⊗i

] ⊗ p∗ai

induces isomorphisms

Kn(G; X)r+1 → Kn

(
G;P(E)

)
, K ′

n(G; X)r+1 → K ′
n

(
G;P(E)

)
.

Let X be a G-variety and let E → X be a G-vector bundle on X. Let f : Y → X be
a torsor under the vector bundle variety E (considered as a group scheme over X)
and G acts on Y so that f and the action morphism E ×X Y → Y are G-equivariant.
For example, one can take the trivial torsor Y = E.

11Theorem 11 [21, Th. 4.1] (Strong homotopy invariance property) The pull-back
homomorphism

f ∗ : K ′
n(G; X) → K ′

n(G; Y)

is an isomorphism.

The idea of the proof is construct an exact sequence of G-vector bundles on X:

0 → E → W
ϕ→ A

1
X → 0 ,

where A1
X is the trivial line bundle, such that ϕ−1(1) � Y . Thus, Y is isomorphic

to the open complement of the projective bundle variety P(E) in P(V). Then one
uses the projective bundle theorem and the localization to compute the equivariant
K ′-groups of Y .

12Corollary 12 Let G → GL(V) be a finite dimensional representation. Then the
projection p : X × A(V) → X induces the pull-back isomorphism

p∗ : K ′
n(G; X)

∼→ K ′
n

(
G; X × A(V)

)
.

Let X be a regular G-variety. By [21, Lemma 5.6], every coherent G-module
over X is a factor module of a locally free coherent G-module. Therefore, every
coherent G-module has a finite resolution by locally free coherent G-modules. The
resolution theorem [17, §4, Th. 3] then yields:
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13 Theorem 13 [21, Th. 5.7] (Duality for regular varieties) Let X be a regular G-
variety over F. Then the canonical homomorphism Kn(G; X) → K ′

n(G; X) is an
isomorphism.

Category C(G) of G-equivariant
K-correspondences2.3

Let G be an algebraic group over a field F and let A be a separable F-algebra, i.e. A is
isomorphic to a product of simple algebras with centers separable field extensions
of F. An G-A-module over a G-variety X is a G-module M over X which is endowed
with the structure of a left A⊗F OX-module such that the G-action on M is A-linear.
An G-A-morphism of G-A-modules is a G-morphism that is also a morphism of
A ⊗F OX-modules.

We consider the abelian category M(G; X, A) of G-A-modules and G-A-mor-
phisms and set

K ′
n(G; X, A) = Kn(M(G; X, A)) .

The functor K ′
n(G; ∗, A) is contravariant with respect to flat G-A-morphisms

and is covariant with respect to projective G-A-morphisms of G-varieties. The
categoryM(G; X, F) is isomorphic toM(G; X), and thus it follows that K ′

n(G; X, F) =
K ′

n(G; X).
Consider also the full subcategory P (G; X, A) of M(G; X, A) consisting of all

G-A-modules which are locally free OX-modules. The K-groups of the category
P (G; X, A) are denoted by Kn(G; X, A). The group Kn(G; X, F) coincides with
Kn(G; X).

In [15], I. Panin has defined the category of G-equivariant K-correspondences
C(G) whose objects are the pairs (X, A), where X is a smooth projective G-variety
over F and A is a separable F-algebra. Morphisms in C(G) are defined as follows:

MorC(G)((X, A), (Y , B)) = K0(G; X × Y , A
op ⊗F B) ,

where A
op

stands for the algebra opposite to A. If u : (X, A) → (Y , B) and v :
(Y , B) → (Z, C) are two morphisms in C(G), then their composition is defined by
the formula

v ◦ u = p13∗(p∗
23(v) ⊗B p∗

12(u)) ,

where p12, p13 and p23 are the projections from X ×Y ×Z to X ×Y , X ×Z and Y ×Z
respectively. The identity endomorphism of (X, A) in C(G) is the class [A ⊗F O∆],
where ∆ ⊂ X × X is the diagonal, in the group

K ′
0(G; X × X, A

op ⊗F A) � K0(G; X × X, A
op ⊗F A) = EndC(G)(X, A) .
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We will simply write X for (X, F) and A for (Spec F, A) in C(G).
The category C(G) for the trivial group G is simply denoted by C. There is the

forgetful functor C(G) → C.
Note that an element u ∈ K0(G; X × Y , A

op ⊗F B), i.e. a morphism u : (X, A) →
(Y , B) can be considered also as a morphism u

op
: (Y , B

op
) → (X, A

op
). Thus, the

category C(G) has the involution functor taking (X, A) to (X, A
op

).
For every variety Z over F and every n ∈ Z we have the realization functor

KZ
n : C(G) → Abelian Groups ,

taking a pair (X, A) to K ′
n(G; Z × X, A) and a morphism

v ∈ HomC(G)

(
(X, A), (Y , B)

)
= K0(G; X × Y , A

op ⊗F B)

to

KZ
n (v) : K ′

n(G; Z × X, A) → K ′
n(G; Z × Y , B)

given by the formula

KZ
n (v)(u) = v ◦ u .

Note that we don’t need to assume Z neither smooth nor projective to define KZ
n .

We simply write Kn for K
Spec F
n .

Example 14 . Let X be a smooth projective variety over F. The identity [OX] ∈
K0(X) defines two morphisms u : X → Spec F and v : Spec F → X

in C. If p∗[OX] = 1 ∈ K0(F), where p : X → Spec F is the structure morphism
(for example, if X is a projective homogeneous variety), then the composition
u ◦ v in C is the identity. In other words, the morphism p splits canonically in
C, i.e., the point Spec F is a canonical “direct summand" of X in C, although X
may have no rational points. The application of the resolution functor KZ

n for
a variety Z over F shows that the group K ′

n(Z) is a canonical direct summand of
K ′

n(X × Z).

