MATH 216B PROBLEMS

1. Prove that a left invertible element of a finite dimensional algebra is invertible.

2. Let A be a finite dimensional division algebra and $B \subset A$ a subalgebra. Prove that B is a division algebra. Prove that the center of a (finite dimensional) simple algebra is a field.

3. Let *B* be an *F*-algebra and $A = \operatorname{End}_F(B)$, where *B* is viewed as a vector space over *F*. Consider the following two subalgebras of *A*: the subalgebra B_1 of left multiplication endomorphisms by all elements in *B* and the subalgebra B_2 of right multiplication endomorphisms by all elements in *B*. Prove that $B_1 \simeq B, B_2 \simeq B^{op}, B_2 = C_A(B_1)$ and $B_1 = C_A(B_2)$.

4. Let A be a central simple F-algebra, $B \subset A$ a simple subalgebra and L = Z(B). Prove that $C_A(B)$ is a central simple L-algebra and $[B]+[C_A(B)] = [A_L]$ in Br(L).

5. Let L/F be a finite separable field extension. Prove that there exists a unique idempotent $e \in L \otimes_F L$ such that $e(x \otimes 1) = (1 \otimes x)e$ for all $x \in L$ and the image of e under the product map $L \otimes_F L \to L$ is equal to 1. Show that $e(L \otimes_F L) \simeq L$.

6. Let A be a central simple algebra over F and $e \in A$ a nonzero idempotent. Prove that eAe is a central simple algebra over $eFe = eF \simeq F$ and [eAe] = [A]in Br(F). (Hint: Let $A \simeq M_n(D)$ for a division F-algebra D. Show that e is conjugate to a diagonal matrix in $M_n(D)$.)

7. Let L/F be a finite Galois field extension with Galois group G and $s, t \in Z^2(G, L^{\times})$ two 2-cocycles. Prove that [L/F, s] + [L/F, t] = [L/F, st] in $\operatorname{Br}(L/F)$. (Hint: Let $e \in L \otimes_F L$ be the idempotent as in Problem 5 and $A = (L/F, s) \otimes_F (L/F, t)$. Consider $L \otimes_F L$ as a subalgebra in A. Show that $eAe \simeq (L/F, st)$ and use Problem 6.)

8. Let L/F be a finite Galois field extension with Galois group $G, H \subset G$ a normal subgroup and $K = L^{H}$. Prove that the diagram

$$\begin{array}{c|c} H^2(G/H, K^{\times}) \xrightarrow{\sim} \operatorname{Br}(K/F) \\ & & & & & \\ & & & & \\ Inf & & & & \\ H^2(G, L^{\times}) \xrightarrow{\sim} \operatorname{Br}(L/F) \end{array}$$

is commutative. (Hint: Let $s \in Z^2(G/H, K^{\times})$ be a 2-cocycle, B = (K/F, s)and $A = (L/F, \operatorname{Inf}(s))$. Consider K as a subfield of B and $M_n(K)$ as a subalgebra of $M_n(B)$, where n = [L : K]. Show that there is a K-algebra embedding $f: L \hookrightarrow M_n(B)$ and $n \times n$ matrices $J_{\sigma} \in M_n(B)$ for all $\sigma \in G$ such that $J_{\sigma} \cdot \sigma(f(x)) = f(\sigma x) \cdot J_{\sigma}$ and $J_{\sigma} \cdot \sigma(J_{\tau}) = J_{\sigma\tau}$ for all $x \in L$ and $\sigma, \tau \in G$. Prove that there is an isomorphism $A \xrightarrow{\sim} M_n(B)$ taking $x \in L$ to f(x) and u_{σ} to $J_{\sigma} \cdot u_{\sigma H}$ for all $\sigma \in G$. Here u_{σ} and $u_{\sigma H}$ are the canonical generators of A and B respectively.)

