1. Show that if 1 = 0 in a ring R, then R is the zero ring.

2. (a) For any ring R define a ring structure on the abelian group $\tilde{R} = R \oplus \mathbb{Z}$ such that $(0, 1)$ is the identity of \tilde{R} and the inclusion map $R \to \tilde{R}$, $r \mapsto (r, 0)$ is a ring homomorphism.
(b) Let \mathcal{C} be the category of rings without identity. Show that the functor $F : \mathcal{C} \to \text{Rings}$ such that $F(R) = \tilde{R}$ is a left adjoint to the forgetful functor $G : \text{Rings} \to \mathcal{C}$ taking a ring with identity R to R considered as an object of \mathcal{C}.

3. Prove that a finite nonzero ring with no zero divisors is a division ring and a finite integral domain is a field.

4. Let R be the set of all 2×2 matrices over \mathbb{C} of the form
$$
\begin{pmatrix}
u & v \\
-\overline{v} & \overline{u}
\end{pmatrix},
$$
where “bar” denotes the complex conjugation. Show that R is a subring with identity in $M_2(\mathbb{C})$ that is isomorphic to the ring of real quaternions \mathbb{H}.

5. Show that the subset $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ in the real quaternion ring \mathbb{H} is a group (with respect to the multiplication) isomorphic to the quaternion group (of order 8).

6. (a) Prove that a nonzero matrix $a \in M_n(F)$, where F is a field, is a zero divisor if and only if $\det(a) = 0$.
(b) Prove that a nonzero matrix $a \in M_n(R)$, where R is a commutative ring, is a zero divisor if $\det(a) = 0$.

7. Let $S = M_n(R)$ where R is a ring with identity. Show that for any ideal $J \subset S$ there is a unique ideal $I \subset R$ such that J is the set of all $n \times n$ matrices with elements in I.

8. (a) Let $f : R \to S$ be a ring homomorphism, I an ideal in R, J an ideal in S. Show that $f^{-1}(J)$ is an ideal in R that contains $\text{Ker}(f)$.
(b) If f is surjective, then $f(I)$ is an ideal in S. Is f is not surjective, $f(I)$ need not be an ideal in S.
9. (a) An element a of a ring R is called \textit{nilpotent}, if $a^n = 0$ for some $n \in \mathbb{N}$. Show that if R is a commutative ring, then the set $\text{Nil}(R)$ of all nilpotent elements in R is an ideal (\textit{nilradical of R}). Prove that the factor ring $R/\text{Nil}(R)$ has no nonzero nilpotent elements.

(b) Prove that a polynomial $f(X) = a_0 + a_1X + \ldots + a_nX^n \in R[X]$ (R is a commutative ring) is nilpotent if and only if all a_i are nilpotent in R.

10. (a) Prove that if a is a nilpotent element of a ring R, then the element $1 + a$ is invertible.

(b) Prove that a polynomial $f(X) = a_0 + a_1X + \ldots + a_nX^n \in R[X]$ (R is a commutative ring) is invertible in $R[X]$ if and only if all a_0 is invertible and a_i are nilpotent in R for $i \geq 1$.