Let G be a split reductive group over a field F with simply connected commutator
subgroup and let B ⊂ G be a Borel subgroup. By [20, Th.1.3], R(B) is a free R(G)-
module.

The following statement is a slight generalization of [15, Th. 6.6].

15Proposition 15 Let Y = G|B and let u1, u2, ..., um be a basis of R(B) = K0(G; Y) over
R(G). Then the element

u = (ui) ∈ R(B)m = K0(G; Y)m = K0(G; Y , Fm)

defines an isomorphism Fm ∼→ Y in the category C(G).
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Proof Denote by p : G|B → Spec F the structure morphism. Since G|B is a projec-
tive variety, the push-forward homomorphism

p∗ : R(B) = K0(G; G|B) → K0(G; Spec F) = R(G)

is well defined. The R(G)-bilinear form on R(B) defined by the formula

〈u, v〉G = p∗(u · v)

is unimodular ( [6], [15, Th. 8.1.], [11, Prop. 2.17]).
Let v1, v2, ..., vm be the dual R(G)-basis of R(B) with respect to the unimodular

bilinear form. The element v = (vi) ∈ K0(G; Y , Fm) can be considered as a mor-
phism Y → Fm in C(G). The fact that u and v are dual bases is equivalent to
the equality v ◦ u = id. In order to prove that u ◦ v = id it suffices to show that
the R(G)-module K0(G, Y × Y) is generated by m2 elements (see [15, Cor. 7.3]).
It is proved in [15, Prop. 8.4] for a simply connected group G, but the proof goes
through for a reductive group G with simply connected commutator subgroup.

Equivariant K-theory of Projective
Homogeneous Varieties2.4

Let G be a semisimple group over a field F. A G-variety X is called homogeneous
(resp. projective homogeneous) if Xsep is isomorphic (as a Gsep-variety) to Gsep|H
for a closed (resp. a (reduced) parabolic) subgroup H ⊂ Gsep.

Split Case2.4.1

Let G be a simply connected split algebraic group over F, let P ⊂ G be a parabolic
subgroup and set X = G|P. The center C of G is a finite diagonalizable group scheme
and C ⊂ P; we write C∗ for the character group of C. For a character χ ∈ C∗, we
say that a representation ρ : P → GL(V) is χ-homogeneous if the restriction of ρ
on C is given by multiplication by χ. Let R(P)(χ) be the subgroup of R(P) generated
by the classes of χ-homogeneous representations of P.

By [20, Th.1.3], there is a basis u1, u2, ..., uk of R(P) over R(G) such that each
ui ∈ R(P)(χi) for some χi ∈ C∗. As in the proof of Proposition 15, the elements ui

define an isomorphism u : E → X in the category C(G), where E = Fk.
For every i = 1, 2, ..., k, choose a representation ρi : G → GL(Vi) such that

[ρi] ∈ R(G)(χi). Consider the vector spaces Vi as G-vector bundles on Spec F with
trivial G-action. The classes of the dual vector spaces

vi = [V∗
i ] ∈ K0

(
G; Spec F, End(V∗

i )
)
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define isomorphisms vi : End(Vi) → F in C(G). Let V be the E-module V1 × V2 ×
· · · × Vk. Taking the product of all the vi we get an isomorphism v : EndE(V) → E
in C(G). The composition w = u ◦ v is then an isomorphism w : EndE(V) → X.

Now we let the group G act on itself by conjugation, on X by left transla-
tions, on w via the representations ρi. Let G = G|C be the adjoint group asso-
ciated with G. We claim that all the G-actions factor through G. This is obvious
for the actions on G and X. Since the elements ui are χi-homogeneous and the
center C acts on V∗

i via ρi by the character χ−1
i , the class w also admits a G-

structure.

Quasi-split Case 2.4.2

Let G be a simply connected quasi-split algebraic group over F, let P ⊂ G
be a parabolic subgroup and set X = G|P. The absolute Galois group Γ =
Gal(Fsep|F) acts naturally on the representation ring R(Psep). By [20, Th.1.3], the
basis u1, u2, ..., uk ∈ R(Psep) over R(Gsep) considered in 2.4.1, can be chosen Γ-
invariant. Let E be the étale F-algebra corresponding to the Γ-set of the ui’s. As in
the proof of Proposition 15, the element u ∈ K0(G; X, E) defines an isomorphism
u : E → X in the category C(G).

Since the group Γ permutes the χi defined in 2.4.1, one can choose the represen-
tations ρi whose classes in the representation ring R(Gsep) are also permuted by Γ.
Hence as in 2.4.1, there is an E-module V and an isomorphism w : EndE(V) → X
which admits a G-structure.

General Case 2.4.3

Let G be a simply connected algebraic group over F, let X be a projective ho-
mogeneous variety of G. Choose a quasi-split inner twisted form Gq of G. The
group G is obtained from Gq by twisting with respect to a cocycle γ with co-
efficients in the quasi-split adjoint group G

q
. Let Xq be the projective homoge-

neous Gq-variety which is a twisted form of X. As in 2.4.2, find an isomorphism
wq : EndE(V) → Xq in C(Gq) for a certain étale F-algebra E and an E-module V .
Note that all the structures admit G

q
-operators. Twisting by the cocycle γ we get

an isomorphism w : A → X in C(G) for a separable F-algebra A with center E. We
have proved

16Theorem 16 (Cf. [15, Th. 12.4]) Let G be a simply connected group over a field
F and let X be a projective homogeneous G-variety. Then there exist a separable
F-algebra A and an isomorphism A � X in the category C(G). In particular,
K∗(G; X) � K∗(G; A) and K∗(X) � K∗(A).

