1. Let P be a module over a commutative ring A. Prove that P is a finitely generated projective A-module if and only if there are elements f_1, f_2, \ldots, f_n in A generating the unit ideal and such that P_{f_i} is a free A_{f_i}-module of finite rank for every i.

2. Let V be a finite dimensional vector space over a field K. Prove that every section of the tautological line bundle L_t over $\mathbb{P}_k(V)$ is trivial.

3. Let k be a field. The projective line \mathbb{P}^1_k is covered by two open sets U_1 and U_2, both isomorphic to \mathbb{A}^1_k, in a standard way. The intersection $U_1 \cap U_2$ is $\text{Spec } k[t, t^{-1}]$. Let $\alpha \in \text{GL}_n(k[t, t^{-1}])$ for some n. Write E_α for the vector bundle over \mathbb{P}^1_k which is obtained by gluing the trivial rank n vector bundles over U_1 and U_2 along the isomorphism over $U_1 \cap U_2$ given by the matrix α. Prove that $E_\alpha \simeq E_{\alpha'}$ if and only if there are $\beta \in \text{GL}_n(k[t])$ and $\gamma \in \text{GL}_n(k[t^{-1}])$ such that $\alpha' = \beta \alpha \gamma$.

4. Prove that every vector bundle over \mathbb{P}^1_k, k a field, is isomorphic to a direct sum of tensor powers of the tautological line bundle.

5. Classify line bundles over the affine line with double origin.

6. Let $\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_n$ be line bundles over a scheme X. Prove that

$$\Lambda^n(\mathcal{L}_1 \oplus \mathcal{L}_2 \oplus \cdots \oplus \mathcal{L}_n) \simeq \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \cdots \otimes \mathcal{L}_n.$$

7. Let \mathcal{L}_1 and \mathcal{L}_2 be line bundles over a scheme X such that $\mathcal{L}_1 \oplus \mathbb{A}^n_X \simeq \mathcal{L}_2 \oplus \mathbb{A}^n_X$ for some n. Prove that $\mathcal{L}_1 \simeq \mathcal{L}_2$.

8. Let $E \to X$ be a vector bundle, $s : X \to E$ a section. Show that s is a closed embedding.

9. Let $L \to X$ be a line bundle, $z : X \to L$ the zero section. Prove that the bundle is trivial if and only if there is a section $s : X \to L$ such that $s(X) \cap z(X) = \emptyset$.

10. Let E and E' be two vector bundles over $X = \text{Spec } A$. Prove that there is a scheme $I = \text{Iso}(E', E)$ over X such that for every commutative A-algebra R the set of R-points of I is the set of isomorphisms between $E' \times_X \text{Spec } R$ and $E \times_X \text{Spec } R$.

11. Prove that a morphism of vector bundles $f : E \to F$ is an admissible monomorphism (i.e., E is a subbundle of F) if and only if f is a closed embedding.

12. Let $E \to X$ be a vector bundle. Prove that there is a line bundle morphism $f : \mathbb{P}_X(E \oplus 1) \setminus \mathbb{P}_X(1) \to \mathbb{P}_X(E)$ dual to the tautological line bundle over $\mathbb{P}_X(E)$ (thus f is a canonical line bundle over $\mathbb{P}_X(E)$).
13. Let \(E \to X \) be a vector bundle, where \(X \) is a scheme over \(K \). Determine the set \(\mathbb{P}_X(E)(R) \) for a commutative \(K \)-algebra \(R \).

14. For an integer \(n \geq 2 \), let \(F_n : K-\text{Alg} \to \text{Sets} \) be the functor
\[
F_n(R) = U_n(R)/R^X,
\]
where \(U_n(R) \) is the set of unimodular \(n \)-rows over \(R \). Prove that the functor \(F_n \) admits an open cover by affine schemes, but \(F_n \) is not local.

