MATH 216B PROBLEMS

1. Prove that a left invertible element of a finite dimensional algebra is invertible.
2. Let A be a finite dimensional division algebra and $B \subset A$ a subalgebra. Prove that B is a division algebra. Prove that the center of a (finite dimensional) simple algebra is a field.
3. Let B be an F-algebra and $A=\operatorname{End}_{F}(B)$, where B is viewed as a vector space over F. Consider the following two subalgebras of A : the subalgebra B_{1} of left multiplication endomorphisms by all elements in B and the subalgebra B_{2} of right multiplication endomorphisms by all elements in B. Prove that $B_{1} \simeq B, B_{2} \simeq B^{o p}, B_{2}=C_{A}\left(B_{1}\right)$ and $B_{1}=C_{A}\left(B_{2}\right)$.
4. Let A be a central simple F-algebra, $B \subset A$ a simple subalgebra and $L=Z(B)$. Prove that $C_{A}(B)$ is a central simple L-algebra and $[B]+\left[C_{A}(B)\right]=$ $\left[A_{L}\right]$ in $\operatorname{Br}(L)$.
5. Let L / F be a finite separable field extension. Prove that there exists a unique idempotent $e \in L \otimes_{F} L$ such that $e(x \otimes 1)=(1 \otimes x) e$ for all $x \in L$ and the image of e under the product $\operatorname{map} L \otimes_{F} L \rightarrow L$ is equal to 1 . Show that $e\left(L \otimes_{F} L\right) \simeq L$.
6. Let A be a central simple algebra over F and $e \in A$ a nonzero idempotent. Prove that $e A e$ is a central simple algebra over $e F e=e F \simeq F$ and $[e A e]=[A]$ in $\operatorname{Br}(F)$. (Hint: Let $A \simeq M_{n}(D)$ for a division F-algebra D. Show that e is conjugate to a diagonal matrix in $M_{n}(D)$.)
7. Let L / F be a finite Galois field extension with Galois group G and $s, t \in Z^{2}\left(G, L^{\times}\right)$two 2-cocycles. Prove that $[L / F, s]+[L / F, t]=[L / F, s t]$ in $\operatorname{Br}(L / F)$. (Hint: Let $e \in L \otimes_{F} L$ be the idempotent as in Problem 5 and $A=(L / F, s) \otimes_{F}(L / F, t)$. Consider $L \otimes_{F} L$ as a subalgebra in A. Show that $e A e \simeq(L / F, s t)$ and use Problem 6.)
8. Let L / F be a finite Galois field extension with Galois group $G, H \subset G$ a normal subgroup and $K=L^{H}$. Prove that the diagram

is commutative. (Hint: Let $s \in Z^{2}\left(G / H, K^{\times}\right)$be a 2-cocycle, $B=(K / F, s)$ and $A=(L / F, \operatorname{Inf}(s))$. Consider K as a subfield of B and $M_{n}(K)$ as a subalgebra of $M_{n}(B)$, where $n=[L: K]$. Show that there is a K-algebra embedding
$f: L \hookrightarrow M_{n}(B)$ and $n \times n$ matrices $J_{\sigma} \in M_{n}(B)$ for all $\sigma \in G$ such that $J_{\sigma} \cdot \sigma(f(x))=f(\sigma x) \cdot J_{\sigma}$ and $J_{\sigma} \cdot \sigma\left(J_{\tau}\right)=J_{\sigma \tau}$ for all $x \in L$ and $\sigma, \tau \in G$. Prove that there is an isomorphism $A \xrightarrow{\sim} M_{n}(B)$ taking $x \in L$ to $f(x)$ and u_{σ} to $J_{\sigma} \cdot u_{\sigma H}$ for all $\sigma \in G$. Here u_{σ} and $u_{\sigma H}$ are the canonical generators of A and B respectively.)
9. Let L / F be a finite Galois field extension with Galois group $G, H \subset G$ a subgroup and $K=L^{H}$. Prove that the diagram