9. Let L/F be a finite Galois field extension with Galois group $G, H \subset G$ a subgroup and $K = L^{H}$. Prove that the diagram

$$\begin{array}{c} H^2(G, L^{\times}) \xrightarrow{\sim} \operatorname{Br}(L/F) \\ \underset{\operatorname{Res}}{\overset{} \bigvee} & \underset{\operatorname{V}^{\times} \otimes_F K}{\overset{} \bigvee} \\ H^2(H, L^{\times}) \xrightarrow{\sim} \operatorname{Br}(L/K) \end{array}$$

is commutative. (Hint: Let $s \in Z^2(G, L^{\times})$ be a 2-cocycle and A = (L/F, s). View K as a subfield of A and let $B = C_A(K)$. Prove that $B \simeq (L/K, \operatorname{Res}(s))$. Using Problem 4 show that $[A_K] = [B]$ in $\operatorname{Br}(K)$.

10. Generalize Problems 8 and 9 as follows. Let L'/F be a field extension and let F' and L be intermediate fields between F and L' such that L/F is a finite Galois field extension with Galois group G and L'/F' is a finite Galois field extension with Galois group G'. The restriction homomorphism $G' \to G$ and the inclusion $L^{\times} \hookrightarrow L'^{\times}$ yield a homomorphism $H^n(G, L^{\times}) \to H^n(G', L'^{\times})$. Prove that the diagram

is commutative.

11. Prove that $K_2(F) = 0$ for a finite field F.

12. Let $s: F(t)^{\times} \to F^{\times}$ be the map defined by $s\left(\frac{at^n + \text{lower terms}}{bt^m + \text{lower terms}}\right) = \frac{a}{b}$. Prove that the map $K_2(F(t)) \to K_2(F)$, taking $\{f, g\}$ to $\{s(f), s(g)\}$ is a well-defined homomorphism.

13. Let $(F_i)_{i \in I}$ be a direct system of fields, where I is a directed partially ordered set and $F = \operatorname{colim}_{i \in I} F_i$. Prove that the natural map

$$\operatorname{colim}_{i \in I} K_2(F_i) \to K_2(F)$$

is an isomorphism.

14. Let A be a central simple algebra of degree n over F and $L \subset A$ a subfield of degree n over F. Prove that the composition

$$K_1(L) \to K_1(A) \xrightarrow{\operatorname{Nrd}} K_1(F)$$

coincides with the norm homomorphism.

15. Let L be a splitting field of a central simple algebra A over F, so that $A \otimes_F L \simeq M_n(L)$. Prove that the composition

$$K_1(A) \to K_1(A \otimes_F L) \simeq K_1(M_n(L)) \simeq K_1(L)$$

coincides with the composition

$$K_1(A) \xrightarrow{\operatorname{Nrd}} K_1(F) \to K_1(L).$$

16. Let Q be a quaternion algebra. Prove that $Nrd(q) = q \cdot \tau(q)$ for every $q \in Q$, where τ is the canonical involution on Q.

17. Let p and q be nondegenerate quadratic forms of even dimension. Prove that

$$M_2(C(p \perp q)) \simeq C(p) \otimes C(q) \otimes Q,$$

where Q is the quaternion algebra $(\operatorname{disc}(p), \operatorname{disc}(q))$.

18. Let (V,q) be a quadratic form over F and $a \in F^{\times}$. Prove that

$$C_0(\langle a \rangle \perp q) \simeq C(-aq)$$

19. Let q be a nondegenerate quadratic form of dimension n. Prove that every element of the orthogonal group O(q) is the product of at most n reflections.

20. Let q be an anisotropic quadratic form over F and $a \in F^{\times}$. Prove that the form $\langle -a \rangle \perp q$ is isotropic if and only if $a \in D(q)$.

21. Let q be a Pfister form over F. Prove that the kernel of the natural homomorphism $W(F) \to W(F(q))$ is the principal ideal generated by [q].

22. Let q be a 2^n -dimensional anisotropic form in $I^n(F)$. Prove that q is a multiple of an n-fold Pfister form.