17Corollary 17 The restriction homomorphism K0(G; X) → K0(X) is surjective.
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Proof The statement follows from the surjectivity of the restriction homomor-
phism K0(G; A) → K0(A).

We will generalize Corollary 17 in Theorem 39.

K-theory of Toric Varieties2.5

Let a torus T act on a normal geometrically irreducible variety X defined over
a field F. The variety X is called a toric T-variety if there is an open orbit which
is a principal homogeneous space of T. A toric T-variety is called a toric model of
T if the open orbit has a rational point. A choice of a rational point x in the open
orbit gives an open T-equivariant embedding T ↪→ X, t 
→ tx.

K-theory of Toric Models2.5.1

We will need the following:

18 Proposition 18 [12, Proposition 5.6] Let X be a smooth toric T-model defined over
a field F. Then there is a torus S over F, an S-torsor π : U → X and an S-equivariant
open embedding of U into an affine space A over F on which S acts linearly.

19 Remark 19 It turns out that the canonical homomorphism S∗
sep → Pic(Xsep) is an

isomorphism, so that π : U → X is the universal torsor in the sense of [2, 2.4.4].
Thus, the Proposition 18 asserts that the universal torsor of X can be equivariantly
imbedded into an affine space as an open subvariety.

Let ρ : S → GL(V) be a representation over F. Suppose that there is an action of
an étale F-algebra A on V commuting with the S-action. Then A acts on the vector
bundle Eρ (see Example 4), therefore, Eρ defines an element uρ ∈ K0(X, A), i.e.,
a morphism uρ : A → X in C. The composition

K0(A)
αρ→ R(S)

r→ K0(X) ,

where r is defined in Example 4 and αρ is induced by the exact functor M 
→
M ⊗A V , is given by the rule x 
→ uρ ◦ x.

Let ρ be an irreducible representation. Since S is a torus, ρ is the corestriction
in a finite separable field extension Lρ|F of a 1-dimensional representation of S.
Thus, there is an action of Lρ on V that commutes with the S-action. Note that
the element uρ defined above is represented by an element of the Picard group
Pic(X ⊗F Lρ).
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Now we consider two irreducible representations ρ and µ of the torus S over F,
and apply the construction described above to the torus S×S and its representation

ρ ⊗ µ : S × S → GL(Vρ ⊗F Vµ) .

The composition

K0(Lρ ⊗F Lµ)
αρ,µ→ R(S × S)

r→ K0(X × X)

coincides with the map

x 
→ u
op

ρ ◦ x ◦ uµ ,

where the composition is taken in C and uµ : X → Lµ, u
op

ρ : Lρ → X, x : Lµ → Lρ
are considered as the morphisms in C.

Now let Φ be a finite set of irreducible representations of S. Set

A =
∏
ρ∈Φ

Lρ, u =
∑
ρ∈Φ

uρ, α =
∑

ρ,µ∈Φ

αρ,µ .

The element uρ is represented by an element of the Picard group Pic(X ⊗F A).
Then the composition

K0(A ⊗F A)
α→ R(S × S)

r→ K0(X × X)

is given by the rule x 
→ u
op ◦ x ◦ u, where u is considered as a morphism X → A.

The homomorphism r coincides with the composition

R(S × S) = K0(S × S; Spec F)
∼→ K0(S × S;A× A)�

K0(S × S; U × U) = K0(X × X)

and hence r is surjective. By the representation theory of algebraic tori, the sum of
all the αρ,µ is an isomorphism. It follows that for sufficiently large (but finite!) set
Φ of irreducible representations of S the identity idX ∈ K0(X × X) belongs to the
image of r◦α. In other words, there exists x ∈ K0(A⊗F A) such that u

op ◦x◦u = idX

in C, i.e. v = u
op ◦x is a left inverse to u : X → A in C. We have proved the following:

20Theorem 20 [12, Th. 5.7] Let X be a smooth projective toric model of an algebraic
torus defined over a field F. Then there exist an étale F-algebra A and elements u,
v ∈ K0(X, A) such that the composition X

u→ A
v→ X in C is the identity and u is

represented by a class in Pic(X ⊗F A).

K-theory of Toric Varieties 2.5.2

Let T be a torus over F. The natural G-equivariant bilinear map

T(Fsep) ⊗ T∗
sep → F×

sep , x ⊗ χ 
→ χ(x)
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induces a pairing of the Galois cohomology groups

H1
(
F, T(Fsep)

) ⊗ H1(F, T∗
sep) → H2(F, F×

sep) = Br(F) ,

where Br(F) is the Brauer group of F. There is a natural isomorphism Pic(T) �
H1(F, T∗

sep) (see [23]). A principal homogeneous T-space U defines an element
[U] ∈ H1

(
F, T(Fsep)

)
. Therefore, the pairing induces the homomorphism

λU : Pic(T) → Br(F) , [Q] 
→ [U] ∪ [Q] .

Let X be a toric variety of the torus T with the open orbit U which is a principal
homogeneous space over T.

21 Theorem 21 [12, Th. 7.6] Let Y be a smooth projective toric variety over a field
F. Then there exist an étale F-algebra A, a separable F-algebra B of rank n2 over
its center A and morphisms u : Y → B, v : B → Y in C such that v ◦ u = id. The
morphism u is represented by a locally free OY -module in P (Y , B) of rank n. The
class of the algebra B in Br(A) belongs to the image of λUA : Pic(TA) → Br(A).