is commutative. (Hint: Let $s \in Z^{2}\left(G, L^{\times}\right)$be a 2-cocycle and $A=(L / F, s)$. View K as a subfield of A and let $B=C_{A}(K)$. Prove that $B \simeq(L / K, \operatorname{Res}(s))$. Using Problem 4 show that $\left[A_{K}\right]=[B]$ in $\operatorname{Br}(K)$.
10. Generalize Problems 8 and 9 as follows. Let L^{\prime} / F be a field extension and let F^{\prime} and L be intermediate fields between F and L^{\prime} such that L / F is a finite Galois field extension with Galois group G and L^{\prime} / F^{\prime} is a finite Galois field extension with Galois group G^{\prime}. The restriction homomorphism $G^{\prime} \rightarrow G$ and the inclusion $L^{\times} \hookrightarrow L^{\prime \times}$ yield a homomorphism $H^{n}\left(G, L^{\times}\right) \rightarrow H^{n}\left(G^{\prime}, L^{\prime \times}\right)$. Prove that the diagram

is commutative.
11. Prove that $K_{2}(F)=0$ for a finite field F.
12. Let $s: F(t)^{\times} \rightarrow F^{\times}$be the map defined by $s\left(\frac{a t^{n}+\text { lower terms }}{b t^{m}+\text { lower terms }}\right)=\frac{a}{b}$. Prove that the map $K_{2}(F(t)) \rightarrow K_{2}(F)$, taking $\{f, g\}$ to $\{s(f), s(g)\}$ is a well-defined homomorphism.
13. Let $\left(F_{i}\right)_{i \in I}$ be a direct system of fields, where I is a directed partially ordered set and $F=\operatorname{colim}_{i \in I} F_{i}$. Prove that the natural map

$$
\operatorname{colim}_{i \in I} K_{2}\left(F_{i}\right) \rightarrow K_{2}(F)
$$

is an isomorphism.
14. Let A be a central simple algebra of degree n over F and $L \subset A$ a subfield of degree n over F. Prove that the composition

$$
K_{1}(L) \rightarrow K_{1}(A) \xrightarrow{\mathrm{Nrd}} K_{1}(F)
$$

coincides with the norm homomorphism.
15. Let L be a splitting field of a central simple algebra A over F, so that $A \otimes_{F} L \simeq M_{n}(L)$. Prove that the composition

$$
K_{1}(A) \rightarrow K_{1}\left(A \otimes_{F} L\right) \simeq K_{1}\left(M_{n}(L)\right) \simeq K_{1}(L)
$$

coincides with the composition

$$
K_{1}(A) \xrightarrow{\mathrm{Nrd}} K_{1}(F) \rightarrow K_{1}(L) .
$$

16. Let Q be a quaternion algebra. Prove that $\operatorname{Nrd}(q)=q \cdot \tau(q)$ for every $q \in Q$, where τ is the canonical involution on Q.
17. Let p and q be nondegenerate quadratic forms of even dimension. Prove that

$$
M_{2}(C(p \perp q)) \simeq C(p) \otimes C(q) \otimes Q
$$

where Q is the quaternion algebra $(\operatorname{disc}(p), \operatorname{disc}(q))$.
18. Let (V, q) be a quadratic form over F and $a \in F^{\times}$. Prove that

$$
C_{0}(\langle a\rangle \perp q) \simeq C(-a q)
$$

19. Let q be a nondegenerate quadratic form of dimension n. Prove that every element of the orthogonal group $O(q)$ is the product of at most n reflections.
20. Let q be an anisotropic quadratic form over F and $a \in F^{\times}$. Prove that the form $\langle-a\rangle \perp q$ is isotropic if and only if $a \in D(q)$.
21. Let q be a Pfister form over F. Prove that the kernel of the natural homomorphism $W(F) \rightarrow W(F(q))$ is the principal ideal generated by [q].
22. Let q be a 2^{n}-dimensional anisotropic form in $I^{n}(F)$. Prove that q is a multiple of an n-fold Pfister form.