15. A subfunctor \(F' \subset F \) is called closed if for every morphism \(\text{Spec } R \to F \) the morphism \(\text{Spec } R \times_F F' \to \text{Spec } R \) is a closed embedding of schemes. Prove that if \(X' \) is a closed subscheme of a scheme \(X \), then \(X' \) is a closed subfunctor of the functor \(X \).

16. a) Let \(R \) be a commutative \(K \)-algebra. Let \(p_i : R^n \to R \) and \(q_j : R^m \to R \) be the projections and \(s_{ij} : R^n \otimes R^m \to R \) defined by \(s_{ij}(x \otimes y) = p_i(x)q_j(y) \). Prove that a direct summand \(M \subset R^n \otimes R^m \) of rank 1 is of the form \(P \otimes Q \), where \(P \) and \(Q \) are direct summands of \(R^n \) and \(R^m \) of rank 1, respectively, if and only if \(s_{ij}(m)s_{kl}(m) = s_{il}(m)s_{kj}(m) \) for all \(m \in M \) and all \(i, j, k, l \).

b) Prove that the Segre morphism \(\mathbb{P}_{K}^{n-1} \times_K \mathbb{P}_{K}^{m-1} \to \mathbb{P}_{K}^{nm-1} \) taking a pair \((P, Q) \) of submodules to \(P \otimes Q \) is a closed embedding.

17. a) Let \(R \) be a commutative algebra over a field \(K \) and \(V \) a vector space of dimension \(n \) over \(K \). Prove that every right ideal \(I \) of \(\text{End}_R(V \otimes_K R) \) that is a direct summand of rank \(n \) as an \(R \)-submodule is of the form \(\text{Hom}_R(V \otimes_K R; P) \) for a unique direct summand \(P \) of \(V \otimes_K R \) of rank 1.

b) Prove that the Severi-Brauer variety of the \(K \)-algebra \(\text{End}_K(V) \) is isomorphic to the projective space \(\mathbb{P}_K(V) \).

18. Prove that a local functor covered by open subschemes (not necessarily affine) is a scheme.

19. Let \(f \in K \). Prove that the functor \(F : K-\text{Alg} \to \text{Sets} \) defined by
\[
F(R) = \begin{cases}
R, & \text{if } f \in R^\times; \\
\emptyset, & \text{otherwise},
\end{cases}
\]
is an affine scheme.

20. Let \(K \to K' \) be a commutative ring homomorphism and \(F : K-\text{Alg} \to \text{Sets} \) a functor. Define a functor \(F' : K'-\text{Alg} \to \text{Sets} \) by \(F'(R) = F(R) \). Prove that if \(F \) is a scheme, then so is \(F' \).

21. Let \(X \) be an integral variety over a field \(K \), \(\xi \in X \) the generic point and \(L = K(X) \).

a) Let \(F \) be a sheaf of sets on \(X \) such that for every nonempty open subset \(U \subset X \) the natural map \(F(U) \to F_\xi \) to the generic stalk is injective. Prove that for every point \(x \in X \) the induced map \(F_x \to F_\xi \) is injective and \(F(X) = \bigcap_{x \in X} F_x \) in \(F_\xi \).
b) Let Y be a variety over K. Prove that the map $\text{Mor}_K(X,Y) \to Y(L)$, induced by the morphism $\text{Spec} L \to X$, is injective. Show that $\text{Mor}_K(X,Y) = \cap_{x \in X} Y(O_{X,x})$ in $Y(L)$.

22. Prove that the class of flat morphisms is closed under compositions, base changes and local on the target.

23. Prove that the variety $\text{Spec} \left(K[x, y, z]/(z^2 - xy) \right)$ is normal.

24. Compute $\text{Pic}(X)$ for $X = \text{Spec} \left(K[x, y]/(y^2 - x^3 - x^2) \right)$.

25. Compute $\text{CH}_0(X)$ for $X = \text{Spec} \left(K[x, y]/(y^2 - x^3 - x^2) \right)$.

26. Compute the image of the class of the tautological line bundle under the isomorphism $\text{Pic}(\mathbb{P}^n_K) \to \text{CH}^1(\mathbb{P}^n_K)$.