22 Corollary 22 The homomorphism Kn(u) : Kn(X) → Kn(A) identifies Kn(X)
with the direct summand of Kn(A) which is equal to the image of the projec-
tor Kn(u◦v) : Kn(A) → Kn(A). In particular, K0(X) is a free abelian group of finite
rank.

Equivariant K-theory of Solvable
Algebraic Groups2.6

We consider separately the equivariant K-theory of unipotent groups and algebraic
tori.

Split Unipotent Groups2.6.1

A unipotent group U is called split if there is a chain of subgroups of U with
the subsequent factor groups isomorphic to the additive group Ga. For example,
the unipotent radical of a Borel subgroup of a (quasi-split) reductive group is
split.

23 Theorem 23 Let U be a split unipotent group and let X be a U-variety. Then the
restriction homomorphism K ′

n(U; X) → K ′
n(X) is an isomorphism.
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Proof Since U is split, it is sufficient to prove that for a subgroup U ′ ⊂ U
with U|U ′ � Ga, the restriction homomorphism K ′

n(U; X) → K ′
n(U ′; X) is an

isomorphism. By Corollary 5, this homomorphism coincides with the pull-back
K ′

n(U; X) → K ′
n(U; X × Ga) with respect to the projection X × Ga → X, that is an

isomorphism by the homotopy invariance property (Corollary 12).

Split Algebraic Tori 2.6.2

Let T be a split torus over a field F. Choose a basis χ1, χ2, ..., χr of the character
group T∗. We define an action of T on the affine spaceAr by the rule t · x = y where
yi = χi(t)xi. Write Hi (i = 1, 2, ..., r) for the coordinate hyperplane in Ar defined by
the equation xi = 0. Clearly, Hi is a closed T-subvariety inAr and T = Ar − ∪r

i=1Hi.
For every subset I ⊂ {1, 2, ..., r} set HI = ∩i∈IHi.

In [8], M. Levine has constructed a spectral sequence associated to a family of
closed subvarieties of a given variety. This sequence generalizes the localization
exact sequence. We adapt this sequence to the equivariant algebraic K-theory and
also change the indices making this spectral sequence of homological type.

Let X be a T-variety over F. The family of closed subsets Zi = X × Hi in X ×Ar

gives then a spectral sequence

E1
p,q =

∐
|I|=p

K ′
q(T; X × HI) ⇒ K ′

p+q(T; X × T) .

By Corollary 5, the group K ′
p+q(T; X × T) is isomorphic to K ′

p+q(X).
In order to compute E1

p,q, note that HI is an affine space over F, hence the pull-
back K ′

q(T; X) → K ′
q(T; X × HI) is an isomorphism by the homotopy invariance

property (Corollary 12). Thus,

E1
p,q =

∐
|I|=p

K ′
q(T; X) · eI

and by [8, p.419], the differential map d : E1
p+1,q → E1

p,q is given by the formula

d(x · eI) =
p∑

k=0

(−1)k(1 − χ−1
ik

)x · eI−{ik} , (2.1)

where I = {i0 < i1 < · · · < ip}.
Consider the Kozsul complex C∗ built upon the free R(T)-module R(T)r and the

system of the elements 1 − χ−1
i ∈ R(T). More precisely,

Cp =
∐
|I|=p

R(T) · eI

and the differential d : Cp+1 → Cp is given by the rule formally coinciding with
(2.1), where x ∈ R(T).
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The representation ring R(T) is the group ring over the character group T∗. The
Kozsul complex gives the resolution C∗ → Z → 0 of Z by free R(T)-modules,
where we viewZ as a R(T)-module via the rank homomorphism R(T) → Z taking
the class of a representation to its dimension. It follows from (2.1) that the complex
E1∗,q coincides with

C∗ ⊗R(T) K ′
q(T; X) .

Hence, being the homology group of E1∗,q, the term E2
p,q is equal to

TorR(T)
p

(
Z, K ′

q(T; X)
)

.

We have proved:

24 Proposition 24 Let T be a split torus over a field F and let X be a T-variety. Then
there is a spectral sequence

E2
p,q = TorR(T)

p

(
Z, K ′

q(T; X)
) ⇒ K ′

p+q(X) .

We are going to prove that if X is smooth projective, the spectral sequence
degenerates.

Let G be an algebraic group and let H ⊂ G be a subgroup. Suppose that there
exists a group homomorphism π : G → H such that π|H = idH . For a smooth
projective G-variety X we write Ẋ for the variety X together with the new G-action
g ∗ x = π(g)x.

25 Lemma 25 If the restriction homomorphism K0(G; Ẋ × X) → K0(H; X × X) is
surjective, then the restriction homomorphism K ′

n(G; X) → K ′
n(H; X) is a split

surjection.

Proof Since the restriction map

resG|H : HomC(G)(Ẋ, X) = K0(G; Ẋ × X) →
K0(H; X × X) = HomC(H)(X, X)

is surjective, there is v ∈ HomC(G)(Ẋ, X) such that resG|H(v) = idX in C(G).
Consider the diagram

K ′
n(H; X)

resπ→ K ′
n(G; Ẋ)

Kn(v)→ K ′
n(G; X)

resG|H ↓ resG|H ↓
K ′

n(H; X) == K ′
n(H; X) ,

where the square is commutative since resG|H(v) = idX . The equality resG|H ◦ resπ =
id implies that the composition in the top row splits the restriction homomorphism
K ′

n(G; X) → K ′
n(H; X).
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Let T be a split torus over F, and let χ ∈ T∗ be a character such that T∗|(Z · χ)
is a torsion-free group. Then T ′ = ker(χ) is a subtorus in T. Denote by π : T → T ′
a splitting of the embedding T ′ ↪→ T.

