HOMEWORK 9

1. Show that a submodule of a cyclic module over a PID is also cyclic.
2. Let a and b be nonzero elements of a PID R. Prove that $R / a R \oplus R / b R \simeq$ $R / c R \oplus R / d R$, where c is a least common multiple and d is a greatest common divisor of a and b.
3. Find the invariant factors of the factor group \mathbb{Z}^{3} / N, where N is generated by $(-4,4,2),(16,-4,-8),(12,0,-6)$ and $(8,4,2)$.
4. Find the rational canonical form over \mathbb{Q} of the matrix

$$
\left(\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & -4 & -1 \\
2 & 4 & 0
\end{array}\right)
$$

5. Find the Jordan canonical form over \mathbb{C} of the matrix

$$
\left(\begin{array}{cc}
2 i & 1 \\
1 & 0
\end{array}\right)
$$

6. a) Prove that two 2×2 matrices that are not scalar matrices are similar if and only if they have the same characteristic polynomials.
b) Prove that two 3×3 matrices are similar if and only if they have the same characteristic and the same minimal polynomials.
7. Show that the minimal polynomial of an $n \times n$-matrix A has the same irreducible divisors as the characteristic polynomial of A.
8. Prove that an $n \times n$-matrix A is similar to a diagonal matrix if and only if the elementary divisors of A are all linear polynomials.
9 . Let A be a nilpotent $n \times n$-matrix (that is $A^{N}=0$ for some $N>0$). Show that the invariant factors of A are powers of X. Prove that $A^{n}=0$.
9. Prove that any $n \times n$-matrix A is similar to its transpose A^{t}.
