1. Let \(H \) be a \(p \)-subgroup of a finite group \(G \). Show that if \(H \) is not a Sylow \(p \)-subgroup, then \(N_G(H) \neq H \).

2. Let \(G \) be a \(p \)-group and let \(k \) be a divisor of \(|G| \). Prove that \(G \) contains a normal subgroup of order \(k \).

3. Prove that if a group \(G \) contains a subgroup \(H \) of finite index, then \(G \) contains a normal subgroup \(N \) of finite index such that \(N \subseteq H \). (Hint: Consider the action of \(G \) on \(G/H \) by left translations.)

4. Let \(G \) be a \(p \)-group and \(H \) a normal subgroup in \(G \) of order \(p \). Show that \(H \subseteq Z(G) \). (Hint: consider the action of \(G \) on \(H \) by conjugation.)

5. (a) A subgroup \(H \) of \(G \) is called characteristic, if \(f(H) = H \) for every automorphism \(f \) of \(G \). Show that a characteristic subgroup \(H \) is normal in \(G \).

 (b) Prove that if \(K \) is a characteristic subgroup of \(H \) and \(H \) is a characteristic subgroup of \(G \), then \(K \) is characteristic in \(G \).

6. For a group \(G \) set \(G^{(0)} = G \) and \(G^{(i+1)} = [G^{(i)}, G^{(i)}] \) for \(i \geq 0 \). Show that \(G^{(i)} \) is a characteristic subgroup of \(G \).

7. (a) For any two subgroups \(K \) and \(H \) of a group \(G \) denote by \([K,H] \) the subgroup in \(G \) generated by the commutators \([k,h] = khk^{-1}h^{-1} \) for all \(k \in K \) and \(h \in H \). Show that if \(K \) and \(H \) are normal in \(G \), then so is \([K,H] \).

 (b) Prove that \([G,H] \) is normal in \(G \) for every subgroup \(H \subseteq G \).

8. Let \(G \) be a group and \(Z(G) \) the center of \(G \). Show that if \(G/Z(G) \) is nilpotent, then so is \(G \).

9. Assume that a subset \(S \subseteq G \) of a group \(G \) satisfies \(gSg^{-1} \subseteq S \) for all \(g \in G \). Prove that the subgroup generated by \(S \) is normal in \(G \).

10. Let \(N \) be an abelian normal subgroup in a finite group \(G \). Assume that the orders \(|G/N| \) and \(|\text{Aut}(N)| \) are relatively prime. Prove that \(N \) is contained in the center of \(G \).