26Proposition 26 Let X be a smooth projective T-variety. Then the restriction
homomorphism K ′

n(T; X) → K ′
n(T ′; X) is a split surjection.

Proof We use the notation Ẋ as above. Since T|T ′ � Gm, by Corollary 12, Corollary 5
and the localization (Theorem 8), we have the surjection

K ′
0(T; Ẋ × X)

∼→ K ′
0(T; Ẋ × X × A1

F) →→ K ′
0(T; Ẋ × X × Gm) � K ′

0(T ′; X × X)

which is nothing but the restriction homomorphism. The statement follows from
Lemma 25.

27Corollary 27 The sequence

0 → K ′
n(T; X)

1−χ→ K ′
n(T; X)

res→ K ′
n(T ′; X) → 0

is split exact.

Proof We consider X ×A1
F as a T-variety with respect to the T-action onA1

F given
by the character χ. In the localization exact sequence

… → K ′
n(T; X)

i∗→ K ′
n(T; X × A1

F)
j∗→ K ′

n(T; X × Gm)
δ→ … ,

where i : X = X × {0} ↪→ X × A1
F and j : X × Gm ↪→ X × A1

F are the embeddings,
the second term is identified with K ′

n(T; X) by Corollary 12 and the third one with
K ′

n(T ′; X) since T|T ′ � Gm as T-varieties (Corollary 5). With these identifications,
j∗ is the restriction homomorphism which is a split surjection by Proposition 26.
By the projection formula, i∗ is the multiplication by i∗(1). Let t be the coordinate
of A1. It follows from the exactness of the sequence of T-modules over X × A1

F :

0 → OX×A 1 [χ−1]
t→ OX×A 1 → i∗(OX) → 0

that i∗(1) = 1 − χ−1.

28Proposition 28 Let T be a split torus and let X be a smooth projective T-variety.
Then the spectral sequence in Proposition 24 degenerates, i.e.,

TorR(T)
p

(
Z, K ′

n(T; X)
)

=

{
K ′

n(X) , if p = 0 ,

0 , if p > 0 .
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Proof Let χ1, χ2 … , χr be aZ-basis of the character group T∗. Since R(T) is a Laurent
polynomial ring in the variables χi, and by Corollary 27, the elements 1−χi ∈ R(T)
form a R(T)-regular sequence, the result follows from [19, IV-7].

Quasi-trivial Algebraic Tori2.6.3

An algebraic torus T over a field F is called quasi-trivial if the character Galois
module T∗

sep is permutation. In other words, T is isomorphic to the torus GL1(C) of
invertible elements of an étale F-algebra C. The torus T = GL1(C) is embedded as
an open subvariety of the affine space A(C). By the classical homotopy invariance
and localization, the pull-back homomorphism

Z · 1 = K0

(
A(C)

) → K0(T)

is surjective. We have proved

29 Proposition 29 For a quasi-trivial torus T, one has K0(T) = Z · 1.

We generalize this statement in Theorem 30.

Coflasque Algebraic Tori2.6.4

An algebraic torus T over F is called coflasque if for every field extension L|F the
Galois cohomology group H1(L, T∗

sep) is trivial, or equivalently, if Pic(TL) = 0. For
example, quasi-trivial tori are coflasque.

30 Theorem 30 Let T be a coflasque torus and let U be a principal homogeneous
space of T. Then K0(U) = Z · 1.

Proof Let X be a smooth projective toric model of T (for the existence of X see [1]).
The variety Y = T\(X × U) is then a toric variety of T that has an open orbit
isomorphic to U .

By Theorem 21, there exist an étale F-algebra A, a separable F-algebra B of rank
n2 over its center A and morphisms u : Y → B, v : B → Y in C such that v ◦ u = id.
The morphism u is represented by a locally free OY -module in P (Y , B) of rank n.
The class of the algebra B in Br(A) belongs to the image of λUA : Pic(TA) → Br(A).
The torus T is coflasque, hence the group Pic(TA) is trivial and therefore, the
algebra B splits, B � Mn(A), so that K0(B

op
) is isomorphic canonically to K0(A).

Applying the realization functor to the morphism u
op

: B
op → Y we get a (split)

surjection

K0(u
op

) : K0(B
op

) → K0(Y) .
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Under the identification of K0(B
op

) with K0(A) we get a (split) surjection

K0(w
op

) : K0(A) → K0(Y) ,

where w is a certain element in K0(Y , A) represented by a locally free OY -module
of rank one, i.e., by an element of Pic(Y ⊗F A).

It follows that K0(Y) is generated by the push-forwards of the classes of OY -
modules from Pic(YE) for all finite separable field extensions E|F. Since the pull-
back homomorphism K0(Y) → K0(U) is surjective, the analogous statement holds
for the open subset U ⊂ Y . But by [18, Prop. 6.10], there is an injection Pic(UE) ↪→
Pic(TE) = 0, hence Pic(UE) = 0 and therefore K0(U) = Z · 1.

Equivariant K-theory
of some Reductive Groups 2.7

Spectral Sequence 2.7.1

Let G be a split reductive group over a field F. Choose a maximal split torus T ⊂ G.
Let X be a G-variety. The group K ′

n(G; X) (resp. K ′
n(T; X)) is a module over the

representation ring R(G) (resp. R(T)). The restriction map K ′
n(G; X) → K ′

n(T; X) is
an homomorphism of modules with respect to the restriction ring homomorphism
R(G) → R(T) and hence it induces an R(T)-module homomorphism

η : R(T) ⊗R(G) K ′
n(G; X) → K ′

n(T; X) .

