HOMEWORK 2

1. Let G be a group and $a, b \in G$.
 (a) Prove that $a^n \cdot a^m = a^{n+m}$ and $(a^n)^m = a^{nm}$.
 (b) Prove that $\text{ord}(a^n) = \frac{\text{ord}(a)}{\gcd(n, \text{ord}(a))}$ if $\text{ord}(a) < \infty$.
 (c) Prove that $\text{ord}(ab) = \text{ord}(a) \cdot \text{ord}(b)$ if a and b commute and $\gcd\{\text{ord}(a) \ \text{ord}(b)\} = 1$.

2. Let $H \subseteq G$ be a subgroup. Show that the correspondence $Ha \mapsto (Ha)^{-1} = a^{-1}H$ is a bijection between the sets of right and left cosets.

3. Let $H \subseteq G$ be a subgroup. Suppose that for any $a \in G$ there exists $b \in G$ such that $aH = Hb$. Show that H is normal in G.

4. Let $f : G \to H$ be a surjective group homomorphism.
 (a) Let H' be a subgroup of H. Show that $G' = f^{-1}(H')$ is a subgroup of G. Prove that the correspondence $H' \mapsto G'$ is a bijection between the set of all subgroups of H and the set of all subgroups of G containing $\text{Ker}(f)$.
 (b) Let H' be a normal subgroup of H. Show that $G' = f^{-1}(H')$ is a normal subgroup of G. Prove that $G/G' \simeq H/H'$ and the correspondence $H' \mapsto G'$ is a bijection between the set of all normal subgroups of H and the set of all normal subgroups of G containing $\text{Ker}(f)$.

5. (a) Let N be a subgroup in the center $Z(G)$ of G. Show that N is normal in G. Prove that if the factor group G/N is cyclic, then G is abelian.
 (b) Prove that every group of order p^2 (for a prime p) is abelian.

6. Prove that if a group G contains a subgroup H of finite index, then G contains a normal subgroup N of finite index such that $N \subseteq H$. (Hint: Consider the homomorphism of G to the symmetric group of all left cosets of H in G taking any $x \in G$ to f_x defined by $f_x(aH) = xaH$.)

7. (a) Show that the group $\text{Inn}(G)$ of all inner automorphisms of a group G (given by $a \mapsto gag^{-1}$ for some $g \in G$) is a normal subgroup in $\text{Aut}(G)$.
 (b) Find all automorphisms of all (finite and infinite) cyclic groups.

8. Prove that if G has no non-trivial automorphisms, then G is abelian and $g^2 = e$ for all $g \in G$.

9. Let x and x' be two elements in the same orbit under some action of a group G on a set. Show that the stabilizers G_x and $G_{x'}$ are conjugate in G.
10. Let a group G act on two sets X and Y. We say that X and Y are G-isomorphic if there is a bijection $f : X \to Y$ such that $f(gx) = g(f(x))$ for every $x \in X$ and $g \in G$. Prove that if G acts on X transitively, then X is G-isomorphic to the set of left cosets G/H for some subgroup $H \subset G$ (with the action of G on G/H by left translations).