31Proposition 31 Assume that the commutator subgroup of G is simply connected.
Then the homomorphism η is an isomorphism.

Proof Let B ⊂ G be a Borel subgroup containing T. Set Y = G|B. By Proposition 15,
there is an isomorphism u : Fm ∼→ Y in the category C(G) defined by some
elements u1, u2, … , um ∈ K0(G; Y) = R(B) that form a basis of R(B) over R(G).
Applying the realization functor (see Sect. 2.3)

KX
n : C(G) → Abelian Groups ,

to the isomorphism u, we obtain an isomorphism

K ′
n(G; X)m ∼→ K ′

n(G; X × Y) .

Identifying K ′
n(G; X)m with R(B) ⊗R(G) K ′

n(G; X) using the same elements ui we get
a canonical isomorphism

R(B) ⊗R(G) K ′
n(G; X)

∼→ K ′
n(G; X × Y) .
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Composing this isomorphism with the canonical isomorphism (Corollary 5)

K ′
n(G; X × Y)

∼→ K ′
n(B; X) ,

and identifying K ′
n(B; X) with K ′

n(T; X) via the restriction homomorphism (Theo-
rem 23) we get the isomorphism η.

Since R(T) is free R(G)-module by [20, Th.1.3], in the assumptions of Proposi-
tion 31 one has

TorR(G)
p (Z, K ′

n(G; X)) � TorR(T)
p (Z, K ′

n(T; X)) , (2.2)

where we view Z as a R(G)-module via the rank homomorphism R(G) → Z.
Proposition 24 then yields:

32 Theorem 32 [11, Th. 4.3] Let G be a split reductive group defined over F with the
simply connected commutator subgroup and let X be a G-variety. Then there is
a spectral sequence

E2
p,q = TorR(G)

p (Z, K ′
q(G; X)) ⇒ K ′

p+q(X) .

33 Corollary 33 The restriction homomorphism K ′
0(G; X) → K ′

0(X) induces an
isomorphism Z⊗R(G) K ′

0(G; X) � K ′
0(X).

In the smooth projective case, Proposition 28 and (2.2) give the following gen-
eralization of Corollary 33:

34 Corollary 34 If X is a smooth projective G-variety, then the spectral sequence in
Theorem 32 degenerates. i.e.,

TorR(G)
p (Z, K ′

n(G; X)) =

{
K ′

n(X) , if p = 0 ,

0 , if p > 0 .

K-theory of Simply Connected Group2.7.2

The following technical statement is very useful.

35 Proposition 35 Let G be an algebraic group over F and let f : X → Y be a
G-torsor over F. For every point y ∈ Y let Xy be the fiber f −1(y) of f over y (so
that Xy is a principal homogeneous space of G over the residue field F(y)). Assume
that K0(Xy) = Z · 1 for every point y ∈ Y . Then the restriction homomorphism
K ′

0(Y) � K ′
0(G; X) → K ′

0(X) is surjective.
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Proof We prove that the restriction homomorphism resX : K ′
0(G; X) → K ′

0(X) is
surjective by induction on the dimension of X. Assume that we have proved the
statement for all varieties of dimension less than the dimension of X. We would
like to prove that resX is surjective.

We prove this statement by induction on the number of irreducible components
of Y . Suppose first that Y is irreducible. By Corollary 9, we may assume that Y is
reduced.

Let y ∈ Y be the generic point and let v ∈ K ′
0(X). Since K ′

0(Xy) = K0(Xy) = Z · 1,
the restriction homomorphism K ′

0(G; Xy) → K ′
0(Xy) is surjective. It follows that

there exists a non-empty open subset U ′ ⊂ Y such that the pull-back of v in
K ′

0(U), where U = f −1(U ′), belongs to the image of the restriction homomorphism
K ′

0(G; U) → K ′
0(U). Set Z = X \ U (considered as a reduced closed subvariety

of X). Since dim(Z) < dim(X) and Z → Y \ U ′ is a G-torsor, by the induction
hypothesis, the left vertical homomorphism in the commutative diagram with the
exact rows

K ′
0(G; Z)

i∗→ K ′
0(G; X)

j∗→ K ′
0(G; U) → 0

resZ ↓ resX ↓ resU ↓
K ′

0(Z)
i∗→ K ′

0(X)
j∗→ K ′

0(U) → 0

is surjective. Hence, by diagram chase, v ∈ im(resX).
Now let Y be an arbitrary variety. Choose an irreducible component Z′ of Y

and set Z = f −1(Z′), U = X \ Z. The number of irreducible components of U is
less than one of X. By the first part of the proof and the induction hypothesis, the
homomorphisms resZ and resU in the commutative diagram above are surjective.
It follows that resX is also surjective.

I. Panin has proved in [16] that for a principal homogeneous space X of a simply
connected group of inner type, K0(X) = Z · 1. In the next statement we extend this
result to arbitrary simply connected groups (and later in Theorem 38 - to factorial
groups).

36Proposition 36 Let G be a simply connected group and let X be a principal
homogeneous space of G. Then K0(X) = Z · 1.

Proof Suppose first that G is a quasi-split group. Choose a maximal torus T of
a Borel subgroup B of G. A fiber of the projection f : T\X → B\X is isomorphic to
the unipotent radical of B and hence is isomorphic to an affine space. By [17, §7,
Prop. 4.1], the pull-back homomorphism

f ∗ : K0(B\X) → K0(T\X)

is an isomorphism.
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The character group T∗ is generated by the fundamental characters and there-
fore, T∗ is a permutation Galois module, so that T is a quasi-trivial torus. Every
principal homogeneous space of T is trivial, hence by Propositions 29 and 35, the
restriction homomorphism

K0(T\X) = K0(T; X) → K0(X)

is surjective. Thus, the pull-back homomorphism g∗ : K0(B\X) → K0(X) with
respect to the projection g : X → B\X is surjective.

Let G1 be the algebraic group of all G-automorphisms of X. Over Fsep, the groups
G and G1 are isomorphic, so that G1 is a simply connected group. The variety X
can be viewed as a G1-torsor [10, Prop. 1.2]. In particular, B\X is a projective
homogeneous variety of G1.

In the commutative diagram

K0(G1; B\X) → K0(G1; X)
res↓ res↓

K0(B\X)
g∗
→ K0(X)

the left vertical homomorphism is surjective by Corollary 17. Since g∗ is also
surjective, so is the right vertical restriction. It follows from Proposition 3 that

K0(G1; X) = K0(Spec F) = Z · 1 ,

hence, K0(X) = Z · 1.
Now let G be an arbitrary simply connected group. Consider the projective

homogeneous variety Y of all Borel subgroups of G. For every point y ∈ Y ,
the group GF(y) is quasi-split. The fiber of the projection X × Y → Y over y is
the principal homogeneous space XF(y) of GF(y). By the first part of the proof,
K0(XF(y)) = Z · 1. Hence by Proposition 35, the pull-back homomorphism

K0(Y) → K0(X × Y)

is surjective. It follows from Example 14 that the natural homomorphism Z · 1 =
K0(F) → K0(X) is a direct summand of this surjection and therefore, is surjective.
Therefore, K0(X) = Z · 1.

Equivariant K-theory of Factorial Groups2.8

An algebraic group G over a field F is called factorial if for any finite field extension
E|F the Picard group Pic(GE) is trivial.

37 Proposition 37 [11, Prop. 1.10] A reductive group G is factorial if and only if the
commutator subgroup G′ of G is simply connected and the torus G|G′ is coflasque.

In particular, simply connected groups and coflasque tori are factorial.
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38Theorem 38 Let G be a factorial group and let X be a principal homogeneous
space of G. Then K0(X) = Z · 1.

Proof Let G′ be the commutator subgroup of G and let T = G|G′. The group G′ is
simply connected and the torus T is coflasque. The variety X is a G′-torsor over
Y = G′\X. By Propositions 35 and 36, the restriction homomorphism

K0(Y) = K0(G′; X) → K0(X)

is surjective. The variety Y is a principal homogeneous space of T and by Theo-
rem 30, K0(Y) = Z · 1, whence the result.

39Theorem 39 [11, Th. 6.4] Let G be a reductive group defined over a field F. Then
the following condition are equivalent:
1. G is factorial.
2. For every G-variety X, the restriction homomorphism

K ′
0(G; X) → K ′

0(X)

is surjective.

Proof (1) ⇒ (2). Consider first the case when there is a G-torsor X → Y . Then the
restriction homomorphism K0(G; X) → K0(X) is surjective by Proposition 35 and
Theorem 38.

In the general case, choose a faithful representation G ↪→ S = GL(V). Let A be
the affine space of the vector space End(V) so that S is an open subvariety in A.
Consider the commutative diagram

K ′
0(G; X)

∼→ K ′
0(G;A× X) → K ′

0(G; S × X)
res↓ res↓ res↓

K ′
0(X)

∼→ K ′
0(A× X) → K ′

0(S × X) .

The group G acts freely on S × X so that we have a G-torsor S × X → Y . In
fact, Y exists in the category of algebraic spaces and may not be a variety. One
should use the equivariant K ′-groups of algebraic spaces as defined in [21]. By the
first part of the proof, the right vertical map is surjective. By localization, the right
horizontal arrows are the surjections. Finally, the composition in the bottom row
is an isomorphism since it has splitting K ′

0(S × X) → K ′
0(X) by the pull-back with

respect to the closed embedding X = {1} × X ↪→ S × X of finite Tor-dimension
(see [17, §7, 2.5]). Thus, the left vertical restriction homomorphism is surjective.

(2) ⇒ (1). Taking X = GE for a finite field extension E|F, we have a surjective
homomorphism

Z · 1 = K0(E) = K0(G; GE) → K0(GE) ,
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i.e. K0(GE) = Z · 1. Hence, the first term of the topological filtration K0(GE)(1) of
K0(GE) (see [17, §7.5]), that is the kernel of the rank homomorphism K0(GE) → Z,
is trivial. The Picard group Pic(GE) is a factor group of K0(GE)(1) and hence is also
trivial, i.e., G is a factorial group.

In the end of the section we consider the smooth projective case.

40 Theorem 40 [11, Th. 6.7] Let G be a factorial reductive group and let X be a smooth
projective G-variety over F. Then the restriction homomorphism

K ′
n(G; X) → K ′

n(X)

is split surjective.

Proof Consider the smooth variety X × X with the action of G given by g(x, x′) =
(x, gx′). By Theorem 39, the restriction homomorphism
K ′

0(G; X × X) → K ′
0(X × X) is surjective. Hence by Lemma 25, applied to the

trivial subgroup of G, the restriction homomorphism K ′
n(G; X) → K ′

n(X) is a split
surjection.

Applications2.9

K-theory of Classifying Varieties2.9.1

Let G be an algebraic group over a field F. Choose a faithful representation µ : G ↪→
GLn and consider the factor variety X = GLn |µ(G). For every field extension E|F,
the set H1(E, G) of isomorphism classes of principal homogeneous spaces of G over
E can be identified with the orbit space of the action of GLn(E) on X(E) [7, Cor. 28.4]:

H1(E, G) = GLn(E)\X(E) .

The variety X is called a classifying variety of G. The GLn(E)-orbits in the set X(E)
classify principal homogeneous spaces of G over E.

We can compute the Grothendieck ring of a classifying variety X of G. M. Rost
used this result for the computation of orders of the Rost’s invariants (see [5]).
As shown in Example 4, the G-torsor GLn → X induces the homomorphism
r : R(G) → K0(X) taking the class of a finite dimensional representation ρ : G →
GL(V) to the class the vector bundle Eρ.

41 Theorem 41 Let X be a classifying variety of an algebraic group G. The homomor-
phism r gives rise to an isomorphism

Z⊗R(GLn) R(G) � K0(X) .
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In particular, the group K0(X) is generated by the classes of the vector bundles Eρ
for all finite dimensional representations ρ of G over F.

Proof The Corollary 33 applied to the smooth GLn-variety X yields an isomorphism

Z⊗R(GLn) K0(GLn; X) � K0(X) .

On the other hand,

K0(GLn; X) � R(G)

by Corollary 6.

Note that the structure of the representation ring of an algebraic group is fairly
well understood in terms of the associated root system and indices of the Tits
algebras of G (see [22], [5, Part 2, Th. 10.11]).

Equivariant Chow Groups 2.9.2

For a variety X over a field F we write CHi(X) for the Chow group of equivalence
classes of dimension i cycles on X [4, I.1.3]. Let G be an algebraic group G over F.
For X a G-variety, D. Edidin and W. Graham have defined in [3] the equivariant
Chow groups CHG

i (G). There is an obvious restriction homomorphism

res : CHG
i (X) → CHi(X) .

42Theorem 42 Let X be a G-variety of dimension d, where G is a factorial group.
Then the restriction homomorphism

res : CHG
d−1(X) → CHd−1(X)

is surjective.

Proof The proof is essentially the same as the one of Theorem 39. We use the
homotopy invariance property and localization for the equivariant Chow groups.
In the case of a torsor the proof goes the same lines as in Proposition 35. The only
statement to check is the triviality of CH1(Y) = Pic(Y) for a principal homogeneous
space Y of G. By [18, Prop. 6.10], the group Pic(Y) is isomorphic to a subgroup of
Pic(G), which is trivial since G is a factorial group.

Let PicG(X) denote the group of line G-bundles on X. If X is smooth irreducible,
the natural homomorphism PicG(X) → CHG

d−1(X) is an isomorphism [3, Th. 1].
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43 Corollary 43 (Cf. [14, Cor. 1.6]) Let X be a smooth G-variety, where G is a factorial
group. Then the restriction homomorphism

PicG(X) → Pic(X)

is surjective. In other words, every line bundle on X has a structure of a G-vector
bundle.

Group Actions on the K ′-groups2.9.3

Let G be an algebraic group and let X be a G-variety over F. For every element
g ∈ G(F) write λg for the automorphism x 
→ gx of X. The group G(F) acts naturally
on K ′

n(X) by the pull-back homomorphisms λ∗
g .

44 Theorem 44 [11, Prop.7.20] Let G be a reductive group and let X be a G-variety.
Then
1. The group G(F) acts trivially on K ′

0(X).
2. If X is smooth and projective, the group G(F) acts trivially on K ′

n(X) for every
n ≥ 0.

Proof By [11, Lemma 7.6], there exists an exact sequence

1 → P → G̃
π→ G → 1

with a factorial reductive group G̃ and a quasi-trivial torus P. It follows from the
exactness of the sequence

G̃(F)
π(F)→ G(F) → H1(F, P(Fsep))

and triviality of H1(F, P(Fsep)) (Hilbert Theorem 90) that the homomorphism
π(F) : G̃(F) → G(F) is surjective. Hence, we can replace G by G̃ and assume that
G is factorial.

By definition of a G-module M, the isomorphism

ρ : θ∗(M)
∼→ p∗

2(M) ,

where θ : G × X → X is the action morphism, induces an isomorphism of two
compositions θ∗ ◦ res and p∗

2 ◦ res in the diagram

M(G; X)
res→ M(X)

θ∗→
p∗

2

M(G × X) .

Hence the compositions

K ′
n(G; X)

res→ K ′
n(X)

θ∗→
p∗

2

K ′
n(G × X)

are equal.
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For any g ∈ G(F) write εg for the morphism X → G × X, x 
→ (g, x). Then
clearly p2 ◦ εg = idX and θ ◦ εg = λg . The pull-back homomorphism ε∗

g is defined
since εg is of finite Tor-dimension [17, §7, 2.5]. Thus, we have ε∗

g ◦ p∗
2 = id and

ε∗
g ◦ θ∗ = λ∗

g on K ′
n(X), hence

res = ε∗
g ◦ p∗

2 ◦ res = ε∗
g ◦ θ∗ ◦ res = λ∗

g ◦ res : K ′
n(G; X) → K ′

n(X) .

By Theorem 39, the restriction homomorphism res is surjective for n = 0, hence
λ∗

g = id. In the case of smooth projective X the restriction is surjective for every
n ≥ 0 (Theorem 40), hence again λ∗

g = id.

45Corollary 45 Let G be a reductive group and let X be a smooth G-variety. Then the
group G(F) acts trivially on Pic(X).

Proof The Picard group Pic(X) is isomorphic to a subfactor of K0(X) and G(F) acts
trivially on K0(X) by Theorem 44.
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